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Abstract: In this work we introduce an end-to-end multi-modal neural network to segment the Gross 1

Tumor Volume (GTV) from 3D-CBCT’s during radiotherapy. We improve the tumor segmentation by 2

using a U-net which takes additional information such as the tumor mask generated at the planning 3

phase along with the CBCT volume. The mask contains relevant information about the tumor’s 4

location and can guide the model to use this knowledge appropriately to give a better prediction. This 5

technique could become an alternative to produce segmentation masks of GTV in CBCT automatically 6

during radiotherapy as in the traditional RT-pipeline, they are not segmented. We have evaluated 7

our model on a dataset of 82 patients who have undergone radiotherapy. We compare the results 8

of registered target volumes from planning CT as mask seed with 2 different types of multi-modal 9

architectures. Our model shows a DSC of 0.706±0.002 with Late Fusion and 0.702±0.015 with Early 10

Fusion using the GTV Mask. The performance of the two models on this mask is similar, so we 11

perform further experiments with different types of masks which suggest that Late Fusion model 12

produces a better segmentation of the tumor than the Early Fusion model. We also provide an ablation 13

study consisting of a single modality U-net and a metric based on the Planning CT mask registration. 14

It indicates a clear advantage of using our model to produce segmentation for this type of imaging. 15

Keywords: Deep Learning; Semantic Segmentation; Radiotherapy; Multimodality 16

1. Introduction 17

Lung cancer is the leading cause of cancer related deaths which contributes upto 18% 18

of the total deaths which is estimated to be around 1.8 million [1]. Around 30-60% of 19

patients having lung cancer go through radiotherapy during their treatment [2]. Increased 20

dosage of X-rays on the cancer cells can break and destabilise its DNA (healthy cells are 21

also disturbed but have better recovery mechanism) and hence can stop them from growing 22

and might be able to reduce their volumes. [3]. There are multiple phases in classical 23

Radiotherapy pipeline such as the simulation, planning, and delivery [4]. In the planning 24

phase, a CT is acquired and annotated by experts to provide the accurate delineation of 25

the target and the organs at risk volume. Subsequently a plan is formulated and the shape 26

of the beams is calculated by inverse methods which could provide the prescribed dose 27

distribution. In the delivery phase, radiation is applied to the targeted region, while a 28

pre-treatment CBCT is acquired for accurate positioning of the patient’s bone anatomy with 29

the treatment couch. Figure 1 shows the classical radiotherapy pipeline. In this framework, 30

CBCT delineations, if existing, are never used. With the rise of new technology and 31

approaches such as Adaptive Radiotherapy(ART), it might be useful to segment CBCT’s. 32

ART is used to manage the change in the anatomical/functional structures which could be 33

caused due to various factors such as weight loss in the patient, shrinkage in the targeted 34
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area or inflammation in the patient’s body. Re-planning is a procedure in the course of ART 35

which selects the appropriate patient who could benefit by adopting a new plan and the 36

correct stage at which there is significant change in the anatomy. Since CBCT’s are the most 37

recent images of the patient and they can guide us with the evolution of the tumor from the 38

planning CT, it is important to acquire its segmentation for further analysis of the growth 39

of the tumor. 40
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Figure 1. Traditional Radiotherapy showing the Planning and the Delivery of the Treatment

Automatic Delineation of the Tumor Volumes(TV) in CBCT can be useful to make 41

an automated decision about re-planning, without the extra burden on the medical staff. 42

Deformable Image Registration(DIR) is used for this purpose in which the Planning CT is 43

deformed to resemble the target image and then the same transformations are applied on 44

the Planning CT-masks which could give a close approximate of the target mask. Although 45

the quality of the segmentation highly depends on the type of registration, and the Planning 46

CT’s closeness to the daily image [5], moreover this method does not produce the perfect 47

segmentation of the CBCT and manual intervention is required to correct the contours. 48

