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Abstract: With the explosion of the generation, transmission and sharing of image data over the

Internet and other unsecured networks, the need and significance for the development of novel

image encryption algorithms is unprecedented. In this research work, we propose a novel framework

for image encryption that is based on two hyperchaotic maps, utilized in conjunction with the

single neuron model (SNM). The framework entails three successive stages, where in every stage,

a substitution box (S-box) is applied, then XORing with an encryption key is carried out. The

S-boxes and the encryption keys are generated from the numerical solutions of the hyperchaotic

maps and the SNM. The performance of the proposed framework is gauged through a number of

metrics, reflecting superior performance and complete asymmetry between the plain images and

their encrypted versions. However, the main advantages of this work are: (1) The attained width of

the key space; and (2) The achieved efficiency in software implementation. The superior key space of

22551 is the result of employing the two hyperchaotic maps, while the improved efficiency, resulting

in an average encryption rate of 8.54 Mbps, is the result of the utilization of the single neuron model,

as well as the employment of optimized parallel processing techniques. In addition, the proposed

encryption framework is shown to output encrypted images that pass the NIST SP 800 suite.

Keywords: cryptography; hyperchaotic maps; image encryption; NIST; S-box; single neuron model

1. Introduction

With the widespread use of digital images in various fields, including healthcare, finance,

and personal communication, there is a growing need to ensure their secure communication and

storage. This is especially true in terms of protecting them from unauthorized access, tampering, and

interception [1,2]. Encryption is the process of converting plaintext (unencrypted data) into ciphertext

(encrypted data) using an encryption algorithm and a secret key. The encrypted data can only be

decrypted and read by someone who has the correct key. Image encryption is a specific type of

encryption that is designed to protect digital images, through eradicating any symmetry between

a plain image and its encrypted version. The need for image encryption arises from several factors.

Firstly, digital images often contain sensitive information, such as personal photos, medical images,

or confidential documents. This information needs to be protected from unauthorized access or

interception during transmission over the internet or storage on a device [3]. Secondly, images can be

easily tampered with, and it is often difficult to detect such tampering. Encryption can help to prevent

unauthorized modifications of the image data by providing a way to verify the authenticity of the

image [4]. Thirdly, images are often stored and transmitted in large quantities, making it difficult to

ensure the security of each individual image. Image encryption algorithms can help to secure large

quantities of images by providing a way to efficiently and securely process their data [5].
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Recent literature shows reliance of image encryption algorithms on substitution-permutation

networks (SPNs). SPNs are a popular cryptographic primitive used in symmetric key encryption

algorithms. These operate by applying a series of substitution and permutation operations to plaintext

blocks, producing ciphertext blocks that are difficult for an attacker to decipher without the correct key.

SPNs have been widely used in image encryption research due to their ability to efficiently encrypt

large amounts of data while maintaining strong security guarantees [6–10]. In an image encryption

algorithm, the plaintext is typically represented as a matrix of pixel values, and the SPN is applied to

each pixel value individually or to a block of pixels simultaneously. One of the main advantages of

using SPNs in image encryption is their ability to provide a high degree of confusion and diffusion,

satisfying Shannon’s theory of secure communication [11]. Confusion refers to the property of the

encryption algorithm that makes it difficult for an attacker to relate the ciphertext to the plaintext,

while diffusion refers to the property that ensures that small changes in the plaintext lead to significant

changes in the ciphertext [2].

SPNs have also been used in combination with other cryptographic techniques, such as key

management and authentication, to provide a more comprehensive approach to image security [12].

For example, some image encryption algorithms based on SPNs use secret key management techniques

to ensure that the encryption key is securely distributed and protected from unauthorized access [13].

Overall, the importance of SPNs in image encryption research lies in their ability to provide strong

security guarantees while efficiently processing large amounts of data. As such, they have become a

cornerstone of modern image encryption algorithms and continue to be an active area of research in

the field of cryptography. In general, most recent literature on image encryption carries out confusion

through the application of one or more substitution boxes (S-boxes), while diffusion is carried out

through the application of an encryption key that is based on a pseudo-random number generated

bit-stream, where an appropriate logical operation is utilized [7,8,14–16]. The next couple of paragraphs

introduce each of those steps.

Substitution boxes are an important component of many image encryption algorithms. These are

used to substitute plaintext bits with ciphertext bits, and they provide a key component of the confusion

step in many encryption algorithms [7]. The importance of S-boxes in image encryption algorithms lies

in their ability to provide strong security guarantees by introducing non-linear transformations into the

encryption process. S-boxes help to ensure that changes to a single input bit have unpredictable and

significant effects on the output, making it difficult for an attacker to analyze and reverse-engineer the

encryption process. In image encryption, S-boxes are typically used in combination with permutation

operations to form SPNs [14]. As aformentioned, the SPN structure is particularly well-suited to image

encryption because it provides a high degree of confusion and diffusion, which are both important

properties for secure encryption. The use of S-boxes in image encryption algorithms can also help to

prevent common attacks, such as differential and linear cryptanalysis, which rely on analyzing the

statistical properties of the encryption process. S-boxes can help to obscure these statistical properties,

making it more difficult for an attacker to break the encryption [15].

Pseudo-random number generators (PRNGs) play an important role in image encryption

algorithms. PRNGs are used to generate a sequence of random numbers that are used to encrypt

the image data. These random numbers are combined with the original image data using various

encryption techniques to produce encrypted image data that is difficult to decipher without the correct

key [2]. The importance of PRNGs in image encryption algorithms lies in their ability to generate a large

amount of unpredictable and uniformly distributed random numbers. These random numbers are

crucial for achieving the two main goals of encryption: confidentiality and integrity [3]. Confidentiality

refers to the property of the encryption algorithm that ensures that only authorized parties can access

the encrypted data. Integrity refers to the property that ensures that the encrypted data has not

been tampered with or modified during transmission or storage. PRNGs are designed to produce

random numbers that are indistinguishable from true random numbers. However, unlike true random

number generators, PRNGs are deterministic and rely on a seed value to produce the same sequence
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of numbers each time they are used with the same seed [14]. The seed value is typically generated

from a source of true randomness, such as atmospheric noise, mouse movements, or keyboard timings,

to ensure that the resulting sequence of numbers is sufficiently unpredictable. In image encryption

algorithms, PRNGs are used to produce a large sequence of random numbers that are combined with

the original image data to produce encrypted data [2]. The strength and quality of the encryption

depends on the randomness and uniformity of the PRNG output. Therefore, selecting a secure and

robust PRNG is essential for ensuring the security and effectiveness of the image encryption algorithm.

Chaotic functions exhibit sensitive dependence on initial conditions and cycloidal behavior,

making them suitable for encryption applications [6,10]. There are two main types: low dimensional

chaotic functions with 2-3 variables, and hyperchaotic functions with 4 or more variables. Low

dimensional chaotic functions, like the Lorenz or Henon maps, have a smaller key space but simpler

computational requirements, making them faster and easier to implement [16–18]. However, their

lower dimensionality means they have weaker encryption strengths. Hyperchaotic functions, on the

other hand, have a much larger key space due to their extra variables, providing stronger encryption.

But they also have greater complexity, requiring more computing power and being slower to compute.

Each type has its advantages and disadvantages for image encryption. Low dimensional chaos is

suitable for real-time encryption of streaming videos or wireless communications due to its simplicity.

Hyperchaos provides very high encryption strength suitable for encrypting still images or large

file transmissions. However, its added complexity may be impractical for some applications with

limited resources. By tuning the parameters of a chaotic map, its dynamics can be made sufficiently

random-like for encryption, yet still deterministic for decryption [15]. Chaotic ciphers have been

shown to withstand various attacks like brute-force, known-plaintext, and statistical analysis [14].

