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Abstract: We develop an action principle to construct the field equations for dissipative/resistive
general relativistic two-temperature plasmas, including a neutrally charged component. The
total action is a combination of four pieces: an action for a multi-fluid/plasma system with
dissipation/resistivity and entrainment; the Maxwell action for the electromagnetic field; the
Coulomb action with a minimal coupling of the four-potential to the charged fluxes; and the
Einstein-Hilbert action for gravity (with the metric being minimally coupled to the other action
pieces). We use a pull-back formalism from spacetime to abstract matter spaces to build unconstrained
variations for the neutral, positively, and negatively charged fluid species and for three associated
entropy flows. The full suite of field equations is recast in the so-called “3 + 1” form (suitable for
numerical simulations), where spacetime is broken up into a foliation of spacelike hypersurfaces and
a prescribed “flow-of-time”. A previously constructed phenomenological model for the resistivity
is updated to include the modified heat flow and the presence of a neutrally charged species. We
impose baryon number and charge conservation as well as the Second Law of Thermodynamics in
order to constrain the number of free parameters in the resistivity. Finally, we take the Newtonian
limit of the “3 + 1” form of the field equations which can be compared to existing non-relativistic
formulations. Applications include main sequence stars, neutron star interiors, accretion disks, and
the early universe.

Keywords: relativistic fluid dynamics; plasmas

1. Introduction

Two-temperature plasmas have been studied in astrophysical systems for nearly fifty years. Early
work considered the formation of light nuclei in two temperature plasmas (the ion temperature being
greater than the electrons) that could exist near relativistic astrophysical objects. Colgate [1,2] and,
independently Hoyle and Fowler [3], looked at the synthesis of deuterium in a plasma (with ion
temperature T; ~ 10! K) generated in shock waves produced by supernovae. Shapiro et al. [4] applied
a two-temperature accretion disk model for Cygnus X-1 in order to produce the observed thermal
emission temperatures of 10° K and the observed X-ray spectrum above 8 keV. More recently, Zhdankin
et al. [5] looked at the role of extreme two-temperature plasmas in radiative relativistic turbulence,
while Ohmura et al. [6] used simulations of two temperature magnetohydrodynamics to describe
the propagation of semi-relativistic jets. Ryan et al. [7] have provided axisymmetric two-temperature
general relativistic radiation magnetohydrodynamic simulations of the inner region of the accretion
flow onto the supermassive black hole M87 while Meringolo et al. [8] have looked at two temperature
plasmas in the context of special relativistic turbulence.

The literature on electron and ion plasmas shows there are many different scenarios under which
two temperatures result, although whether or not the electrons are hotter than the ions is very much
dependent on the particular scenario. In his classic text on plasmas and fusion reactions, Chen [9]
writes that the positively charged ions can have a temperature which is different from that of its
electrons even though they both have Maxwellian distributions. This is because the collision rate of
the ions with themselves and the collision rate of electrons with themselves are much higher than that
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of electrons with ions. Kawazura et al. [10] argue that in a collisionless plasma heated through Alvenic
turbulence electrons will be preferentially heated when magnetic energy density is greater than the
thermal energy density, whereas it is the ions which are hotter when the energy densities are the other
way around.

The problem with developing models of complex plasmas in dynamical spacetimes, particularly
for numerical simulations, is the consistency of the approximations used. It is standard to develop the
approximations by dropping terms based on scaling arguments. Any “inconsistencies” introduced
in the process typically lead to some (often small) loss of total energy or generation of spurious heat.
However, as discussed in detail below, in a relativistic context, heat will produce an effective mass
which contributes to the dynamics of a given system and (at least in principle) the generation of
gravitational waves. Therefore, even small inconsistencies in the model development will lead to
systematic errors in the generated (potentially observable) signals.

Our purpose here is to use well-established action-based techniques [11] to construct the
full suite of field equations for a consistent, resistive, two-fluid, five-constituent, two-temperature
general relativistic plasma. The model involves a positively charged species flux comoving with a
charge-neutral species and a separate negatively charged species flux. The positively and neutrally
charged species are assumed to have the same temperature and there is a single entropy comoving
with them. Because the negatively charged species is at a different temperature, it will have its own
(comoving) entropy.

To see how this comes about, consider the simple case of ionized hydrogen, for which collective
behavior of the electrons means they can be described as a fluid. They have well-defined fluid
elements with their own four-velocities, and within these elements there will be a thermodynamic
description based on, say, temperature and particle density. Clearly, this assumes that the electrons are
thermalized, i.e. from a kinetic theory point-of-view their state can be described by an equilibrium
distribution function (say, Maxwell). From that same kinetic theory point-of-view, we know that
entropy is calculable from the distribution. All of this is also true for the protons, except that the
difference in temperature would necessarily lead to a different (maybe not in form, but certainly in
specific values) distribution and hence different values for the entropy. Since the electrons are at
equilibrium among themselves, and likewise for the protons, the electron entropy flows along with
the electrons and the proton entropy flows along with the protons; therefore, because the electrons
flow relatively to the protons, there are two entropy fluxes. It is conceptually straightforward to
allow for ionization/recombination, by adding an additional flux of “neutral” particles. This leads to
particle flux creation rates for both of the charged particle fluxes as well as the neutral particle flux.
Conservation of baryon number will of course link these two rates.

Given that the physical system considered is broad, and readers may have different
backgrounds—plasma physics, astrophysics, numerical relativity, and so on—we have tried to make
this presentation as self-contained as possible. For example, there is an extended discussion of the
so-called 3 4 1 approach to General Relativity. We have attempted to make this a basic exercise in
projecting tensors into spacelike hypersurfaces, or onto the normals to these hypersurfaces. Moreover,
in order to set-up the taking of the Newtonian limit (in Sec. 6), it is advantageous to keep G, c, the
magnetic permeability p,, and kp in the equations. Of course, this involves introducing a set of
conventions, which are initially somewhat arbitrary, but eventually self-consistent. The complexity
of our total system, with its mixing of dynamical, electrodynamical, and thermodynamical energies,
fluxes, and momenta, requires a careful, yet admittedly tedious, dimensional analysis of the field
variables. The relevant dimensions of field variables will be discussed as the variables are introduced.
This is also required for taking the Newtonian limit, where we need to have an internal calibration of
what “small” is when we expand the field equations.

The plan of this effort is as follows: In Sec. 2 the field variables are introduced, as well as some of
their kinematical features. In Sec. 3 the “matter space” [11,12] is introduced as it provides the arena in
which fluid displacements are performed in the action principle. In Sec. 4 we give the independent
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pieces of the action principle and derive the field equations. In Sec. 5 we give an overview of the 3 + 1
formalism, focusing on the geometric arguments, and then apply it to the coupled system of general
relativistic plasmas and electromagnetism. The overview is for the reader who is knowledgeable about
plasma physics but not particularly familiar with numerical relativity, and/or with how to take a
generally covariant theory and introduce a global separation of space from time. We follow this up in
Sec. 5.4 with a review of the arguments given in [13] for building simple models of resistivity, for both
the charged and neutral current and entropy flows. This is used in Sec. 6 where we take the Newtonian
limit. In Sec. 7 we offer some concluding remarks. Adding further details, in Appendix A we review
total charge conservation, in Appendix B we derive the “3 + 1” form of the Einstein equations, and
in Appendix C we adapt the “3 + 1" formalism to a preferred coordinate system. The conventions of
Misner, Thorne, and Wheeler [14] are used throughout (although we use 4, b, c, ... rather than Greek
letters to represent spacetime indices). We assume that the metric g, is dimensionless, the coordinates
carry the unit of length I, and the time unit is given by I/c; e.g. the time-coordinate x* = ct. As one
might expect, the notation will quickly become a nightmare, and so notational conventions will be
explained as the story develops.

2. The Plasma State and the Field Variables

The first step towards modelling a plasma system involves understanding the scales involved and
the relevant variables. Perhaps the most important scale is the Debye length Ap, which is given by [15]
1 ”i%z

= , 1
/\ZD Zi:EOTi ( )

where 7; is the number density of the i"'-species, g; its charge, and T; its temperature. The Debye
length is the effective distance at which the influence of a single charge is no longer felt by other
particles; that is, for a length-scale I, somewhere between the inter-particle separation 1/ n}/ 3 and
Ap, polarization (or collective) effects will occur so that charges outside of the Debye sphere (area
o A%) are shielded from the single charge. For scales L much bigger than Ap, the system will exhibit
fluid-like features, such as wave propagation.

This helps establish criteria through which we can define the plasma state: 1) the typical
length-scale L for the system must be much larger than the Debye length—L > Ap—and such
that quasi-neutrality holds (}_; gin;L3 = 0);! 2) there must be a large enough number of particles in the
Debye sphere that collective effects occur so that the shielding takes hold (12;A3, >> 1); and 3) letting T
represent the mean collision time for the neutral particles and 1/w a time-scale for collective plasma
phenomena, we have that the last criterion is wt > 1.

In a system like an accretion disc around a black hole there can be several length scales—the
horizontal reach L of the disc, the size 2GMjpp /c? of the black hole with total mass Mgy, and so on. A
satisfactory fluid model of the matter and heat in the disc exists when the system can be broken up into
a continuum of “boxes” of volume I3, each of which is small enough that it can be considered as being
microscopic with respect to the system as a whole (I/L < 1), and yet large enough that it contains
enough particles N for which the Laws of Thermodynamics hold. In this case, intensive quantities
such as chemical potential, pressure, and temperature will be well defined [16].

In the limit where I becomes infinitesimal, these conceptual boxes become the fluid elements of
fluid models. As the fluid evolves, the fluid elements will trace out a continuum of worldlines in
spacetime; i.e. smooth curves whose spacetime points are identified by a set of coordinates x* (1),
with 7 being the proper time along the curves. Because the fluid elements contain particles, then these

1 This also maintains consistency with one of the assumptions in the derivation of Ap, which is the potential energy due to

the effective potential V¢ generated by the polarization is much smaller than the thermal kinetic energy kpT; ~ m,—vfh ; that
is, l]Veff/kBT{ < 1.
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curves form the basis for tracking particle flux. It is important to note that since a fluid element is
infinitesimal with respect to the system as a whole, then changes in the gravitational field across it
are negligible. The equivalence principle also implies that the local geometry can be treated as flat
spacetime.

