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Article 
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Abstract: The number of applications for nanobodies is steadily expanding, positioning these molecules as fast-
growing biologic products in the biotechnology market. Several of their applications require protein 
engineering, which in turn would greatly benefit from having a reliable structural model of the nanobody of 
interest. However, as with antibodies, structural modeling of nanobodies is still a challenge. With the rise of 
artificial intelligence (AI), several methods have been developed in recent years that attempt to solve the 
problem of protein modeling. In this study, we have compared the performance in nanobody modeling of 
several state-of-the-art AI-based programs, either designed for general protein modeling, such as AlphaFold2, 
OmegaFold, ESMFold and Yang-Server, or specifically designed for antibody modeling, such as IgFold, and 
Nanonet. While all these programs performed rather well in constructing the nanobody framework and CDRs 
1 and 2, modeling of CDR3 sill represents a big challenge. Interestingly, tailoring an AI method for antibody 
modeling does not necessarily translate into better results for nanobodies. 

Keywords: artificial intelligence; protein structure; protein modeling; nanobody; antibody 
 

1. Introduction 

Nanobodies (Nbs) are the single binding domains of camelid heavy chain antibodies. 
Structurally, they share similarities with the variable heavy chain domain (VH) of traditional 
antibodies, consisting of a highly conserved region called framework and the antigen recognition 
region formed by three hypervariable loops, also called complementarity determining regions 
(CDRs) [1]. Nbs are much smaller (only 15 kDa) than human antibodies and their derivatives, but 
nonetheless can achieve similar affinities. Furthermore, they are highly stable and easy to produce 
[2,3]. These characteristics have positioned them as fast-growing biologic products in the 
biotechnology market.  

The number of applications for Nbs is expanding steadily [3–8]. Several of these applications 
require protein engineering, which in turn would greatly benefit from having a reliable three-
dimensional (3D) model of the Nb being modified [9–11]. However, as with antibodies, structural 
modeling of Nbs is still a challenge [12,13]. There are several hundreds of Nb crystallographic 
structures deposited in the Protein Data Bank (PDB) [14,15], however, this is still insufficient to 
represent the huge structural and sequence variability found in Nb hypervariable loops, thus 
preventing the development of methods capable of reliably modeling their 3D structure. 
Furthermore, the CDR3 in Nbs shows a spectrum of conformations, lengths and sequence variability 
greater than that of antibodies, which increases the uncertainty of the constructed 3D models [16]. 

With the rise of artificial intelligence (AI), several methods have been developed in recent years 
that attempt to solve the problem of protein modeling [17–19]. In this scenario, the development of 
AlphaFold represented a revolution in high-accuracy 3D protein modeling [20]. Since then, several 
methods have come to light, improving aspects such as speed, computational resource consumption 
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and modeling accuracy [21]. AI programs especially designed to model complete antibodies and their 
fragments have been generated, including an AI model – Nanonet [12] – designed for modeling Nb 
structures. Given the similarity between Nbs and antibody VH domains, all AI models developed for 
antibodies can in principle be used for Nb modeling [13,22,23]. 

In this study, we have compared the performance in Nb modeling of six state-of-the-art AI-based 
programs, either designed for general protein modeling, such as AlphaFold2 [20], OmegaFold [24], 
ESMFold [25], and trRosetta (Yang-Server in the most recent Critical Assessment of Structure 
Prediction competition – CASP15) [28], or specifically designed for antibody modeling, such as IgFold 
[13] and Nanonet [12]. Interestingly, tailoring an AI program for antibody modeling does not 
necessarily translate into better results for nanobodies. 

2. Results and discussion 

2.1. Dataset selection and validation 

For this study, we built a curated, non-redundant dataset of Nbs, none of which had been 
included in any of the training sets of the benchmarked programs. Following the procedure described 
above, we obtained a dataset of 75 unique Nbs with a median resolution of 2.59 Å (Figure 1, Table 
S1, Figure S1). 

The median sequence identity between the Nbs and the rest of the structures not contained in 
our dataset was between 56 and 71% (Figure 1). On the other hand, the maximum value of sequence 
identity within our dataset is below 90% in 91% of the cases, with only four pairs of Nbs showing a 
sequence identity higher than 95% (Figure S2). Here, it is worth noting that for Nbs, as well as for 
antibodies, even point mutations can induce important structural changes in CDR3 [26]. 