When combined with other techniques like diffusion and confusion layers, chaos-based encryption

schemes can achieve robust and versatile encryption of images and multimedia data [19]. Chaos

provides an efficient and simple means of generating the complex, nonlinear transformations needed

for strong encryption.

Recent literature in the field of image encryption provides a plethora of articles that combine

the use of successive applications of PRNGs and S-boxes to carry out image encryption. In many

instances, chaos theory is employed to generate the PRNGs and to construct the S-boxes. In [14], the

authors numerically solve the fractional-order hyperchaotic Chen system and generate a PRNG as

an encryption key from its solution. They combine its use, in a multi-layer encryption algorithm,

with other keys and S-boxes based on the Mersenne Twister, OpenSSL, Rule 30 cellular automata and

Intel’s math kernel library. The authors of [7] make use of a tan variation of the Logistic map to carry

out DNA coding as a first stage of encryption. Subsequent stages utilize the Lorenz chaotic system

to construct an S-box, as well as the Logistic map in its original form for PRNG key generation. A

a Recaman’s sequence in conjunction with the Rossler chaotic system are used to generate PRNG

encryption keys in [20]. In [21], the authors employ chaotic functions, DNA computing, SHA-256, as

well as the random movements of a chess piece, Castle, on a hypothetical chess board, to carry out

image encryption. The combination of DNA coding with chaos theory is also utilized in [22], where

the authors further the image encryption abilities through SHA-2. A number of dynamical functions

that exhibit chaotic behavior are utilized in [19] to generate PRNG encryption keys, including the the

linear congruential generator, the Arnold cat map, the Bernoulli map, the 2D logistic sine map and

the tent map. In [23], parameters are computed over the finite field ZN through the utilization of a

finite field with the aim of generalizing the Logistic map and searching for an auto morphic mapping

between 2 logistic maps, to carry out robust image encryption. The work of [17] adopts a continuous

chaotic system, with the aim of achieving diffusion, and an LA-semi group, with the aim of achieving

confusion, for efficient image encryption. A 6D discrete hyperchaotic system is employed in [24] to

generate 6 PRNGs as encryption keys. Those are used conjunction with DNA coding, to encrypt each

of the color-separated RGB channels of a color image. The authors of [25] make use of spatio-temporal

chaos of the 2D nonlinear coupled map lattices and genetic operations, to carry out low complexity
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image encryption. The Mandelbrot set is utilized in a color image encryption scheme proposed in

[26], where the Arnold map combined with DNA sequences enhance the attained encryption security.

The authors of [27] propose an innovative image encryption algorithm that draws on the distinctive

concept of a rotor machine, in addition to the employment of a piece-wise linear chaotic map and a one

time key. The Logistic map is used in combination with a dynatomic modular curve, as a form of an

SPN, to perform secure image encryption in [28]. In [29], the authors employ a cloud model Fibonacci

chaotic system and a matrix convolution operation for to implement a secure image cryptosystem.

An interesting work involving the Josephus problem, and its corresponding Josephus function, is

employed in [30] in combination with a 4D hyperchaotic function. Image compression and encryption

is carried out in [31], where the Arnold map and choas theory are utilized for effective and reliable

image transmission over unsecured networks.

It is clear from the literature review the abundance of techniques and algorithms that may be

utilized to successfully implement a secure, robust and efficient image encryption algorithm. However,

almost all of the aforementioned algorithms are only able to offer 2 out those 3 vital encryption traits.

Such that the offering of higher security, through more encryption stages, is counter-acted with higher

design complexity and software implementations. In some cases, efficiency is capitalized on, but

security is not fully achieved, such that key spaces are rather small. In order to achieve all 3 traits of

security, robustness and efficiency, this work proposes and accomplishes the following:

• A chaos-based, 3-stage, dual-acting image encryption framework is proposed. In every stage, a

novel S-box is constructed and applied. This is followed by the generation and application of the

logical XOR operation between a generated PRNG key and the image bits.
• In the first stage, a 7D hyperchaotic system of differential equations is numerically solved and its

solution is utilized both for PRNG key generation and S-box construction.
• In the second stage, a single neuron model is numerically solved and its solution is utilized both

for PRNG key generation and S-box construction.
• In the third stage, a 4D hyperchaotic system of differential equations is numerically solved and

its solution is utilized both for PRNG key generation and S-box construction.
• The utilization of 3 different systems, 2 of which are hyperchaotic, as well as the selection of

3 S-boxes that satisfy certain criteria, a rather wide key space of 22551 is achieved, providing

sufficient resistivity to brute-force attacks.
• The software implementation of the proposed image encryption framework makes use of

advanced parallel processing techniques. This allows for an average encryption rate of 8.54 Mbps

to be achieved.

This article is organized as follows. Section 2 makes reference to the foundational systems of

differential equations that are to be employed for PRNG key generation and outlines the adopted

methodology for the construction of S-boxes. Section 3 introduces the image encryption and decryption

processes of the proposed framework. Section 4 provides the numerical results and performance

evaluation of the proposed framework. A comparative study with the state-of-the-art is also carried

out in this section. Section 5 concludes this research work and provides some suggestions for possible

future areas of research.

2. Preliminary Mathematical Constructs

A number of mathematical constructs are made use of in the proposed image encryption

framework to generate the PRNG keys and S-boxes. These are presented in this section.

2.1. The Single Neuron Model

The authors of [32] have shown that a single neuron model (SNM) with adapting feedback

synapse has 2 coexisting chaotic attractors. In this work, we make use of this SNM because of its rich

complex dynamics and its suitability to induce randomness in a simple and deterministic manner. The

SNM is described as follows:
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





u̇ = −
u

τ
+ f (qs) f (pu) + I,

ṡ = −αs + α f 2(pu),
(1)

where α = 1/B, while p and q are positive constants. As in [32], we let f (x) = 3xexp(−x2/2) (shown

in Figure 1), while I(t) = ǫsin(ωt). The connected chaotic attractor of this system is plotted in Figure 2

for α = 3, u0 = 0.1 and s0 = 0.5. In Figure 2, the colors model the time factor representing initiations

with cold colors and ending with hot colors. In [32], bifurcation diagrams are provided for the SNM

confirming its chaotic behavior, however a Lyapunov exponents plot is not provided, so we provide

such a plot in Figure 3. It is clear from Figure 3 that 2 Lyapunov exponents materialize, where one of

them is positive.

Figure 1. A plot of f (x) = 3xexp(−x2)/2.

Figure 2. The connected chaotic attractor for the SNM at α = 3.
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Figure 3. Lyapunov exponent plot for the SNM at α = 3.

2.2. The 4D Hyperchaotic System

A 3D hyperchaotic system was proposed for the first time by the authors of [33]. This system was

later on improved by the authors of [34] who added a linear controller, resulting in the following 4D

system of differential equations:























u̇ = a(ν − u) + eνw,

ν̇ = cu + dν − uw + mp,

ẇ = −bw + uν,

ṗ = −ku − kν,

(2)

where u, ν, w and p are the states of the system and a, b, c, d, e, m, k are positive real parameters of the

system and c ∈ R. By letting a = 15, b = 43, c = −1, d = 16, e = 5, m = 5 and varying k, such that

k ∈ [1.5, 5.5], the authors of [34] show that the system in (2) possess hyperchaotic attractors and 2

positive Lyapunov exponents, providing the related plots that justify their claims (see Figure 1 for the

Lyapunov exponents and Figure 2 for the bifurcation diagram, in [34]). In relation to image encryption,

these properties make this system a good choice for utilization in PRNG generation and subsequent

S-box construction. Furthermore, as a 4D system, the system in (2) has a large number of states and

parameters, which allows it to provide an excellent expansion to the key space of the proposed image

encryption algorithm.
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(a) u-ν-w space.