Particle flux is defined in the standard way as being a number of particles N passing through an
area I per some time //¢; i.e., particle flux magnitude is (N/I®) c. We do the same for entropy flux,
except to note that the entropy unit is kg, which is energy e per temperature T. Assuming that we can
count the amount of entropy as some number N; times kg, then the entropy flux will be N; units of
entropy passing through area I? per time I/c; i.e., entropy flux magnitude is (Ns/I%) .2

a
U

entropy flux s3/kp; a positively charged species (9p > 0) with particle flux n%, and a comoving
entropy flux s /kp; and a negatively charged species (7 = —qp) with particle flux nj, and a
comoving entropy flux s%./kp. As we will see later, associated with the particle fluxes {nj, n%, nf }

Our system consists of a neutrally charged species (7, = 0) with particle flux nj; and a comoving

are, respectively, canonically conjugate chemical potential covectors {u/l, u?, 4} [cf. Eq. (23)] and
for the entropy f}uxes {S% /k B,_s;‘5 kg, s%:/ kp} there are respective canonically conjugate “temperature”
covectors {kB®Z,kB®f,k3®ﬁ[}.

At this point, it is convenient to simplify the notation, by introducing constituent indices {x, y, ...}
which will take the valuesx =1, 2, ... ,6. With these, we will write generic particles fluxes n such that
the first three are {n{ = ng,ng = np,n§ = nﬁ\/}, and the next three are {n}j = s%/kg,ng = s%/kB,ng =
s/ kp}. For the canonically conjugate covectors we will identify {ul = u}, u2 = u?, 13 = y{,\/ } and
{ut = kz®, 1 = kBG)f, ué = kBG)ﬁv }. In order to make direct contact with the First and Second
Laws of Thermodynamics we use an energy e to assign to the combination y}n{ energy density units
e/I3. This implies that the 4} must have momentum units e/c. The energy e can take two distinct
forms: a particle energy based on mass-energy, e, = mc?, for the set {u}, 2, 43}, and a thermal energy
er = kgT for the set {4, 13, us}.

The density ny, with units N/ I3, associated with the flux n% allows us to define a four-velocity
field u? = n?/ny, which is normalized such that g,,u%u? = —c?. These flux worldlines are tied to
those of the fluid elements by setting u3 = dx%/d7y, where 7y is the proper time along the worldline

traced out by uf. We see that ny = —uXn2/c? or n2 = —gn’nl/c?. Note that in addition to the 12
we can have the mixed terms niy = — gubnﬁni’,/ = n%x, where it is to be understood that x # y.3
With respect to a flux’s rest-frame, i.e. the local frame which follows the worldline given by ug, we
can define the fluid potentials yix = —ufu}. For x =1, 2, 3, the y, are chemical potentials, and for

x =4, 5, 6 the px are temperatures yy = Tj, us = Tp = Ty, and pg = Ty # Tp.

The remaining field variables are the four-vector potential A, and the spacetime metric g,;. The
metric couples all fields to the spacetime curvature (and vice versa). With A, and the charge density
flux j§ = gxn§ we can couple the charged fluids to the electromagnetic field (and vice versa). The total
charge density flux is

=Y s =+ - )

The units of the charged current flux j are (N /I®) c. We note that MKS units are being used so that
the electromagnetic coupling 1, combines with €, to give €,yo = 1/c2. The four-potential A, has
units of momentum per charge, or egp1/ (gc), where egpy is a characteristic electromagnetic energy; for
example, in the Debye limit case we would use egps ~ gV

This is not to suggest that entropy is “quantized”, rather that the flux measurement is itself a discrete process.
Even though it seems counter-intuitive, we start out by assuming that none of the fluxes are comoving, as this allows for a
more compact approach to the notation. In Sec. 4 we will impose the condition of only two independent flux directions.

3
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3. The Matter Space Approach to Dissipation

Our analysis builds on a well-established variational approach to relativistic multi-fluid dynamics
[11], including dissipative aspects. The main fluid fields in the model are the fluxes n§. At the heart
of the fluxes are the four-velocities 1§ = dx%/dty. In general, the uf are not surface forming, but
they do form a fibration of spacetime. If the u5 are given, then dx}/dt« = u} can be integrated so
as to construct the x2 (1y). Since ulu} = —c2, then knowing, say, the three spatial pieces dxf(/ dy,
automatically determines the time piece dx?/dy. For some given spacelike hypersurface, no two
worldlines of, say, the x'-fluid, will intersect that hypersurface at the same point.

If we think of this surface in the context of an initial-value problem, then each worldline will
be uniquely determined by the three spatial coordinates they have on that initial hypersurface. It is
through this that the so-called “matter space”, or pull-back, approach enters the fluid dynamics. We
replace the initial spacelike hypersurface, with an abstract, three-dimensional space endowed with
coordinates XZ' (having dimensions / and A = 1, 2, 3). Instead of each worldline being identified
with a point on the initial spacelike hypersurface, each point x2 (T) on the worldline gets mapped to
the same point XZ in the matter space. Our goal here is to provide a sketch on how to reformulate
our fluid model so that the Xf are the fundamental fields (see, e.g., Andersson and Comer [11] for
complete details).

The first step in this reformulation is to introduce the three-form 7, , which is dual to ng:

d a 1 beda
nfz(bc = €dabcx , Ny = 56 ”’écd 7 (3)

where our convention for transforming between the two is

e"Megpeq = 3107 . @

Likewise, we introduce the three-form u2" which is dual to

1
=MW, = grveati” 5)

Because the metric is dimensionless, we see that the three-forms carry the same units as their dual
vectors.

We use the map associated with the coordinates XZ of the x-fluid’s matter space to “pullback”
n,,. into the matter space where it is identified with the totally antisymmetric tensor 1% 5-:

x _ x.g7ABC,_ x
Mabe = abc WABC s (6)

such that the Einstein convention applies to repeated matter space indices, and

« oapc X axB ax{]
abc T xa gxb  9xc

@)
We also use the map associated with X2 to “push-forward” the fully antisymmetric matter space
quantity u£BC to the spacetime three-form p2, via

ABC __ ABC ,,ab
Hx = abc V?( ‘ ’ (8)

as well as the symmetric matter space “metric” ¢4 to the spacetime metric g, via

ap _ OX{OXP 4
x ox® oxb

)
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Because of the antisymmetry in the indices of 7% 3. and p£EC there are natural definitions for the
volume-form €% ;- and its inverse €£5¢ on the x-matter space. These satisfy [13,16]

ebpreldBC = 315145855 — e peefBC =31, (10)

ABC

We can normalize € - and €15 using the determinant of g4%; i.e.

1 1
En = —2 = ——, 11
2= = R
where .
Ax = A 2 S EMBCEDEFSR 8x 8% - (12)
3! (€p)
Now we can write
Whpc =N €hpc, N*= ABC”);’ABC , (13)
where it can be shown that N = ny [16]. Similarly, we find
1
AP — MBS, My — Leipendte, 18
where it can be shown that My = px.
It is also straightforward to confirm that
1
ugz( 3! bcda XjABce);}BC (15)

From this we can verify that the X are conserved along their own worldlines (i.e. they are Lie-dragged
by their ug); that is, using Eq. (15), we see

A A B C D
dXx _ uuvaXA — i <_ 1 abcdaXx aXx aXx aXx ) n)éCD =0, (16)

A, 3¢ Pxl oxb 9x¢ gxd)

since the term in parentheses vanishes identically. The quantity V, is the covariant derivative, with
the dimension of inverse length 1/1.
In general, dissipation is directly connected with the (matter and/or entropy) particle flux creation
rate I'y, which is given by
I'x = Vgang . (17)

When I'y = 0 there is no flux change and no dissipation. It is easy to see that there is a one-to-one, local
identification of the divergence of a vector field with the exterior derivative of its associated three-form,
1e.Vmny, iy ; namely,
1

Vot = eIV it g (18)
Simply put, if the three-form is closed (e 8-Viay, g = 0), then V,ng = 0 and there is no dissipation;
if the three-form is not closed (e.g. V1, d # 0), then the divergence is not zero and dissipation can
occur.

This is the lynchpin of the formalism for dissipative multi-fluid systems developed by Andersson
and Comer [17], and another reason for invoking the matter space. In fact, it was shown by Celora et
al. [16] that

L apc d
pxl'x = 3|Vx dTX >,(43C . (19)
We see immediately that if 7% 5 is a function of only the XZ, then I'x = 0 because of Eq. (16). This
is ideal when fluids are non-dissipative, because then the1r respective creation rates must vanish.
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However, if we allow 1’ 5~ to also depend on X}‘? (for y # x), then the flux three-form is no longer
closed and a system of fluid equations with resistive forms of dissipation result [13]. This will be
shown later in Sec. 4.2.

4. The Action Principle and Field Equations

We now set up the action principle used to derive the resistive fluid/plasma, Maxwell, and
Einstein set of field equations.” The pull-back formalism will be used to build unconstrained variations
of the fluid fluxes dn so that the fluid equations can be obtained. The Maxwell equations follow from
variations of A;, which appears in two pieces of the total action: one built from the antisymmetric
Faraday tensor F,; defined as

Fap = VaAp = VpAa, (20)

and the other constructed from a coupling term based on the scalar ji A,. It is important to note that
F,; satisfies a “Bianchi” identity

1
VaFpe + VeFyp + VpFa =0 = Eeﬂbfdv[hpcd] =0, (21)

The Faraday tensor has dimensions egys/ (gcl).

Gravity is incorporated (in the standard way) by using the Einstein-Hilbert action for the Einstein
Equation and by the minimal coupling of the metric g, to the fluid and electromagnetic fields. The
minimal coupling arises from the ,/—g term in spacetime volume integrals, where g is the determinant
of the metric; the use of g,; in the inner product of vectors; and replacing partial derivatives with
covariant derivatives. The energy-momentum-stress tensor T,;, with energy density units e/13, is
obtained in the usual way by varying the total action with respect to g,.