CT-CBCT registration creates further problems as there are inconsistent intensities and so 49

an intensity correction of a voxel in CBCT is required [6]. Furthermore issues such as tumor 50

shrinkage from the time the CT had been taken, inter and intra observer segmentation 51

variability of the CT-mask needs to be taken care. Deep Learning architectures have been 52

getting more and more popular in the medical field. Convolutional Neural Networks 53

provide an elegant and efficient way to learn both a feature extraction model and a decision 54

model in an end-to-end manner [7]. With the use of gpu programming and extracting par- 55

allelism in training, we are able to train deeper networks [8] and architectures which could 56

be used for a wide range of problems such as classification, semantic segmentation, object 57

detection, domain adaptation and generative models. U-net architecture is very popular in 58

medical imaging for semantic segmentation [9]. It is a fully convolutional network where 59

a pixel-wise loss is calculated between the ground-truth and the prediction. The main 60

contribution of U-nets and the reason for its popularity are its long skip connections. ie. 61

The down-sampled feature maps are concatenated with the up-sampled feature maps. The 62

skip connection provides another way for the gradient to flow and it helps the network to 63

learn the lower level features which might get corrupted in case of auto-encoders. These 64

networks can be used for 3D-Data [10] as well, where we just replace the 2D-Convolution 65

and 2D-Max-pooling with a 3D-Convolution and 3D-Max-pooling respectively. 66
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Figure 2. Overview of the proposed pipeline for tumor volume segmentation

1.1. Proposition 67

Segmentation in CBCT is difficult due to soft tissue contrast and presence of scatter 68

artifacts. Due to these reasons it is difficult to perform a DIR between CT and CBCT. 69

Furthermore, it can be seen from our experiments that using a single modality Unet might 70

not be sufficient enough to delineate GTV in CBCT. Although it is important to delineate 71

CBCT for various tasks, there is no clear efficient method which is standardised or is being 72

practiced. In this work, our contributions are as follows - 73

• We propose a multi-modal neural-network which uses CBCT and a registered CT- 74

Mask produced during Planning phase(as shown in Figure 2) to train an end-to-end 75

3D U-net to automatically delineate the Gross Tumor Volume in the CBCT. It produces 76

reasonably accurate contours of GTV during Radiotherapy. 77

• We provide a comparison between two types of fusion - Early Fusion and Late Fusion 78

by using different types of imprecise CT-masks. This helps to take a better decision in 79

choosing the architecture. 80

Though the imprecise CT-masks should not be used to segment the tumor volumes clinically, 81

we used it to get a better comparison of both the architectures of the U-net. We have 82

organised the rest of the paper as follows. Section 2 describes some of the significant works 83

related to our study, Section 3 is devoted to provide details of the registration and our 84

network. Section 4 describes the information related to our experiments and the analysis 85

of our results. We show some illustrations and discuss the performance of our models in 86

Section 5, and finally, we conclude in Section 6. 87

2. Related Works 88

Generally, tumors are difficult to segment as they might be found in regions with 89

low contrast and hence it is more difficult to have accurate boundaries. Ge et al. [11] 90

introduced the Multi-input dilated (MD) U-net to segment bladder tumor. They mentioned 91

that the traditional U-net down-samples the original features to learn global features, but 92

it ends up in corrupting the local features of small sized objects. They replaced the max- 93

pooling operation of down-sampling with dilated convolution which increases the receptive 94

field. Furthermore they used multiple scaled inputs at different levels so that the context 95

information could be improved. Wang et al. [12] proposed a network i.e. A-net for the 96

semantic segmentation of tumors to be used in Adaptive Radiotherapy(ART). Their model 97

used a deep learning network with patches of 3x3 cm as the input. This helped their model 98

with low data size. Patches as input gives more consideration to the local level features 99

rather than global features. Though they used the initial weeks MRI volumes in the training 100

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 April 2023                   doi:10.20944/preprints202304.0129.v1

https://doi.org/10.20944/preprints202304.0129.v1


Version March 23, 2023 submitted to Journal Not Specified 4 of 13

set and the last MRI of the same patients in the testing set. As medical data is always limited 101

in perspective of annotation or data size, use of multiple modalities is getting more popular. 102