(b) u-ν-p space.

(c) u-w-p space.

(d) ν-w-p space.

Figure 4. Hyperchaotic attractors for the system (2) with u0 = 5.2, ν0 = 7.4, w0 = 1.4, p0 = 3.4, shown

for various 3D spaces.

2.3. The 7D Hyperchaotic System

The authors in [35] presented a 7D hyperchaotic system. In their work, they propose coupling the

classical Lorenz 3D system with a 6D hyperchaotic system. This 6D system is obtained through the

addition of a nonlinear feedback controller to the first equation and a linear feedback controller to the

second equation of the classical Lorenz 3D system. Such coupling results in a novel 7D hyperchaotic

system as follows:























































ẋ1 = a(x2 − x1) + x4 + bx6,

ẋ2 = cx1 − x2 − x1x3 + x5,

ẋ3 = −dx3 + x1x2,

ẋ4 = ex4 − x1x3,

ẋ5 = − f x2 + x6,

ẋ6 = gx1 + hx2,

ẋ7 = lx7 + mx4,

(3)

where xi, i ∈ [1, 7] are the states of the system and a, b, c, d, e, f , g, h, l and m define its parameters. The

following set of values for the parameters allow the system in (3) to have 7 Lyapunov exponents of

which 5 are positive: (a, b, c, d, e, f , g, h, l, m) = (10, 8/3, 28, 2, 9.9, 1, 2, 1, 1, 1). Figure 5 displays the

hyperchaotic attractors of this 7D system. While the system in (3) is shown to have a rather simple

algebraic structure, nevertheless, it exhibits complex dynamical behaviors, due to possessing 5 positive

Lyapunov exponents. The authors in [35] provide the related plots that justify their claims (see Figure

6 for the Lyapunov exponents and Figure 7 for the bifurcation diagram, in [35]). In relation to image

encryption, these properties make this system a good choice for utilization in PRNG generation and

subsequent S-box construction. Furthermore, being a 7D system, it has a large number of states and
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parameters, which allows it to provide an excellent expansion to the key space of the proposed image

encryption algorithm.

(a) x1-x2-x3 space.

(b) x1-x3-x5 space.
(c) x2-x3-x5 space.

(d) x2-x3-x6 space. (e) x1-x3-x6 space.

Figure 5. Hyperchaotic attractors for the system (3) with (a, b, c, d, e, f , g, h, l, m) =

(10, 8/3, 28, 2, 9.9, 1, 2, 1, 1, 1), shown for various 3D spaces.
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2.4. S-Box Construction

In this work, the main aim of the S-box construction process is to involve the S-box evaluations

in the generation process. In other words, the numerical values produced by the techniques used in

evaluating the performance of S-boxes are utilized as part of the key space of the S-box generation step

(which is reflected on the overall key space of the proposed image encryption framework). Moreover,

the process adopted here makes use of the generated PRNG bit-streams discussed in Sections 2.1–2.3.

Accordingly, 2 mechanisms are applied to achieve that, with one of them being a sub-routine to the

other.

Starting with the inner process, the aim is to transform a bit stream of length 2048 into an S-box.

This is performed by, first, converting the 2048 bits into 256 integers. As these integers are randomly

generated, they are expected to be unsorted and containing duplicates. Hence, this set of integers is

utilized as a selection function applied on a sorted set [0 − 255], where the selected element from the

set is removed. Therefore, the selected integers are re-adjusted to the length of the sorted set using

the modulus operator. As a result of the selection and the re-adjustment processes being applied

sequentially, values are shifted from the sorted set (which descents in size) into the S-box, generating

an S-box by the time the length of the sorted set reaches 0.

Based on the inner process discussed above, the role of the outer process is to generate a set of

S-boxes, evaluate each one individually, and select the S-box with performance evaluation values

closest to a provided set of values. In consequence, a bit-stream of size 2048 × n is needed as an input,

such that n is the number of S-boxes to be generated, evaluated, and one is selected from. Given such

input, the bit-stream is partitioned into sections of lengths 2048, transformed into S-boxes (using the

inner process), evaluated, and the performance evaluations values are subtracted from the given target

evaluations yielding the S-box with the smallest difference.

3. Proposed Image Encryption Framework

The encryption process is described in Section 3.1, while the decryption process is described in

Section 3.2. Section 3.3 presents algorithms that are employed as part of the encryption and decryption

processes.

3.1. The Encryption Process

The following sequence of steps outline the proposed 3-stage encryption process.

1. A color image I of length M and width N is chosen and the pixel values of its RGB channels are

arranged as a single bit-stream d, of length Ld where:

Ld = M × N × 3 × 8. (4)

2. Encryption stage 1: The 7D hyperchaotic system encryption key and S-box.

(a) The 7D hyperchaotic system is numerically solved for the S-box seeds, then the numerical

solution is utilized in Algorithm 1, resulting in an S-box SHC7D (shown in Table 1).
(b) A replacement process is applied to the image I, employing SHC7D, and resulting in image

I11

I11 = SHC7D(I). (5)

(c) The pixels of the encrypted image I11 are transformed into a 1D bit-stream d11.
(d) The 7D hyperchaotic system is numerically solved for the key seeds. Algorithm 2 is utilized

to generate an encryption key kHC7D from the obtained solution, such that the length of this

key is equal to Ld.
(e) The plaintext bit-stream d11 is XORed with the encryption key kHC7D

d12 = d11 ⊕ kHC7D. (6)
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(f) The resulting bit-stream d12 is transformed back into an image I12.

Table 1. 7D hyperchaotic system based S-box.

30 62 124 248 235 148 35 202 143 22 43 85 170 76 161 48

129 2 253 231 190 93 153 60 50 100 198 75 151 11 61 212

4 228 167 111 220 142 13 89 210 118 237 168 25 51 101 197

174 38 78 152 54 41 17 65 105 183 29 64 112 215 94 214

10 125 74 56 16 242 136 6 122 147 132 251 146 28 18 34

69 130 95 217 52 102 191 126 113 79 0 119 223 40 82 141

3 120 236 109 162 159 137 115 45 177 239 222 86 171 63 186

241 21 42 200 175 123 12 68 110 234 218 145 221 199 149 24

47 91 179 88 157 55 140 255 14 250 213 138 194 66 58 108

207 131 172 70 165 71 187 44 240 107 243 227 67 182 232 211

7 23 32 73 133 184 163 173 98 192 117 230 208 158 128 225

196 81 144 9 33 247 39 169 185 104 77 31 164 114 229 204

189 103 226 166 57 46 96 249 15 178 181 155 49 106 244 209

26 201 135 20 139 246 238 245 180 176 156 72 193 116 84 83

252 254 195 53 27 134 205 87 97 219 127 150 121 99 188 154

160 37 216 80 224 19 233 59 1 90 206 36 203 8 5 92

3. Encryption stage 2: The single neuron model encryption key and S-box.

(a) The single neuron model is numerically solved for the S-box seeds, then the numerical

solution is utilized in Algorithm 1, resulting in an S-box SSNM (shown in Table 2).

Table 2. SNM based S-box.