4.1. The Matter, Electromagnetic, Coupling, and Gravity Actions

The fluid action Sy uses for its Lagrangian the so-called Master function A [11], an energy density,
which is a functional of all the n2 and nﬁy. An arbitrary variation of Sp; with respect to the flux n§ and
the metric results in

5Sm = 6 (/M d4x,/gA)
X 1
- /M d*x/—g [; Hxons + 5 (Ag“b + ;nf(;Jﬁ) (Sgab] , (22)

where
py=Bny+ Yy AYn), (23)
y#X
and
2 A
BX = _Cizain)z( ’ (243)
1 oA

The A*Y, with units (l3/ N ) e/c2, provide the “entrainment” effect, which causes the fluid
momenta to be “tilted” in the sense that y} is not proportional to its corresponding flux n}. The

Andersson and Comer [17] show how other functional dependence, such as g28, can result in bulk- and shear-viscosity.

5 Aswe are interested in only the field equations, boundary terms generated during the variations will be ignored.
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implication is that one flux, say n%,, carries along with it a fraction of the components of a different flux,
say 1. This leads also to effective “mass” effects due to entrainment between any two particle fluxes,
a particle flux and an entropy flux, or two entropy fluxes. Entropy flux acquires an effective mass® (a
carrier of inertia which scales like k3T /c?) through its (non-dissipative) energy /heat exchange within
the system, which does work and can change the conjugate momenta of other fluxes [19]. Shatashvili
et al. [20] have included electron effective masses in their two temperature plasma equations. It has
been noted by Kotorashvili et al. [21] that the effective mass for a degenerate electron plasma arises
from the degeneracy instead of kinematics and is fully determined by the plasma rest frame density
(see [22] and references therein), whereas in a hot relativistic electron plasma the effective mass [23] is
determined by the relativistic electron temperature.

Entrainment between neutrons and protons is known to be important in superfluid neutron star
dynamics [24-27]. Entrainment between matter and entropy can be shown (see, for example, [19]) to
lead to the Cattaneo equation [28], which is an important component of causal heat conductivity. This
particle and entropy flux model can also be used to describe superfluid systems such as He*. In the
Landau model of superfluidity [29], there is an ad hoc separation of the He* atoms into a superfluid
particle flux and a normal fluid particle flux, which are entrained with each other. In the entropy and
particle flux approach, all of the He* atoms are described with one particle flux, and the “normal fluid”
flux is replaced with an entropy flux. A one-to-one mapping between the two models exists (see, for
example, Andersson and Comer [30], and references therein), primarily because in the Landau model
the normal fluid represents the excitations of atoms out of the ground state and are responsible for
carrying the heat. This is important because it shows that the entrainment between the entropy and
particle fluxes has physical impact, whether it is describing superfluid He* or more general fluids with
an independent heat flow. It is less clear whether entrainment between two entropies is important
physically, or just a formally consistent piece of the overall mathematical construct.

4.1.1. The Electromagnetic and Coupling Actions

The Maxwell Action is 1
_ 4 — ab
Sviae = g [, 45V SFaF " 25)

and its variation with respect to A, and the metric g, leads to
6Sptax = [, dtxy=g (VaF")oa, - L [ dtey/=g (FaFg™ —4F“F") o3 . (26)
o JMm 8to J M

The minimal coupling of the Maxwell field to the charge current densities j§ is obtained from the
Coulomb action

sc= [ diryg (m) As, @7)

whose variation with respect to n}, A;, and g, is

1
5S¢ = /M d*x/—g Y (jﬁcSAa + gxAadn + 5 jQAagbC(Sgbc) . (28)

6 In the action-based formalism, the entropy flux degree of freedom represents the heat flux (see, for example, [18]). As such,

because of the equivalence of mass and energy in relativity, it is not surprising that the entropy flux, just as any other flux,
also acquires an effective mass.
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4.1.2. The Gravitational Einstein-Hilbert Action

At the heart of General Relativity is the Riemann tensor R€,;, with units of 1/ I2. Tt can be inferred
from the antisymmetric operation of two covariant derivatives on an arbitrary vector v%; namely,

VoVt — V Vv = R0t . (29)

From the Riemann tensor we can obtain the Ricci tensor R% = R¢__, and, subsequently, the Ricci scalar
acb q Y
R = g,,R%.
The Einstein-Hilbert action is

C4 4
Sk = 1o /Md x\/—gR. (30)

Varying it and the other bits of the total action written above with respect to the metric gives the
Einstein equation; in particular, the left-hand-side of the Einstein equations comes from the variation
of Spy with respect to g, i.e.

C4 4 ab
6Skm = — 1o /M d4xy/—gG%6gu, , @31)

where the Einstein tensor G% is .
Gab _ Ruh _ ERgub ) (32)

4.1.3. The Total Action Variation

The variation of the total action S for the system is thus

6S = OSpg +6Sm 4 OSpax +0Sc

4
4 ¢ ab =X §..0 1 ba -
-9 ———= — oA
/dea/ g{ e-cC (sgab+;yu(snx+yo (VbF +yo;]X> a

1 ab a, b -C ab\ _ 1 cd ,ab _ qpacrb
+§ [Ag + ; (nx]/lx + ]XACg ) % <chF 8 4F™F C) égub ’ (33)
where the electromagnetic minimal coupling has caused the fluid conjugate momentum to become

ﬁ;( = ]/lzl( + Elea . (34)

Imposing gauge invariance on the total action S (cf. Appendix A) leads to charge conservation in the
form [cf. Eq. (A.6)]
qplp + Ty =0 — Ty =TIp, (35)

where I'p = Van?, and 'y = Vanjl\/. Of course, there is also baryon number conservation. The total
baryon number flux is n = n,“i +n%, and it is conserved if I'y = V,np = 0; therefore,

0= V,ng = Van% +Vunp =T +Tp = T =-Tp. (36)

The field equations obtained from the full action variation above cannot be the final form, since
the term proportional to én§ implies that the momenta 7} must vanish. This happens because the
components of én§ cannot all be varied independently; this is the main reason for using the pull-back
formalism because it provides a set of variables, the XZ', which can be varied independently.
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4.2. From Matter Space to Spacetime Displacements and Resistivity

Even though we have as our unconstrained dynamical variables the scalars X£, ultimately we
want the action principle to produce field equations for the fluxes ng. Fortunately, we can use the
X2 this time to push-forward variations §XZ in matter space to Lagrangian displacements &2 of fluid
element worldlines on spacetime; namely,

aXA

X =52

0% (37)

where §XZ is an Eulerian variation (when the X are taken as scalars on spacetime). The minus sign
comes in because we know that the X do not change along the fluid worldlines, meaning that their
Lagrangian variation Ay X [11] has to vanish:

AXY = oX{ + Lo XE =0, (38)

where L; is the Lie derivative with respect to ¢§. Since AXL = 0 we arrive at Eq. (37). Note that,
because we have several fluxes, we will need also the mixed Lagrangian variation AXX}’;1 of the X}’?
with respect to the x-fluid (and vice versa):

A

0X
A _ sxA A_ A S = .
AXy = 0Xy + Lo Xy = Lo Xy — Lo Xy = (gi_é;) ox®

(39)

The displacements of the matter space fluid elements will lead to the variation 61’ 5 -, which, in
turn, will induce the variation of n, .. The Lagrangian variation of n), , in general, is

x 7ABC X
Axnabc - abe AXnABC ’ (40)

and thus
Sy = — L e + Tl Dxipc (41)

where the Lie derivative of 7}, . along the ¢ is

on 9z{ 9z I8
d b
Le ngpe = Cx a”+ dbe 3 ya a+”§dcax2+”2hda - (42)
The resistive form of dissipation is due to the presence of X}‘,“ in 1% 5. Applying the definitions above,
we see
IMapc D Iy pe 9X
Mine = L 5up A5 = ¥ i (cx &) - (43)
y#X y#X

The sum is over y # x because Ax X% = 0.

Using the facts that
Ag™ = 5g™ —2vlgh) (44)
Setbed — _%eabcdgefégef , (45)
and
ehei L miog = 31 (E4Vunt — nVugt + Vit ) (46)
we find

ong = 6(;'eb6d“nbcd>

1
= Vil — Vg — g (thi + zg’”égbc)


https://doi.org/10.20944/preprints202304.0145.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2023 doi:10.20944/preprints202304.0145.v1

110f 34
1 1
ot (R (-4 )
XyAx N
where b
1 xy _ 1 _apc9mypc 9%y
—RY = —ABCTABC Y 4
e = 3 XD oxt (48)
The coefficient R, satisfies the identity
WRY =0 = RY = ((sf; +ubul /cz) RY. (49)

This says that R;’ has only three degrees of freedom; i.e., uy is timelike and therefore Ry has only the
spacelike components with respect to the uy.

We will see in the next subsection 4.3, where the equations of motion are derived, that there is a
total “resistivity” current R} which is given by

Ry=1). (RZX — RZY) , (50)
y#x
and satisfies the identity
Y RX=0. (51)
X

This identity is important because it guarantees that the energy-momentum-stress tensor T, is
divergenceless, i.e. V;, T = V, T = 0 (a consequence of diffeomorphism invariance [14]).

4.3. The Field Equations

We now have everything we need to derive the full suite of field equations. Let us begin by
returning to the flux variations of the total action given in Eq. (33). The fact that we are summing over

all constituents leads to
YL R (s-g) = - LR, (52)
X y#x x

so that the variation of the total action for the system is

_ 1 )
65 = [ dixy/=g [— LU+ T - RS (vmb ~ 1o z;z) iz
X o X

1 C4 ab ab
where
fi= 2”§<V[bﬁ§] = Zniv[bﬁ] +qxniFy, (54)
Y=A-) ung, (55)
X
and 1
T — wg® 4 Y piyl — i (FaFolg™ — 4F*FY,) . (56)
X o

It is worth noting here that the generalized pressure ¥ takes the form of a Legendre transformation of
A, which switches the roles of n§ and ), making the latter the independent degree of freedom; i.e.