Wang et al. [12] used CT and MRI to create a 2 stage network which uses Cycle-Gan to 103

learn important features of the tumor. In the first stage, they have a cycle consistency 104

loss between the two domains, while they also introduced another structure loss for the 105

tumor which takes into account the shape and size of the tumor generated by the gan. In 106

the second stage, the pseudo MRI images are collected together with the few available 107

expert-annotated MRI scans to train the network. Li et al. [13] have introduced a multi- 108

modal network which uses CT and PET images to segment the tumor. PET images with 109

F-FDG(F-fluorodeoxy-glucose), helps to show a clearer contrast at the tumor boundaries. 110

Since these type of images have low spatial resolution, so a fusion of PET and CT is an 111

interesting approach. They generate a probability map of the tumor from CT using a FCN. 112

Then this map is fused with the intensity values of PET via a fuzzy variational model. Zhao 113

et al. [14] also used CT-PET images for segmentation. They introduced two networks . First, 114

a multitask network to extract the features maps from CT and PET images separately. Then, 115

they used another network comprising of cascaded convolution operations which gave the 116

segmentation map. Jin et al. [15] introduced the DeepTarget network which could delineate 117

GTV and CTV in CT guided with PET. They used two stream 3D fusion PSNN network 118

based on Unet and PHNN [16]. They first carry out a deformable registration between the 119

CT and the PET and segment GTV and organs at risk to use in the final network for CTV 120

delineation. Wang et al. [17] used multi-view fusion segmentation for GTV segmentation of 121

brain glioma on CT images. They used an encoder-decoder architecture similar to a U-net 122

which used 3(current, previous and next) 2D-CT images whose features are fused at the 123

decoder ie:Dense-Decoder. They mentioned that this type of input covered more spatial 124

region than 2D CNN while it had less parameters than 3D CNN. Ma et al. [18] proposed 125

a registration-guided deep learning architecture that used CBCT images and registered 126

CT-Masks to delineate Organs at Risk. They used two different types of registration on 127

the CT masks i.e. Rigid and Deformable Registration. They show that the deformable 128

registration performs better than the rigid registration. Segmentation of Cone Beam CT 129

is difficult due to lower soft tissue contrast and generation of artifacts. Fu et al. [19] used 130

a cross modality attention pyramid network to automatically segment bladder, prostate, 131

rectum, and left/right femoral heads in CBCT. This network consisted of 2 U-nets which 132

took one of the inputs i.e. CBCT or a synthetic MRI. The loss used for training is a combined 133

loss of the 2 Unet networks and also a loss from the late fusion of the features in the 2 134

decoders via an attention gate. 135

L = LCBCT + LsMRI + LLateFusion (1)

The synthetic MRI is made by training a CycleGan which learns the translation be- 136

tween CBCT and MRI [20]. For this purpose, they performed a rigid registration between 137

the two images. They also mention that errors in the registration could deteriorate the 138

performance of the segmentation by the network. Jia et al. [21] used a CycleGan to translate 139

CT (with contours) to a synthetic CBCT (with no contours) and used domain adaptation 140

with adversarial feature learning to train the CBCT segmentation network without any 141

CBCT annotations. They observed that with adversarial learning, the network produced a 142

higher DSC in comparison to the network which used sCBCT directly from the Cycle-Gan. 143

L = Ladv + λsegLseg (2)

They trained the domain discriminator first until a threshold and then started the 144

training of the CBCT, s-CBCT segmentation network which used the sCBCT contours for 145

calculating the dice loss. Brion et al. [22] also used an adversarial network for unsupervised 146

domain adaptation between annotated CT’s and non-annotated CBCT’s. They used a 147
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3D-Unet which were trained to segment CT images. Along with that they added a gradient 148

reversal layer(GRL) at the decoder which reduced the domain shift between the CT and 149

the CBCT. GRL is a custom layer where the gradients are changed and hard-coded. They 150

also introduced different strategies for intensity based data augmentation. It improves 151

generalization of CT models to use CBCT data without explicitly training with its contours. 152