36 119 247 239 72 35 152 117 47 126 236 87 11 241 183 98

67 15 61 127 90 217 198 139 159 106 167 101 177 197 20 170

163 109 165 99 235 173 216 134 26 238 17 16 34 229 110 212

69 150 196 86 180 115 192 209 146 203 223 95 22 137 120 71

189 129 74 154 114 200 246 80 6 46 214 59 97 65 77 176

108 62 224 14 213 29 226 172 242 0 89 84 195 33 4 23

118 245 116 252 174 96 40 48 240 148 227 54 78 164 38 104

131 64 205 100 142 52 169 215 178 157 51 66 222 237 91 37

138 30 207 123 234 149 221 219 230 50 175 155 141 125 12 92

60 187 251 8 93 105 83 179 121 41 181 171 5 124 19 225

250 185 166 85 112 130 10 228 73 42 18 253 190 79 7 249

220 147 218 156 248 161 107 182 94 53 208 82 136 13 133 63

145 231 31 143 135 202 255 2 43 56 28 103 199 201 232 70

39 122 1 160 58 111 233 194 44 206 210 24 193 76 211 191

49 88 102 244 27 45 57 81 188 254 32 128 153 3 68 204

21 132 243 140 151 113 55 168 25 75 144 184 162 186 9 158

(b) A replacement process is applied to the image I12, employing SSNM, and resulting in image

I21
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I21 = SSNM(I12). (7)

(c) The pixels of the encrypted image I21 are transformed into a 1D bit-stream d21.
(d) The single neuron model is numerically solved for the key seeds. Algorithm 2 is utilized to

generate an encryption key kSNM from the obtained solution, such that the length of this

key is equal to Ld.
(e) The bit-stream of the encrypted image d21 are XORed with the encryption key kSNM

d22 = d21 ⊕ kSNM. (8)

(f) The resulting data bits d22 are transformed back into an image I22.

4. Encryption stage 3: The 4D hyperchaotic system encryption key and S-box.

(a) The 4D hyperchaotic system is numerically solved for the S-box seeds, then the numerical

solution is utilized in Algorithm 1, resulting in an S-box SHC4D (shown in Table 3).

Table 3. 4D hyperchaotic system based S-box.

87 103 129 234 78 114 219 70 90 239 108 223 106 135 133 116

107 91 229 79 71 3 122 83 8 240 17 148 2 150 55 1

32 35 22 137 204 97 16 136 52 27 220 58 202 217 43 218

138 54 157 53 46 80 81 59 60 232 248 215 161 251 62 152

227 235 164 163 177 226 73 23 186 191 120 38 112 246 95 172

101 1 11 72 160 25 15 126 47 6 253 100 183 24 216 39

7 19 26 93 194 67 10 149 140 99 171 154 88 77 132 228

48 225 128 243 245 12 254 139 184 49 5 151 42 44 145 66

34 185 65 82 221 189 36 175 244 213 130 30 69 144 236 142

9 29 197 28 165 115 188 41 74 76 196 110 61 155 211 124

75 238 89 181 252 222 98 237 241 63 121 224 85 212 199 131

57 143 4 51 84 167 105 190 173 203 141 198 207 200 176 174

179 214 242 20 195 205 192 14 111 134 119 230 96 33 170 18

146 158 68 123 127 94 250 31 206 169 147 168 180 64 92 40

178 231 255 56 37 193 182 156 208 117 201 21 109 118 166 153

187 50 45 104 102 162 209 247 233 125 113 249 159 86 0 210

(b) A replacement process is applied to the image I22, employing SHC4D, and resulting in image

I31

I31 = SHC4D(I22). (9)

(c) The pixels of the encrypted image I31 are transformed into a 1D bit-stream d31.
(d) The 4D hyperchaotic system is numerically solved for the key seeds. Algorithm 2 is utilized

to generate an encryption key kHC4D from the obtained solution, such that the length of this

key is equal to Ld.
(e) The bit-stream of the encrypted image d31 are XORed with the encryption key kHC4D

d32 = d31 ⊕ kHC4D. (10)

(f) The resulting data bits d32 are transformed back into an image I32. I′ = I32 is the final

output encrypted image.
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A flow chart illustrative of the proposed 3-stage encryption process is provided in Figure 6.

Figure 6. Flow chart of the proposed 3-stage encryption process.

3.2. The Decryption Process

The following sequence of steps outline the proposed 3-stage decryption process. They are in a

reverse order to those applied in the encryption process.

1. Beginning with the 3-stage encrypted image I′ = I32 of length M and width N.
2. Decryption stage 3: The 4D hyperchaotic system decryption key and inverse S-box.

(a) The pixel values of the encrypted image I32 are transformed into a bit-stream d32.
(b) The encrypted data bits d32 are XORed with the decryption key kHC4D

d31 = d32 ⊕ kHC4D. (11)

(c) The resulting encrypted data bits d31 are converted into an image I31.
(d) A reverse replacement process is applied to the image I31, employing S−1

HC4D, and resulting

in image I22

I22 = S−1
HC4D(I31). (12)

3. Decryption stage 2: The single neuron model decryption key and inverse S-box.

(a) The pixel values of the encrypted image I22 are transformed into a bit-stream d22.
(b) The encrypted data bits d22 are XORed with the decryption key kSNM

d21 = d22 ⊕ kSNM. (13)

(c) The resulting encrypted data bits d21 are converted into an image I21.
(d) A reverse replacement process is applied to the image I21, employing S−1

SNM, and resulting

in image I12

I12 = S−1
SNM(I21). (14)

4. Decryption stage 1: The 7D hyperchaotic system decryption key and inverse S-box.
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(a) The pixel values of the encrypted image I12 are transformed into a bit-stream d12.
(b) The encrypted data bits d12 are XORed with the decryption key kHC7D

d11 = d12 ⊕ kHC7D. (15)

(c) The resulting encrypted data bits d11 are converted into an image I11.
(d) A reverse replacement process is applied to the image I11, employing S−1

HC7D, and resulting

in a plain image I

I = S−1
HC7D(I11). (16)

A flow chart illustrative of the proposed 3-stage decryption process is provided in Figure 7.

Figure 7. Flow chart of the proposed 3-stage decryption process.

3.3. Utilized Algorithms

Algorithm 1 describes the generation of an S-box given a pseudo-random bit-stream generated

using one of the 3 PRNGs earlier proposed in Section 2. As discussed in Ssection 2.4, towards treating

the evaluation values of the S-box as part of the key space, Algorithm 1 attempts to achieve a certain

set of provided values for S-box evaluations. The approach towards that is to generate an agreed

upon number of S-boxes (which is a part of the key space as well), then each S-box is evaluated

separately, and the chosen S-box is the one with performance evaluation values closer to the target

values. Accordingly, it may come naturally to always provide optimal S-box evaluation values for

every attempt of S-box generation. Nevertheless, fulfilling the need for complicating any cryptanalyses

efforts, other, sub-optimal values may be provided resulting in the generation of different S-boxes.

Such a decision would not affect the overall encryption process much as each generated S-box is only

one component out of many stages. Therefore, performance evaluation of the encryption process is

based on the integration of all the components in all 3 stages of the proposed encryption framework.

Algorithm 2 elaborates the followed procedure in generating a PRNG bit-stream given the solution of

a chaotic system.
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Algorithm 1 Generate an S-box given a bit-stream bPRNG, the number of S-box trials n, and target
performance metric values M = {NL, SAC, BIC, LAP, DAP}, and a bit-stream bPRNG (an adaptation
from that proposed in [14])

1. Sbits = Partittion(bPRNG, 2048)
2. Sboxres =[]
3. Mres = M
4. For each Si ∈ Sbits:

(a) Zi = ToDecimal(Partition(Si, 8))
(b) Li = [0 − 255]
(c) For each Uj ∈ Zi:

i. Locj = Uj%Length(Li)ii. Append(Li[Locj], Sboxi)iii. Delete(Li[Locj], Li)
(d) Mi = {NL(Sboxi), SAC(Sboxi), BIC(Sboxi), LAP(Sboxi), DAP(Sboxi)}
(e) If |Mi − M| < Mres:

i. Mres = |Mi − M|
ii. Sboxres = Sboxi

5. Return Sboxres

Algorithm 2 Generate a PRNG bit-stream given a chaotic system S of k dimensions, and the number
of needed bits n (first proposed in [14])

1. Solve S for the size of n
k + 1 and the sufficient seeds producing the list of lists {L1, L2, ..., Lk}

where Li is the solution for dimension i
2. Convert the list of lists into a 1D list as follows:

L = {L1[1], L2[1], ..., Lk[1], L1[2], L2[2], ..., Lk[2], ...}

3. Drop the last |L| − n elements from L

4. Lbits[i] =

{

1, if L[i] > Median(L)

0, otherwise

4. Numerical Results and Performance Evaluation

The performance of the proposed image encryption framework is provided in this section. A

number of common performance evaluation metrics from the literature is utilized in this work [2,7,14].

