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Abstract: We develop an action principle to construct the field equations for dissipative/resistive

general relativistic two-temperature plasmas, including a neutrally charged component. The

total action is a combination of four pieces: an action for a multi-fluid/plasma system with

dissipation/resistivity and entrainment; the Maxwell action for the electromagnetic field; the

Coulomb action with a minimal coupling of the four-potential to the charged fluxes; and the

Einstein-Hilbert action for gravity (with the metric being minimally coupled to the other action

pieces). We use a pull-back formalism from spacetime to abstract matter spaces to build unconstrained

variations for the neutral, positively, and negatively charged fluid species and for three associated

entropy flows. The full suite of field equations is recast in the so-called “3 + 1” form (suitable for

numerical simulations), where spacetime is broken up into a foliation of spacelike hypersurfaces and

a prescribed “flow-of-time”. A previously constructed phenomenological model for the resistivity

is updated to include the modified heat flow and the presence of a neutrally charged species. We

impose baryon number and charge conservation as well as the Second Law of Thermodynamics in

order to constrain the number of free parameters in the resistivity. Finally, we take the Newtonian

limit of the “3 + 1” form of the field equations which can be compared to existing non-relativistic

formulations. Applications include main sequence stars, neutron star interiors, accretion disks, and

the early universe.

Keywords: relativistic fluid dynamics; plasmas

1. Introduction

Two-temperature plasmas have been studied in astrophysical systems for nearly fifty years. Early

work considered the formation of light nuclei in two temperature plasmas (the ion temperature being

greater than the electrons) that could exist near relativistic astrophysical objects. Colgate [1,2] and,

independently Hoyle and Fowler [3], looked at the synthesis of deuterium in a plasma (with ion

temperature Ti ∼ 1011 K) generated in shock waves produced by supernovae. Shapiro et al. [4] applied

a two-temperature accretion disk model for Cygnus X-1 in order to produce the observed thermal

emission temperatures of 109 K and the observed X-ray spectrum above 8 keV. More recently, Zhdankin

et al. [5] looked at the role of extreme two-temperature plasmas in radiative relativistic turbulence,

while Ohmura et al. [6] used simulations of two temperature magnetohydrodynamics to describe

the propagation of semi-relativistic jets. Ryan et al. [7] have provided axisymmetric two-temperature

general relativistic radiation magnetohydrodynamic simulations of the inner region of the accretion

flow onto the supermassive black hole M87 while Meringolo et al. [8] have looked at two temperature

plasmas in the context of special relativistic turbulence.

The literature on electron and ion plasmas shows there are many different scenarios under which

two temperatures result, although whether or not the electrons are hotter than the ions is very much

dependent on the particular scenario. In his classic text on plasmas and fusion reactions, Chen [9]

writes that the positively charged ions can have a temperature which is different from that of its

electrons even though they both have Maxwellian distributions. This is because the collision rate of

the ions with themselves and the collision rate of electrons with themselves are much higher than that
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of electrons with ions. Kawazura et al. [10] argue that in a collisionless plasma heated through Alvenic

turbulence electrons will be preferentially heated when magnetic energy density is greater than the

thermal energy density, whereas it is the ions which are hotter when the energy densities are the other

way around.

The problem with developing models of complex plasmas in dynamical spacetimes, particularly

for numerical simulations, is the consistency of the approximations used. It is standard to develop the

approximations by dropping terms based on scaling arguments. Any “inconsistencies” introduced

in the process typically lead to some (often small) loss of total energy or generation of spurious heat.

However, as discussed in detail below, in a relativistic context, heat will produce an effective mass

which contributes to the dynamics of a given system and (at least in principle) the generation of

gravitational waves. Therefore, even small inconsistencies in the model development will lead to

systematic errors in the generated (potentially observable) signals.

Our purpose here is to use well-established action-based techniques [11] to construct the

full suite of field equations for a consistent, resistive, two-fluid, five-constituent, two-temperature

general relativistic plasma. The model involves a positively charged species flux comoving with a

charge-neutral species and a separate negatively charged species flux. The positively and neutrally

charged species are assumed to have the same temperature and there is a single entropy comoving

with them. Because the negatively charged species is at a different temperature, it will have its own

(comoving) entropy.

To see how this comes about, consider the simple case of ionized hydrogen, for which collective

behavior of the electrons means they can be described as a fluid. They have well-defined fluid

elements with their own four-velocities, and within these elements there will be a thermodynamic

description based on, say, temperature and particle density. Clearly, this assumes that the electrons are

thermalized, i.e. from a kinetic theory point-of-view their state can be described by an equilibrium

distribution function (say, Maxwell). From that same kinetic theory point-of-view, we know that

entropy is calculable from the distribution. All of this is also true for the protons, except that the

difference in temperature would necessarily lead to a different (maybe not in form, but certainly in

specific values) distribution and hence different values for the entropy. Since the electrons are at

equilibrium among themselves, and likewise for the protons, the electron entropy flows along with

the electrons and the proton entropy flows along with the protons; therefore, because the electrons

flow relatively to the protons, there are two entropy fluxes. It is conceptually straightforward to

allow for ionization/recombination, by adding an additional flux of “neutral” particles. This leads to

particle flux creation rates for both of the charged particle fluxes as well as the neutral particle flux.

Conservation of baryon number will of course link these two rates.

Given that the physical system considered is broad, and readers may have different

backgrounds—plasma physics, astrophysics, numerical relativity, and so on—we have tried to make

this presentation as self-contained as possible. For example, there is an extended discussion of the

so-called 3 + 1 approach to General Relativity. We have attempted to make this a basic exercise in

projecting tensors into spacelike hypersurfaces, or onto the normals to these hypersurfaces. Moreover,

in order to set-up the taking of the Newtonian limit (in Sec. 6), it is advantageous to keep G, c, the

magnetic permeability µo, and kB in the equations. Of course, this involves introducing a set of

conventions, which are initially somewhat arbitrary, but eventually self-consistent. The complexity

of our total system, with its mixing of dynamical, electrodynamical, and thermodynamical energies,

fluxes, and momenta, requires a careful, yet admittedly tedious, dimensional analysis of the field

variables. The relevant dimensions of field variables will be discussed as the variables are introduced.

This is also required for taking the Newtonian limit, where we need to have an internal calibration of

what “small” is when we expand the field equations.

The plan of this effort is as follows: In Sec. 2 the field variables are introduced, as well as some of

their kinematical features. In Sec. 3 the “matter space” [11,12] is introduced as it provides the arena in

which fluid displacements are performed in the action principle. In Sec. 4 we give the independent
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pieces of the action principle and derive the field equations. In Sec. 5 we give an overview of the 3 + 1

formalism, focusing on the geometric arguments, and then apply it to the coupled system of general

relativistic plasmas and electromagnetism. The overview is for the reader who is knowledgeable about

plasma physics but not particularly familiar with numerical relativity, and/or with how to take a

generally covariant theory and introduce a global separation of space from time. We follow this up in

Sec. 5.4 with a review of the arguments given in [13] for building simple models of resistivity, for both

the charged and neutral current and entropy flows. This is used in Sec. 6 where we take the Newtonian

limit. In Sec. 7 we offer some concluding remarks. Adding further details, in Appendix A we review

total charge conservation, in Appendix B we derive the “3 + 1” form of the Einstein equations, and

in Appendix C we adapt the “3 + 1" formalism to a preferred coordinate system. The conventions of

Misner, Thorne, and Wheeler [14] are used throughout (although we use a, b, c, ... rather than Greek

letters to represent spacetime indices). We assume that the metric gab is dimensionless, the coordinates

carry the unit of length l, and the time unit is given by l/c; e.g. the time-coordinate x0 = ct. As one

might expect, the notation will quickly become a nightmare, and so notational conventions will be

explained as the story develops.

2. The Plasma State and the Field Variables

The first step towards modelling a plasma system involves understanding the scales involved and

the relevant variables. Perhaps the most important scale is the Debye length λD, which is given by [15]

1

λ2
D

= ∑
i

niq
2
i

ǫoTi
, (1)

where ni is the number density of the ith–species, qi its charge, and Ti its temperature. The Debye

length is the effective distance at which the influence of a single charge is no longer felt by other

particles; that is, for a length-scale l, somewhere between the inter-particle separation 1/n1/3
i and

λD, polarization (or collective) effects will occur so that charges outside of the Debye sphere (area

∝ λ2
D) are shielded from the single charge. For scales L much bigger than λD, the system will exhibit

fluid-like features, such as wave propagation.

This helps establish criteria through which we can define the plasma state: 1) the typical

length-scale L for the system must be much larger than the Debye length—L ≫ λD—and such

that quasi-neutrality holds (∑i qiniL
3 ≈ 0);1 2) there must be a large enough number of particles in the

Debye sphere that collective effects occur so that the shielding takes hold (niλ
3
D ≫ 1); and 3) letting τ

represent the mean collision time for the neutral particles and 1/ω a time-scale for collective plasma

phenomena, we have that the last criterion is ωτ ≫ 1.

In a system like an accretion disc around a black hole there can be several length scales—the

horizontal reach L of the disc, the size 2GMBH/c2 of the black hole with total mass MBH , and so on. A

satisfactory fluid model of the matter and heat in the disc exists when the system can be broken up into

a continuum of “boxes” of volume l3, each of which is small enough that it can be considered as being

microscopic with respect to the system as a whole (l/L ≪ 1), and yet large enough that it contains

enough particles N for which the Laws of Thermodynamics hold. In this case, intensive quantities

such as chemical potential, pressure, and temperature will be well defined [16].

In the limit where l becomes infinitesimal, these conceptual boxes become the fluid elements of

fluid models. As the fluid evolves, the fluid elements will trace out a continuum of worldlines in

spacetime; i.e. smooth curves whose spacetime points are identified by a set of coordinates xa (τ),

with τ being the proper time along the curves. Because the fluid elements contain particles, then these

1 This also maintains consistency with one of the assumptions in the derivation of λD , which is the potential energy due to
the effective potential Ṽeff generated by the polarization is much smaller than the thermal kinetic energy kBTi ∼ miv

2
th; that

is, qṼeff/kBTi ≪ 1.
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curves form the basis for tracking particle flux. It is important to note that since a fluid element is

infinitesimal with respect to the system as a whole, then changes in the gravitational field across it

are negligible. The equivalence principle also implies that the local geometry can be treated as flat

spacetime.

Particle flux is defined in the standard way as being a number of particles N passing through an

area l2 per some time l/c; i.e., particle flux magnitude is
(

N/l3
)

c. We do the same for entropy flux,

except to note that the entropy unit is kB, which is energy e per temperature T. Assuming that we can

count the amount of entropy as some number Ns times kB, then the entropy flux will be Ns units of

entropy passing through area l2 per time l/c; i.e., entropy flux magnitude is
(

Ns/l3
)

c.2

Our system consists of a neutrally charged species (qη = 0) with particle flux na
η and a comoving

entropy flux sa
η̄/kB; a positively charged species (qP > 0) with particle flux na

P and a comoving

entropy flux sa
P̄/kB; and a negatively charged species (qN = −qP ) with particle flux na

N and a

comoving entropy flux sa
N̄ /kB. As we will see later, associated with the particle fluxes {na

η , na
P , na

N }
are, respectively, canonically conjugate chemical potential covectors {µ

η
a , µP

a , µN
a } [cf. Eq. (23)] and

for the entropy fluxes {sa
η̄/kB, sa

P̄/kB, sa
N̄ /kB} there are respective canonically conjugate “temperature”

covectors {kBΘ
η̄
a , kBΘP̄

a , kBΘN̄
a }.

At this point, it is convenient to simplify the notation, by introducing constituent indices {x, y, . . .}
which will take the values x = 1, 2, . . . , 6. With these, we will write generic particles fluxes na

x such that

the first three are {na
1 = na

η , na
2 = na

P , na
3 = na

N }, and the next three are {na
4 = sa

η̄/kB, na
5 = sa

P̄/kB, na
6 =

sa
N̄ /kB}. For the canonically conjugate covectors we will identify {µ1

a = µ
η
a , µ2

a = µP
a , µ3

a = µN
a } and

{µ4
a = kBΘ

η̄
a , µ5

a = kBΘP̄
a , µ6

a = kBΘN̄
a }. In order to make direct contact with the First and Second

Laws of Thermodynamics we use an energy e to assign to the combination µx
ana

x energy density units

e/l3. This implies that the µx
a must have momentum units e/c. The energy e can take two distinct

forms: a particle energy based on mass-energy, em = mc2, for the set {µ1
a, µ2

a, µ3
a}, and a thermal energy

eT = kBT for the set {µ4
a, µ5

a, µ6
a}.