6Y = — Y niour. (57)
X

This will be especially useful later when we write down the Newtonian fluid /plasma field equations.
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Now that the action variation is in place, we can invoke our chosen constraint that a given particle
flux and its corresponding entropy flux flow together. We also restrict (by assumption!) the neutral
and positively charged species to flow together. The net result is that there are only two matter spaces
where X{ = X§! = X! = X? = Xé and X:‘f = Xgl = Xjé/. This also implies there are only two
independent Lagrangian displacements: {{ = {5 = ¢} = ¢% = % and {3 = &g = ¢} Likewise, there
are only two independent four-velocities: u{ = uj = uj = ug = u%, and ug = ug = uf;. We also note
thatq1 =qa = g5 =g¢ =0and g2 = —g3 = —q-

In order to get the field equations we employ the action principle, which states that when 65 = 0
for arbitrary values for the variations ¢%, 0 A,, and dg,;, then the coefficients multiplying them in §S
must vanish. From the coefficient of {,, we get a single Euler equation for the neutrally and positively
charged species, which is

Yo Ty — (R — qxI'xAg)] =0, (58)
x={1,2,4,5}

and from ¢4, a single Euler equation for the negative species, which is

E [fa +Txpy — (R — gxI'xAq)] = 0. (59)
x={3,6}

Coming from the coefficient of 6 A, are the Maxwell equations [which must also include Eq. (21)],
V,F = v, (V“Ab - VbA”> —u Y, (60)
x={2,3}
and from dg,, we get the Einstein equation; i.e.

G = @T“b . (61)
C

An equivalent form of the Einstein equation, which will be used in Sec. 5, is

Rab — 87;}(‘; <Tub ;Tgﬂh) , (62)

where T = ¢™Ty,.

From the process of creating the two Euler equations (58) and (59), we find that the set of resistivity
vectors RY is reduced from six members down to two, which we denote by R? and Rﬁ/ . If we take into
account that X! = X4 = X! = X' and X§! = X2 = Xj\“[, then we see that Eq. (48) implies

RI2Z_RU RIS RI_RI6, (63a)
RU—RH=RB | RB=RH, (63b)
RN — R — M — R (63¢c)
RM_R2_Ri5 | RE_ Rl (63d)
R =RZ=RH* | RB=R¥, (63e)
ROV = RS2 = R6* = RS . (636)

Inserting these into the definition of R} in Eq. (50) leads to

RP =R+ R24+ R4 RO =4 (Rgl + Rgl) —2 (R;3 +RBLRE 4+ R23) . (64)

doi:10.20944/preprints202304.0145.v1
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In a similar manner, we obtain
RV =R34+ RO = 4 (R3l +7361) 42 <R13 L RB LR +R53> — _RP (65)
a a a — a a a a a a - a ’
so the identity in Eq. (51) becomes
RP+RV =o0. (66)

Ultimately, microphysical calculations will be required to precisely specify RY (e. g. as indicated by
Braginskii [31]). However, the formalism itself has already provided some structure for the resistivities
R}, as evidenced by Egs. (19), (35), (36), (48), (49), and (66). Recall that the main assumption is that
1% 5 depends on, in principle, all of the X£. Because of Eq. (16), then the chain-rule implies

d X aX}I’) an)z(‘l C
37 tABCc = ) ox7 an (67)
x y#x y
When we substitute this into Eq. (19), and use Eq. (49), we obtain
AT =il Y (RY - RY) = iRy (68)

y#X

4.4. Impact of Change of Gauge for A,

A gauge transformation will impact the fluid equations of motion because of the change to the
momentum; i.e. letting A, = A; + V¢ we find

=+ ade — =@+ A=+ 0Vad. (69)

It is important here to consider in more detail the ramifications of a change of gauge, since a natural
application of the present work would be to numerical evolutions [32]. In the numerical setting, we
expect to be solving for the vector potential A, as we evolve the system. This will require a choice of
gauge for the vector potential, which will affect the explicit values of terms (such as the resistivity) in
the equations of motion.

Clearly, RY is gauge-dependent, since the quantity 7#25C in R}’ [cf. Eq. (48)] depends on A,.
Letting R denote the particle resistivity in the new gauge, we find

R = ¥ (RV-RY)
y#X
1 ebed | =y acOMypc XD
= y;xgee (e +ayVep) Y Ty axD Fv
onX - 0XD
— ABC 9Mapc Yy
- (Viz( + qxv€¢) x bed ax}ll) ox?
R+ Gy, (70)
where b
1 1% -~ 0X
_ yx xy Xy _ bed ABC 9Mapc Yy
G;( = y;(( a — Ya ) ’ a — ﬁee : qx <X bed aX}? Jx“ ) V€¢ . (71)
Note that

YLRI=).Gi=0 = Y R=)}R+)G=0. @2)
X X X X X

doi:10.20944/preprints202304.0145.v1
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Using Egs. (10), (15), and (48), we can re-write G, as
xy _ 1 e¢bed x 7ABC 5 5F 5 Gl 9MErg 8X§3 v
a (€ C XD oxt ¢
D
_ 4x £rG IMEpG 9Xy L bede x 7ABC
TR (3!”X€X axD v | \31° Jied €asc | Ved
1
= o (Vi) (FRY) 73)

which implies

-y lqy (u qu>) ( RYX> — g (uiqu;) (;Ray)] : (74)

y#X

When the sums in Egs. (58) and (59) are performed, we see that the gauge-dependent part of each
of the fluid equations of motion is

i 1
R —awTeds = Ry —qnTsda—dqy 7 (uhR3Y) Vo

1 1
+20y | upRE — —u (2R3 + Rié)} Vi . (75)
) M3

Clearly, Egs. (58) and (59) are modified under a gauge transformation. This was expected. The point
is that we have shown how the transformation enters the field equations and therefore we can still
evolve the system regardless of the choice of gauge.

It is a different story if we look at the projection of Eq. (58) along u%, and Eq. (59) along 1. Clearly,
upfo = 0 for Eq. (58) and uf}f; = 0 for Eq. (59), leaving two equations having linear combinations of
creation rates I'y, combined with the resistivity and the gauge-dependent terms. The creation rates
must be gauge invariant. Fortunately, if we use Eq. (49), and project Eq. (75) along u7, and then along
ufy, we get

ut, ( - qugAa) = u%, (Ry — gy F3Aa) ) (76a)
whe (RY = qnTsdq) = ufy (RY = anTa4a) , (76b)

thus verifying that the I'y are gauge invariant. This was also noted in [13] and is a result of starting
with an action with well-defined couplings. The formalism itself takes care of gauge issues through
internal consistency.

5. 3 + 1 Formulation

Having derived the equations of motion for the plasma system, we want to make contact with
applications and known results in the non-relativistic limit. In order to do this, we work out the 3 + 1
form of the field equations, keeping the speed of light explicit. This makes taking the Newtonian
limit a simple power counting exercise and also sets the problem up for foliation-based numerical
simulations. Our approach to the 3 + 1 problem follows the set of notes by Gourgoulhon [33].

5.1. The 3 + 1 Setup

We begin by restricting our formalism to a special class of manifolds—globally hyperbolic. These
manifolds contain a family of causal curves, which are such that every vector tangent to them is timelike
or null. They also contain a Cauchy surface, which is a spacelike hypersurface that is intersected exactly
once by every inextendible causal curve in the manifold. It can be shown that, on these manifolds with

doi:10.20944/preprints202304.0145.v1


https://doi.org/10.20944/preprints202304.0145.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2023 doi:10.20944/preprints202304.0145.v1

15 of 34

coordinates %%, a scalar “time” function ¢ (%) exists such that its level (“constant time”) hypersurfaces
can be smoothly stacked on top of each other to form a foliation of the spacetime.

A normal at a point on a constant-time hypersurface is obtained in the standard way by taking the
gradient of the time function, i.e. V,t, and then evaluating the gradient at the point under consideration.
A unit normal u® (u"u, = —c?) at each point is created by introducing the so-called lapse function N,
which is a speed, as a normalization factor for V,t; that is,

u" = —cNV*. (77)

If we build an initial slice of the foliation by solving f (¥*) = t, = constant, the next one, say for
t = t, + 6t, will consist of the set of points obtained by moving the same, “small” proper distance in
the u? direction. The u* will merge together from slice-to-slice to become tangents to worldlines. The
acceleration a, of an observer following one of these worldlines is
Du
b _ Dug
a, =u'Vyu, = ——, 78
a b¥a dt (78)
which introduces our notion of time-derivative.
So far, we have a mechanism for stacking the spacelike hypersurfaces, but nothing for how they
“slip” past each other. To take care of that we introduce a “flow-of-time” vector t* (with the units of
speed) which joins spatial points Xi‘ ;, on the hypersurface ¢ = £, to spatial points i | i, +5t O the next

hypersurface t = t, + 6t such that ¥'| i, in words, it is the observers following t* and not u*

1 .
=X |t0+15t’
who are “at rest” with respect to the foliation slices. We normalize t* by setting

PV t=1. (79)

We can use u*/c in two ways to decompose t* into pieces perpendicular and parallel to the foliation
slices; namely,
t*=N(u"/c)+N", N'=17 £ b= §+u”ub/c2, (80)

where N* is the so-called shift vector (with speed units). The tensor 1listhe (idempotent) operator that
provides the parallel (spacelike) projection and u? /¢ provides the perpendicular (timelike) projection.
Since L} ub = 0 the shift vector satisfies (1,/c) N* = 0 and therefore has no perpendicular component.