Their mathematical expressions are provided in Table 4 and Table 17. The carried out tests aim to

gauge the security, robustness and efficiency of the proposed framework at eradicating any identifiable

information from the output encrypted images, such that they are completely asymmetric to their

plaintext versions. The proposed algorithm is implemented on a machine running on a macOS Catalina

v.10.15.7 with 2.9 GHz 6-Core Intel® CoreTM i9 and 32 GB of 2400 MHz DDR4 RAM. The software of

choice is Wolfram Mathematica® v.13.2. Common images found in the state-of-the-art are also utilized

in this work, to allow for a comparative analysis. All images are 256 pixels in length and 256 pixels in

width, unless stated otherwise.

4.1. Visual and Visual-Statistical Analyses

The first measure employed for testing the output encrypted images is an examination through

the human visual system (HVS). It is clear from Figure 8, Figure 9, Figure 10, Figure 11, Figure 12

and Figure 13 that no relation whatsoever can be observed between the plain images and their

encrypted versions (i.e. complete asymmetry is achieved). The same can be noticed for their respective
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histograms. The histograms of the encrypted images depict a rather uniform distribution of values,

which characterises excellent encryption.

(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 8. Mandrill image and histogram comparison of the plain and encrypted versions.

(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram..

Figure 9. Peppers image and histogram comparison of the plain and encrypted versions.
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(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 10. Sailboat image and histogram comparison of the plain and encrypted versions.

(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 11. Tree image and histogram comparison of the plain and encrypted versions.
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(a) Plain image. (b) Encrypted image.

(c) Plain image histogram. (d) Encrypted image histogram.

Figure 12. House2 image and histogram comparison of the plain and encrypted versions.

4.2. Statistical Analyses

The mean squared error (MSE), peak signal-to-noise ratio (PSNR) and maximum absolute error

(MAE) between input plain images and output encrypted images are reported in Table 5, Table 6 and

Table 7, respectively. It is clear from each of the tables that the computed values for the proposed image

encryption algorithm are comparable or superior to the state-of-the art, with high MSE and MAE

values, and thus low PSNR values, indicating excellent scrambling and randomization performance of

the proposed image encryption framework.

As for Shannon’s information entropy, Table 8 displays the computed values for various encrypted

images, and compares those values with the state-of-the-art. Excellent entropy performance of 7.999

is showcased for the proposed image encryption framework, being superior or comparable to the

counterpart algorithms.

The pixel cross correlation coefficient ρ is a measure of the linear dependency between neighboring

pixel values in an image. It quantifies how well the encryption process has scrambled the pixels and

eliminated any spatial relationships. For a well encrypted image, ρ should have a value close to 0,

indicating little or no correlation between adjacent pixel values. Table 9 provides the ρ values for

various images, each computed in 3 directions (horizontal, vertical and diagonal). While the plain

images have ρ values close to 1, their encrypted versions have ρ values close to 0. A visual illustration

of this metric is provided as a set of 2D plots in Figure 14 for the Lena image, as well as in Figure 15,

Figure 16 and Figure 17, respectively, for each of its RGB channels. While sub-figures (c) and (f) of

Figure 13 provide 3D plots of the same metric for the House image. It is clear that the plots of encrypted

images exhibit a uniform distribution of values, unlike those of their plain versions. Table 10 and

Table 11 display a comparison of ρ with the state-of-the-art, utilizing the Lena image and each of
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its RGB channels, respectively. The computed ρ values are shown to be near 0, as is the case in the

state-of-the-art, in each of the tables.

Table 4. Performance evaluation metrics and their mathematical expressions.

Metric Mathematical Expression

MSE MSE =
∑

M−1
i=0 ∑

N−1
j=0 (I(i,j) − I′(i,j))

2

M × N
, (17)

where I and I′ are 2 images of dimensions M × N.

PSNR PSNR = 10 log
( I2

max

MSE

)

, (18)

where Imax = 255.

MAE MAE =
∑

M−1
i=0 ∑

N−1
j=0 |I(i,j) − I′(i,j)|

M × N
. (19)

Entropy
H(m) =

M

∑
i=1

p(mi) log2

1

p(mi)
, (20)

where p(mi) is the probability of occurrence of symbol m while M is the total number
of bits for each symbol.

DFT
F(k, l) =

N−1

∑
i=0

N−1

∑
j=0

f (i, j)e−i2π( ki
N + li

N ), (21)

f (a, b) is the spatial domain representation of the image, where the exponential term is
the basis function corresponding to each point F(k, l) in the Fourier space.

CC

ρ(x, y) =
cov(x, y)

√

σ(x)
√

σ(y)
, (22)

where, cov(x, y) =
1

N

N

∑
i=1

(xi − µ(x))(yi − µ(y)), (23)

σ(x) =
1

N

N

∑
i=1

(xi − µ(x))2, and µ(x) =
1

N

N

∑
i=1

(xi). (24)

NPCR

NPCR =
∑

M
x=1 ∑

N
y=1 D(x, y)

M × N
× 100, (25)

where, D(x, y) =

{

0 I(x, y) = I′(x, y)

1 Otherwise

∣

∣

∣

∣

∣

x ∈ [1, M] & y ∈ [1, N]. (26)

UACI UACI =
1

M × N

M

∑
x=1

N

∑
y=1

|I(x, y)− I′(x, y)|

255
× 100, (27)

Another interesting manner of examining the pixel cross correlation among pixels would be to

do so in the Fourier domain. By generating the discrete Fourier transform (DFT) of the plain and

encrypted House image, as shown in sub-figures (b) and (e) of Figure 13 and visually examining them.

The presence of a bright star-like shape at the center of the DFT plain image is characteristic of a normal
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plain image which has pixels depicting edges and corners. This is unlike the DFT encrypted image,

which lacks any identifying visual characteristics.

Since randomness is an integral measure of any image encryption algorithm, an objective

quantitative measure of it should be utilized. This is best carried out through a National Institute of

Standards and Technology (NIST) SP 800 analysis [36]. In brief, a NIST analysis tests a bit-stream for a

number of characteristics, including its randomness, as a well as quantifies its randomness and detects

structural weaknesses. Such an analysis provides empirical evidence of the suitability of a PRNG’s

use in cryptography applications. Table 12 presents the results of a NIST analysis carried out on a

bit-stream depicting the data of an encrypted Girl image. All NIST tests are successfully passed, with

scored p−values greater than 0.01.

Table 5. MSE values for various images, for the proposed algorithm and the state-of-the-art.

Image Proposed [7] [16] [37] [17] [6] [21] [14]

Lena 8890.05 9112.1 8926.96 10869.73 4859.03 8888.88 N/A 8912.4
Mandrill 8345.25 8573.38 8290.84 10930.33 6399.05 8295.21 N/A 8320.41
Peppers 10074.0 10298.7 10045.1 N/A 7274.44 10092.3 N/A 10065.4
House 8361.44 8427.04 8351.64 N/A N/A N/A N/A 8395.53
House2 9190.27 9374.65 N/A N/A N/A N/A N/A 9142.54
Girl 12152.8 12450.9 N/A N/A N/A N/A N/A 12104.2
Sailboat 10063.3 N/A N/A N/A N/A N/A N/A 10071.9
Tree 9931.63 N/A N/A N/A N/A N/A N/A 9873.24

Average 9626.09 9706.13 8903.64 10900 6177.51 9092.13 N/A 9610.65

Table 6. PSNR values for various images, for the proposed algorithm and the state-of-the-art.