The density nx, with units N/l3, associated with the flux na
x allows us to define a four-velocity

field ua
x = na

x/nx, which is normalized such that gabua
xub

x = −c2. These flux worldlines are tied to

those of the fluid elements by setting ua
x = dxa

x/dτx, where τx is the proper time along the worldline

traced out by ua
x. We see that nx = −ux

ana
x/c2 or n2

x = −gabna
xnb

x/c2. Note that in addition to the n2
x

we can have the mixed terms n2
xy = −gabna

xnb
y/c2 = n2

yx, where it is to be understood that x 6= y.3

With respect to a flux’s rest-frame, i.e. the local frame which follows the worldline given by ua
x, we

can define the fluid potentials µx = −ua
xµx

a . For x = 1, 2, 3, the µx are chemical potentials, and for

x = 4, 5, 6 the µx are temperatures µ4 = Tη̄ , µ5 = TP̄ = Tη̄ , and µ6 = TN̄ 6= TP̄ .

The remaining field variables are the four-vector potential Aa and the spacetime metric gab. The

metric couples all fields to the spacetime curvature (and vice versa). With Aa and the charge density

flux ja
x = qxna

x we can couple the charged fluids to the electromagnetic field (and vice versa). The total

charge density flux is

ja = ∑
x

qxna
x = ja

P + ja
N . (2)

The units of the charged current flux ja
x are

(
qN/l3

)
c. We note that MKS units are being used so that

the electromagnetic coupling µo combines with ǫo to give ǫoµo = 1/c2. The four-potential Aa has

units of momentum per charge, or eEM/ (qc), where eEM is a characteristic electromagnetic energy; for

example, in the Debye limit case we would use eEM ∼ qṼeff.

2 This is not to suggest that entropy is “quantized”, rather that the flux measurement is itself a discrete process.
3 Even though it seems counter-intuitive, we start out by assuming that none of the fluxes are comoving, as this allows for a

more compact approach to the notation. In Sec. 4 we will impose the condition of only two independent flux directions.
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3. The Matter Space Approach to Dissipation

Our analysis builds on a well-established variational approach to relativistic multi-fluid dynamics

[11], including dissipative aspects. The main fluid fields in the model are the fluxes na
x. At the heart

of the fluxes are the four-velocities ua
x = dxa

x/dτx. In general, the ua
x are not surface forming, but

they do form a fibration of spacetime. If the ua
x are given, then dxa

x/dτx = ua
x can be integrated so

as to construct the xa
x (τx). Since ua

xux
a = −c2, then knowing, say, the three spatial pieces dxi

x/dτx,

automatically determines the time piece dx0
x/dτx. For some given spacelike hypersurface, no two

worldlines of, say, the xth-fluid, will intersect that hypersurface at the same point.

If we think of this surface in the context of an initial-value problem, then each worldline will

be uniquely determined by the three spatial coordinates they have on that initial hypersurface. It is

through this that the so-called “matter space”, or pull-back, approach enters the fluid dynamics. We

replace the initial spacelike hypersurface, with an abstract, three-dimensional space endowed with

coordinates XA
x (having dimensions l and A = 1, 2, 3). Instead of each worldline being identified

with a point on the initial spacelike hypersurface, each point xa
x (τ) on the worldline gets mapped to

the same point XA
x in the matter space. Our goal here is to provide a sketch on how to reformulate

our fluid model so that the XA
x are the fundamental fields (see, e.g., Andersson and Comer [11] for

complete details).

The first step in this reformulation is to introduce the three-form nx
abc, which is dual to na

x:

nx
abc = ǫdabcnd

x , na
x =

1

3!
ǫbcdanx

bcd , (3)

where our convention for transforming between the two is

ǫbcdaǫebcd = 3!δa
e . (4)

Likewise, we introduce the three-form µabc
x which is dual to µx

a :

µabc
x = ǫdabcµx

d , µx
a =

1

3!
ǫbcdaµbcd

x . (5)

Because the metric is dimensionless, we see that the three-forms carry the same units as their dual

vectors.

We use the map associated with the coordinates XA
x of the xth-fluid’s matter space to “pullback”

nx
abc into the matter space where it is identified with the totally antisymmetric tensor nx

ABC:

nx
abc =

xJ ABC
abc nx

ABC , (6)

such that the Einstein convention applies to repeated matter space indices, and

xJ ABC
abc =

∂X
[A
x

∂xa

∂XB
x

∂xb

∂X
C]
x

∂xc
. (7)

We also use the map associated with XA
x to “push-forward” the fully antisymmetric matter space

quantity µABC
x to the spacetime three-form µabc

x , via

µABC
x = xJ ABC

abc µabc
x , (8)

as well as the symmetric matter space “metric” gAB
x to the spacetime metric gab, via

gAB
x =

∂XA
x

∂xa

∂XB
x

∂xb
gab . (9)
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Because of the antisymmetry in the indices of nx
ABC and µABC

x there are natural definitions for the

volume-form ǫx
ABC and its inverse ǫABC

x on the x-matter space. These satisfy [13,16]

ǫx
DEFǫABC

x = 3!δ
[A
D δB

E δ
C]
F =⇒ ǫx

ABCǫABC
x = 3! . (10)

We can normalize ǫx
ABC and ǫABC

x using the determinant of gAB
x ; i.e.

ǫx
123 =

1

ǫ123
x

=
1√
∆x

, (11)

where

∆x =
1

3!
(
ǫx

123

)2
ǫx

ABCǫx
DEFgAD

x gBE
x gCF

x . (12)

Now we can write

nx
ABC = N xǫx

ABC , N x =
1

3!
ǫABC

x nx
ABC , (13)

where it can be shown that N x = nx [16]. Similarly, we find

µABC
x = MxǫABC

x , Mx =
1

3!
ǫx

ABCµABC
x , (14)

where it can be shown that Mx = µx.

It is also straightforward to confirm that

ua
x =

1

3!
ǫbcda xJ ABC

bcd ǫx
ABC . (15)

From this we can verify that the XA
x are conserved along their own worldlines (i.e. they are Lie-dragged

by their ua
x); that is, using Eq. (15), we see

dXA
x

dτx
= ua

x∇aXA
x =

1

nx

(
− 1

3!
ǫabcd ∂XA

x

∂x[a
∂XB

x

∂xb

∂XC
x

∂xc

∂XD
x

∂xd]

)
nx

BCD ≡ 0 , (16)

since the term in parentheses vanishes identically. The quantity ∇a is the covariant derivative, with

the dimension of inverse length 1/l.

In general, dissipation is directly connected with the (matter and/or entropy) particle flux creation

rate Γx, which is given by

Γx = ∇ana
x . (17)

When Γx = 0 there is no flux change and no dissipation. It is easy to see that there is a one-to-one, local

identification of the divergence of a vector field with the exterior derivative of its associated three-form,

i.e.∇[anx
bcd]; namely,

∇ana
x =

1

3!
ǫabcd∇[anx

bcd] . (18)

Simply put, if the three-form is closed (e.g.∇[anx
bcd] = 0), then ∇ana

x = 0 and there is no dissipation;

if the three-form is not closed (e.g.∇[anx
bcd] 6= 0), then the divergence is not zero and dissipation can

occur.

This is the lynchpin of the formalism for dissipative multi-fluid systems developed by Andersson

and Comer [17], and another reason for invoking the matter space. In fact, it was shown by Celora et

al. [16] that

µxΓx =
1

3!
µABC

x
d

dτx
nx

ABC . (19)

We see immediately that if nx
ABC is a function of only the XA

x , then Γx = 0 because of Eq. (16). This

is ideal when fluids are non-dissipative, because then their respective creation rates must vanish.
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However, if we allow nx
ABC to also depend on XA

y (for y 6= x), then the flux three-form is no longer

closed and a system of fluid equations with resistive forms of dissipation4 result [13]. This will be

shown later in Sec. 4.2.

4. The Action Principle and Field Equations

We now set up the action principle used to derive the resistive fluid/plasma, Maxwell, and

Einstein set of field equations.5 The pull-back formalism will be used to build unconstrained variations

of the fluid fluxes δna
x so that the fluid equations can be obtained. The Maxwell equations follow from

variations of Aa, which appears in two pieces of the total action: one built from the antisymmetric

Faraday tensor Fab defined as

Fab = ∇a Ab −∇b Aa , (20)

and the other constructed from a coupling term based on the scalar ja
x Aa. It is important to note that

Fab satisfies a “Bianchi” identity

∇aFbc +∇cFab +∇bFca = 0 =⇒ 1

2
ǫabcd∇[bFcd] = 0 , (21)

The Faraday tensor has dimensions eEM/ (qcl).

Gravity is incorporated (in the standard way) by using the Einstein-Hilbert action for the Einstein

Equation and by the minimal coupling of the metric gab to the fluid and electromagnetic fields. The

minimal coupling arises from the
√−g term in spacetime volume integrals, where g is the determinant

of the metric; the use of gab in the inner product of vectors; and replacing partial derivatives with

covariant derivatives. The energy-momentum-stress tensor Tab, with energy density units e/l3, is

obtained in the usual way by varying the total action with respect to gab.

4.1. The Matter, Electromagnetic, Coupling, and Gravity Actions

The fluid action SM uses for its Lagrangian the so-called Master function Λ [11], an energy density,

which is a functional of all the n2
x and n2

xy. An arbitrary variation of SM with respect to the flux na
x and

the metric results in

δSM = δ

(∫

M
d4x

√
−gΛ

)

=
∫

M
d4x

√
−g

[

∑
x

µx
aδna

x +
1

2

(
Λgab + ∑

x

na
xµb

x

)
δgab

]
, (22)

where

µx
a = Bxnx

a + ∑
y 6=x

Axyn
y
a , (23)

and

Bx = − 2

c2

∂Λ

∂n2
x

, (24a)

Axy = − 1

c2

∂Λ

∂n2
xy

. (24b)

The Axy, with units
(
l3/N

)
e/c2, provide the “entrainment” effect, which causes the fluid

momenta to be “tilted” in the sense that µx
a is not proportional to its corresponding flux na

x. The

4 Andersson and Comer [17] show how other functional dependence, such as gAB
x , can result in bulk- and shear-viscosity.

5 As we are interested in only the field equations, boundary terms generated during the variations will be ignored.
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implication is that one flux, say na
P , carries along with it a fraction of the components of a different flux,

say na
N . This leads also to effective “mass” effects due to entrainment between any two particle fluxes,

a particle flux and an entropy flux, or two entropy fluxes. Entropy flux acquires an effective mass6 (a

carrier of inertia which scales like kBT/c2) through its (non-dissipative) energy/heat exchange within

the system, which does work and can change the conjugate momenta of other fluxes [19]. Shatashvili

et al. [20] have included electron effective masses in their two temperature plasma equations. It has

been noted by Kotorashvili et al. [21] that the effective mass for a degenerate electron plasma arises

from the degeneracy instead of kinematics and is fully determined by the plasma rest frame density

(see [22] and references therein), whereas in a hot relativistic electron plasma the effective mass [23] is

determined by the relativistic electron temperature.

Entrainment between neutrons and protons is known to be important in superfluid neutron star

dynamics [24–27]. Entrainment between matter and entropy can be shown (see, for example, [19]) to

lead to the Cattaneo equation [28], which is an important component of causal heat conductivity. This

particle and entropy flux model can also be used to describe superfluid systems such as He4. In the

Landau model of superfluidity [29], there is an ad hoc separation of the He4 atoms into a superfluid

particle flux and a normal fluid particle flux, which are entrained with each other. In the entropy and

particle flux approach, all of the He4 atoms are described with one particle flux, and the “normal fluid”

flux is replaced with an entropy flux. A one-to-one mapping between the two models exists (see, for

example, Andersson and Comer [30], and references therein), primarily because in the Landau model

the normal fluid represents the excitations of atoms out of the ground state and are responsible for

carrying the heat. This is important because it shows that the entrainment between the entropy and

particle fluxes has physical impact, whether it is describing superfluid He4 or more general fluids with

an independent heat flow. It is less clear whether entrainment between two entropies is important

physically, or just a formally consistent piece of the overall mathematical construct.