Each slice of the foliation is, in principle, a curved space. The curvature information is contained
in an induced three-metric h,;, given by

hap = L5 1Y geq = Gap + ttauy/ 2 . (81)

Our notion of spatial covariant derivative D, is generated by the action of 1} on the covariant
derivative of an arbitrary vector 3" =_L¢ v; namely,

D" =1518 v o (82)

The three-metric h,;, is compatible with D,; i.e. Dyhy. = 0. The intrinsic curvature of slices of the
foliation, (® R 5, can be inferred from

D,D,o¢ — DD, ¢ = ®IRC 0% . (83)
The acceleration can be shown [by inserting Eq. (77) into (78)] to have the alternative form

a, = c*DyIn (N /c) . (84)
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Because the three-dimensional slices of the foliation are embedded in four-dimensional spacetime,
they have an extrinsic curvature K,; (with inverse time dimensions) given by

1 1
Kllh = _E‘Cuhah = —E (J_i cha+ J_Z chh) . (85)
It is easy to show that the trace of the extrinsic curvature, which is K = g”b K, becomes
K=-Vu"=-0. (86)

When we develop the 3 + 1 form of the field equations it will be found that the covariant derivative
of u” enters repeatedly. A couple of important “tools” for dealing with this can be obtained by applying
the well-known decomposition

1
Valp = 0y + 5@]1”;, + @gp — abug/cz = —Kyp+ @5 — uaab/cz , (87)
where
1, . . 1 1
Uﬂb - E (J_h cha+ J_a chh) - g@hub - — Kﬂb - éKhllb ’ (883)
1
Wup = E (J_Z cha_ J_Z chh) . (88]3)

The most useful formula is a consequence of the fact that u* is surface forming: This implies @,, = 0,
and so therefore
Vot = —Kgp — ugay/c? . (89)

From this we can immediately show
Ve J_Z: —Zghd Ul (glg) /et + u(uKd)C/cz] . (90)

5.2. Field Decompositions

We have just seen how the metric can be re-framed in terms of the lapse N, the shift-vector N*,
and the three-metric h,,. Now we need to produce the similar re-framing for the remaining field
variables nf and A,.

Using the projection operators u”/c and L7, and taking into account the dimensional analysis of
the flux earlier, the 3 + 1 forms of the fluxes must be

ny = fixu® + 7%, fix=— (ua/cz) nt, al=10nb. (91)

From the definition of the four-velocity u} = n%/ny we can infer

uﬁ:%wﬂzg) , u:Z— (92)
and can therefore show " .

P Tx o, Ix= N (93)
Because ufu, = —4x and u%uu = upu, we have 1 = 72 = y4 = ¥5 = ¥p and consequently

i} =iy = ily = g = 0. Similarly, we have 3 = J¢ = Y and i3 = iy = @}
For the chemical potential covector yj, the dimensional analysis leads to a slightly different form
for the decompositions:

Wy = fixtia/F + iy, fix=—upy, jix=1bpux. (94)
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If we substitute into the spatial part of this the initial result for u}, i.e. Eq. (23), we find a form more
amenable for the Newtonian limit, which is

fi =B § vyl 95)
y#X
where
¥, = @l — il (96)

As an effect of the tilting of the momenta, the chemical potentials in the fluid rest frames are related
with those of the foliation in more complicated ways, which are

px = Tx (fix — xflg) - (97)
By direct substitution of the decompositions just above into Eq. (55), the generalized pressure ¥
becomes
Y= A+ (fixiix — 1371y) (98)
X
and the fluid/plasma part of T* is
flix Tl
Ygr + Y niub = <—A + Zﬁ}‘ﬁi) wn /2 + Y igilut + Y VZz Xatub
X X X X
¥R+ Y At (99)
X
The charge current flux j§ is
A __ = a7 P 2\ o qa b
Jx = Oxt” + ]x, OX__(”ﬂ/C )]x/ Jx _J-b]xl (100)
and the four-potential A, is
Ae=Vu, /P +A,, V=—u'A,, A,=104,, (101)

where we have introduced the scalar potential V (with the standard energy per charge units) and the
three-vector potential A,. Inserting this into the Faraday tensor, and using Eq. (89) for the covariant
derivative, we find

DA, 1 ; DA,
. dt 2 dt
-5 (u,,(sgl - uaag) A°Ky. + Doy — DypAs . (102)

1 ~ 14 1
Fp, = ) (upyDg — uysDy) V + C—ZV (aqup — apuy) + L

The electric E, and magnetic B, fields are defined as

. b _ DA _ _
E,=——F,=-D,V— 1t Ttb —Va,/c?+ AKy, , (103a)
< 1. 5 - 5 ud
B, = Eeachbc = €abCDhAc s €abe = TGdabc ’ (103b)
which implies
2 . o«
Fu szu[ﬂEb] + EuweBC . (104)
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Finally, the electromagnetic contribution to T* is

7L (FCchdgab _ 4Fachc) _

4110 (EZJrCZBz) uuub+ i( ~bcd+u éacd) E Bd

202 Ho

= [E”EMCZE”BE—%(EZHZBZ) h“b} . (105)
o

We end this subsection by pointing out that Eqs. (99) and (105) shows that T,, naturally

separates into “time-time”,
total mass-energy density E, the total momentum density P,, and the total stress S,;:

time-space”, and “space-space” pieces. Respectively, these give the

1

E= C—zu“ubTub , (106a)
1 1

Pl = ——uy L Tbe = ——uy L T, (106b)

S =191 S =h,S". (106c¢)

The terms in Egs. (99) and (105) combine to give

E=—A+ Z T (EZ n c232) (107a)

Pt == Zﬁxﬁxﬁﬁ + L(f:”bCEbBC
Clo
=c ) ik ”“bCEbBC , (107b)
X
S L [E“Eb T (E2 n c21§2) h“b} , (107¢)
X ]40 2
~X o~ a 2 212
S = 3‘if+2 + oo (E + 2B ) . (107d)

5.3. The 3 + 1 Field Equations

The logic of rewriting the Einstein, fluid/plasma, and electromagnetic field equations in their
3 + 1 forms is the same as for the field variables — project free indices perpendicular to the foliation
slices using the operator u”/c and project free indices parallel to the foliation slices using 1;, and
then make substitutions of the decomposed quantities derived in the previous section. The main
complication is that the field equations have derivatives, and we will need to replace everywhere
covariant derivatives V, with their 3 4+ 1 counterparts D/dt and D,.

We will start with the Einstein equations as given in Eq. (62). The projections of the Ricci tensor
R, are performed in Appendix B. When these and the terms E, P%, and S™ are substituted back into
Eq. (62) we get the Hamiltonian Constraint

1 1 161G
3 2 b _
GIR + Sk - —CZK“ Ky =~ E, (108)
the Momentum Constraint G
b 7T
Dy ( — Ko ) 5 —P,, (109)

and finally an evolution equation

1 1 1 87TG 1
— 5 LuKap = 17DaDyN + O Rgp + KKy — KacKCb =5 |Sw—5(5—E)hp| . (110)
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For the fluid/plasma equations, the results are long, and so it is better to break them up into
individual pieces, and present them instead:

e cafm - DEE 1
ufy = —fig | Dajix + dr zﬂxi’l a; + Kabnx,ux +]an , (111a)
J—Z fl;( (J-b dl:b + 11th]¢,;> + fixDygfix — ﬁiDaﬂz

jix 71 o Lo~ L s
+ By — i filKyg — (xEo + EnciB°) (111b)

_ . Di L. 1. .
(—uuy) Tx = fix (Danf( + th) — Kiixfix + gyxnﬁaa , (111c)

Dii 1

(J—Z Vz) I'v= (Dbn + dt) .ua - X‘ua ahl"a ’ (111d)
u® (R} — qxTxAq) = u' Ry 4 qxTxV (111e)
LE (R} — uTxAp) =15 Ry — q:TxAq . (111)

We will present a more detailed look at u?RX and 1% R} later in Sec. 5.4.
Lastly, we have to evaluate the following projections of the Maxwell equations:

gV F? = pioc? Y uafi, (112a)
x={2,3}
LOVFt =g Y L8, (112b)
x={2,3}
g€V ,Fgy =0, (112¢)
L2 eV, Fry =0 (112d)

Before applying the projections, it is convenient to do a little preparatory work: take the covariant
derivative of Eq. (104), and use Eq. (89) to get

1 2 . 2 DE; 1 . _ DB
Vapbc = Cqua (Cza[ch} + szu[c J_Z] difd — ZebcdetldBe — ededt>
2 2 1
T2 s upD)g B + Ka[ch] - *€bc KoaBe + &caDaB? (113)

which, in turn, gives

1 - 1 ,DE R 1 3
VYE, = C—ZuanEb -3 1P 5 T Cate (DbBC + CZabBC) — = (Kay = Khgy) EY,  (114)
and
1 ,DB 1 1
€' "VpFg = —uaDyB’+ 5 1§~ + e (DbEC + CzabEC)

1
+ (Kap Khab) BY. (115)
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Therefore, the u?/c and LY projections of the Maxwell equations and the continuity equation are [34]

D,E" =poc® Y, 0, (116a)
x={2,3}

1 o 1 DE? 1 -

& (D”BC + 2a”Bc) =po ¥ Rtoplig+3 (K“b - Kh“b) E,, (116b)
¢ x={23} ¢ ¢
DyB" =0, (116c)
I T DB _
Eape <DhEC + Czath) =— 1 Ttb — (Kqp — Khgy) BY, (116d)
, . D& . 1.

Y Veik= ) <Du]§ + OTX — Koy + Cg]ﬁ“ﬂ) =0. (116e)

x={2,3} x={2,3}

5.4. Resistivities and Dissipation in the 3 4+ 1 Formalism

We have now finished our development of the 3 4 1 form of the full suite of field equations. This
has been accomplished without having to make detailed statements about the specific dependence of
"y pc On {Xé, Xf\‘/} nor, in turn, the specific dependence of A on 1% . In fact, we have taken the point
of view that each of these are “known” a priori, meaning that once a specific application is considered
the relevant forms and dependencies can, at least in principle, be constructed based on the relevant
microphysics of the system. However, even without such an analysis, the action-based formalism has
taken us a long way. This has been pointed out already by Andersson et al. [13]. They used this as a
basic platform upon which resistivities could be built phenomenologically. Our purpose now is to
give a review of the salient points, and then to apply them to the two-temperature extended system
considered here.

