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Abstract: Geometrical assessments of human skull have been done based on the anatomical land-

marks. Automatic detection of the landmarks, if developed, will be a great help not only medically, 

but also anthropologically. An automated system with multi-phased deep learning networks to pre-

dict three-dimensional coordinate values of craniofacial landmarks, was developed. From a publicly 

available database, computed tomography images of craniofacial area were obtained. They were 

digitally reconstructed into three-dimensional models. Sixteen anatomical landmarks were plotted 

on each of the models and coordinate values of them were recorded. Three-phased regression deep 

learning networks were trained respectively with 90 training datasets. For evaluation, 30 testing 

datasets were employed. Three-dimensional error for the first phase, testing 30 data, was 11.60 pix-

els in average. (1 pixel = 500 / 512 mm) For the second phase, it was significantly improved to 4.66 

pixels. For the third phase, it was significantly progressed to 2.88. This was comparable to the gaps 

between the landmarks, plotted by two experienced practitioners. Our proposing method of multi-

phased prediction, coarse detection first and narrowing down the detection area, may be a possible 

solution, within the physical limitation of memory and computation.  

Keywords: Multi-phased deep learning; Regression neural network; Coordinate value; Computer 

assisted tomography (CT); Craniofacial bone 

 

1. Introduction 

Measuring distances between characteristic landmarks and angles between certain 

planes determined by the points, is a useful approach to comprehend the shape of an 

object. To evaluate human skull, this approach has long been done[1-4]. For living hu-

man, direct access to the landmarks on the skull is impossible. X-ray imaging enabled to 

project the skull. In 1920s, Todd and Broadbent developed a device to hold human skull 

and mandible, which allowed for acquisition of standardized radiographs[5]. Cephalom-

etry, first introduced by Broadbent[6] and Hofrath[7] in 1931, has been and still is one of 

the most helpful modalities in evaluating cranio-maxillo-facial configurations. Geomet-

rical assessments are done based on the anatomical landmarks[8-11].  

Locating anatomical landmarks demands time and expertise. Automatic detection of the 

landmarks will be a great help not only medically, but also anthropologically. Studies 

has been done to accomplish this challenge in 2-D cephalograms[12-21]. A systematic 

review was published[22] in 2008. Though, it was not possible to compare between 

methods as they used their own data, which were different from one another. Unifica-

tion of image data to assess was necessary. Grand challenges were held in 2014[23] and 

2015[24], in conjunction with IEEE International Symposiums on Biomedical Imaging. 

Cephalometric X-ray images with coordinate values of landmarks were provided by the 

organizers. Participants competed with their own performances on the same datasets. 

Top ranks were occupied by the performers used random forest method[24]. Lindner 

et.al[25] used the same images with a subset of coordinate values. After that, a method 

using convolutional neural networks was proposed[26].It outperformed previous 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2023                   doi:10.20944/preprints202304.0156.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202304.0156.v1
http://creativecommons.org/licenses/by/4.0/


 

benchmarks with the same datasets of the grand challenge. Multi-phased regression 

deep learning neural networks[27] with regression-voting[28] enhanced the prediction 

accuracy. Kim et.al utilized two stage method on larger volume datasets of their 

own[29]. Multi-staged convolutional neural networks were used on two dimensionally 

projected CBCT[30]. A study with attentive feature pyramid fusion module[31] sur-

passed previously published works. A systematic review for artificial intelligence in 

cephalometric landmark identification has been done lately[32].A new grand challenge 

with larger volume datasets is in session[33]. 

Inherently, this evaluation of the objects in two-dimensionally projected images encom-

passes some kinds of inaccuracy and incapability, because of the loss of some original 

information in three dimensions. It is rare for the cranium to be bilaterally symmetrical.  