4.1.1. The Electromagnetic and Coupling Actions

The Maxwell Action is

SMax =
1

4µo

∫

M
d4x

√
−gFabFab , (25)

and its variation with respect to Aa and the metric gab leads to

δSMax =
1

µo

∫

M
d4x

√
−g
(
∇aFab

)
δAb −

1

8µo

∫

M
d4x

√
−g
(

FcdFcdgab − 4FacFb
c

)
δgab . (26)

The minimal coupling of the Maxwell field to the charge current densities ja
x is obtained from the

Coulomb action

SC =
∫

M
d4x

√
−g

(

∑
x

ja
x

)
Aa , (27)

whose variation with respect to na
x, Aa, and gab is

δSC =
∫

M
d4x

√
−g ∑

x

(
ja
xδAa + qx Aaδna

x +
1

2
ja
x Aagbcδgbc

)
. (28)

6 In the action-based formalism, the entropy flux degree of freedom represents the heat flux (see, for example, [18]). As such,
because of the equivalence of mass and energy in relativity, it is not surprising that the entropy flux, just as any other flux,
also acquires an effective mass.
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4.1.2. The Gravitational Einstein-Hilbert Action

At the heart of General Relativity is the Riemann tensor Rc
dab, with units of 1/l2. It can be inferred

from the antisymmetric operation of two covariant derivatives on an arbitrary vector va; namely,

∇a∇bvc −∇b∇avc = Rc
dabvd . (29)

From the Riemann tensor we can obtain the Ricci tensor Rab = Rc
acb and, subsequently, the Ricci scalar

R = gabRab.

The Einstein-Hilbert action is

SEH =
c4

16πG

∫

M
d4x

√
−gR . (30)

Varying it and the other bits of the total action written above with respect to the metric gives the

Einstein equation; in particular, the left-hand-side of the Einstein equations comes from the variation

of SEH with respect to gab, i.e.

δSEH = − c4

16πG

∫

M
d4x

√
−gGabδgab , (31)

where the Einstein tensor Gab is

Gab = Rab − 1

2
Rgab . (32)

4.1.3. The Total Action Variation

The variation of the total action S for the system is thus

δS = δSEH + δSM + δSMax + δSC

=
∫

M
d4x

√
−g

{
− c4

16πG
Gabδgab + ∑

x

µx
aδna

x +
1

µo

(
∇bFba + µo ∑

x

ja
x

)
δAa

+
1

2

[
Λgab + ∑

x

(
na

xµb
x + jcx Acgab

)
− 1

4µo

(
FcdFcdgab − 4FacFb

c

)]
δgab

}
, (33)

where the electromagnetic minimal coupling has caused the fluid conjugate momentum to become

µx
a = µx

a + qx Aa . (34)

Imposing gauge invariance on the total action S (cf. Appendix A) leads to charge conservation in the

form [cf. Eq. (A.6)]

qPΓP + qN ΓN = 0 =⇒ ΓN = ΓP , (35)

where ΓP = ∇ana
P and ΓN = ∇ana

N . Of course, there is also baryon number conservation. The total

baryon number flux is na
B = na

η + na
P , and it is conserved if ΓB = ∇ana

B = 0; therefore,

0 = ∇ana
B = ∇ana

η +∇ana
P ≡ Γη + ΓP =⇒ Γη = −ΓP . (36)

The field equations obtained from the full action variation above cannot be the final form, since

the term proportional to δna
x implies that the momenta µx

a must vanish. This happens because the

components of δna
x cannot all be varied independently; this is the main reason for using the pull-back

formalism because it provides a set of variables, the XA
x , which can be varied independently.
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4.2. From Matter Space to Spacetime Displacements and Resistivity

Even though we have as our unconstrained dynamical variables the scalars XA
x , ultimately we

want the action principle to produce field equations for the fluxes na
x. Fortunately, we can use the

XA
x this time to push-forward variations δXA

x in matter space to Lagrangian displacements ξa
x of fluid

element worldlines on spacetime; namely,

δXA
x = −∂XA

x

∂xa
ξa

x , (37)

where δXA
x is an Eulerian variation (when the XA

x are taken as scalars on spacetime). The minus sign

comes in because we know that the XA
x do not change along the fluid worldlines, meaning that their

Lagrangian variation ∆xXA
x [11] has to vanish:

∆xXA
x ≡ δXA

x + Lξx
XA

x = 0 , (38)

where Lξx
is the Lie derivative with respect to ξa

x. Since ∆xXA
x = 0 we arrive at Eq. (37). Note that,

because we have several fluxes, we will need also the mixed Lagrangian variation ∆xXA
y of the XA

y

with respect to the x-fluid (and vice versa):

∆xXA
y = δXA

y + Lξx
XA

y = Lξx
XA

y −Lξy
XA

y =
(

ξa
x − ξa

y

) ∂XA
y

∂xa
. (39)

The displacements of the matter space fluid elements will lead to the variation δnx
ABC, which, in

turn, will induce the variation of nx
abc. The Lagrangian variation of nx

abc, in general, is

∆xnx
abc =

xJ ABC
abc ∆xnx

ABC , (40)

and thus

δnx
abc = −Lξx

nx
abc +

xJ ABC
abc ∆xnx

ABC , (41)

where the Lie derivative of nx
abc along the ξa

x is

Lξx
nx

abc = ξd
x

∂nx
abc

∂xd
+ nx

dbc

∂ξd
x

∂xa
+ nx

adc

∂ξd
x

∂xb
+ nx

abd

∂ξd
x

∂xc
. (42)

The resistive form of dissipation is due to the presence of XA
y in nx

ABC. Applying the definitions above,

we see

∆xnx
ABC = ∑

y 6=x

∂nx
ABC

∂XD
y

∆xXD
y = ∑

y 6=x

∂nx
ABC

∂XD
y

∂XD
y

∂xa

(
ξa

x − ξa
y

)
. (43)

The sum is over y 6= x because ∆xXA
x ≡ 0.

Using the facts that

∆xgab = δgab − 2∇(aξ
b)
x , (44)

δǫabcd = −1

2
ǫabcdge f δge f , (45)

and

ǫbcdaLξx
nx

bcd = 3!
(

ξb
x∇bna

x − nb
x∇bξa

x + na
x∇bξb

x

)
, (46)

we find

δna
x = δ

(
1

3!
ǫbcdanx

bcd

)

= nb
x∇bξa

x − ξb
x∇bna

x − na
x

(
∇bξb

x +
1

2
gbcδgbc

)
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+
1

nx
na

x ∑
y 6=x

(
1

µx

Rxy
b

)(
ξb

x − ξb
y

)
, (47)

where
1

µx

Rxy
a ≡ 1

3!
ǫABC

x

∂nx
ABC

∂XD
y

∂XD
y

∂xa
. (48)

The coefficient Rxy
a satisfies the identity

ua
yRxy

a ≡ 0 =⇒ Rxy
a =

(
δb

a + ub
yu

y
a /c2

)
Rxy

b . (49)

This says that Rxy
a has only three degrees of freedom; i.e., ua

y is timelike and therefore Rxy
a has only the

spacelike components with respect to the ua
y.

We will see in the next subsection 4.3, where the equations of motion are derived, that there is a

total “resistivity” current Rx
a which is given by

Rx
a = ∑

y 6=x

(
Ryx

a −Rxy
a

)
, (50)

and satisfies the identity

∑
x

Rx
a ≡ 0 . (51)

This identity is important because it guarantees that the energy-momentum-stress tensor Tab is

divergenceless, i.e. ∇bTba = ∇bTab = 0 (a consequence of diffeomorphism invariance [14]).

4.3. The Field Equations

We now have everything we need to derive the full suite of field equations. Let us begin by

returning to the flux variations of the total action given in Eq. (33). The fact that we are summing over

all constituents leads to

∑
x

∑
y 6=x

Rxy
a

(
ξa

x − ξa
y

)
= −∑

x

Rx
aξa

x , (52)

so that the variation of the total action for the system is

δS =
∫

M
d4x

√
−g

[
−∑

x

( f x
a + Γxµx

a − Rx
a) ξa

x −
1

µo

(
∇bFab − µo ∑

x

ja
x

)
δAa

−1

2

(
c4

8πG
Gab − Tab

)
δgab

]
. (53)

where

f x
a = 2nb

x∇[bµx
a] = 2nb

x∇[bµx
a] + qxnb

xFba , (54)

Ψ = Λ − ∑
x

µx
c nc

x , (55)

and

Tab = Ψgab + ∑
x

na
xµb

x −
1

4µo

(
FcdFcdgab − 4FacFb

c

)
. (56)

It is worth noting here that the generalized pressure Ψ takes the form of a Legendre transformation of

Λ, which switches the roles of na
x and µx

a , making the latter the independent degree of freedom; i.e.

δΨ = −∑
x

nc
xδµx

c . (57)

This will be especially useful later when we write down the Newtonian fluid/plasma field equations.
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Now that the action variation is in place, we can invoke our chosen constraint that a given particle

flux and its corresponding entropy flux flow together. We also restrict (by assumption!) the neutral

and positively charged species to flow together. The net result is that there are only two matter spaces

where XA
1 = XA

2 = XA
4 = XA

5 ≡ XA
P and XA

3 = XA
6 ≡ XA

N . This also implies there are only two

independent Lagrangian displacements: ξa
1 = ξa

2 = ξa
4 = ξa

5 ≡ ξa
P and ξa

3 = ξa
6 ≡ ξa

N . Likewise, there

are only two independent four-velocities: ua
1 = ua

2 = ua
4 = ua

5 ≡ ua
P and ua

3 = ua
6 ≡ ua

N . We also note

that q1 = q4 = q5 = q6 = 0 and q2 = −q3 = −qN .

In order to get the field equations we employ the action principle, which states that when δS = 0

for arbitrary values for the variations ξa
x, δAa, and δgab, then the coefficients multiplying them in δS

must vanish. From the coefficient of ξa
P , we get a single Euler equation for the neutrally and positively

charged species, which is

∑
x={1,2,4,5}

[ f x
a + Γxµx

a − (Rx
a − qxΓx Aa)] = 0 , (58)

and from ξa
N a single Euler equation for the negative species, which is

∑
x={3,6}

[ f x
a + Γxµx

a − (Rx
a − qxΓx Aa)] = 0 . (59)

Coming from the coefficient of δAa are the Maxwell equations [which must also include Eq. (21)],

∇bFab = ∇b

(
∇a Ab −∇b Aa

)
= µo ∑

x={2,3}
ja
x , (60)

and from δgab we get the Einstein equation; i.e.

Gab =
8πG

c4
Tab . (61)

An equivalent form of the Einstein equation, which will be used in Sec. 5, is

Rab =
8πG

c4

(
Tab − 1

2
Tgab

)
, (62)

where T = gabTab.