We start by applying Eq. (49) to the 3 + 1 decomposition of R,”, which is

Ry =R%u,/* + Ry, RY=-u"Ry, Ry =L1R). (117)
By imposing Eq. (49) we find that R, becomes
RY — (53 i uaag/cz) RY, (118)
and the resistivity R} is
Ry =Y [(R) — dRy ) o/ + R~ RY| . (119)
y#X
Inserting this modified form for R} into Eq. (68), we determine that the creation rate becomes
_ Ix RPXY ma
Io=2) ROy (120)
Py

To make further progress, we impose three physical constraints — charge conservation, baryon
number conservation, and the Second Law of Thermodynamics. The conservation of charge
[cf. Eq. (35)] leads to

0= Y oTu= Y By Rmvar (121)
x=2,3 x=23 Mx yZx

while baryon number conservation [cf. Eq. (36)] says

0= ) =Y, Tx Y Ry . (122)

x=1,2 x=1,2 Px yZx
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The Second Law of Thermodynamics gives the inequality

Y L= Y Iy RVan, (123)

X=45,6 x=456 Px yZx

In order to satisfy these, we need to be more specific about the terms, meaning that we will now make
an ansatz about the form of the resistivity and flux creation rates, but in a manner which is consistent
with the overall formalism.

Onsager [35] (see also [36,37]) developed an approach that relies on the notions of thermodynamic
fluxes and forces. In our case, the thermodynamic fluxes are the R}”, and the thermodynamic forces
are the @g,. The key step is to combine the fluxes and forces in such a way that they tend to drive the
system towards a dynamical equilibrium where the relative flows are zero and a thermodynamical
equilibrium where I'y — 0 all the while maintaining the inequality of Eq. (123).

We begin with an obvious choice for the ﬁ;y, which is to write

RY =iy = RY =%y (5,’; + ugilh / c2> w,” . (124)

This causes the sum for the total entropy creation rate to be over the set of positive-definite terms
given by wﬁywzy. Because the relation for R is linear in the Fxy, then we can reduce the number of 7y
by imposing that (in their indices) they satisfy the same equalities that the R}’ do in Egs. (63a)-(63f).

Noting that

r = 2L713wPNwPN , (125a)
Hy

Iy = 2P aPNat,,, (125b)
My

I; = 4Lr31w7JprN , (125¢)
M3

ry= 2L743wPNwPN , (125d)
My

Is = 2P paPNas,,., (125¢)
Hs

T “L—Nm PN, ., (125f)
6

we can reduce again the number of 7xy, by imposing charge [cf. Eq. (35)] and baryon number
[cf. Eq. (36)] conservation, since they imply

a3 = *%?13 , (126a)
1

N 19p s

T = —=——=7T . 126b

31 29 iy 13 (126b)

The Second Law of Thermodynamics [cf. Eq. (123)] implies that the coefficients must satisfy

TP+ ';7” 5 +2'L—r61 >0. (127)

Hy 5 6

The independent resistivity vector takes the final form

~PN b PN
~ O\ @b w, bW
Ré\/ - l<2r61 ,Zj 13) 7)/\(/;2 o chh

1y + 2Rl (128)
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where ~ _
Py =2F6 + (1 i Ay P‘1> F13 + Fa3 + 53 . (129)
We see that our final model requires the four coefficients {713, 743, 753, 761 } to completely determine
the creation rates I'y and the independent resistivity RV, Notably, as @%,, — 0 (all the fluids are
comoving) then RV = 0and Ty — 0. Any further development of this model would require
microscopic modeling of specific systems to determine the four coefficients.

6. The “Newtonian” Limit

In order to make contact with existing work on two-temperature plasmas, which is mainly in the
Newtonian setting, we will now work out the “Newtonian limit” of our equations. Poisson and Will
[38] point out that when gravity is formulated as a metric theory, then the limit we are imposing is to
be understood as the first-order correction to flat spacetime, which is not, a priori, the same thing as
Newtonian gravity, which is based on forces and action-at-a-distance.

Our definition of the “Newtonian limit” includes the following criteria: a) The particles are
moving much slower than the speed of light c; b) the gravitational field is “weak”, meaning it is a
linear perturbation away from flat spacetime (R, = 0); and, c) the gravitational field is static. The
latter two criteria will be imposed by an expansion of N, N?, and h,;, away from flat spacetime. Some
of this work is presented in Appendix C, where we have taken the 3 + 1 formulas, and adapted them
to a coordinate system such that the time coordinate ¥° = ct, where recall ¢ (¥*) is the scalar field from
which the spacelike hypersurfaces of the foliation are constructed.

It is still an open question as to whether or not Newtonian gravity is a subset of this limit of
General Relativity, or if it is all inclusive. Philosophical issues aside, we take a practical point-of-view,
which is to impose the criteria a), b), and c) above on the field equations and thereby extract the terms
which formally survive the limit. It then becomes a question of the particular physical scenario to
which the field equations are being applied as to whether or not all of the remaining terms are required.

6.1. The Metric Expansion and Linear Corrections to Flat Spacetime

In order to take the Newtonian gravitational limit of the Einstein equations, we will need to
analyze the left- and right-hand-sides separately. Here we will be setting up the left-hand-sides of the
Hamiltonian and Momentum constraints — Egs. (108) and (109), respectively — and the evolution
Eq. (110). We simplify the equations by taking the %' to be Cartesian coordinates.

A linear expansion of the metric away from flat spacetime takes the form

Sab = Nab + 08ab s (130)

where 17,, = diag[—1,1,1, 1] is the Minkowski metric and the components of dg,;, are taken to be small,
meaning that we ignore any terms of the form 6g,,08c4, 0845V 08 4., and so on. The flat-spacetime
pieces of the metric are N = ¢, N i =0, and hl-]- = (Sij = diag[1,1,1]. The flat spacetime plus linear
perturbations metric pieces are

N =c+4N, (131a)
N'=06N', 6N;=6;0N', (131b)
hij = (51']' + (Sl’lz] . (131¢)

These expansions will be inserted into the left-hand-sides of Egs. (108), (109), and (110), keeping only
the first-order terms.
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7

But before we take that step, it is important to note that the Einstein equations have a “gauge’
symmetry that basically comes from their coordinate invariance (or, more formally, diffeomorphism
invariance). We employ that here by using the harmonic gauge, which takes the form

1 g 1 4
R (5gb“ - znb“n“dégcd> = - (17‘”77]" + 217“]17“’) 9j08e =0, (132)
where we have used
68" = —n"n""0gc (133)
In terms of the 3 4+ 1 decomposition, we have
2 1
—20N  2ON;
— c coh 134
08ab [ %5Ni ol ] , (134)
and so the gauge condition leads to
0=09;0N’, (135a)
0 = Ioh; +0; (i(sz\r + ;(Sh) , (135b)

where 6h = 6 (Shij. The unit normal to the hypersurfaces u?, the acceleration a,, and non-zero
components of the projection operator | become, respectively,

Ut = (c - 5N,(5Ni) .tz = (—c—6N,0,0,0) , (136a)

0" = (0, caiziN) , g = (0,c0;0N) , (136b)
. 1 . . .

Lo=_0N', Li=4]. (136¢)

In order to build (3)le, we need to know the (3)F§k. Taking Eq. (C.10), and substituting in the
expansions above, while keeping only the linear terms, we find

Ori, = %5” (90 + dxdy; — drhye) (137)
The gauge choice leads to K = 0, but there remain linear-order K;; terms, which are
Kij = 5 (30N + 90Ny (138)
We find that the linearized forms for ®)R, jand ()R are
ij

CIR;; = (3)Tf§~,k _ (3)Tf‘k,j = —0;0; (iaN + 5h> — %akakahij , (139a)

GIR = §i1CIR;; = —9;0' C(SN + ;511) , (139b)
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The left-hand-sides of Egs. (108), (109), and (110), respectively, now become
1 1 i (1 3
3 2 b — .

GIR + 5K = K Ky = —0,0f (C(SN + 25h) , (140a)
D; (Ki: — K8') = 2a.9/6N; 140b
]j ( 1 i) - E j 17 ( )

1 1 3 1 2 X

~ 5 LuKij— DiD;N + GIR;; + KK = S KK

2 1

= —0;0; (CaN + 5h> — Eaka’%hi]- . (140¢)

6.2. Newtonian Limit of the Fluid/Plasma and 3 4+ 1 Energy-Momentum-Stress Tensor Components

The main approximations for the flux variables are that their relative speeds i must be much
less than the speed of light—we neglect terms of order O (i2/¢?) and higher—and energies that scale
with ¢? (such as the rest-mass energy densities myc?ny) are much bigger than other energy densities.
The typical leading-order terms in the Master function A are the rest-mass energy densities, and so it
is convenient to re-fashion A as a sum of myc%ny and an “internal energy” density U (having the same
functional dependence as A):

A=Y mocPnc+U. (141)
X

We assume that entropy has zero rest-mass, but because of entrainment, it does have an effective mass
with a leading-order term proportional to c? and it enters the field equations through its inclusion in &/
[cf. Eq. (145b)].

We need to first consider the Newtonian limit of the momenta, as given in Eq. (94), but with the B*
and AY computed using the rewritten A of Eq. (141). We will also reintroduce the notation that splits
the particle number fluxes into the matter n§; and the entropy s pieces, and the momenta into p;; and

©X. Here, the constituent indices for the matter are without a bar and range overx, y, ... = {5, P,N'},
whereas the indices with a bar are for the thermal pieces and range over %, y, ... = {7, PN }. In
order to generate the momentum coefficients, we have five different sets of scalars which can appear
in the A: the first two are nf = —ggnin%/c? and n2y = —ggnin’/c* = n3,, for whichy # x; the next
two are s2 = —g,;545% /2, 5)2-(}-, = - gﬂhs?(sé’, /c* = s}z,)-(, for which § # X; and the last is the mixed term
m,z(}-, = —gubn;‘(sg/cz = m}%x.