 

Figure 1. Sequence identity between each Nb in the dataset and the rest of the Nbs in the SAbDaB 
database. The sequence identity distributions are represented with boxplots. The lower and upper 
edges of the box represent the first (Q1) and third quartile (Q3), respectively. The difference Q3–Q1 is 
known as the interquartile range (IQR). Whiskers extend to the minimum and maximum points 
within ±1.5 × IQR, respectively. The maximum value of sequence identity for each distribution is 
represented as an orange dot. 

2.2. Structure prediction accuracy 

We compared the performance of six AI models for 3D structure prediction of Nbs: OmegaFold 
(OF), AlphaFold2 (AF2), IgFold (IF), NanoNet (NN), ESMFold (ESM), and trRosetta (referred to as 
Yang-Server in the latest CASP15 and herein) (YS). Modeling accuracy was initially evaluated using 
global superposition structural similarity metrics - TM-score, GDT_TS, and GDT_HA - traditionally 
used in CASP competitions. Figure 2 shows the distribution of values by program, for each metric. 
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Figure 2. Assessment of the modeling accuracy of the six AI programs using global superposition 
metrics (TM-score, GDT-TS, and GDT-HA).  The distributions of metric values are represented with 
violin plots, which combine a kernel density plot (outer) to show the distribution of values and a 
boxplot (inner) that summarizes the distribution statistics. In the boxplot, a white dot represents the 
median, the thick gray bar in the center represents the interquartile range, and the thin gray line 
accounts for the rest of the distribution. Statistical significances are represented with asterisks as 
follows: * p <= 0.05, ** p <=0.01, *** p<=0.001, and **** p<=0.0001. 

In general, all tested programs performed well according to these global metrics. The Yang-
Server showed the most discrete performance with medians of 0.87, 0.84, and 0.65 for TM-score, 
GDT_TS, and GDT_HA, respectively. On the other hand, OmegaFold, AlphaFold2, ESMFold, IgFold, 
and NanoNet, in decreasing order, showed medians above 0.91 for TM-score and GDT_TS 
respectively, and above 0.78 for GDT_HA (Figure 2, Table S2). 

TM-score and GDT_TS estimate the percent structural similarity between the model and the 
experimental structure. Values above 0.5 indicate that both structures have the same folding, while 
values above 0.9 indicate that they are structurally identical [27]. However, unlike other protein 
families, antibodies and Nbs present a major challenge for modeling techniques due to their CDRs. 
The framework is modeled correctly in most cases due to the high conservation of this region, 
whereas most of the modeling errors are concentrated in the CDRs, especially in CDR3. This fact 
generates an important bias in the metrics. This can be reflected in the variation of the global RMSD 
compared to per-region RMSDs (Figure 3, Table S2). To objectively evaluate the modeling accuracy 
of each program, we divided the Nbs into four regions −Framework (Fw), CDR1, CDR2, and CDR3− 
and calculated the RMSD for each of them (Figure 3, Table S2). 

 
Figure 3. Assessment of modeling accuracy by RMSD for the Fw and CDR regions, for OmegaFold, 
AlphaFold2, IgFold, Nanonet, ESMFold and Yang-Server. RMSD distributions are represented using 
violin plots. Nb regions are colored as follows: Framework (Fw) as gray; CDR1 – pink,  CDR2 – cyan, 
and CDR3 – brown. Statistical significances: * p <= 0.05, ** p <=0.01, *** p<=0.001, and **** p<=0.0001. 
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Because of the high conservation of the immunoglobulin domain framework, it is expected that 
all programs should correctly predict the structure of this region. Interestingly, while OmegaFold, 
AlphaFold2, IgFold, Nanonet, and ESMFold predicted the Fw structure with high accuracy (0.6 <= 
RMSD median <= 0.7), the Yang-Server yielded more discrete results (RMSD median = 1.2). In fact, 
only the Yang-Server shows significant statistical differences with respect to the other programs 
(Figure 3, Table S2). Modeling of CDRs, in contrast, poses a challenge for all programs. CDR2 was 
predicted more accurately (0.8 <= median RMSD <= 1.5) than the other CDRs, with only a few 
structures showing RMSD values above 2.5 Å (Figure 3, Table S3) and significant differences only for 
the Yang-Server (Figure 3, Table S2). CDR1 predictions remain in an acceptable range (1.4 <= median 
RMSD <= 2.1) with an increase in the number of structures with RMSD > 2.5 Å (Figure 3, Table S3), 
but without considerable significant statistical differences among them, except for the Yang-Server 
with respect to all but Nanonet. 