Three-dimensional cephalometric analysis was done originally with two (lateral and 

basilar or posteroanterior) cephalograms[34-37]. Computer assisted tomography (CT) 

has become popular in daily clinical practice. CT images, horizontal slices as two-dimen-

sional pictures, are usually stored in DICOM (Digital Imaging and Communications in 

Medicine) formatted files. They can be digitally restructured into virtual three-dimen-

sional objects. 3D printing can also be done. They visually help people to comprehend 

the bodies. Three-dimensional measurement based on the anatomical landmarks can be 

done on the objects. Cephalometric analysis on three-dimensional images is becoming 

popular[38-40].  

In comparison with those for 2D cephalograms, reports on automatic landmark detec-

tion systems for 3D images are chronologically new and less in number[41]. Shahidi et 

al.[42] used an atlas based method to identify 14 landmarks on 20 cone beam computed 

tomography (CBCT) images in 2014. A knowledge-based method[43] was reported in 

2015. Some kinds of learning based methods[44-51] have been reported. In our experi-

ence with 2D cephalograms[27,28], multi-phased deep learning system was able to pre-

dict coordinate values in high precision. It was to predict roughly in whole area of the 

image first, and mark down smaller area of interest in following phases. In this report, a 

multi-phased deep learning system to predict three-dimensional coordinate values of 

craniofacial landmarks in sequences of CT slices is discussed.  

2. Materials and Methods 

2.1. Personal computer  

All procedures were done on a desk-top personal computer:  CPU (Central Pro-

cessing Unit):  AMD Ryzen 7 2700X 3.70GHz (Advanced Micro Systems, Sunnyvale, CA, 

USA), memory:  64.0GB, GPU:  GeForce RTX2080 8.0GB ((nVIDIA, Santa Clara, CA, 

USA), Windows 10 pro (Microsoft Corporations, Redmond, WA, USA). Python 3.7 (Py-

thon Software Foundation, DE USA): a programing language, was used under Anaconda 

15 (FedoraProject. http://fedoraproject.org/wiki/Anaconda#Anaconda_Team_Emeritus) 

as an installing system, and Spyder 4.1.4 as an integrated development environment. 

Keras 2.31 (https://keras.io/): the deep learning library, written in Python was run on Ten-

sorFlow 1.14.0 (Google, Mountain View, CA, USA). GPU computation was employed 

through CUDA 10.0 (nVIDIA). For 3D reconstruction, slicer 4.11 (www.slicer.org) was 

used with Jupyter Notebook (https://jupyter.org/). OpenCV 3.1.0 libraries 

(https://docs.opencv.org/3.1.0/) were used in image processing.  

2.2. Datasets 

(1) CT images  

From The Cancer Imaging Archive Public Access (wiki.cancerimagingarchive.net), 

Head-Neck-Radiomics-HN1[52], the collection of CT images from head and neck squa-

mous cell carcinoma patients was retrieved. It consists of the folder of each patient, con-

taining 512 x 512 pixels DICOM images (number ranged 0 to 4071 for each pixel), taken 

axially at 5 mm intervals in the cephalocaudal direction. The order of the images was 
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checked and images from the top of the head to the mandible were extracted for 120 cases. 

The largest number of extracted images for a patient was 81. As a calibration marker, a 

512-pixel length and width cross were added to the most caudal images. 

 

(2) 3D reconstruction (STL file creation)  

DICOM CT image sequence for each case was processed with 3D slicer kernel, using 

Jupyter notebooks. With a python script process[53], bony parts were segmented and re-

constructed into 3D images and stored as STL files. 

 

(3) Plotting anatomical landmarks 

Each STL file was imported into blender (https://www.blender.org/). Spheres with 1 

pixel radius were placed as the landmarks. The landmarks are listed in Table 1. and shown 

in Figure 1. Most of the images were from probably old patients, there were many missing 

teeth. Many of them were in open bite position. Therefore, landmarks on teeth were not 

plotted in this study. Three-dimensional coordinate values (x, y, z) of the imported STL 

and spheres were obtained and exported as an array of 120 cases x 16 points x 3. Two 

practitioners, with 31 and 10 year-experience, respectively plotted landmarks. The coor-

dinate values plotted by the senior was used as the ground truth. 