A variation of the re-formulated A yields the coefficients

My 1 ouU

X P — S —
5= Ny 21y Ony (142a)
< 1 U
1 U
Xy —
BY = 5 T (142¢)
w 1 aU
SV = (142d)
c? 9s3y
s 1 d
MY = ciziambg , (142¢)

Xy
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which combine together to give
1 1 U
oo M) poepaed, oo
X y#x
mi u
R P Y- 8 VL )c +5- (143b)
yAax oy 5y i
O = S%X+ Y SYsh + Y MYny, (143¢)
y#X y
o sﬁy < m%y P2
Ti={) SY=+) MY |c*+—. (143d)
—_ Sx Sx aS)_(
y#X y
In 3 + 1 form we have
i =B+ Y Biyal +ZM sy, (144a)
y#X
ou
fix = mxc2 + T'?x ’ (144b)
oy = Z SYswy + Y. MYnymy (1440)
y
N ou
% = 1ixc® /kp + Fy (144d)
Sk
where we have defined
iy = myYx+ Y BYiiy + ZMXysy (145a)
y#x
g = kg (2 SYsy + ZMXYﬁy> . (145b)
y#X y
We can get a handle on the lowest order impact of the condition X% < c? by expanding the
parameters 12, n)z(y, s2 iy, and m?2 Xyt
n2 = 2y = itz (1 — 15 il /cz) , (146a)
1
ny = — sy gl ~ Ty (1-mas/e) (146b)
=Rt~ & (1-af/?) (1460)
1 < x %
s%, = —C—zsgs)—,gabuf-(u?, ~ 558y (1 — uku}}f,/c2> , (146d)
2 1 a. b ~ o~ ~X
Mg = —C—znxs}—,gubuxu}-, ~ xSy ( uku ke ) . (146€)

We see from this that the differences 72 — n2, fixfly —n

- mec nx+Z/lo( = x>
_Zzlﬁ (’”ﬁ (Zéln/cz)

l1au/c)

)2(},, etc. are small. The expansion of A gives

) i+ Y BY ! + ZM?,s?i] il
o y#X

F+Y 88+ ZMXY y] , (147)
(] y#X
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11 ”

where the “0” subscript means the quant1ty is evaluated for the ratio i /c* — 0. Because of effective
mass effects, the combination ¢/ /c? as it appears in, say, By’ is not necessar11y small.
The limiting form of the generalized pressure ¥, [cf. Eq. (55)] is

Yo = ~Uo+ Y (fixly = mx?) ix + 1 Tl 55 (148)
X X

and the 3 + 1 total energy density E, momentum P?, and stress S,;, tend towards the values

Eo — Y myc?iix, (149a)
X
Pl Y fifix (ﬁ;/c) + Y Tiss (a;/c) + L (éif"EjBk/c) -0, (149b)
X X Ho
si—Y. (mxﬁfg + Y BY ity + ZMXy§yaﬂyx> iyl
X y#X
+Y (m +Y Sxy§yZT)] + ZMXyﬁyw’yx> Sl
X J#X
(‘I’o + 132> Wi~ Lpipi. (149¢)
210 Ho

We have assumed that the so-called “E x B” drift velocity for plasmas, i.e., 7y, = E x B/|B|?> must be
small with respect to c. This leads to the constraint that |7;,| ~ |E|/|B| < c. We have assumed also
that {Uy, B'BI / 1o} < 1itxcny.

6.3. The Field Equations

To obtain the limiting form of the Einstein equation, we first work out the leading-order of the
right-hand-sides of Egs. (108), (109), and (110):

16; S, 16; c ;mxﬁx ) (150a)
%Pl 0, (150b)
S”G O §ij (150¢)
87CTTG50 0. (150d)

Here, a factor of 1/c? combines with the velocity terms to drive to zero the stress terms S Jand
So; the same factor drives ¥, /c? — 0. The limiting forms of the Einstein equation components are

—9; (151\1 n 35h> 16”6 (151a)
c 2
%ajaf(swi ~0, (151b)
2 1 47rG
—9;0; <C5N+5h) — 500 oy~ =5 (2 mxnx> ij - (151¢)

If we take the trace of Eq. (151c), we can solve for 0;0'0h. Substituting this into Eq. (151a) gives

0;0'® ~ ARG Y myiix, (152)
X
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where ¢c6N = @ is the standard gravitational potential. As a check of this identification we note that
the geodesic equation — u’;,Vbu;’, = 0, where u}, is a point particle four-velocity — gives in this limit
d2x

) | ) )
T —’Thy = —c*9' (C(SN> =-dd=a, (153)

where the last equality follows from Eq. (136b).
Using again the trace Eq. (151c), but substituting it into Eq. (152), then we find (to consistent order
in¢)
9,0'6h ~ 0, (154)

which then implies
90 ohi; ~ 0. (155)

In this Newtonian context, we assume our system has compact support and is such that an
asymptotically flat infinity exists for which 6N; — 0 and dh;; — 0. Given that they both satisfy
the Laplace equation it is consistent to have 6N; = 0 and 6h;; = 0 everywhere.

With this, we can implement now the limit of the fluid/plasma equations. Taking into account the
fact that fix/ ¢ and Tx/c? can have non-zero terms in the limit ﬁ; /¢ = 0, then the individual pieces of
the fluid /plasma equations in Eqs. (111a) — (111f) and the projections of the final form of R given in
Eq. (128) become

T . s
u'fy = —iy ( a”t + aiﬁx) — fixdixila; + JiEi , (156a)
a g% i [ 90F = - i
ufy = —sk 5 +0;Tx | —mix (3x/kp) iika; , (156b)
J—; f]X = ﬁx (at + ﬁ{ﬁ]) ﬁ;( - N{(alﬂ;( + ﬁxai,ﬂx + mxﬁxai
— (&XEi +éijkj7;Bk) ) (156¢)
. ) . . . B
=g (atw;aj OF — 5,005 + 5:0,Tx + i (5x/kp) i, (156d)
ey o~ (9 o oo i
(—u"uy) Tk = jix o + 071y | + Mydixiiia; , (156€)
(—u”@i) I's = Ty( (852—( + 815’;) + 11 (§g/k3) ﬁf-(ai , (156f)
(J_j X)r (O o ai it Lala (156g)
i Bj ) x ot i | Hi 2 xAiHi g
. 95x AN PR
(J_f @;) Iy = (ast + aj§§> OF + szgfia,-@ix , (156h)

@fN + g VT, (156i)

1] (R = quTaay) = il — quTucAs (156))
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The Maxwell equations and the continuity equation take the expected form of
4E = Cpogp (ip —iiy) (157a)
i i ; ; oF!

~ k_ ~ ~
eljka]B = Uoqp (n%; - nj\/> + T (157b)
9;B'=0, (157¢)
&l B = _% , (157d)

]
E(a] +‘TX> —0. (157¢)
- ot

6.4. The Final Fluid/Plasma Newtonian Equations

Now we will write the final set of field equations so that we can point to some differences with
those of the extant literature (such as [39,40]). We have clearly recovered the Newton equation for
gravity and the Maxwell equations. The last thing is to collect all the fluid/plasma pieces to write the
final form of their equations. To get the spirit of their role, we will assume that the gravitational and
electromagnetic terms are known.

In total, we have to determine the six compqnenfcs ﬁ% = ﬁlﬁ = ﬁ;l = ﬁlp and ﬁj\-f = ﬁj\/, as well as
the six scalars {7iy, 5x }. Once the components {ﬁlp, ﬁ’N} are known, then we can use the divergence
formulas in Egs. (125a)-(125f), taken in combination with Egs. (156e) and (156f), to determine the six
scalars. Likewise, we can use the non-relativistic limit of the Euler Egs. (58) and (59) to determine
{ﬁg), ﬁ’N} if the six scalars are known.

Using the sum of the non-relativistic forms of Egs. (58) and (59) as the first Euler equation and
keeping the non-relativistic form of Eq. (59) as the second, we find

[ 9O _ 3
s’x< atl +aiTg> + T Tx

A IS
0= 1 |k (B oum) + T + 1
X

X

Y gt + Y g (Sx/kp) ik | a; + Y JLE:, (158a)
X X X
(oM N (oM
0:ﬁ1N< Ki +aiﬁ/\/> + (fin — Py +anV) Ty + 8 <Z+aiTN>
Jat ot
+ (Tyy — Tyg) Ty + [inciine + ity (5,5 /kp)] itha; + JacEi — 27wl , (158b)

]

ozg{ﬁx<at+a§aj) X4 Tyji }+Z[~< +ﬁ]a>®x+rx®x}

meﬁx + Zm)? (5)-(/1(3)

a; +0;%¥ — Z (ffxgi + éijk]:Z;Bk> , (158¢)

X
(9, _
0=ty <8t + )0 ) Y+ T + indifiy — nNalﬂf\f
a .
+55 (a +ﬁNa)®N+rN®N+sNa Ty — 8007
+ [mpfin + 1y (357 /kp)] a —ZerPN+qNFNA — (O'NE +€1]k]NBk> , (158d)
where we have used Eq. (57) to infer

3¥ =Y (flxai,ﬁx - ﬁ{;aiﬁy) +y (5,—<aiT>—< - §§ai®§) : (159)
X X
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The obvious difference with the current literature is the impact of entrainment. We see that its
effect of “tilting” the fluid momenta for the particles has survived the non-relativistic limit. Something
else that survives is the entropy momentum. An unanticipated difference is the coupling of the particle
1itx and thermal 15 effective masses to gravity (via the acceleration a;).

Tracing back, it is the presence of niy in A that leads to 771, and rfix in the first place. Given the
approach taken here, there is no a priori, generic principle for why the entrainment pieces in the
gravitational couplings should be negligible; obviously they survive the ¢ — oo limit. In the absence of
a generic principle for why it should be, say, 1y and not 71, that couples to gravity one must rely on
the microscopic details of the particular system to be modelled. The difference between iy and my can
be assessed and then compared with the “smallness” of other approximations in the model.”