CDR3 predictions, on the other hand, are the most inaccurate (2.5 <= median RMSD <= 4.7), with 
about or more than 50% of the structures showing RMSD > 2.5 Å (Figure 3, Table S3). Significant 
statistical differences among several programs (Yang-Server, IgFold, and Nanonet) are observed for 
this region. OmegaFold, with a median RMSD of 2.5 Å, performs well in both overall value and 
RMSD per region, followed by AlphaFold2, IgFold, and ESMFold (median RMSD = 3.3 Å for CDR3), 
Nanonet (median RMSD = 3.8 Å) and finally Yang-Server (median RMSD = 4.7 Å) 

2.3. Structure prediction accuracy by sequence position 

As shown above, global superposition metrics are not suitable for estimating the accuracy of Nb 
modeling due to their structural characteristics. At the sequence region level, we observed a 
considerable variation in the accuracy of CDR modeling, especially for CDR3. We then analyzed the 
structures generated by the tested programs at the sequence position level to identify the regions that 
mark the differences in modeling. For each sequence position, we compared the RMSD values for Cα 
atoms and the whole amino acids between the predicted and experimental structures (Figure 4). 

All programs, except the Yang-Server, are consistent regarding framework modeling, with slight 
variations in the N-terminal region and non-CDR loops. The Yang-Server shows slight structural 
variations in the whole framework as compared to the rest of the programs, while a greater variation 
is observed in the N-terminal segment. NanoNet uses Modeller, while IgFold and the Yang-Server 
use Rosetta for side-chain modeling. NanoNet shows considerable RMSD variations when all heavy 
atoms are considered, followed by IgFold and Yang-Server with less variations (Figure S3). The side 
chains in the framework region are consistently well-modeled by OmegaFold, AlphaFold2, and 
ESMFold (Figure S3). The results for CDR1 are similar in all cases, with minor differences and slightly 
higher medians for Yang-Server. On the other hand, CDR2 shows appreciable variations. Positions 
57, 58, and 59 are poorly represented in the dataset, with less than five structures having amino acids 
at these positions (Figure S4). NanoNet slightly outperformed the rest of the programs. 

Finally, the main differences were found for CDR3 modeling. The lowest RMSD distributions 
by position were achieved by OmegaFold, followed by AlphaFold2, IgFold, ESMFold, Nanonet and 
Yang-Server. Except for Yang-Server, the differences are relatively small for short CDR3s, becoming 
more accentuated for Nbs with the longest loops. The C-terminal segment of CDR3 shows the lowest 
variations, probably associated with the frequent formation of secondary structure elements in this 
region, while the N-terminal part shows more discrete results. Nonetheless, in both cases the 
structural variations are considerable.  
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Figure 4. Distribution of Cα RMSD values by position for the OmegaFold, AlphaFold2, IgFold, 
Nanonet, ESMFold and Yang-Server models. CDR1, CDR2 and CDR3 regions are colored pink, cyan 
and brown, respectively. The RMSD distributions are represented by boxplots. 

The observed differences in modeling performance can be due to the intrinsic characteristics of 
each AI model and the representation and structural variability of the Nbs with different CDR3 
lengths in their training sets. OmegaFold does not require a multiple sequence alignment (MSA), 
using instead a new combination of a large pre-trained language model for sequence modeling and 
a geometry-inspired transformer model for structure prediction. According to its authors, this allows 
modeling of orphan proteins and antibodies from their amino acid sequences [24]. Similarly, 
ESMFold is based on ESM-2 (Evolutionary Scale Model), which is a language model that internalizes 
evolutionary patterns linked to structure, eliminating the need for external evolutionary databases, 
MSAs and templates [25]. IgFold and NanoNet do not require either a multiple sequence alignment. 
IgFold and NanoNet were trained to reproduce antibody and Nb structures, which limits the 
generation of structures that are atypical and therefore unrepresented in their training sets [12,13]. 