 

 

Figure 1. Three dimensionally plotted landmarks  
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Table 1. Plotted landmarks 

No, abbreviation description 

L01 A point A 

L02 AntNS Anterior Nasal Spine 

L03 LGoni Left Gonion 

L04 LOrbi Left inferior lateral Orbital rim 

L05 LPori Left Porion 

L06 LsupO Left supra Orbital incisura 

L07 Mento Menton 

L08 Nasio Nasion 

L09 PocEx External occipital Protuberance 

L10 PosNS Posterior nasal spine 

L11 RGoni Right Gonion 

L12 ROrbi Right inferior lateral Orbital rim 

L13 RPori Right Porion 

L14 RsupO Right supra Orbital incisura 

L15 Sella center of Sella turcica 

L16 XstaG top of crista Galli 

 

 

2.3. Neural Networks and Learning Datasets 

(1) 1st phase deep learning (Figure 2.) 

With OpenCV, each CT image (512 x 512 pixels DICOM image) was binarized to seg-

ment bone with 1100 as threshold and compressed to 96 x 96 pixels. For each case, they 

were stacked up from the bottom to form a three-dimensional array of 96 x 96 x 81. As 

training data, 90 cases were assigned, and 30 were as testing data. A regression deep learn-

ing model, modified (only the last activation layer was changed from “softmax” to “lin-

ear”) Resnet 3d-50[54], built with 96 x 96 x 81 as input and 48 as output. It was trained for 

150 epochs. 

 

(2) 2nd phase deep learning (Figure 3.) 

A 100 x 100-pixel image was cropped out from each original image with OpenCV, 

centered on the x and y coordinates of each landmark. Each of them were piled up from 

the bottom to form a 100 x 100 x 81 3D-array. For data augmentation, the images were also 

cropped out at shifted positions in the x and y directions and stacked in the same way to 

obtain the positions of feature points in each array (3240 sets in total). For each landmark, 

the modified Resnet 3d-50 model for regression with 100 x 100 x 81 as input and 3 as 

output was trained for 100 epochs. 

 

(3) 3rd phase deep learning (Figure 4.) 

A 50 x 50-pixel image was cropped out from each original image, in the same way 

for the 2nd phase. Stacks of 50 x 50 x 81 were obtained. For training, 3240 sets of data for 

each landmark were used. Modified Resnet 3d-50 with input of 50 x 50 x 81 and 3 as output 

was trained for 150 epochs. 
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Figure 2. Diagram of the 1st phase deep learning 

Each CT image (512 x 512 pixels) was compressed to 96 x 96 pixels and stack up. A regression 

deep learning model was trained with 90 cases for 150 epochs. 

 

 

 
Figure 3. Diagram of the 2nd phase deep learning 

For each landmark, 100 x 100 pixel images were cropped out, centering the x and y coordi-

nates of it. They were stacked up to 100 x 100 x 81 3D array. Shifted images were also cropped 

and piled up for data augmentation. A model was trained for each landmark. 

 

 

 
Figure 4. Diagram of the 3rd phase deep learning 

A 50 x 50 pixel image was cropped from the original image, centering the x and y coordinates 

of the landmark. Each of them was piled up to 3D array. Shifted images were also cropped 

and piled up. A Resnet model was trained respectively for each landmark. 
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2.4. Evaluation (Figure 5.) 

For evaluation, 30 testing data that were not used in the training were employed. 

(1) 1st phase prediction 

The 96 x 96 x 81 3D-array of the 30 cases for validation was fed to the trained 1st 

phase model to predict the 3D coordinates of feature points. 

 

(2) 2nd phase prediction  

The 100 x 100-pixel images were cropped from the original validation images, cen-

tered on each of the 16 coordinates obtained in the 1st phase prediction, and piled up into 

100 x 100 x 81 3D arrays. They were used to predict the coordinates of each feature point 

with the trained 2nd phase models. 