From the process of creating the two Euler equations (58) and (59), we find that the set of resistivity

vectors Rx
a is reduced from six members down to two, which we denote by RP

a and RN
a . If we take into

account that XA
1 = XA

2 = XA
4 = XA

5 and XA
3 = XA

6 ≡ XA
N , then we see that Eq. (48) implies

R12
a = R14

a = R15
a , R13

a = R16
a , (63a)

R21
a = R24

a = R25
a , R23

a = R26
a , (63b)

R31
a = R32

a = R34
a = R35

a , (63c)

R41
a = R42

a = R45
a , R43

a = R46
a , (63d)

R51
a = R52

a = R54
a , R53

a = R56
a , (63e)

R61
a = R62

a = R64
a = R65

a . (63f)

Inserting these into the definition of Rx
a in Eq. (50) leads to

RP
a = R1

a + R2
a + R4

a + R5
a = 4

(
R31

a +R61
a

)
− 2

(
R13

a +R23
a +R43

a +R53
a

)
. (64)
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In a similar manner, we obtain

RN
a = R3

a + R6
a = −4

(
R31

a +R61
a

)
+ 2

(
R13

a +R23
a +R43

a +R53
a

)
= −RP

a , (65)

so the identity in Eq. (51) becomes

RP
a + RN

a = 0 . (66)

Ultimately, microphysical calculations will be required to precisely specify RN
a (e.g. as indicated by

Braginskii [31]). However, the formalism itself has already provided some structure for the resistivities

Rx
a , as evidenced by Eqs. (19), (35), (36), (48), (49), and (66). Recall that the main assumption is that

nx
ABC depends on, in principle, all of the XA

x . Because of Eq. (16), then the chain-rule implies

d

dτx
nx

ABC = ua
x ∑

y 6=x

∂XD
y

∂xa

∂nx
ABC

∂XD
y

. (67)

When we substitute this into Eq. (19), and use Eq. (49), we obtain

µxΓx = −ua
x ∑

y 6=x

(
Ryx

a −Rxy
a

)
= −ua

xRx
a . (68)

4.4. Impact of Change of Gauge for Aa

A gauge transformation will impact the fluid equations of motion because of the change to the

momentum; i.e. letting Āa = Aa +∇aφ we find

µx
a = µx

a + qx Aa −→ µ̂x
a = µx

a + qx Āa = µx
a + qx∇aφ . (69)

It is important here to consider in more detail the ramifications of a change of gauge, since a natural

application of the present work would be to numerical evolutions [32]. In the numerical setting, we

expect to be solving for the vector potential Aa as we evolve the system. This will require a choice of

gauge for the vector potential, which will affect the explicit values of terms (such as the resistivity) in

the equations of motion.

Clearly, Rx
a is gauge-dependent, since the quantity µABC

x in Rxy
a [cf. Eq. (48)] depends on Aa.

Letting R̄x
a denote the particle resistivity in the new gauge, we find

R̄x
a = ∑

y 6=x

(
R̄yx

a − R̄xy
a

)

= ∑
y 6=x

1

3!
ǫebcd

[
(
µ

y
e + qy∇eφ

)
yJ ABC

bcd

∂n
y
ABC

∂XD
x

∂XD
x

∂xa

− (µx
e + qx∇eφ) xJ ABC

bcd

∂nx
ABC

∂XD
y

∂XD
y

∂xa

]

= Rx
a + Gx

a , (70)

where

Gx
a = ∑

y 6=x

(
Gyx

a − Gxy
a

)
, Gxy

a =
1

3!
ǫebcdqx

(
xJ ABC

bcd

∂nx
ABC

∂XD
y

∂XD
y

∂xa

)
∇eφ . (71)

Note that

∑
x

Rx
a = ∑

x

Gx
a = 0 =⇒ ∑

x

R̄x
a = ∑

x

Rx
a + ∑

x

Gx
a = 0 . (72)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2023                   doi:10.20944/preprints202304.0145.v1

https://doi.org/10.20944/preprints202304.0145.v1


14 of 34

Using Eqs. (10), (15), and (48), we can re-write Gxy
a as

Gxy
a =

1

3!
qx

(
ǫebcd xJ ABC

bcd δ
[E
A δF

Bδ
G]
C

∂nx
EFG

∂XD
y

∂XD
y

∂xa

)
∇eφ

= − qx

µx

(
1

3!
µxǫEFG

x

∂nx
EFG

∂XD
y

∂XD
y

∂xa

)(
1

3!
ǫbcde xJ ABC

bcd ǫx
ABC

)
∇eφ

= −qx

(
ub

x∇bφ
)( 1

µx

Rxy
a

)
, (73)

which implies

Gx
a = − ∑

y 6=x

[
qy

(
ub

y∇bφ
)( 1

µy

Ryx
a

)
− qx

(
ub

x∇bφ
)( 1

µx

Rxy
a

)]
. (74)

When the sums in Eqs. (58) and (59) are performed, we see that the gauge-dependent part of each

of the fluid equations of motion is

R̄N
a − qN Γ3 Āa = RN

a − qN Γ3 Aa − 4qN
1

µ̄3

(
ub
NR31

b

)
∇aφ

+2qN

[
1

µ2

ub
PR23

a − 1

µ3

ub
N
(

2R31
a +R36

a

)]
∇bφ . (75)

Clearly, Eqs. (58) and (59) are modified under a gauge transformation. This was expected. The point

is that we have shown how the transformation enters the field equations and therefore we can still

evolve the system regardless of the choice of gauge.

It is a different story if we look at the projection of Eq. (58) along ua
P and Eq. (59) along ua

N . Clearly,

ua
P f x

a = 0 for Eq. (58) and ua
N f x

a = 0 for Eq. (59), leaving two equations having linear combinations of

creation rates Γx, combined with the resistivity and the gauge-dependent terms. The creation rates

must be gauge invariant. Fortunately, if we use Eq. (49), and project Eq. (75) along ua
P and then along

ua
N , we get

ua
P
(

R̄N
a − qN Γ3 Āa

)
= ua

P
(

RN
a − qN Γ3 Aa

)
, (76a)

ua
N
(

R̄N
a − qN Γ3 Āa

)
= ua

N
(

RN
a − qN Γ3 Aa

)
, (76b)

thus verifying that the Γx are gauge invariant. This was also noted in [13] and is a result of starting

with an action with well-defined couplings. The formalism itself takes care of gauge issues through

internal consistency.

5. 3 + 1 Formulation

Having derived the equations of motion for the plasma system, we want to make contact with

applications and known results in the non-relativistic limit. In order to do this, we work out the 3 + 1

form of the field equations, keeping the speed of light explicit. This makes taking the Newtonian

limit a simple power counting exercise and also sets the problem up for foliation-based numerical

simulations. Our approach to the 3 + 1 problem follows the set of notes by Gourgoulhon [33].

5.1. The 3 + 1 Setup

We begin by restricting our formalism to a special class of manifolds—globally hyperbolic. These

manifolds contain a family of causal curves, which are such that every vector tangent to them is timelike

or null. They also contain a Cauchy surface, which is a spacelike hypersurface that is intersected exactly

once by every inextendible causal curve in the manifold. It can be shown that, on these manifolds with
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coordinates x̄a, a scalar “time” function t (x̄a) exists such that its level (“constant time”) hypersurfaces

can be smoothly stacked on top of each other to form a foliation of the spacetime.

A normal at a point on a constant-time hypersurface is obtained in the standard way by taking the

gradient of the time function, i.e. ∇at, and then evaluating the gradient at the point under consideration.

A unit normal ua (uaua = −c2) at each point is created by introducing the so-called lapse function N,

which is a speed, as a normalization factor for ∇at; that is,

ua = −cN∇at . (77)

If we build an initial slice of the foliation by solving t (x̄a) = to = constant, the next one, say for

t = to + δt, will consist of the set of points obtained by moving the same, “small” proper distance in

the ua direction. The ua will merge together from slice-to-slice to become tangents to worldlines. The

acceleration aa of an observer following one of these worldlines is

aa = ub∇bua ≡
Dua

dt
, (78)

which introduces our notion of time-derivative.

So far, we have a mechanism for stacking the spacelike hypersurfaces, but nothing for how they

“slip” past each other. To take care of that we introduce a “flow-of-time” vector ta (with the units of

speed) which joins spatial points x̄i
∣∣
to

on the hypersurface t = to to spatial points x̄i
∣∣
to+δt

on the next

hypersurface t = to + δt such that x̄i
∣∣
to
= x̄i

∣∣
to+δt

; in words, it is the observers following ta and not ua

who are “at rest” with respect to the foliation slices. We normalize ta by setting

ta∇at = 1 . (79)

We can use ua/c in two ways to decompose ta into pieces perpendicular and parallel to the foliation

slices; namely,

ta = N (ua/c) + Na , Na =⊥a
b tb , ⊥a

b= δa
b + uaub/c2 , (80)

where Na is the so-called shift vector (with speed units). The tensor ⊥b
a is the (idempotent) operator that

provides the parallel (spacelike) projection and ua/c provides the perpendicular (timelike) projection.

Since ⊥a
b ub = 0 the shift vector satisfies (ua/c) Na = 0 and therefore has no perpendicular component.

Each slice of the foliation is, in principle, a curved space. The curvature information is contained

in an induced three-metric hab given by

hab =⊥c
a⊥d

b gcd = gab + uaub/c2 . (81)

Our notion of spatial covariant derivative Da is generated by the action of ⊥a
b on the covariant

derivative of an arbitrary vector ṽa =⊥a
b vb; namely,

Daṽb =⊥c
a⊥b

d ∇cṽd . (82)

The three-metric hab is compatible with Da; i.e. Dahbc = 0. The intrinsic curvature of slices of the

foliation, (3)Rc
dab, can be inferred from

DaDbṽc − DbDaṽc = (3)Rc
dabṽd . (83)

The acceleration can be shown [by inserting Eq. (77) into (78)] to have the alternative form

aa = c2Da ln (N/c) . (84)
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Because the three-dimensional slices of the foliation are embedded in four-dimensional spacetime,

they have an extrinsic curvature Kab (with inverse time dimensions) given by

Kab = −1

2
Luhab = −1

2
(⊥c

b ∇cua+ ⊥c
a ∇cub) . (85)

It is easy to show that the trace of the extrinsic curvature, which is K = gabKab, becomes

K = −∇aua ≡ −Θ . (86)

When we develop the 3+ 1 form of the field equations it will be found that the covariant derivative

of ua enters repeatedly. A couple of important “tools” for dealing with this can be obtained by applying

the well-known decomposition

∇aub = σab +
1

3
Θhab + ̟ab − abua/c2 = −Kab + ̟ab − uaab/c2 , (87)

where

σab =
1

2
(⊥c

b ∇cua+ ⊥c
a ∇cub)−

1

3
Θhab = −

(
Kab −

1

3
Khab

)
, (88a)

̟ab =
1

2
(⊥c

b ∇cua− ⊥c
a ∇cub) . (88b)

The most useful formula is a consequence of the fact that ua is surface forming: This implies ̟ab = 0,

and so therefore

∇aub = −Kab − uaab/c2 . (89)

From this we can immediately show

∇c ⊥b
a= −2gbd

[
ucu(aad)/c4 + u(aKd)c/c2

]
. (90)

5.2. Field Decompositions

We have just seen how the metric can be re-framed in terms of the lapse N, the shift-vector Na,

and the three-metric hab. Now we need to produce the similar re-framing for the remaining field

variables na
x and Aa.

Using the projection operators ua/c and ⊥a
b, and taking into account the dimensional analysis of

the flux earlier, the 3 + 1 forms of the fluxes must be

na
x = ñxua + ña

x , ñx = −
(

ua/c2
)

na
x , ña

x =⊥a
b nb

x . (91)

From the definition of the four-velocity ua
x = na

x/nx we can infer

ua
x =

ñx

nx
(ua + ũa

x) , ũa
x =

ña
x

ñx
, (92)

and can therefore show
ñx

nx
= γ̃x , γ̃x =

1√
1 − ũx

a ũa
x/c2

. (93)

Because ua
xua = −γ̃x and ua

ηua = ua
Pua we have γ̃1 = γ̃2 = γ̃4 = γ̃5 ≡ γ̃P and consequently

ũa
1 = ũa

2 = ũa
4 = ũa

5 ≡ ũa
P . Similarly, we have γ̃3 = γ̃6 ≡ γ̃N and ũa

3 = ũa
6 ≡ ũa

N .