AlphaFold2, on the other hand, predicts the structure from neural networks and training 
procedures based on evolutionary, physical, and geometrical constraints of protein structures. To do 
so, it requires the protein primary sequence and a multiple sequence alignment, therefore, sequence 
identity and coverage of the different regions are crucial to obtain an accurate model [20]. Yang-
Server also requires a MSA and, in most cases, including a homologous template yields better 
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modeling results [28]. Given the number of available structures and the spectrum of lengths, 
composition and conformations of CDR3, it is difficult to generate a MSA for Nbs with full coverage 
of their sequences. However, general protein modeling programs such as OmegaFold, AlphaFold2 
and ESMFold, have been exposed to a wide and diverse set of protein structures, which may explain 
their better results in modeling CDRs, especially CDR3. (Figure 4). 

2.4. CDR3 structure prediction accuracy 

The accuracy of CDR3 modeling depends mainly on its length (Figure 5). Several CDR3 lengths 
are poorly represented in our dataset, where the number of Nbs varies from one (for lengths 3, 7, 11, 
and 20) to a maximum of nine (for length 16). 

 

Figure 5. RMSD distributions per CDR3 length. The upper panel shows the RMSD distributions (as 
boxplots) per CDR3 length for OmegaFold, AlphaFold2, IgFold, Nanonet, ESMFold, and Yang-Server. 
The lower panel shows the number of Nbs in the dataset per CDR3 length (bars in grey) and the 
pairwise RMSD values among CDR3s of the same length (swarm plot in brown). 

Depending on the AI model, the median RMSD of the predictions varies along the CDR3 length 
range. In most cases, OmegaFold achieved the best predictions, followed by AlphaFold2, ESMFold, 
IgFold, Nanonet and, lastly, Yang-Server. Although no direct correlation between CDR3 length and 
RMSD values is observed among the experimental structures, the structural variability might 
influence the predictions. For example, for length 15, where the structural variation in CDR3 is 
considerable, the predictions are relatively consistent, especially for OmegaFold, which yields RMSD 
values all below 2 Å (Figure 5). This is probably because this length is the most represented in the 
PDB and, therefore, in the training sets of the tested programs (Figure S5). On the other hand, CDR3s 
with lengths 17 and 18 adopt a similar conformation, hence the RMSD between the structures is 
relatively small and their modeling is consistently good for all the tested programs, except for the 
Yang-Server. 

For lengths 19 and 24, a few models with high RMSD are generated. For these particular cases, 
the experimental structure has marked differences with the rest of the Nbs with the same CDR3 
length. In 7tpr_D [29] (length 19), the antigen is positioned in-between CDR3 and the framework, 
thus altering the common CDR3 conformation (Figure S6). For length 24, the 7d8b_B and 7d6y_B 
structures [30] correspond to an engineered human variable heavy chain domain. These Nbs do not 
have a canonical disulfide bond and show two alpha helix segments in CDR3, which causes the N-
terminal portion of this region to be displaced with respect to the rest of the structures of the same 
length (Figure S6). Interestingly, although they differ in only two amino acids and have similar 
structures, for 7d6y_B, unlike 7d8b_B, a significant improvement was obtained when modeled with 
its antigen (see section 2.6.2) (Figure S10). However, in both cases, it was not possible to correctly 
reproduce the secondary structure motifs present in CDR3, probably because of the poor 
representation of this CDR3 length in the available structures (Figure S5). 
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2.5. Nanobody modeling confidence 

The confidence value is an important metric in protein structure modeling that allows to 
estimate how reliable a model can be considered. NanoNet does not produce any metric to estimate 
its modeling confidence. OmegaFold, AlphaFold2, ESMFold and Yang-Server do offer a measure of 
confidence called pLDDT (predicted Local Distance Difference Test) on a 0-100 scale, which 
corresponds to the predicted model score of the lDDT-Cα metric [20,24]. IgFold, on the other hand, 
offers an error estimate based on per-residue Cα deviations [13]. These metrics differ both 
conceptually and in scale. Typically, a pLDDT above 90 indicates a highly reliable model, 70 < pLDDT 
< 90 is considered reliable, while a model with pLDDT below 70 should be carefully reviewed. In 
contrast, there is not an established RMSD value below which a model is defined as reliable, although 
in practice, protein models with global RMSD below 4 Å are considered good.  