 

(3) 3rd phase prediction  

For each landmark, 50 x 50-pixel images were cropped, centered on each of the coor-

dinates obtained in the 2nd phase prediction. They were stacked up to 50 x 50 x 81 arrays 

and fed to the respective 16 trained 3rd phase models. 

 

(4) Prediction error evaluation  

The distance between the predicted coordinates and the manually plotted ground 

truth coordinates was calculated as the absolute value in the x, y, and z directions. The 

square root of the sum of the squares of each was used as the 3D distance. 

 

(5) Statistical analysis  

Multiple comparisons were done using scikit-posthocs (https://scikit-

posthocs.readthedocs.io/en/latest/#). 

 

 
Figure 5. Prediction and evaluation 

Prediction of the landmark coordinate was done by 3 phases. The three-dimensional distances 

between the predicted and the ground truth points were evaluated. 

3. Results 

3.1. 1st phase prediction error 

Overall average three-dimensional distance between the predicted points and the 

ground truth was 11.60 pixels (1 pixel = 500 / 512 mm) (Table 2.). Per landmark prediction 

errors are shown in Figure 6. Between axis directions, error for x-axis was significantly 

smaller than the others, and y-axis was the largest (Figure 7.).  
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Figure 6. 1st phase prediction errors per landmark  (pixel = 500 / 512 mm) 

 

 
 Figure 7. 1st phase prediction errors per axis  (pixel = 500 / 512 mm) 

 
Figure 8. 2nd phase prediction errors per landmark  (pixel = 500 / 512 mm) 

 

 
Figure 9. 2nd phase prediction errors per axis  (pixel = 500 / 512 mm) 
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Table 2. Three-dimensional prediction errors in 480 landmarks of 30 testing data 

(pixel = 500 / 512 mm) *p<0.001 by Conover test 

    1st phase   2nd phase   3rd phase   inter-observer gaps   

 average 11.6 _ * _ 4.66 _ * _ 2.88 _ N.S. _ 3.08  

 median 10.89  4.22  2.56  2.4  

  stdev 5.64   2.27   1.67   2.64   

 

 

3.2. 2nd phase prediction error 

The average prediction error in three dimensions was 4.66 pixels (Table 2.). It was 

significantly smaller than 1st phase prediction. Per landmark errors are shown in Figure 

8. Error for y-axis direction was larger than the others. Error for z-axis was the smallest 

(Figure 9.).   

 

3.3. 3rd phase prediction error 

The three-dimensional prediction error was 2.88 pixels in average (Table 2.). It was 

significantly smaller than 2nd phase prediction. Errors per landmark are shown in Figure 

10. There was no significant difference between axes (Figure 11.).   

 
Figure 10. 3rd phase prediction errors per landmark  (pixel = 500 / 512 mm) 

 
Figure 11. 3rd phase prediction errors per axis  (pixel = 500 / 512 mm) 

 

 

3.4. Inter-phase and inter-observer plotting gap 

There were significant differences between prediction errors by phases. The 3rd 

phase prediction error was the same level as the inter-observer plotting gaps. 

 

4. Discussion 

The history of standard cephalometry, since Broadbent[6] and Hofrath[7] first pro-

posed. is quite long. There have been many reports on automatic landmark detection sys-

tems for cephalograms in two-dimensions. In comparison with 2D cephalograms, there 

are fewer reports for 3D images. 

Some previous automated 3D landmark detectors in craniofacial area employed reg-

istration method[55], knowledge-based methods[43,56], atlas-based methods[42,57], 
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random forest method[44] and so on[46,48]. Deep learning is one of the most emerging 

techniques in machine-learning. It is categorized as a supervised learning that to find out 

rules between input and output of training datasets. All we need is to prepare the datasets, 

and the machine will figure out the function laws between them. It is very versatile. Some 

attempts to utilize deep learning for automatic 3D landmark prediction have been re-

ported[45,49,51,58,59]. 