For the chemical potential covector µx
a , the dimensional analysis leads to a slightly different form

for the decompositions:

µx
a = µ̃xua/c2 + µ̃x

a , µ̃x = −uaµx
a , µ̃x

a =⊥b
a µx

b . (94)
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If we substitute into the spatial part of this the initial result for µx
a , i.e. Eq. (23), we find a form more

amenable for the Newtonian limit, which is

µ̃x
a =

µ̃x

c2
ũx

a + ∑
y 6=x

Axyñyw̃
yx
a , (95)

where

w̃a
yx = ũa

y − ũa
x . (96)

As an effect of the tilting of the momenta, the chemical potentials in the fluid rest frames are related

with those of the foliation in more complicated ways, which are

µx = γ̃x (µ̃x − ũa
xµ̃x

a) . (97)

By direct substitution of the decompositions just above into Eq. (55), the generalized pressure Ψ

becomes

Ψ = Λ + ∑
x

(µ̃xñx − µ̃x
a ña

x) , (98)

and the fluid/plasma part of Tab is

Ψgab + ∑
x

na
xµb

x =

(
−Λ + ∑

x

µ̃x
c ñc

x

)
uaub/c2 + ∑

x

ñxµ̃b
xua + ∑

x

µ̃xñx

c2
ũa

xub

+Ψhab + ∑
x

ña
xµ̃b

x . (99)

The charge current flux ja
x is

ja
x = σ̃xua + j̃a

x , σ̃x = −
(

ua/c2
)

ja
x , j̃a

x =⊥a
b jb

x , (100)

and the four-potential Aa is

Aa = Ṽua/c2 + Ãa , Ṽ = −ua Aa , Ãa =⊥b
a Ab , (101)

where we have introduced the scalar potential Ṽ (with the standard energy per charge units) and the

three-vector potential Ãa. Inserting this into the Faraday tensor, and using Eq. (89) for the covariant

derivative, we find

Fab =
1

c2
(ubDa − uaDb) Ṽ +

1

c2
Ṽ (aaub − abua) +

1

c2
ub

DÃa

dt
− 1

c2
ua

DÃb

dt

− 1

c2

(
ubδd

a − uaδd
b

)
ÃcKdc + Da Ãb − Db Ãa . (102)

The electric Ẽa and magnetic B̃a fields are defined as

Ẽa = −ub

c
Fba = −DaṼ− ⊥b

a
DÃb

dt
− Ṽaa/c2 + ÃbKab , (103a)

B̃a =
1

2
ǫ̃a

bcFbc = ǫ̃a
bcDb Ãc , ǫ̃abc =

ud

c
ǫdabc , (103b)

which implies

Fab =
2

c2
u[aẼb] + ǫ̃abc B̃c . (104)
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Finally, the electromagnetic contribution to Tab is

− 1

4µo

(
FcdFcdgab − 4FacFb

c

)
=

1

2c2µo

(
Ẽ2 + c2B̃2

)
uaub +

1

c2µo

(
ua ǫ̃bcd + ub ǫ̃acd

)
Ẽc B̃d

− 1

c2µo

[
ẼaẼb + c2B̃a B̃b − 1

2

(
Ẽ2 + c2B̃2

)
hab

]
. (105)

We end this subsection by pointing out that Eqs. (99) and (105) shows that Tab naturally

separates into “time-time”, “time-space”, and “space-space” pieces. Respectively, these give the

total mass-energy density E, the total momentum density Pa, and the total stress Sab:

E =
1

c2
uaubTab , (106a)

Pa = −1

c
ub ⊥a

c Tbc = −1

c
ub ⊥a

c Tcb , (106b)

Sab =⊥a
c⊥b

d Tcd , S = habSab . (106c)

The terms in Eqs. (99) and (105) combine to give

E = −Λ + ∑
x

µ̃x
a ña

x +
1

2c2µo

(
Ẽ2 + c2B̃2

)
, (107a)

Pa =
1

c ∑
x

µ̃xñxũa
x +

1

cµo
ǫ̃abcẼb B̃c

= c ∑
x

ñxµ̃a
x +

1

cµo
ǫ̃abcẼb B̃c , (107b)

Sab = Ψhab + ∑
x

ña
xµ̃b

x −
1

c2µo

[
ẼaẼb + c2B̃a B̃b − 1

2

(
Ẽ2 + c2B̃2

)
hab

]
, (107c)

S = 3Ψ + ∑
x

µ̃x
a ña

x +
1

2c2µo

(
Ẽ2 + c2B̃2

)
. (107d)

5.3. The 3 + 1 Field Equations

The logic of rewriting the Einstein, fluid/plasma, and electromagnetic field equations in their

3 + 1 forms is the same as for the field variables — project free indices perpendicular to the foliation

slices using the operator ua/c and project free indices parallel to the foliation slices using ⊥a
b, and

then make substitutions of the decomposed quantities derived in the previous section. The main

complication is that the field equations have derivatives, and we will need to replace everywhere

covariant derivatives ∇a with their 3 + 1 counterparts D/dt and Da.

We will start with the Einstein equations as given in Eq. (62). The projections of the Ricci tensor

Rab are performed in Appendix B. When these and the terms E, Pa, and Sab are substituted back into

Eq. (62) we get the Hamiltonian Constraint

(3)R +
1

c2
K2 − 1

c2
KabKab =

16πG

c4
E , (108)

the Momentum Constraint

Db

(
Kb

a − Kδb
a

)
=

8πG

c3
Pa , (109)

and finally an evolution equation

− 1

c2
LuKab −

1

N
DaDbN + (3)Rab +

1

c2
KKab −

2

c2
KacKc

b =
8πG

c4

[
Sab −

1

2
(S − E) hab

]
. (110)
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For the fluid/plasma equations, the results are long, and so it is better to break them up into

individual pieces, and present them instead:

ua f x
a = −ña

x

(
Daµ̃x +

Dµ̃x
a

dt

)
− 1

c2
µ̃xña

xaa + Kabña
xµ̃b

x + j̃a
xẼa , (111a)

⊥b
a f x

b = ñx

(
⊥b

a

Dµ̃x
b

dt
+ ũb

xDbµ̃x
a

)
+ ñxDaµ̃x − ñb

xDaµ̃x
b

+
µ̃xñx

c2
aa − ñxµ̃b

xKba −
(

σ̃xẼa + ǫ̃abc j̃b
xB̃c
)

, (111b)

(−uaµx
a) Γx = µ̃x

(
Daña

x +
Dñx

dt

)
− Kµ̃xñx +

1

c2
µ̃xña

xaa , (111c)

(
⊥b

a µx
b

)
Γx =

(
Dbñb

x +
Dñx

dt

)
µ̃x

a − Kñxµ̃x
a +

1

c2
ñb

xabµ̃x
a , (111d)

ua (Rx
a − qxΓx Aa) = uaRx

a + qxΓxṼ , (111e)

⊥b
a (Rx

b − qxΓx Ab) =⊥b
a Rx

b − qxΓx Ãa . (111f)

We will present a more detailed look at uaRx
a and ⊥b

a Rx
b later in Sec. 5.4.

Lastly, we have to evaluate the following projections of the Maxwell equations:

ua∇bFab = µoc2 ∑
x={2,3}

ua ja
x , (112a)

⊥a
c ∇bFcb = µo ∑

x={2,3}
⊥a

b jb
x , (112b)

uaǫabcd∇[bFcd] = 0 , (112c)

⊥a
e ǫebcd∇[bFcd] = 0 . (112d)

Before applying the projections, it is convenient to do a little preparatory work: take the covariant

derivative of Eq. (104), and use Eq. (89) to get

∇aFbc =
1

c2
ua

(
2

c2
a[cẼb] +

2

c2
u[c ⊥d

b]

DẼd

dt
− 1

c
ǫbc

dead B̃e − ǫ̃bcd
DB̃d

dt

)

+
2

c2
u[bD|a|Ẽc] +

2

c2
Ka[cẼb] −

1

c
ǫbc

deKad B̃e + ǫ̃bcdDa B̃d , (113)

which, in turn, gives

∇bFab =
1

c2
uaDbẼb − 1

c2
⊥b

a
DẼb

dt
+ ǫ̃abc

(
Db B̃c +

1

c2
ab B̃c

)
− 1

c2
(Kab − Khab) Ẽb , (114)

and

1

2
ǫa

bcd∇bFcd = −uaDb B̃b +
1

c2
⊥b

a
DB̃b

dt
+

1

c2
ǫ̃abc

(
DbẼc +

1

c2
abẼc

)

+
1

c2
(Kab − Khab) B̃b . (115)
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Therefore, the ua/c and ⊥b
a projections of the Maxwell equations and the continuity equation are [34]

DaẼa = µoc2 ∑
x={2,3}

σ̃x , (116a)

ǫ̃a
bc

(
Db B̃c +

1

c2
ab B̃c

)
= µo ∑

x={2,3}
j̃a
x +

1

c2
⊥a

b

DẼb

dt
+

1

c2

(
Kab − Khab

)
Ẽb , (116b)

Db B̃b = 0 , (116c)

ǫ̃abc

(
DbẼc +

1

c2
abẼc

)
= − ⊥b

a
DB̃b

dt
− (Kab − Khab) B̃b , (116d)

∑
x={2,3}

∇a ja
x = ∑

x={2,3}

(
Da j̃a

x +
Dσ̃x

dt
− Kσ̃x +

1

c2
j̃a
xaa

)
= 0 . (116e)

5.4. Resistivities and Dissipation in the 3 + 1 Formalism

We have now finished our development of the 3 + 1 form of the full suite of field equations. This

has been accomplished without having to make detailed statements about the specific dependence of

nx
ABC on {XA

P , XA
N } nor, in turn, the specific dependence of Λ on nx

ABC. In fact, we have taken the point

of view that each of these are “known” a priori, meaning that once a specific application is considered

the relevant forms and dependencies can, at least in principle, be constructed based on the relevant

microphysics of the system. However, even without such an analysis, the action-based formalism has

taken us a long way. This has been pointed out already by Andersson et al. [13]. They used this as a

basic platform upon which resistivities could be built phenomenologically. Our purpose now is to

give a review of the salient points, and then to apply them to the two-temperature extended system

considered here.

We start by applying Eq. (49) to the 3 + 1 decomposition of Rxy
a , which is

Rxy
a = R̃xyua/c2 + R̃xy

a , R̃xy = −uaRxy
a , R̃xy

a =⊥b
a Rxy

b . (117)

By imposing Eq. (49) we find that Rxy
a becomes

Rxy
a =

(
δb

a + uaũb
y/c2

)
R̃xy

b , (118)

and the resistivity Rx
a is

Rx
a = ∑

y 6=x

[(
ũb

xR̃yx
b − ũb

yR̃xy
b

)
ua/c2 + R̃yx

a − R̃xy
a

]
. (119)

Inserting this modified form for Rx
a into Eq. (68), we determine that the creation rate becomes

Γx =
γ̃x

µx
∑

y 6=x

R̃xy
a w̃a

xy . (120)

To make further progress, we impose three physical constraints — charge conservation, baryon

number conservation, and the Second Law of Thermodynamics. The conservation of charge

[cf. Eq. (35)] leads to

0 = ∑
x=2,3

exΓx = ∑
x=2,3

qxγ̃x

µx
∑

y 6=x

R̃xy
a w̃a

xy , (121)

while baryon number conservation [cf. Eq. (36)] says

0 = ∑
x=1,2

Γx = ∑
x=1,2

γ̃x

µx
∑

y 6=x

R̃xy
a w̃a

xy . (122)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2023                   doi:10.20944/preprints202304.0145.v1

https://doi.org/10.20944/preprints202304.0145.v1


21 of 34

The Second Law of Thermodynamics gives the inequality

∑
x=4,5,6

Γx = ∑
x=4,5,6

γ̃x

µx
∑

y 6=x

R̃xy
a w̃a

xy ≥ 0 . (123)

In order to satisfy these, we need to be more specific about the terms, meaning that we will now make

an ansatz about the form of the resistivity and flux creation rates, but in a manner which is consistent

with the overall formalism.

Onsager [35] (see also [36,37]) developed an approach that relies on the notions of thermodynamic

fluxes and forces. In our case, the thermodynamic fluxes are the R̃xy
a , and the thermodynamic forces

are the w̃a
xy. The key step is to combine the fluxes and forces in such a way that they tend to drive the

system towards a dynamical equilibrium where the relative flows are zero and a thermodynamical

equilibrium where Γx → 0 all the while maintaining the inequality of Eq. (123).