AlphaFold2 and OmegaFold report values of pLDDT below 70 for predicted CDR3s, which 
correlates with the RMSD values obtained for these loops between the models and their 
crystallographic structures (Figure 6, Figure S7, Table S4). Yang-server shows the lowest correlation, 
while OmegaFold achieves the highest. 

 

Figure 6. Correlation between the RMSD values and the average predicted confidences by OmegaFold 
for the CDR regions in the 75 Nbs conforming our dataset. Regression lines are shown in orange. 
Translucent bands around the regression lines indicate the 95% confidence interval for the regression 
estimates. Spearman correlation coefficients (r) are shown in the graphs. In all cases, p-value < 0.05. 

Although the obtained correlation coefficients are significant, it is not possible to establish a priori 
whether a model is reliable or not. Since CDR3 is the region that interacts more frequently with the 
antigen, further studies are required to estimate whether the generated model can be used for 
bioinformatics approaches that demand high structural accuracy, such as protein-protein docking. 

2.6. Structure prediction accuracy varying modeling parameters 

2.6.1. Number of recycles 

Among the tested programs, only AlphaFold2 and OmegaFold allow parameter modification, 
specifically the number of recycles, which controls the degree of structural model refinement. In 
several cases, AlphaFold2 has been shown to improve the prediction of disordered structures or de 

novo proteins by increasing the number of recycles [31]. OmegaFold has an equivalent tunable 
parameter, although its functionality has not been extensively assessed yet. Here we tested several 
values for the number of recycles to assess their effect on the modeling of different Nb regions. 

The models generated with AlphaFold2 using ten recycles slightly improved the predictions for 
CDR1 and CDR3, while slightly worsening those for CDR2. No considerable variations were 
observed for the framework and global modeling. In all cases, there were no statistically significant 
differences (p-value > 0.05). On the other hand, using 20 recycles with OmegaFold does not translate 
into any considerable variation for any Nb region. Interestingly, using four recycles slightly improves 
CDR1 and CDR2 predictions, while losing accuracy in CDR3 modeling. However, statistically, there 
are no significant differences in any case (Figure S8). Based on these results, using four recycles 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2023                   doi:10.20944/preprints202304.0195.v1

https://doi.org/10.20944/preprints202304.0195.v1


 8 

 

instead of the default value (number of recycles = 10) might be preferable since it decreases the 
computational time (see below). 

2.6.2. Modeling nanobodies in complex with their antigens with AlphaFold-multimer 

Currently, we are lacking enough Nb structures to estimate the effect of antigen binding on CDR 
conformations. Interestingly, there are a few cases where the same Nb shows several conformations, 
even in the free state (Figure S9). In other cases, the structural variations between Nbs with the same 
CDR3 might be attributed to the formation of a Nb-antigen complex. Most of the Nbs used in the 
parameterization of AI models are complexed with their antigens, thus making it difficult to 
determine whether the observed conformations would remain the same in their free states.   

Alphafold2 can model single chains with high reliability, however, it may fail in predicting 
protein structures in the context of certain complexes [32]. Using AlphaFold-multimer, we tested 
whether there is an improvement in CDR3 modeling for Nbs complexed with their antigens. To 
perform this analysis, we selected 41 structures considering the size and complexity of the antigen 
(Table S5). The results from these calculations were mixed. In several cases (7nfr_B, 7t5f_B, 7m1h_E, 
7olz_B, 7rby_B, and 7d6y_B) significant improvements were achieved, while in other cases (7php_N, 
7zfb_M, 7pqg_B, and 7e53_B) the program produced significantly worse results. In all other cases, 
regardless of CDR3 length, the results are similar to those obtained for the free Nb (Figure S10). 

2.6.3. Energy minimization 

Commonly, energy minimization is used to remove clashes among atoms in the structure. 
However, this does not imply a significant improvement in the models since such geometry 
optimization does not significantly change the overall conformation of loops and other regions [20]. 
Here we applied energy minimization to all the generated models. The results show that, indeed, 
there are no significant improvements (Figure S11). 