The processing speed of computers and the amount of memory installed have in-

creased at a dizzying rate. Though, the amount of computation, required to process im-

ages with deep learning is enormous. The calculation volume required to process three-

dimensional piles of images, based on spatial or time axes, is incomparable to that re-

quired for two-dimensional images. One solution is to compress the images[59] and input 

them to deep learning, but the compression process results in the loss of detailed infor-

mation. In this study, we applied the method of multi-phase deep learning, used in pre-

dicting landmarks in 2D cephalograms[27,28], to 3D craniofacial images. The concept was 

to emulate the way that one finds a place on the maps, when the address is provided. First, 

we open a map of the country. Then we try to find the state and city on a larger scale map. 

Then we open an even larger map to find the street and house number. Prediction errors 

became smaller as the phase advanced. Coarse detection was done with the first phase 

model and father narrowing down was done based on the prediction of the previous 

phase. This study was conducted on a personal computer. Within the physical limitation 

of memory and computation, multi-phase deep learning may be a solution to deal with 

large-scaled images. 

There could find two reports in 3D landmark detection using fully convolutional 

neural networks (FCN) with high precision[49,58]. But in general, FCN is computationally 

expensive and slow. 

Our system is logically very simple. Through all three phases, the main part of the 

models used were the same Resnet 3d-50 modified for regression. Though, the system 

consists of 33 individual networks, trained individually, to predict 16 landmarks. It cannot 

be denied that it is structurally complicated. There may be ways to design the system in 

end-to-end fashion. Again, within the calculation limit, this sequential system was practi-

cal for the authors. 

In the previous studies[27,28] for 2D cephalograms, there was a database published 

at ISBI 2015 and prior benchmarks using it[24,26]. Authors were unable to obtain a data-

base of feature point coordinates for craniofacial 3D-CT. The prediction accuracy could 

not be compared with the other published methods. Publication of unified datasets of 3D 

images and landmark coordinate values should be done, as grand challenges for 

2D[23,24,33]. 

As for the current situation in Japan, it is not easy to access and build database of 

patient information, even for clinicians as the authors. Hence, authors constructed an orig-

inal database from publicly available image sets[52]. The image sets used were from pa-

tients with head and neck tumors. Most of the images were probably from elderly pa-

tients, and there were many missing teeth.  

The plotting featured points one by one took a long time. Plotting anatomical feature 

points in 3D requires multiple perspectives. In this study, we used five viewpoints in 

blender. In addition, it is often necessary to pan, zoom in and out, Bone ridges are formed 

by curves, not by sharp angles, so it was difficult and sometimes impossible to plot them 

accurately. To maintain consistency as much as possible, a series of the work was done by 

one person, and one feature point was plotted for all cases in succession.  

The craniofacial CT data used in this study were provided at 5 mm intervals in the 

cranio-occipital direction. Data intensity in the z-axis was more than five times sparse than 

the x or y-axis. Though, to our surprise, prediction errors in the z-axis were not worse than 

the x or y-axis (Figure 7,9,11). 

The 3rd phase prediction error revealed no significance from that of two experienced 

practitioners. The system performed clinician level. Ground truth coordinate values may 

differ from one plotter to the other. How precisely those systems should accomplish is a 
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matter of debate. As is well known and should be taken for granted, there always exist 

inter-observer[60] and intra-observer errors[61,62]. It seems reasonable to set goals at the 

inter-expert error level. 

In clinical practice, slices of less than 1 mm are commonly used to obtain detailed 

bone information (so-called thin slices). To apply these images in real clinical situations, 

such as navigation systems used in surgery, it is necessary to support these images. 

CBCT, becoming popular among orthodontists and otolaryngologists, can get images 

with small voxels. When based on the detailed images, highly accurate estimation can be 

expected. Though, the computation volume will increase as the information to be pro-

cessed increase. Our proposing method of multi-phased prediction, coarse detection first 

and narrowing down the detection area, may be a possible solution. 
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