Image Proposed [7] [16] [37] [17] [6] [21] [14]

Lena 8.64176 8.53462 8.6237 7.7677 11.3 8.64233 8.5674 8.63086
Mandrill 8.91641 8.79929 8.9448 7.7447 10.10 8.94253 10.0322 8.92936
Peppers 8.09877 8.00296 8.11128 N/A 9.55 N/A N/A 8.10248
House 8.90799 8.87405 8.91309 N/A N/A N/A N/A 8.89032
House2 8.49752 8.41125 N/A N/A N/A N/A N/A 8.52013
Girl 7.28403 7.17879 N/A N/A N/A N/A N/A 7.30144
Sailboat 8.10339 N/A N/A N/A N/A N/A N/A 8.0997
Tree 8.1606 N/A N/A N/A N/A N/A N/A 8.18621

Average 8.32631 8.30016 8.64822 7.7562 10.3167 8.79243 9.2998 8.33256

Table 7. PSNR values for various images, for the proposed algorithm and the state-of-the-art.

Image Proposed [7] [6] [37] [38] [21] [14]

Lena 77.409 78.3564 77.3752 87 77.35 77.96 77.4877
Peppers 82.0156 82.3273 81.7740 N/A 74.71 N/A 81.9832
Mandrill 75.3335 81.913 75.1659 92 73.91 67.85 75.1632

House 75.3132 N/A N/A N/A N/A N/A 75.4983
House 2 78.5675 N/A N/A N/A N/A N/A 78.3327

Girl 90.1646 N/A N/A N/A N/A N/A 89.9807
Sailboat 82.0101 N/A N/A N/A N/A N/A 82.1003

Tree 81.4948 N/A N/A N/A N/A N/A 81.1623

Average 80.9993 80.8656 78.105 89.5 75.3233 72.905 80.2136
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Table 8. Entropy values for various images, for the proposed algorithm and the state-of-the-art.

Image Proposed [7] [16] [37] [39] [17] [6] [21] [14]

Lena 7.999 7.9856 7.999 7.999 7.997 7.996 7.997 7.9972 7.99887
Mandrill 7.999 7.9905 7.999 7.999 7.999 N/A 7.996 7.9969 7.99866
Peppers 7.999 7.9951 7.999 7.9991 N/A 7.997 7.9969 N/A 7.99834
House 7.999 7.9577 7.999 N/A N/A N/A N/A N/A 7.99729

House2 7.999 7.9847 N/A N/A N/A N/A N/A N/A 7.99848
Girl 7.999 7.9789 N/A N/A N/A N/A N/A N/A 7.99477

Sailboat 7.999 N/A N/A N/A N/A N/A N/A N/A 7.99875
Tree 7.999 N/A N/A N/A N/A N/A N/A N/A 7.99713

Average 7.999 7.98208 7.999 7.999 7.99903 7.9965 7.99663 7.99705 7.99711

(a) Plain image. (b) Plain image DFT.

(c) Plain image pixel cross-correlation.
(d) Encrypted image.

(e) Encrypted image DFT.
(f) Encrypted image pixel cross-correlation.

Figure 13. House image alongside its Fourier transformation and 3D plot of its pixel cross-correlation

matrix pre- and post-encryption.
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Table 9. Correlation coefficient values for various plain and encrypted images.

Plain Image Encrypted Image

Correlation Coefficient Correlation Coefficient

Image Horizontal Diagonal Vertical Horizontal Diagonal Vertical

Lena 0.938611 0.913175 0.96833 0.00180128 −0.000991502 −0.00018608
Mandrill 0.848778 0.750624 0.79088 0.00713777 −0.00152782 0.00491305
Peppers 0.959422 0.930426 0.966795 0.00301689 0.00419115 −0.00012237
House 0.978232 0.936044 0.952926 −0.00147997 −0.00286442 −0.0015624

House2 0.907075 0.850782 0.923091 0.000841531 −0.00214171 −0.00626431
Girl 0.974013 0.951471 0.965671 0.000841531 −0.00214171 −0.00626431

Sailboat 0.952381 0.0.919872 0.950138 0.00608092 0.00279574 0.00170383
Tree 0.968153 0.929967 0.94515 −0.00226616 0.00137505 0.00332063

Table 10. Correlation coefficient values comparison with the state-of-the-art, for an encrypted Lena

image.

Algorithm Horizontal Diagonal Vertical

Proposed 0.00180128 −0.000991502 −0.000186079
[6] 0.002287 −0.00132 −0.00160
[7] 0.003265 −0.00413 0.002451

[14] 0.0064113 −0.0015143 0.000568333
[19] 0.00144 −0.00151 0.00795
[21] −0.0061 −0.0018 0.0067
[24] 0.000199 0.003705 −0.000924
[37] 0.0054 0.0054 0.0016

Table 11. Color channel separated correlation coefficient value comparison with the state-of-the-art, for

the Lena image.

Channel Direction Plain image Encrypted image [25] [26] [27] [6]

Red
Horizontal 0.952474 0.00266725 0.001365 0.0021 0.9568 −0.00364
Diagonal 0.928029 0.00564219 0.000232 −0.0026 0.0075 0.00016
Vertical 0.975913 −0.0008351 0.004776 0.0018 −0.0376 0.000697

Green
Horizontal 0.935628 0.00307568 0.003294 −0.0006 0.0020 0.000118
Diagonal 0.910534 −0.0020740 0.004807 0.0001 −0.0046 0.00177
Vertical 0.966647 −0.0011823 −0.000579 0.0004 −0.0013 −0.0011

Blue
Horizontal 0.917439 −0.00046821 0.002060 −0.005 0.0071 −0.00164
Diagonal 0.888482 −0.0025489 −0.004043 −0.0104 −0.0009 −0.00523
Vertical 0.947961 0.0053944 0.000194 0.001 −0.0423 0.006041
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(a) Plain Horizontal. (b) Plain Diagonal.

(c) Plain Vertical. (d) Encrypted Horizontal.

(e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 14. 2D plot of pixel cross-correlation matrices of the Lena image pre- and post-encryption.
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(a) Plain Horizontal. (b) Plain Diagonal.

(c) Plain Vertical. (d) Encrypted Horizontal.

(e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 15. 2D plot of pixel cross-correlation matrices of the red channel of the Lena image pre- and

post-encryption.
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(a) Plain Horizontal. (b) Plain Diagonal.

(c) Plain Vertical. (d) Encrypted Horizontal.

(e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 16. 2D plot of pixel cross-correlation matrices of the green channel of the Lena image pre- and

post-encryption.
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(a) Plain Horizontal. (b) Plain Diagonal.

(c) Plain Vertical. (d) Encrypted Horizontal.

(e) Encrypted Diagonal. (f) Encrypted Vertical.

Figure 17. 2D plot of pixel cross-correlation matrices of the blue channel of the Lena image pre- and

post-encryption.
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Table 12. NIST analysis on Girl encrypted image.