2.7. Computation time 

Nb libraries may contain billions of sequences, with many possible different structures. In recent 
approaches, library design seeks to favor structures with certain CDR3 geometries (e.g., concave, or 
convex) that will presumably bind to specific antigens [33,34]. With the increasing development of 
synthetic libraries [35], methods for reliable estimation of the CDR structural diversity would be of 
great value for in silico design of Nb libraries with desired conformational properties. Along with 
accuracy, computational time becomes an important factor to be considered when modeling such a 
high number of structures. In this context, NanoNet takes the lead, followed by IgFold, OmegaFold 
and, lastly, AlphaFold2 (Figure 7). ESMFold was used in this study through the ESM Metagenomic 
Atlas API (Application Programming Interface), while the Yang-Server was used through its 
dedicated server (https://yanglab.nankai.edu.cn/trRosetta/). ESMFold is extremely fast, obtaining 
results in approximately one second. However, this may depend on the demand on the server, so it 
might have limitations in the number of requests. Yang-Server modeling can take approximately one 
hour due to the algorithm and server capacity (only 30 active jobs at a time). In both cases, however, 
it is possible to install a standalone version for local use. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2023                   doi:10.20944/preprints202304.0195.v1

https://doi.org/10.20944/preprints202304.0195.v1


 9 

 

Figure 7. Computation time for the generation of a structural Nb model with OmegaFold, 
AlphaFold2, IgFold and Nanonet. Computation times for OmegaFold and AlphaFold with different 
recycle numbers are also included. 

For OmegaFold, the computation time improves when decreasing the number of recycles from 
10 (default) to 4, without affecting its accuracy. On the other hand, we found that increasing the 
number of recycles beyond the default value drastically increases the computational time without 
any noticeable benefit in modeling accuracy for both OmegaFold and AlphaFold2. It is worth noting 
that NanoNet may include sidechain modeling with Modeller, which would increase the 
computational time by a factor of 170-900 approximately, depending on the number of sequences 
being simultaneously processed. Finally, energy minimization not only does not improve modeling 
results, but it also adds computation time. The extra time required varied between 10 and 50 seconds 
per structure using our hardware configuration. 

3. Materials and Methods 

3.1. Benchmark dataset 

We started from the SAbDaB database [36], containing a total of 981 structures as of June 15th, 
2022. Firstly, we removed the PDB structures used for the parameterization of the AI programs to be 
compared. Next, incomplete structures and duplicated Nbs, identified from a pairwise comparative 
analysis of their amino acid sequences using Blastp [37–39], were withdrawn. For the subsequent 
analyses the sequences were numbered according to Aho's scheme using ANARCI [40]. All modeling 
was carried out from the primary structure of the Nb, without using templates, except for the 
modeling of Nbs in complex with their antigens, where the crystallographic structure of the antigen 
was used as a template. 

3.2. Artificial intelligence models 

Currently, AI methods have reached a high level of precision in protein modeling, as evidenced 
in the latest CASP competitions, where the first positions have been occupied by robust AI-based 
models (https://predictioncenter.org/index.cgi). The number of these AI protein modeling programs 
is increasing at a very fast pace, making it difficult to perform a comprehensive benchmarking. For 
this study we selected six AI modeling programs that have stood out for their performance in general 
protein modeling and/or antibody modeling. 

The first choice was AlphaFold2 [20], which has become a gold standard in protein modeling, 
inspiring the development of other AI methods. Further, we selected OmegaFold [24] and ESMFold 
[25], which are based on protein language models and therefore, by difference with AlphaFold2, do 
not involve the generation of multiple sequence alignments. As reported by its authors, OmegaFold’s 
results are comparable to those of AlphaFold2 for proteins in general, and are better for orphan 
proteins and antibodies [24]. ESMFold is based on ESM-2, which in a study conducted by its authors 
outperformed all single-sequence protein language models tested in a variety of structure prediction 
tasks [25]. ESMFold has gained popularity with the recent release of the ESM Metagenomic Atlas 
(https://esmatlas.com) that incorporates an application programming interface (API) to perform 
protein modeling easily and quickly. The fourth program chosen for our study is the Yang-server 
[28,41], which finished as the top-ranked program in the most recent CASP competition (CASP15, 
https://predictioncenter.org/casp15/zscores_final.cgi). Finally, we included two programs – IgFold 
[13] and Nanonet [12] – that were specifically designed for antibody modeling and have proven to be 
considerably better than conventional homology modeling methods [13,23,24]. Below we provide a 
brief description of each of these programs and their use in this study. 