We begin with an obvious choice for the R̃xy
a , which is to write

R̃xy
a = r̃xyw̃

xy
a =⇒ Rxy

a = r̃xy

(
δb

a + uaũb
y/c2

)
w̃

xy
b . (124)

This causes the sum for the total entropy creation rate to be over the set of positive-definite terms

given by wa
xyw

xy
a . Because the relation for Rxy

a is linear in the r̃xy, then we can reduce the number of r̃xy

by imposing that (in their indices) they satisfy the same equalities that the Rxy
a do in Eqs. (63a)–(63f).

Noting that

Γ1 = 2
γ̃P
µ1

r̃13w̃PN
a w̃a

PN , (125a)

Γ2 = 2
γ̃P
µ2

r̃23w̃PN
a w̃a

PN , (125b)

Γ3 = 4
γ̃N
µ3

r̃31w̃PN
a w̃a

PN , (125c)

Γ4 = 2
γ̃P
µ4

r̃43w̃PN
a w̃a

PN , (125d)

Γ5 = 2
γ̃P
µ5

r̃53w̃PN
a w̃a

PN , (125e)

Γ6 = 4
γ̃N
µ6

r̃61w̃PN
a w̃a

PN , (125f)

we can reduce again the number of r̃xy, by imposing charge [cf. Eq. (35)] and baryon number

[cf. Eq. (36)] conservation, since they imply

r̃23 = −µ2

µ1

r̃13 , (126a)

r̃31 = −1

2

γ̃P
γ̃N

µ3

µ1

r̃13 . (126b)

The Second Law of Thermodynamics [cf. Eq. (123)] implies that the coefficients must satisfy

γ̃P
µ4

r̃43 +
γ̃P
µ5

r̃53 + 2
γ̃N
µ6

r̃61 ≥ 0 . (127)

The independent resistivity vector takes the final form

RN
a = 2

[(
2r̃61 −

γ̃P
γ̃N

µ3

µ1

r̃13

)
w̃b
PN w̃PN

b

c2
+ r̃N

ũb
N w̃PN

b

c2

]
ua + 2r̃N w̃PN

a , (128)
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where

r̃N = 2r̃61 +

(
1 − γ̃P

γ̃N

µ3

µ1

− µ2

µ1

)
r̃13 + r̃43 + r̃53 . (129)

We see that our final model requires the four coefficients {r̃13, r̃43, r̃53, r̃61} to completely determine

the creation rates Γx and the independent resistivity RN
a . Notably, as w̃a

PN → 0 (all the fluids are

comoving) then RN
a → 0 and Γx → 0. Any further development of this model would require

microscopic modeling of specific systems to determine the four coefficients.

6. The “Newtonian” Limit

In order to make contact with existing work on two-temperature plasmas, which is mainly in the

Newtonian setting, we will now work out the “Newtonian limit” of our equations. Poisson and Will

[38] point out that when gravity is formulated as a metric theory, then the limit we are imposing is to

be understood as the first-order correction to flat spacetime, which is not, a priori, the same thing as

Newtonian gravity, which is based on forces and action-at-a-distance.

Our definition of the “Newtonian limit” includes the following criteria: a) The particles are

moving much slower than the speed of light c; b) the gravitational field is “weak”, meaning it is a

linear perturbation away from flat spacetime (Rc
dab = 0); and, c) the gravitational field is static. The

latter two criteria will be imposed by an expansion of N, Na, and hab away from flat spacetime. Some

of this work is presented in Appendix C, where we have taken the 3 + 1 formulas, and adapted them

to a coordinate system such that the time coordinate x̄0 = ct, where recall t (x̄a) is the scalar field from

which the spacelike hypersurfaces of the foliation are constructed.

It is still an open question as to whether or not Newtonian gravity is a subset of this limit of

General Relativity, or if it is all inclusive. Philosophical issues aside, we take a practical point-of-view,

which is to impose the criteria a), b), and c) above on the field equations and thereby extract the terms

which formally survive the limit. It then becomes a question of the particular physical scenario to

which the field equations are being applied as to whether or not all of the remaining terms are required.

6.1. The Metric Expansion and Linear Corrections to Flat Spacetime

In order to take the Newtonian gravitational limit of the Einstein equations, we will need to

analyze the left- and right-hand-sides separately. Here we will be setting up the left-hand-sides of the

Hamiltonian and Momentum constraints — Eqs. (108) and (109), respectively — and the evolution

Eq. (110). We simplify the equations by taking the x̄i to be Cartesian coordinates.

A linear expansion of the metric away from flat spacetime takes the form

gab = ηab + δgab , (130)

where ηab = diag [−1, 1, 1, 1] is the Minkowski metric and the components of δgab are taken to be small,

meaning that we ignore any terms of the form δgabδgcd, δgab∇cδgde, and so on. The flat-spacetime

pieces of the metric are N = c, Ni = 0, and hij = δij = diag [1, 1, 1]. The flat spacetime plus linear

perturbations metric pieces are

N = c + δN , (131a)

Ni = δNi , δNi = δijδNi , (131b)

hij = δij + δhij . (131c)

These expansions will be inserted into the left-hand-sides of Eqs. (108), (109), and (110), keeping only

the first-order terms.
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But before we take that step, it is important to note that the Einstein equations have a “gauge”

symmetry that basically comes from their coordinate invariance (or, more formally, diffeomorphism

invariance). We employ that here by using the harmonic gauge, which takes the form

∂b

(
δgba − 1

2
ηbaηcdδgcd

)
= −

(
ηacη jd +

1

2
ηajηcd

)
∂jδgcd = 0 , (132)

where we have used

δgab = −ηacηbdδgcd . (133)

In terms of the 3 + 1 decomposition, we have

δgab =

[
− 2

c δN 1
c δNi

1
c δNi δhij

]
, (134)

and so the gauge condition leads to

0 = ∂iδNi , (135a)

0 = ∂jδhij + ∂i

(
1

c
δN +

1

2
δh

)
, (135b)

where δh = δijδhij. The unit normal to the hypersurfaces ua, the acceleration aa, and non-zero

components of the projection operator ⊥b
a become, respectively,

ua =
(

c − δN, δNi
)

, ua = (−c − δN, 0, 0, 0) , (136a)

aa =
(

0, c∂iδN
)

, aa = (0, c∂iδN) , (136b)

⊥i
0 =

1

c
δNi , ⊥j

i= δ
j
i . (136c)

In order to build (3)Rl j, we need to know the (3)Γi
jk. Taking Eq. (C.10), and substituting in the

expansions above, while keeping only the linear terms, we find

(3)Γi
jk =

1

2
δil
(

∂jδhlk + ∂kδhl j − ∂lδhjk

)
. (137)

The gauge choice leads to K = 0, but there remain linear-order Kij terms, which are

Kij =
1

2

(
∂iδNj + ∂jδNi

)
. (138)

We find that the linearized forms for (3)Rl j and (3)R are

(3)Rij =
(3)Γk

ij,k − (3)Γk
ik,j = −∂i∂j

(
1

c
δN + δh

)
− 1

2
∂k∂kδhij , (139a)

(3)R = δij(3)Rij = −∂i∂
i

(
1

c
δN +

3

2
δh

)
, (139b)
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The left-hand-sides of Eqs. (108), (109), and (110), respectively, now become

(3)R +
1

c2
K2 − 1

c2
KabKab = −∂i∂

i

(
1

c
δN +

3

2
δh

)
, (140a)

Dj

(
K j

i − Kδ
j
i

)
=

1

2
∂j∂

jδNi , (140b)

− 1

c2
LuKij −

1

N
DiDjN + (3)Rij +

1

c2
KKij −

2

c2
KikKk

j

= −∂i∂j

(
2

c
δN + δh

)
− 1

2
∂k∂kδhij . (140c)

6.2. Newtonian Limit of the Fluid/Plasma and 3 + 1 Energy-Momentum-Stress Tensor Components

The main approximations for the flux variables are that their relative speeds ũa must be much

less than the speed of light—we neglect terms of order O
(
ũ2

x/c2
)

and higher—and energies that scale

with c2 (such as the rest-mass energy densities mxc2nx) are much bigger than other energy densities.

The typical leading-order terms in the Master function Λ are the rest-mass energy densities, and so it

is convenient to re-fashion Λ as a sum of mxc2nx and an “internal energy” density U (having the same

functional dependence as Λ):

− Λ = ∑
x

mxc2nx + U . (141)

We assume that entropy has zero rest-mass, but because of entrainment, it does have an effective mass

with a leading-order term proportional to c2 and it enters the field equations through its inclusion in U
[cf. Eq. (145b)].

We need to first consider the Newtonian limit of the momenta, as given in Eq. (94), but with the Bx

and Axy computed using the rewritten Λ of Eq. (141). We will also reintroduce the notation that splits

the particle number fluxes into the matter na
x and the entropy sa

x̄ pieces, and the momenta into µx
a and

Θx̄
a . Here, the constituent indices for the matter are without a bar and range over x, y, . . . = {η,P ,N},

whereas the indices with a bar are for the thermal pieces and range over x̄, ȳ, . . . = {η̄, P̄ , N̄ }. In

order to generate the momentum coefficients, we have five different sets of scalars which can appear

in the Λ: the first two are n2
x = −gabna

xnb
x/c2 and n2

xy = −gabna
xnb

y/c2 = n2
yx, for which y 6= x; the next

two are s2
x̄ = −gabsa

x̄sb
x̄/c2, s2

x̄ȳ = −gabsa
x̄sb

ȳ/c2 = s2
ȳx̄, for which ȳ 6= x̄; and the last is the mixed term

m2
xȳ = −gabna

xsb
ȳ/c2 = m2

ȳx.

A variation of the re-formulated Λ yields the coefficients

Bx =
mx

nx
+

1

c2nx

∂U
∂nx

, (142a)

S x̄ =
1

c2sx̄

∂U
∂sx̄

, (142b)

Bxy =
1

c2

∂U
∂n2

xy
, (142c)

S x̄ȳ =
1

c2

∂U
∂s2

x̄ȳ

, (142d)

Mxȳ =
1

c2

∂U
∂m2

xȳ

, (142e)
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which combine together to give

µx
a =

1

nx

(
mx +

1

c2

∂U
∂nx

)
nx

a + ∑
y 6=x

Bxyn
y
a + ∑

ȳ

Mxȳs
ȳ
a , (143a)

µx =

(
mx + ∑

y 6=x

Bxy
n2

xy

nx
+ ∑

ȳ

Mxȳ
m2

xȳ

sȳ

)
c2 +

∂U
∂nx

, (143b)

Θx̄
a = S x̄sx̄

a + ∑
ȳ 6=x̄

S x̄ȳs
ȳ
a + ∑

y

Mx̄yn
y
a , (143c)

Tx̄ =

(

∑
ȳ 6=x̄

S x̄ȳ
s2

x̄ȳ

sx̄
+ ∑

y

Mx̄y
m2

x̄y

sx̄

)
c2 +

∂U
∂sx̄

. (143d)

In 3 + 1 form we have

µ̃x
a =

µ̃x

c2
ũx

a + ∑
y 6=x

Bxyñyw̃
yx
a + ∑

ȳ

Mxȳ s̃ȳw̃
ȳx
a , (144a)

µ̃x = m̃xc2 +
∂U
∂nx

γ̃x , (144b)

Θ̃x
a =

T̃x̄

c2
ũx̄

a + ∑
ȳ 6=x̄

S x̄ȳ s̃ȳw̃
ȳx̄
a + ∑

y

Mx̄yñyw̃
yx̄
a , (144c)

T̃x̄ = m̃x̄c2/kB +
∂U
∂sx̄

, (144d)

where we have defined

m̃x = mxγ̃x + ∑
y 6=x

Bxyñy + ∑
ȳ

Mxȳ s̃ȳ , (145a)

m̃x̄ = kB

(

∑
ȳ 6=x̄

S x̄ȳ s̃ȳ + ∑
y

Mx̄yñy

)
. (145b)

We can get a handle on the lowest order impact of the condition ũx
a ũa

x ≪ c2 by expanding the

parameters n2
x, n2

xy, s2
x̄, s2

x̄ȳ, and m2
xȳ:

n2
x = ñ2

xγ̃−2
x ≈ ñ2

x

(
1 − ũx

i ũi
x/c2

)
, (146a)

n2
xy = − 1

c2
nxnygabua

xub
y ≈ ñxñy

(
1 − ũx

k ũk
y/c2

)
, (146b)

s2
x̄ = s̃2

x̄γ̃−2
x̄ ≈ s̃2

x̄

(
1 − ũx̄

i ũi
x̄/c2

)
, (146c)

s2
x̄ȳ = − 1

c2
sx̄sȳgabua

x̄ub
ȳ ≈ s̃x̄ s̃ȳ

(
1 − ũx̄

k ũk
ȳ/c2

)
, (146d)

m2
xȳ = − 1

c2
nxsȳgabua

xub
ȳ ≈ ñx s̃ȳ

(
1 − ũx

k ũk
ȳ/c2

)
. (146e)

We see from this that the differences ñ2
x − n2

x, ñxñy − n2
xy, etc. are small. The expansion of Λ gives

−Λ ≈ ∑
x

mxc2ñx + Uo

(
ñ2

x, s̃2
x̄

)

−1

2 ∑
x

[
1

ñx

(
mx +

∂
(
U/c2

)

∂nx

∣∣∣∣∣
o

)
ñx

i + ∑
y 6=x

Bxy
o ñ

y
i + ∑

ȳ

Mxȳ
o s̃

ȳ
i

]
ñi

x

−1

2 ∑
x̄

[
1

s̃x

∂
(
U/c2

)

∂sx̄

∣∣∣∣∣
o

s̃x̄
i + ∑

ȳ 6=x̄

S x̄ȳ
o s̃

ȳ
i + ∑

y

Mx̄y
o ñ

y
i

]
s̃i

x̄ , (147)
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where the “o” subscript means the quantity is evaluated for the ratio ũx
i ũi

x/c2 → 0. Because of effective

mass effects, the combination U/c2 as it appears in, say, Bxy
o is not necessarily small.