Test Name Value Remarks

Frequency 0.425242 Success
Block Frequency 0.276783 Success

Run 0.714157 Success
Longest run of ones 0.932530 Success

Rank 0.138292 Success
Spectral FFT 0.846825 Success

Non overlapping 0.613084 Success
Overlapping 0.449023 Success

Universal 0.687511 Success
Linear complexity 0.241374 Success

Serial 0.850353 Success
Approximate Entropy 0.030357 Success

Cumulative sum (forward) 0.503876 Success
Cumulative sum (reverse) 0.783156 Success

4.3. Differential Attack Analysis

A differential attack analysis is a type of cryptanalytic attack on encryption algorithms where an

attacker analyzes the effect of specific changes in the input text on the output ciphertext. For example,

the change of a single bit in the input plain image. By analyzing these differences, the attacker may

be able to deduce information about the key or algorithm used. Two tests are commonly employed

in the literature for such an analysis: The number of pixel change ratio (NPCR) for pixel-by-pixel

comparison and the unified averaged change intensity (UACI) for the evaluation of the mean average

difference [40], with ideal values for well-encrypted images being 100% and 33.33%, respectively.

The mathematical expressions corresponding to each of those metrics are provided in Table 4. The

computed NPCR and UACI values for various images are displayed in Table 13, with achieved

average values of 99.6186% and 31.4857%, respectively, reflecting excellent performance. Table 14

compares the computed values with the state-of-the-art, for the RGB channels of various images. As

expected, a comparable performance is achieved. Moreover, Table 15, displays another comparison

with counterpart algorithms, for the Lena image. Once again, a comparable performance is achieved.

Table 13. NPCR and UACI values of various images.

Metric Image Result

NPCR

Lena 99.6114
Peppers 99.6267
Mandrill 99.6094

House 99.6165
House2 99.6318

Girl 99.6287
Sailboat 99.6318

Tree 99.5926

Average 99.6186

UACI

Lena 30.3565
Peppers 32.163
Mandrill 29.5425

House 29.5346
House2 30.8108

Girl 35.3587
Sailboat 32.1608

Tree 31.9587

Average 31.4857
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Table 14. NPCR and UACI values comparison with the state-of-the-art for various images.

Metric Image Color Channel Proposed [6] [41] [14]

NPCR

Lena
Red 99.6231 99.6109 99.6355 99.5712

Green 99.614 99.6109 99.6256 99.5758
Blue 99.5972 99.6375 99.6159 99.6094

Peppers
Red 99.6002 99.6032 99.6307 99.6338

Green 99.6429 99.6032 99.6250 99.6338
Blue 99.6368 99.3750 99.6213 99.6628

Mandrill
Red 99.5819 99.5880 99.6102 99.5911

Green 99.6292 99.5880 99.6134 99.5865
Blue 99.617 99.5880 99.6057 99.6292

UACI

Lena
Red 32.8621 33.4158 33.4657 33.1056

Green 30.6466 30.3902 33.4552 30.5178
Blue 27.5607 33.2420 33.4550 27.5385

Peppers
Red 28.9367 33.3459 33.4832 28.8353

Green 33.8071 33.4702 33.4904 33.8409
Blue 33.7452 33.4357 33.4619 33.7746

Mandrill
Red 29.7236 33.4273 33.5002 29.5137

Green 28.0515 33.4635 33.4711 28.0464
Blue 30.8524 33.7951 33.4951 30.8671

Table 15. NPCR and UACI values comparison of the Lena image with the state-of-the-art.

Scheme NPCR UACI

Proposed 99.6114 30.3565
[2] 99.625 30.5681
[6] 99.63 30.3432

[14] 99.5855 30.3873
[19] 99.6246 30.5681
[21] 99.61 33.516
[37] 99.52 26.793
[42] 99.63 33.48
[43] 99.61 33.434

4.4. Key Space Analysis

It is of vital importance to carry out a key space analysis of any image encryption technique.

Such an analysis quantifies how much information (in bits) is required to specify an encryption

key. The more bits needed, the larger the key space. Consequently, a large key space makes brute

force attacks infeasible. The larger the number of possible keys, the greater the resources and time

required to try every key. This helps ensure encryption is secure against brute force cracking. In the

proposed image encryption framework, the attained key space is vast, mainly due to the utilization of

the hyperchaotic maps. The 4D hyperchaotic map employs 4 initial values and 7 constants, the 7D

hyperchaotic map employs 7 initial conditions and 10 constants, while the SNM employs a total of

5 variables only. For each of the 3 S-boxes, 5 specific values for the metrics are chosen. This gives a

total of 4 + 7 + 7 + 10 + 5 + 3 × 5 = 48 variables in the computation of the key space. The computer

and software package used to implement the proposed image encryption framework have a machine

precision of 10−16. Ultimately, this gives a key space of 1048×16 = 10768 ≈ 22551. This computed value

far surpasses the threshold suggested earlier in the literature [44], of 2100, for successful resistance

to brute-force attacks. A comparative analysis is carried out with the state-of-the-art in Table 16,

showcasing the superior key space of the proposed image encryption framework.
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Table 16. A comparison of key space values with the state-of-the-art.

Algorithm Key space

Proposed 22551

[2] 2478

[7] 2372

[14] 21658

[19] 2554

[21] 2604

[22] 2312

[23] 2256

[24] 2187

[28] 2128

[29] 2219

4.5. Histogram Dependency Tests

In this testing perspective, the histograms of the plain and encrypted images are statistically

compared in order to show the lack of statistical dependence between the two. Table 17 shows the

five utilized tests (Blomqvist β, Goodman-Kruskal γ, Kendall τ, Spearman ρ, and Pearson r) and their

mathematical expressions [45]. Table 18 demonstrates the results of applying these tests on a variety of

images. As seen in the table, most of the resulting values are approaching 0, which shows the lack of

any statistical dependency between every plain image and its encrypted version.

Table 17. Histogram dependency tests and their mathematical expressions.

Metric Mathematical Expression

Blomqvist β = {(X − x)(Y − y) > 0} − {(X − x)(Y − y) < 0}. (28)

Goodman-Kruskal γ =
nc − nd

nc + nd
. (29)

Kendall τ =
nc − nd
n(n−1)

2

. (30)

Spearman ρ =
∑(Rix − Rx)(Riy − Ry)

√

∑(Rix − Rx)2 ∑(Riy − Ry)2
. (31)

Pearson r =
∑(Xi − X)(Yi − Y)

√

∑(Xi − X)2 ∑(Yi − Y)2
. (32)
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Table 18. Tests of histogram dependency for various images.

Image Color β (28) γ (29) τ (30) ρ (31) r (32)

Lena

Red 0.00397832 0.0313687 0.0303408 0.0434341 0.0270663
Green 0 0.0215872 0.014269 0.0166966 0.0193475
Blue −0.0793976 −0.0608106 −0.0572115 −0.0818634 −0.109206

Combined 0.0277309 −0.0199151 −0.0198071 −0.0329345 −0.0468979

Peppers

Red −0.0316218 −0.0270098 −0.0264574 −0.036404 −0.0223967
Green 0.0355072 0.0185307 0.0183487 0.0317549 0.0375528
Blue −0.00396106 −0.0164391 −0.016167 −0.0263073 −0.0482875

Combined 0.0948802 0.0436563 0.0433807 0.0645118 0.0666087

Mandrill

Red −0.0198078 −0.0466956 −0.0462145 −0.0686459 −0.0672317
Green 0.0676058 0.0704028 0.0691334 0.099575 0.108835
Blue −0.00394524 −0.027233 −0.0269739 −0.0414617 −0.032399

Combined 0.0316238 −0.00105387 −0.00104776 −0.00335102 −0.00619468

House

Red −0.078125 −0.0735036 −0.0713676 −0.10807 0.129594 − 0.124939
Green 0.0278483 0.0505291 0.0499853 0.0757827 0.100048
Blue −0.0558677 −0.0186177 −0.0178087 −0.0270381 −0.0762734