3.2.1. AlphaFold2 

AlphaFold2 is an AI model developed by DeepMind that incorporates a neural network 
architecture and training procedures based on evolutionary, physical, and geometrical constraints of 
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protein structures [20]. At CASP14, AlphaFold was the top-ranked protein structure prediction 
method [42]. AlphaFold2 is composed mainly of two blocks: 1) the sequence information module, 
and 2) the structure module, both based on transformers. The first module extracts information from 
a multiple sequence alignment (MSA) and a defined template, while the second module generates 
the 3D structure. After an initial structure is generated, an interactive recycling process is carried out 
that reuses the entire network to obtain a refined final structure.  [20]. 

ColabFold offers a user-friendly and fast implementation of AlphaFold2 [31]. In this application, 
a MSA is generated with MMseqs2 [43,44], simplifying the process and reducing the computation 
time. For this study, we used localColabFold v1.4.0 to run the calculations on our computers 
(https://github.com/YoshitakaMo/localcolabfold). For Nbs in complex with an antigen, we employed 
AlphaFold-multimer [32] as implemented in ColabFold using the free Google Colab service. In these 
calculations we kept the default AlphaFold-multimer parameters, while to model Nbs in the free state 
we used the AlphaFold2 default configuration (3 recycles), as well as 10 recycles. 

3.2.2. OmegaFold 

OmegaFold was the first computational method to successfully predict high-resolution protein 
structure from a single primary sequence alone [24]. It is based on a deep transformer-based protein 
language model, trained on a large collection of protein sequences, to learn single- and pairwise-
residue embeddings as features that model the distribution of sequences. These features are passed 
through a Geoformer, a geometry-inspired transformer neural network, to extract pairwise structural 
and physical relationships between amino acids. In a study performed by its authors, OmegaFold 
outperformed RoseTTAFold and achieved a prediction accuracy similar to that of AlphaFold2, when 
tested on recently released structures [24]. Here, we used the default configuration (number of 
recycles = 10) and tried also two other values for this parameter: 4 and 20. 

3.2.3. ESMFold 

ESMFold is based on ESM-2 (Evolutionary Scale Model), which is a language model that 
internalizes evolutionary patterns linked to structure, eliminating the need for external evolutionary 
databases, multiple sequence alignments, and templates [25,45]. From these patterns and using the 
internal representation of the model, the atomic resolution structure of a protein can be constructed. 
ESMFold uses the internal representations of ESM-2 to a series of folding blocks that employ sequence 
and pairwise representations. Finally, these blocks are connected to a module that produces a final 
atomic-level structure [25].  

3.2.4. Yang-Server 

The Yang-Server is based on trRosetta, which includes a deep residual-convolutional network 
that takes a MSA as the input. This network delivers information on the relative distances and 
orientations of all residue pairs in the protein, which is then transferred to a fast Rosetta model-
building protocol based on restrained minimization with distance and orientation restraints [41]. 
Several updates have been implemented since the first version, including improvements in the 
generation and selection of the multiple sequence alignment, and a new neural network architecture 
for the prediction of inter-residue distances and tree orientations [28]. As mentioned above, Yang-
Server was the top-ranked program in the very recent CASP15 competition. 

3.2.5. IgFold 

IgFold utilizes learned representations from the pre-trained AntiBERTy (transformer language 
model pre-trained on 558 million natural antibody sequences) language model to predict 3D atomic 
coordinates directly. To generate the 3D structure (backbone), IgFold uses an algorithm similar to the 
one implemented in the AlphaFold2 structure module [13]. Amino acid side chains are generated 
using PyRosetta [46]. Unlike AlphaFold2 and OmegaFold, IgFold was specifically trained to predict 
the 3D structures of antibodies.  
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3.2.6. Nanonet 

Nanonet, unlike AlphaFold2, OmegaFold, and IgFold (based transformers), comprises a simple 
convolutional neural network-based algorithm that allows predicting the 3D structure of a Nb from 
its primary amino acid sequence. This method provides a great advantage in terms of time and 
computational resources [12]. Similar to IgFold, Nanonet requires an external tool to generate the 
amino acid side chains. Here, we chose the program Modeller [47]. 