The limiting form of the generalized pressure Ψo [cf. Eq. (55)] is

Ψo = −Uo + ∑
x

(
µ̃x|o − mxc2

)
ñx + ∑

x̄

T̃x̄

∣∣
o

s̃x̄ , (148)

and the 3 + 1 total energy density E, momentum Pa, and stress Sab tend towards the values

Eo → ∑
x

mxc2ñx , (149a)

Pi
o → ∑

x

µ̃xñx

(
ũi

x/c
)
+ ∑

x̄

T̃x̄ s̃x̄

(
ũi

x̄/c
)
+

1

µo

(
ǫ̃ijkẼj B̃k/c

)
→ 0 , (149b)

S
ij
o → ∑

x

(
m̃xũ

j
x + ∑

y 6=x

Bxy
o ñyw̃

j
yx + ∑

ȳ

Mxȳ
o s̃ȳw̃

j
ȳx

)
ñxũi

x

+ ∑
x̄

(
m̃x̄ũ

j
x̄ + ∑

ȳ 6=x̄

S x̄ȳ
o s̃ȳw̃

j
ȳx̄ + ∑

y

Mx̄y
o ñyw̃

j
yx̄

)
s̃x̄ũi

x̄

+

(
Ψo +

1

2µo
B̃2

)
hij − 1

µo
B̃i B̃j . (149c)

We have assumed that the so-called “~E × ~B” drift velocity for plasmas, i.e., ~vdr = ~E × ~B/|~B|2 must be

small with respect to c. This leads to the constraint that |~vdr| ∼ |~E|/|~B| ≪ c. We have assumed also

that {Uo, B̃i B̃j/µo} ≪ m̃xc2nx.

6.3. The Field Equations

To obtain the limiting form of the Einstein equation, we first work out the leading-order of the

right-hand-sides of Eqs. (108), (109), and (110):

16πG

c4
Eo → 16πG

c2 ∑
x

mxñx , (150a)

8πG

c3
Pi

o → 0 , (150b)

8πG

c4
S

ij
o → 0 , (150c)

8πG

c4
So → 0 . (150d)

Here, a factor of 1/c2 combines with the velocity terms ũi
xũ

j
y to drive to zero the stress terms S

ij
o and

So; the same factor drives Ψo/c2 → 0. The limiting forms of the Einstein equation components are

−∂i∂
i

(
1

c
δN +

3

2
δh

)
≈ 16πG

c2 ∑
x

mxñx , (151a)

1

2
∂j∂

jδNi ≈ 0 , (151b)

−∂i∂j

(
2

c
δN + δh

)
− 1

2
∂k∂kδhij ≈

4πG

c2

(

∑
x

mxñx

)
hij . (151c)

If we take the trace of Eq. (151c), we can solve for ∂i∂
iδh. Substituting this into Eq. (151a) gives

∂i∂
iΦ ≈ 4πG ∑

x

mxñx , (152)
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where cδN ≡ Φ is the standard gravitational potential. As a check of this identification we note that

the geodesic equation — ub
p∇bua

p = 0, where ua
p is a point particle four-velocity — gives in this limit

d2xi

dt2
≈ −c2Γi

00 = −c2∂i

(
1

c
δN

)
= −∂iΦ = ai , (153)

where the last equality follows from Eq. (136b).

Using again the trace Eq. (151c), but substituting it into Eq. (152), then we find (to consistent order

in c)

∂i∂
iδh ≈ 0 , (154)

which then implies

∂k∂kδhij ≈ 0 . (155)

In this Newtonian context, we assume our system has compact support and is such that an

asymptotically flat infinity exists for which δNi → 0 and δhij → 0. Given that they both satisfy

the Laplace equation it is consistent to have δNi = 0 and δhij = 0 everywhere.

With this, we can implement now the limit of the fluid/plasma equations. Taking into account the

fact that µ̃x/c2 and T̃x̄/c2 can have non-zero terms in the limit ũi
x/c → 0, then the individual pieces of

the fluid/plasma equations in Eqs. (111a) — (111f) and the projections of the final form of RN
a given in

Eq. (128) become

ua f x
a = −ñi

x

(
∂µ̃x

i

∂t
+ ∂iµ̃x

)
− m̃xñxũi

xai + j̃ixẼi , (156a)

ua f x̄
a = −s̃i

x̄

(
∂Θ̃x̄

i

∂t
+ ∂iT̃x̄

)
− m̃x̄ (s̃x̄/kB) ũi

x̄ai , (156b)

⊥j
i f x

j = ñx

(
∂

∂t
+ ũ

j
x∂j

)
µ̃x

i − ñ
j
x∂iµ̃

x
j + ñx∂iµ̃x + m̃xñxai

−
(

σ̃xẼi + ǫ̃ijk j̃
j
xB̃k
)

, (156c)

⊥j
i f x̄

j = s̃x̄

(
∂

∂t
+ ũ

j
x̄∂j

)
Θ̃x̄

i − s̃
j
x̄∂iΘ̃

x̄
j + s̃x̄∂iT̃x̄ + m̃x̄ (s̃x̄/kB) ai , (156d)

(−uaµx
a) Γx = µ̃x

(
∂ñx

∂t
+ ∂iñ

i
x

)
+ m̃xñxũi

xai , (156e)

(
−uaΘx̄

a

)
Γx̄ = T̃x̄

(
∂s̃x̄

∂t
+ ∂i s̃

i
x̄

)
+ m̃x̄ (s̃x̄/kB) ũi

x̄ai , (156f)

(
⊥j

i µx
j

)
Γx =

(
∂ñx

∂t
+ ∂jñ

j
x

)
µ̃x

i +
1

c2
ñ

j
xajµ̃

x
i , (156g)

(
⊥j

i Θx̄
j

)
Γx̄ =

(
∂s̃x̄

∂t
+ ∂j s̃

j
x̄

)
Θ̃x̄

i +
1

c2
s̃

j
x̄ajΘ̃

x̄
i , (156h)

ua
(

RN
a − qN ΓN Aa

)
= −2

[(
2r̃61 −

γ̃P
γ̃N

µ3

µ1

r̃13

)
w̃i
PN + r̃N ũi

N

]
w̃PN

i + qN ṼΓN , (156i)

⊥j
i

(
RN

j − qN ΓN Aj

)
= r̃N w̃PN

i − qN ΓN Ãi . (156j)
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The Maxwell equations and the continuity equation take the expected form of

∂i Ẽ
i = c2µoqP (ñP − ñN ) , (157a)

ǫ̃i
jk∂j B̃k = µoqP

(
ñi
P − ñi

N
)
+

∂Ẽi

∂t
, (157b)

∂i B̃
i = 0 , (157c)

ǫ̃ijk∂jẼk = −∂B̃i

∂t
, (157d)

∑
x

(
∂i j̃

i
x +

∂σ̃x

∂t

)
= 0 . (157e)

6.4. The Final Fluid/Plasma Newtonian Equations

Now we will write the final set of field equations so that we can point to some differences with

those of the extant literature (such as [39,40]). We have clearly recovered the Newton equation for

gravity and the Maxwell equations. The last thing is to collect all the fluid/plasma pieces to write the

final form of their equations. To get the spirit of their role, we will assume that the gravitational and

electromagnetic terms are known.

In total, we have to determine the six components ũi
η̄ = ũi

P̄ = ũi
η = ũi

P and ũi
N̄ = ũi

N , as well as

the six scalars {ñx, s̃x̄}. Once the components
{

ũi
P , ũi

N
}

are known, then we can use the divergence

formulas in Eqs. (125a)–(125f), taken in combination with Eqs. (156e) and (156f), to determine the six

scalars. Likewise, we can use the non-relativistic limit of the Euler Eqs. (58) and (59) to determine{
ũi
P , ũi

N
}

if the six scalars are known.

Using the sum of the non-relativistic forms of Eqs. (58) and (59) as the first Euler equation and

keeping the non-relativistic form of Eq. (59) as the second, we find

0 = ∑
x

[
ñi

x

(
∂µ̃x

i

∂t
+ ∂iµ̃x

)
+ Γxµ̃x

]
+ ∑

x̄

[
s̃i

x̄

(
∂Θ̃x̄

i

∂t
+ ∂iT̃x̄

)
+ Γx̄T̃x̄

]

+

[

∑
x

m̃xñxũi
x + ∑

x̄

m̃x̄ (s̃x̄/kB) ũi
x̄

]
ai + ∑

x

j̃ixẼi , (158a)

0 = ñi
N

(
∂µ̃N

i

∂t
+ ∂iµ̃N

)
+
(
µ̃N − µN + qN Ṽ

)
ΓN + s̃i

N̄

(
∂Θ̃N̄

i

∂t
+ ∂iT̃N̄

)

+
(
T̃N̄ − TN̄

)
ΓN̄ + [m̃N ñN + m̃N̄ (s̃N̄ /kB)] ũi

N ai + j̃iN Ẽi − 2r̃N ũi
N w̃PN

i , (158b)

0 = ∑
x

[
ñx

(
∂

∂t
+ ũ

j
x∂j

)
µ̃x

i + Γxµ̃x
i

]
+ ∑

x̄

[
s̃x̄

(
∂

∂t
+ ũ

j
x̄∂j

)
Θ̃x̄

i + Γx̄Θ̃x̄
i

]

+

[

∑
x

m̃xñx + ∑
x̄

m̃x̄ (s̃x̄/kB)

]
ai + ∂iΨ − ∑

x

(
σ̃xẼi + ǫ̃ijk j̃

j
xB̃k
)

, (158c)

0 = ñN

(
∂

∂t
+ ũ

j
N ∂j

)
µ̃N

i + ΓN µ̃N
i + ñN ∂iµ̃N − ñ

j
N ∂iµ̃

N
j

+ s̃N̄

(
∂

∂t
+ ũ

j
N ∂j

)
Θ̃N̄

i + ΓN̄ Θ̃N̄
i + s̃N̄ ∂iT̃N̄ − s̃

j

N̄ ∂iΘ̃
N̄
j

+ [m̃N ñN + m̃N̄ (s̃N̄ /kB)] ai − 2r̃N w̃PN
i + qN ΓN Ãi −

(
σ̃N Ẽi + ǫ̃ijk j̃

j
N B̃k

)
, (158d)

where we have used Eq. (57) to infer

∂iΨ = ∑
x

(
ñx∂iµ̃x − ñ

j
x∂iµ̃

x
j

)
+ ∑

x̄

(
s̃x̄∂iT̃x̄ − s̃

j
x̄∂iΘ̃

x̄
j

)
. (159)
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The obvious difference with the current literature is the impact of entrainment. We see that its

effect of “tilting” the fluid momenta for the particles has survived the non-relativistic limit. Something

else that survives is the entropy momentum. An unanticipated difference is the coupling of the particle

m̃x and thermal m̃x̄ effective masses to gravity (via the acceleration ai).