Combined −0.03125 −0.0270421 −0.0268626 −0.0384522 −0.0603119

House2

Red −0.122785 −0.11135 −0.109577 −0.159726 −0.187521
Green −0.0159414 −0.00680612 −0.00674228 −0.00405984 0.0230262
Blue 0.0560937 0.0890006 0.0876046 0.131527 0.132005

Combined −0.109375 −0.0772136 −0.0768099 −0.110878 −0.0822007

Girl

Red 0.0830847 0.0581335 0.0489882 0.0663806 0.0108236
Green 0.0336761 0.0192351 0.0159392 0.0191791 0.0103639
Blue −0.0232813 −0.0120988 −0.00979622 −0.0113034 −0.0309034

Combined 0.15625 0.0462478 0.0441833 0.0606254 −0.00724911

Sailboat

Red −0.0158755 0.00608236 0.00584084 0.00894156 0.015278
Green −0.0994093 −0.0609726 −0.060292 −0.0933644 −0.0969401
Blue −0.0357981 −0.0261754 −0.025861 −0.0370723 −0.104682

Combined 0.031754 −0.0324742 −0.0322749 −0.0539398 −0.123518

Tree

Red −0.0239129 −0.0587334 −0.0575335 −0.0886452 −0.116216
Green 0.00401018 0.00607749 0.00597875 0.00638248 −0.0328477
Blue 0.0236235 0.0389318 0.0374368 0.0573412 0.0216757

Combined 0.015625 0.00158429 0.00157335 0.00789208 −0.0243032

4.6. Execution Time Analysis

The execution time of an image encryption algorithm is an important metric, as it allows for a

comparison of the efficiency and performance of different algorithms, as well as provides an estimation

of the computational resources required for software and hardware implementation. Moreover, an

analysis of the execution time reveals the applicability of an algorithm for real-time image encryption

applications. The software implementation of the proposed image encryption framework is carried

out over Wolfram Mathematica® v.13.2. The algorithm’s execution time is optimized through parallel

processing over the 6 cores of the Intel® CoreTM i9 processor. The full details of the computing

environment were provided in the first paragraph of Section 4. Table 19 reports the attained execution

times of the Lena image, at various dimensions. These times result in an average encryption rate of

8.54 Mbps. Moreover, Table 20 provides a comparative analysis with the state-of-the-art algorithms.

The superiority of the proposed framework is clear, with the attained encryption times being much

shorter in comparison to its counterparts, irrespective of the machine specifications.
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Table 19. Execution times, in terms of encryption, decryption, and their combined values for the

proposed algorithm at various image dimensions.

Image Dimensions tEnc [s] tDec [s] tAdd [s]

64 × 64 0.011306 0.011419 0.0227249
128 × 128 0.039643 0.038158 0.077801
256 × 256 0.167471 0.161055 0.328526
512 × 512 0.732927 0.751684 1.48461

1024 × 1024 2.99817 3.161 6.15917

Table 20. A comparison of the encryption time for various algorithms from the literature for a Lena

image with dimensions 256 × 256.

Algorithm tEnc [s] Machine specifications (CPU and RAM)

Proposed 0.167471 2.9 GHz Intel® CoreTM i9, 32 GB
[2] 2.750966 3.4 GHz Intel®, N/A
[6] 2.582389 2.9 GHz Intel® CoreTM i9, 32 GB
[7] 1.42545 2.9 GHz Intel® CoreTM i9, 32 GB

[14] 0.426243 2.9 GHz Intel® CoreTM i9, 32 GB
[19] 3.0019 3.4 GHz Intel® CoreTM i7, 8 GB
[21] 2.7236 2.7 GHz Intel® CoreTM i7, 8 GB
[29] 3.45 N/A
[30] 1.112 3.4 GHz Intel® CoreTM i3, 4 GB
[31] 1.1168 3.4 GHz Intel® CoreTM i7, 8 GB

4.7. S-Box Performance Analysis

The proposed S-boxes are evaluated in this section independently from the proposed framework’s

performance as a whole. This is because an S-box is a consistent element that is nearly always at the

core of image encryption algorithms and is tasked with applying Shannon’s property of confusion. In

order to evaluate the ability of an S-box to cause confusion, 5 metrics are commonly computed [46].

These are the non-linearity (NL), linear approximation probability (LAP), differential approximation

probability (DAP), bit independence criterion (BIC) and strict avalanche criterion (SAC). They are

calculated for the proposed S-boxes (shown in Tables 1, 2 and 3) and compared to those reported in

the state-of-the-art, as well as to the ideal values. While all 3 proposed S-boxes exhibit comparable

performance to counterpart algorithms from the literature, it is clear that the S-boxes constructed

from the hyperchaotic functions perform better than the S-box constructed from the SNM. This is an

advantage of hyperchaotic functions [47]. As in [14], and as described earlier in Ssection 3.3, upon

designing and constructing each of the proposed S-boxes, the aim is not to reach the ideal values of the

metrics, but rather to reach a set of target metrics that are in close proximity to the ideal ones. This was

carried out so as to include this set of target values as part of the key space, expanding it by 5 × 3 = 15

variables, and allowing it to reach a key space of 22551, as explained earlier in Ssection 4.4.
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Table 21. Comparison of the numerical evaluation of the proposed S-boxes (displayed in Tables 1, 2

and 3) among those provided in the literature.

S-box NL SAC BIC LAP DAP

Ideal values 112 0.5 112 0.0625 0.015625

Proposed, SNM (1) 106 0.499268 104 0.09375 0.015625
Proposed, HC 4D (2) 108 0.500977 108 0.078125 0.015625
Proposed, HC 7D (3) 108 0.506592 108 0.078125 0.015625
[14] MT 108 0.503662 92 0.140625 0.015625
[14] OpenSSL 108 0.499023 112 0.0625 0.015625
[14] Intel’s MKL 108 0.499268 104 0.09375 0.015625
[37] 111 0.5036 110 0.0781 0.0234
[48] 107 0.497 103.5 0.1560 0.0390
[49] 100 0.5007 104.1 0.0390 0.1250
[50] S4 112 0.5 112 0.0625 0.0156

5. Conclusions and Future Works

This work attempted to propose a novel framework for image encryption, capitalizing on the

inherent characteristics of hyperchaotic functions and the simplicity of the single neuron model.

Encryption was carried out over 3 stages, where in each stage the solution of one of the systems was

numerically computed and used to generate a PRNG and construct an S-box. Next, the S-box was

applied to scramble the image data, while an XOR operation with the encryption key was applied to

randomize it. The main advantages of the proposed framework could be summarized in attaining a

vast key space of 22551 and a high encryption rate of 8.54 Mbps. Reaching such a key space is attributed

to the usage of the hyperchaotic functions, while the efficiency of the framework is attributed to

the optimization of its software implementation and making use of parallel processing over 6 cores.

Moreover, the proposed framework was tested against an array of security tests, of quantitative and

qualitative nature, and is shown to exhibit comparable or even superior performance, in comparison

to the state-of-the-art.

Future research efforts could be dedicated to attempting to improve the efficiency of the

proposed image encryption framework even more. This could be carried out through an enhanced

parallel processing architecture, by running it over a network of connected machines, or better yet,

implementing a hardware implementation (i.e. on an FPGA for example).
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CA Cellular Automata

DNA Deoxyribonucleic acid

HVS Human Visual System

MAE Maximum absolute error

MSE Mean Square Error

NIST National Institute of Standards and Technology

NPCR Number of Pixel Changing Ratio

PRNG Pseudo-Random Number Generation

PSNR Peak Signal-to-Noise Ratio

S-box Substitution box

SNM Single Neuron Model

SPN Substitution-Permutation Network

UACI Unified Averaged Change Intensity
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