7. Conclusions and Follow-On Work

We have presented an action principle which yields, from start to finish, the field equations
for a dissipative/resistive general relativistic two-fluid two-temperature plasma, with a neutrally
charged component. The model is distinct from previous general relativistic formulations of the
two-temperature plasma system (some of which are cited throughout the text), none of which rely on
action principles, as far as we know.

Due to the very nature of action principles, the couplings between the fields are self-consistently
incorporated into the full suite of field equations. For example, T, follows automatically from the fields
and couplings built into the total action, and its covariant divergence V;T? vanishes identically when
the field equations are satisfied; i.e. V,T? = 0 is not itself an equation of motion, but rather an identity
(as it should be because of diffeomorphism invariance). Along these same lines, we have shown
how the formal inclusion of terms like n,%y in the fluid action naturally leads to entrainment between
different fluids and effective masses for particles and entropy. We have also seen that electromagnetic
gauge issues are automatically accounted for by the internal consistency of the overall formalism.

Because of the fact that systems containing plasmas occur across many independent branches of
physics, we made an effort to provide a, more or less, self-contained presentation. This is especially
true for the 3 + 1 decomposition discussion, which includes steps that are textbook material. However,
while these steps are well-known in the general relativity community, they may well be new to other
readers. Moreover, one of our main goals was to derive the Newtonian limit in a self-consistent way.
This way we recovered field equations very much like those in the extant literature, but we also saw a
new element emerge: the effective mass of entropy.

By developing the framework from the fibration picture into 3 + 1 language, a step was taken
towards a practical implementation of a two-temperature plasma within a general relativistic numerical
simulation, as needed for neutron-star merger. There are, however, many further steps that are required.
As noted in [32], as soon as an entrained multifluid system is constructed from this action approach,
not all the equations of motion can be written in a conservation law form. Standard approaches for
numerically evolving solutions with discontinuities, particularly the shocks forming during mergers,
then do not apply. Instead, path-conservative methods are required (see, e.g., [41] for a brief review).
However, these methods require a deeper understanding of the correct form of the dissipative terms
appropriate to the model. Whilst the form of these terms can be deduced from the action framework,
as detailed in [17], we have not taken those steps here. Furher work in this direction is required.

Moving forward there are several things that should be done: The first step would be to analyze
local waves and modes of oscillation, to get a basic understanding of the stability /instability properties
of the system. This would provide some insight on when the temperature difference is driven to zero
or forced to diverge. Another step would be to allow for the additional terms in the fluid action that

7 For example, the relativistic entrainment model of [26] can be used to show that the fractional percentage difference between

the effective /71, and bare 1, neutron masses in neutron stars has a range of (1in — my) /iy ~ 1% — 10%.
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lead to bulk and shear viscosity, so as to tackle the numerical evolution issue raised above. Finally, a
post-Newtonian expansion of the field equations will further unravel the role of (particle and entropy)
effective masses and their coupling to the gravitational field. This may shed further light on the
relevance of the entropy entrainment.

Appendix A. Gauge Invariance, Charge Conservation, and V; T?* = 0

The Coulomb piece Sc [cf. Eq. (27)] has a direct coupling of the four-potential A, to the total
charge current flux j?. This leads to the situation where the total action S is a priori not gauge-invariant.
Of course, the resolution is a well-established process—insist on gauge-invariance for the total action
and see where this leads you.

Start by considering a variation of the total action, where the vector potential variation takes the
form

0A; = V¢, (A1)

and the other field variables have zero variation; i.e.d% = 0 and Jg,;, = 0. So even though R acquires
the gauge piece G} [cf. Eq. (71)] it does not enter the calculation. The total action variation is

1 ab a
oS = —E/Md‘lx\/—g (Vbl—“ —4n;]X> Vo
1

b .
_ _E/M d4x/~gVa <th” —4n);]§> 5, (A2)

and therefore
v (va“”) — 4y & Vnl = 4n Y T, . (A.3)
X X

Note that the antisymmetric combination of covariant derivatives acting on two-index objects (in
this case, Fy;) is
VaVpFq = VVaFy = R F'q — RaapFee ; (A4)
therefore,
1 ab 1 ab
=V (va ) = -RaF" =0, (A.5)

since R, is symmetric in its indices and Fj, is antisymmetric. Hence, we find charge conservation in
the form

Y T =) Vir=0. (A.6)
X X
If we take the field equations, and Egs. (66) and (35), we find that

1
VTt = Vv, l‘wﬁ +Y b — Ton
X

— (chpcd(sg _ 4FbCFuC>]

= Y R+ <qurx> A =0; (A7)

hence, V,T% vanishes identically (as expected because of diffeomorphism invariance [14]).

Appendix B. 3 4 1 Projections of Riemann and the Einstein Equations

In order to develop the 3 + 1 form of the Einstein equations we need to work out certain projections
of the full, four-dimensional Riemann tensor. The first projection is to “hit” each free index of R,
with J_g. We derive this indirectly, however, by inserting Eq. (82) into Eq. (83) and then manipulating
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the terms until the left-hand-side of Eq. (29) (evaluated on 7*) appears. This leads to a relation where
each term is contracted with 9%, and since 9“ is arbitrary [33], we obtain the Gauss Relation:

LS LG L5 RS e = BIR g + K aKpg — K4Kyg - (B.1)
The second projection is to hit each free index of the Ricci tensor with 1. This is also acquired
indirectly, but this time by setting a = c in Eq. (B.1); i.e.

L6Lh Reg +ltae LG /R pge = ® Ry + KKy — KacKy, (B2)

where ®)R,;, = GIRC,. Finally, we can take the trace of Eq. (B.2) with ¢ and show that the Ricci
Scalar satisfies
R+ 2u"u’Ryy = @R + K2 — KKy, , (B.3)

where G)R = h,;, ®) R
We see from Eq. (62) that there are three independent projections to make:

1
u'ub Ry, = 8mutu® <Tab - 2Tgab> , (B.4a)
1
ul 16 Ry, = 8mul LS <Tbc — ZTghc) , (B.4b)
1
1519 Ry =8 1514 (Tcd — 2:rgcd) . (B.4c)

To work out the left-hand-side of Eq. (B.4a), we use the fact that R = —87T and insert it into Eq. (B.3).
This then leads to the so-called “Hamiltonian Constraint”; i.e.,

G)R + K2 — K™K, = 167uu’T,, = 167E . (B.5)

To determine the left-hand-side of Eq. (B.4b), we replace v° with u¢ in Eq. (29), project onto the free
indices with the combination LZL? , and eventually arrive at the “Momentum Constraint”; i.e.,

D, (Kbu - K(Sfj) — 87P, . (B.6)

Lastly, we determine the left-hand-side of Eq. (B.4c) by again replacing v° with u¢ in Eq. (29), but this

time projecting onto the free indices with the combination h,.n” J_jf. Using this projection in tandem

with Egs. (84) and (89) leads to
1
hae L uu R4, = L Kap + 5 DeaDsN + KacKSy, (B.7)
which can be substituted into Eq. (B.2) to give the remaining bits of the Einstein equation, which are

1 1
~ LuKap — 3;DaDpN + )Ry + KKy — 2KaeKS)y = 877 Sy — 5 (S—E)hg| - (B.8)

Appendix C. The 3 4- 1 Coordinates

We now take t to be the time coordinate and take the set x%, i, j, ... = {1,2,3} which are Lie-dragged
by t* from slice-to-slice of the foliation to be the spatial coordinates; i.e.

; o dad
1 a 1 — —
£ixt ="V, x' = ar 0. (C1)


https://doi.org/10.20944/preprints202304.0145.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2023 doi:10.20944/preprints202304.0145.v1

32 of 34
Next, we introduce the coordinate transformation
. a a a
= f* (t,x1> = dx' = f —“—dt+ afl (C.2)
In the new coordinates we have
dx? af” dt  9f? dx! of*
a __ oY)
P=ar T orat T or @ ot €3
Hence,
fﬂ
dx” = (Nu"/c+ N")dt + py de (C4)
and the proper distance between spacetime points is given by
ds? = gw [(Nu /c+ N*)dt + afz dx] l(Nub/H—Nb) dt + gf de]
1 ) ) o
= -3 (N2 - NiN’) d(ct)? + ZENid (ct) dx’ + Ipdxdl . (C.5)
where
a .
N; = N,zgfl —h"N], (C.6)
af* af? ik -
hij = hg eyl hlhkaé;. (C.7)
Now we can write for the metric
— (N> = N;N%) /2 Nj/c
gub = 7
Ni/C h,]
_2 < Ni
8ab = c Nzi ij Nle inj |- (C8)
N W — 5z N'NJ
Taking into account Eq. (79), the flow-of-time vector #?, unit normal ©*, shift N%, and acceleration a,
become
=1[,0,0,0], t,= [NiNi /c— N2/, Nl} , (C.9a)
c Ni
u? = [CN,—CN] , u,=[—N,0,0,0], (C.9b)
- (O,Ni) . N, = (Nij,Ni) , (C.90)
- [o,czailn(N/c)} , af = [o,czaf 1n(N/c)] , (C.9d)
The Christoffel symbol (3)1";.,( associated with D; is given by
@i ]k = fh (ajhlk + akhl]- — alh]'k) . (C.10)

The extrinsic curvature K,; components are

1. 1. d
Koo = 5N'NKy . Koi= _NK;j , Kyj= 55 (DN +DjN; — ahU)‘ (C.11)
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The Riemann tensor, Ricci tensor, and Ricci scalar of the leaves of the foliation are
3) pk 3) 1k 3) 1k 3 3) 1k 3 3) 1k
GR lij = ( )rlj,i _( )rli,j+( )17]1( )rmi ) 71,1( )rm],, (C.12a)
3 3) 1k 3) 1k 3)rl (3)Tk 3)l (3)rk
( )Rij = ( )Fij,k _( )Fik,j 4+ ( )rij( )rlk _( )rik( )rlj , (C.12b)
GIR = hICIR;; . (C.12¢)
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