Tracing back, it is the presence of n2
xy in Λ that leads to m̃x and m̃x̄ in the first place. Given the

approach taken here, there is no a priori, generic principle for why the entrainment pieces in the

gravitational couplings should be negligible; obviously they survive the c → ∞ limit. In the absence of

a generic principle for why it should be, say, mx and not m̃x that couples to gravity one must rely on

the microscopic details of the particular system to be modelled. The difference between m̃x and mx can

be assessed and then compared with the “smallness” of other approximations in the model.7

7. Conclusions and Follow-On Work

We have presented an action principle which yields, from start to finish, the field equations

for a dissipative/resistive general relativistic two-fluid two-temperature plasma, with a neutrally

charged component. The model is distinct from previous general relativistic formulations of the

two-temperature plasma system (some of which are cited throughout the text), none of which rely on

action principles, as far as we know.

Due to the very nature of action principles, the couplings between the fields are self-consistently

incorporated into the full suite of field equations. For example, Tab follows automatically from the fields

and couplings built into the total action, and its covariant divergence ∇bTb
a vanishes identically when

the field equations are satisfied; i.e. ∇bTb
a = 0 is not itself an equation of motion, but rather an identity

(as it should be because of diffeomorphism invariance). Along these same lines, we have shown

how the formal inclusion of terms like n2
xy in the fluid action naturally leads to entrainment between

different fluids and effective masses for particles and entropy. We have also seen that electromagnetic

gauge issues are automatically accounted for by the internal consistency of the overall formalism.

Because of the fact that systems containing plasmas occur across many independent branches of

physics, we made an effort to provide a, more or less, self-contained presentation. This is especially

true for the 3 + 1 decomposition discussion, which includes steps that are textbook material. However,

while these steps are well-known in the general relativity community, they may well be new to other

readers. Moreover, one of our main goals was to derive the Newtonian limit in a self-consistent way.

This way we recovered field equations very much like those in the extant literature, but we also saw a

new element emerge: the effective mass of entropy.

By developing the framework from the fibration picture into 3 + 1 language, a step was taken

towards a practical implementation of a two-temperature plasma within a general relativistic numerical

simulation, as needed for neutron-star merger. There are, however, many further steps that are required.

As noted in [32], as soon as an entrained multifluid system is constructed from this action approach,

not all the equations of motion can be written in a conservation law form. Standard approaches for

numerically evolving solutions with discontinuities, particularly the shocks forming during mergers,

then do not apply. Instead, path-conservative methods are required (see, e.g., [41] for a brief review).

However, these methods require a deeper understanding of the correct form of the dissipative terms

appropriate to the model. Whilst the form of these terms can be deduced from the action framework,

as detailed in [17], we have not taken those steps here. Furher work in this direction is required.

Moving forward there are several things that should be done: The first step would be to analyze

local waves and modes of oscillation, to get a basic understanding of the stability/instability properties

of the system. This would provide some insight on when the temperature difference is driven to zero

or forced to diverge. Another step would be to allow for the additional terms in the fluid action that

7 For example, the relativistic entrainment model of [26] can be used to show that the fractional percentage difference between
the effective m̃n and bare mn neutron masses in neutron stars has a range of (m̃n − mn) /mn ∼ 1% − 10%.
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lead to bulk and shear viscosity, so as to tackle the numerical evolution issue raised above. Finally, a

post-Newtonian expansion of the field equations will further unravel the role of (particle and entropy)

effective masses and their coupling to the gravitational field. This may shed further light on the

relevance of the entropy entrainment.

Appendix A. Gauge Invariance, Charge Conservation, and ∇bTba = 0

The Coulomb piece SC [cf. Eq. (27)] has a direct coupling of the four-potential Aa to the total

charge current flux ja. This leads to the situation where the total action S is a priori not gauge-invariant.

Of course, the resolution is a well-established process—insist on gauge-invariance for the total action

and see where this leads you.

Start by considering a variation of the total action, where the vector potential variation takes the

form

δAa = ∇aδφ , (A.1)

and the other field variables have zero variation; i.e.ξa
x = 0 and δgab = 0. So even though Rx

a acquires

the gauge piece Gx
a [cf. Eq. (71)] it does not enter the calculation. The total action variation is

δS = − 1

4π

∫

M
d4x

√
−g

(
∇bFab − 4π ∑

x

ja
x

)
∇aδφ

= − 1

4π

∫

M
d4x

√
−g∇a

(
∇bFab − 4π ∑

x

ja
x

)
δφ , (A.2)

and therefore

∇a

(
∇bFab

)
= 4π ∑

x

ex∇ana
x = 4π ∑

x

exΓx . (A.3)

Note that the antisymmetric combination of covariant derivatives acting on two-index objects (in

this case, Fab) is

∇a∇bFc
d −∇b∇aFc

d = Rc
eabFe

d − Re
dabFc

e ; (A.4)

therefore,
1

4π
∇a

(
∇bFab

)
=

1

4π
RabFab ≡ 0 , (A.5)

since Rab is symmetric in its indices and Fab is antisymmetric. Hence, we find charge conservation in

the form

∑
x

qxΓx = ∑
x

∇a ja
x = 0 . (A.6)

If we take the field equations, and Eqs. (66) and (35), we find that

∇bTb
a = ∇b

[
Ψδb

a + ∑
x

nb
xµx

a −
1

16π

(
FcdFcdδb

a − 4FbcFac

)]

= ∑
x

Rx
a +

(

∑
x

qxΓx

)
Aa ≡ 0 ; (A.7)

hence, ∇aTab vanishes identically (as expected because of diffeomorphism invariance [14]).

Appendix B. 3 + 1 Projections of Riemann and the Einstein Equations

In order to develop the 3+ 1 form of the Einstein equations we need to work out certain projections

of the full, four-dimensional Riemann tensor. The first projection is to “hit” each free index of Rc
dab

with ⊥b
a. We derive this indirectly, however, by inserting Eq. (82) into Eq. (83) and then manipulating
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the terms until the left-hand-side of Eq. (29) (evaluated on ṽa) appears. This leads to a relation where

each term is contracted with ṽa, and since ṽa is arbitrary [33], we obtain the Gauss Relation:

⊥g
a⊥e

b⊥c
f⊥h

d R f
hge =

(3)Rc
dab + Kc

aKbd − Kc
bKad . (B.1)

The second projection is to hit each free index of the Ricci tensor with ⊥b
a. This is also acquired

indirectly, but this time by setting a = c in Eq. (B.1); i.e.

⊥c
a⊥d

b Rcd + hac ⊥d
b ueu f Rc

f de =
(3)Rab + KKab − KacKc

b , (B.2)

where (3)Rab = (3)Rc
acb. Finally, we can take the trace of Eq. (B.2) with gab and show that the Ricci

Scalar satisfies

R + 2uaubRab = (3)R + K2 − KabKab , (B.3)

where (3)R = hab
(3)Rab.

We see from Eq. (62) that there are three independent projections to make:

uaubRab = 8πuaub

(
Tab −

1

2
Tgab

)
, (B.4a)

ub ⊥c
a Rbc = 8πub ⊥c

a

(
Tbc −

1

2
Tgbc

)
, (B.4b)

⊥c
a⊥d

b Rcd = 8π ⊥c
a⊥d

b

(
Tcd −

1

2
Tgcd

)
. (B.4c)

To work out the left-hand-side of Eq. (B.4a), we use the fact that R = −8πT and insert it into Eq. (B.3).

This then leads to the so-called “Hamiltonian Constraint”; i.e.,

(3)R + K2 − KabKab = 16πuaubTab ≡ 16πE . (B.5)

To determine the left-hand-side of Eq. (B.4b), we replace vc with uc in Eq. (29), project onto the free

indices with the combination ⊥a
c⊥b

e , and eventually arrive at the “Momentum Constraint”; i.e.,

Db

(
Kb

a − Kδb
a

)
= 8πPa . (B.6)

Lastly, we determine the left-hand-side of Eq. (B.4c) by again replacing vc with uc in Eq. (29), but this

time projecting onto the free indices with the combination hecnb ⊥a
f . Using this projection in tandem

with Eqs. (84) and (89) leads to

hac ⊥d
b ueu f Rc

f de = LuKab +
1

N
DaDbN + KacKc

b , (B.7)

which can be substituted into Eq. (B.2) to give the remaining bits of the Einstein equation, which are

−LuKab −
1

N
DaDbN + (3)Rab + KKab − 2KacKc

b = 8π

[
Sab −

1

2
(S − E) hab

]
. (B.8)

Appendix C. The 3 + 1 Coordinates

We now take t to be the time coordinate and take the set xi, i, j, ... = {1, 2, 3} which are Lie-dragged

by ta from slice-to-slice of the foliation to be the spatial coordinates; i.e.

£tx
i = ta∇axi ≡ dxi

dt
= 0 . (C.1)
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Next, we introduce the coordinate transformation

x̄a = f a
(

t, xi
)

⇒ dx̄a =
∂ f a

∂t
dt +

∂ f a

∂xi
dxi . (C.2)

In the new coordinates we have

ta =
dx̄a

dt
=

∂ f a

∂t

dt

dt
+

∂ f a

∂xi

dxi

dt
=

∂ f a

∂t
. (C.3)

Hence,

dx̄a = (Nua/c + Na)dt +
∂ f a

∂xi
dxi , (C.4)

and the proper distance between spacetime points is given by

ds2 = gab

[
(Nua/c + Na)dt +

∂ f a

∂xi
dxi

] [(
Nub/c + Nb

)
dt +

∂ f b

∂xj
dxj

]

= − 1

c2

(
N2 − Ni N

i
)

d (ct)2 + 2
1

c
Nid (ct)dxi + hijdxidxj . (C.5)

where

Ni = Na
∂ f a

∂xi
= hijN

j , (C.6)

hij = hab
∂ f a

∂xi

∂ f b

∂xj
, hikhkj = δi

j . (C.7)

Now we can write for the metric

gab =

[
−
(

N2 − Ni N
i
)

/c2 Ni/c

Ni/c hij

]
,

gab =

[
− c2

N2
c

N2 Ni

c
N2 Ni hij − 1

N2 Ni N j

]
. (C.8)

Taking into account Eq. (79), the flow-of-time vector ta, unit normal ua, shift Na, and acceleration aa

become

ta = [c, 0, 0, 0] , ta =
[

Ni N
i/c − N2/c, Ni

]
, (C.9a)

ua =

[
c

c

N
,−c

Ni

N

]
, ua = [−N, 0, 0, 0] , (C.9b)

Na =
(

0, Ni
)

, Na =
(

NjN
j, Ni

)
, (C.9c)

aa =
[
0, c2∂i ln (N/c)

]
, aa =

[
0, c2∂i ln (N/c)

]
, (C.9d)

The Christoffel symbol (3)Γi
jk associated with Di is given by

(3)Γi
jk =

1

2
hil
(

∂jhlk + ∂khl j − ∂lhjk

)
. (C.10)

The extrinsic curvature Kab components are

K00 =
1

c2
Ni N jKij . K0i =

1

c
N jKij , Kij =

c

2N

(
Di Nj + DjNi −

∂

∂t
hij

)
. (C.11)
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The Riemann tensor, Ricci tensor, and Ricci scalar of the leaves of the foliation are

(3)Rk
lij =

(3)Γk
lj,i − (3)Γk

li,j +
(3)Γm

lj
(3)Γk

mi − (3)Γm
li
(3)Γk

mj , (C.12a)

(3)Rij =
(3)Γk

ij,k − (3)Γk
ik,j +

(3)Γl
ij
(3)Γk

lk − (3)Γl
ik
(3)Γk

lj , (C.12b)

(3)R = hij(3)Rij . (C.12c)
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