3.3. Performance evaluation metrics 

3.3.1. Structural similarity metrics 

We used TM-score (Template Modeling score) [48], GDT_TS (Global Distance Test - Total Score) 
[49], and GDT_HA (Global Distance Test - High Accuracy) [49]  to evaluate the overall modeling 
accuracy of the different AI models. Both TM-score and GDT measure the structural similarity 
between two protein structures. GDT is commonly used to compare models with their corresponding 
crystallographic structures, being the major assessment criterion in the CASP event [42]. The Zhang 
group's TM-score program was used to compute the structural alignment, TM, and GDT scores 
[27,48]. For region-level analysis, we used RMSD (root-mean-square deviation). The RMSD for Cα 
and all heavy atoms were computed using a ParmEd-based script [50]. 

3.3.2. Statistics 

To estimate the differences between the metrics used in this study, we performed a Kruskal-
Wallis one-way analysis of variance. In significant cases, we used Dunn’s test with the Benjamini-
Hochberg correction as a post hoc test. Dunn’s test is the appropriate nonparametric pairwise multiple 
comparison procedure when a Kruskal-Wallis test is rejected. Calculations were performed using the 
bionfokit tool (v 1.0.5) [51]. 

3.3.3. Execution environment 

Calculations were performed using low-end and mid-range hardware (AMD Ryzen 7 3700 and 
a GPU Nvidia 1660 Super 6GB VRAM and 16 GBs RAM). All programs were installed in a standalone 
Miniconda environment with Python 3.8.13, following the instructions given by their developers. 

4. Concluding remarks 

Multiple studies have shown the superiority of AI programs over conventional homology 
modeling approaches for modeling protein structures. In this study we have evaluated the 
performance of six state-of-the-art AI programs in modeling Nb structures. To this aim, we generated 
a test dataset containing 75 unique Nbs not included in the training sets of the evaluated programs. 
The performance of different models was assessed using global metrics, as well as metrics for 
different regions within the structure. The results show that global metrics such as TM-score, GDT-
TS and GDT-HA are not suitable for Nb structural model evaluation, since the modeling errors of 
highly variable, but functionally important regions such as CDR3 get diluted when using these 
metrics. We then evaluated the modeling accuracy separately for the framework and CDR regions. 
OmegaFold achieved the best results, followed by AlphaFold2, ESMFold, IgFold, Nanonet and Yang-
Server. 

Although the evaluated AI models represent a leap forward in Nb modeling, they are still far 
from providing completely reliable structural models. While modeling of the framework region is 
consistently good in all cases, CDR modeling remains a challenge, especially for CDR3. For this loop, 
the RMSDs of the generated models are in most cases considerably high compared to the 
crystallographic structures. Although the median RMSD is relatively low for all AI models, only 52, 
44, 35, 29, 25, and 15% of the CDR3 structures generated with OmegaFold, AlphaFold2, ESMFold, 
IgFold, Nanonet, and Yang-Server, respectively, were modeled with less than 2.5 Å difference 
compared to the crystallographic structures. Energy minimization did not improve the results. Since 
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CDR3 is extremely important for antigen interaction, the obtained models may not be suitable for 
applications that require a high accuracy, such as protein-protein docking. 

Modeling with these AI programs can be performed using hardware in the low to mid-range, 
which facilitates their use in common bioinformatics laboratories. In these conditions, the calculation 
times vary from a few to hundreds of seconds. Nanonet is the fastest model, followed by IgFold, 
OmegaFold and, lastly, AlphaFold2, while ESMFold and Yang-Server can be used on their dedicated 
servers. According to our results, OmegaFold is the most efficient AI program for Nb modeling, being 
relatively fast and achieving the best results. Similarly, both ESMFold and AlphaFold2 may be used 
as an alternative, yielding quite similar results compared to OmegaFold. 

So far, although there have been substantial advances, the accuracy of the generated models is 
still limited and Nb modeling remains a challenge. However, the fast development and improvement 
of AI models, along with the increase of available crystallographic structures, augur significant 
advancements in Nb modeling in the near future. 
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