We realised that there is a need for a segmentation network which uses the data produced 153

during the Planning Phase to delineate GTV in CBCT. Generally, multiple-modality for au- 154

tomatic segmentation would require extra data to be generated which could be considered 155

as burdensome as it would require an additional(MRI or PET) imaging modality. Since in 156

the planning phase we manually annotate the tumor, this information is important and 157

should be used for further delineation of the GTV in the CBCT. Though our approach is 158

similar to Lin Ma et al in terms of the input, but we differ from their approach as we use 159

the simplest form of registration i.e. Translation. We further perform analysis of different 160

fusion strategies using different types of inaccuracies in the CT-Mask. As mentioned in 161

[18], the OAR and the tumor volume are required to be delineated. As they segment the 162

organs at risk, we go forward to segment the GTV using this approach. 163

3. Materials and Methods 164

3.1. GTV Seed for Localisation of Tumor 165

We propose an end-to-end 3D-Unet which uses the CBCT volume for segmentation of 166

Gross Tumor Volume(GTV) in patients undergoing Radiotherapy. GTV segmentation is a 167

difficult task to train any deep learning network, as tumors can be of different shape/size 168

and generally can be formed in low contrast regions [5]. Hence it may be difficult to clearly 169

identify them. Due to this reason we add additional data to guide the model towards the 170

spatial location of the tumor. To help in the localization we use registered CT-masks of the 171

GTV so as to identify the region close enough to the tumor where the network should focus 172

in delineating the GTV accurately. As these masks are the closest possible approximation of 173

the CBCT tumor, they can provide useful information to the network. Though there should 174

be a balance of information, as too much dependence on the mask might affect the overall 175

performance of the model. One of the reasons of using such a method is that CBCT’s are 176

only used for image guidance and are rarely delineated manually, and so there exists a 177

problem of limited data [18]. This type of model helps in solving this limitation as it guides 178

the network towards the GTV. This method could help in saving time and resources as we 179

can avoid using difficult algorithms such as atlas, DIR which are dependent on a specialised 180

type of registration. Figure 3 describes our proposed framework for segmenting the gross 181

tumor volume. Here T0 represents the temporal checkpoint where the Planning CT was 182

acquired, while Tn represents the same for the corresponding CBCT. The CT and CBCT 183

were acquired on different days and so the position of the patient and the tumor might be 184

different. Registration is a common technique used in medical imaging for comparing two 185

images/volumes. It is used to transform different data to the same coordinate system [23]. 186

Different types of registration change the images in different ways. We use a translation 187

registration, so as to align the 3D volume of the CT to the 3D volume of the CBCT. The same 188

transformations are then applied on the CT-masks. This process needs to be examined for 189

each of the patient. As an incorrect registration can produce errors which gets propagated 190

to the segmentation network. We used the Plastimatch library for this task. Entire volumes 191

of different sizes (CT and CBCT) were registered with each other. This operation is very 192

essential for our model as only after the registration, we can obtain the appropriate location 193

of the tumor in CT with respect to the CBCT. We performed registration for each of the 194

tumor volumes ie: GTV, CTV, PTV. 195

3.2. Network Architecture 196

We have used multimodal 3D U-net which takes input as CBCT and the registered 197

CT Mask. 3D U-net [10] is one of the most popular networks for 3D Image Semantic 198

Segmentation. We used 6 blocks (Convolutions, Batch Norm and Relu) in the encoder and 199
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Figure 3. Proposed Framework for Multimodal Segmentation of the Gross Tumor Volume

the decoder part of the U-net, and a bottleneck layer with 2 identical blocks, also we used 200

3d max-pooling layers to reduce the dimensions and strided convolutions for up-sampling 201

and to get back to the same shape as the segmentation map. We use a 1 × 1 Conv3d layer 202

after the decoder layer, to change the channel output to 1. There is a sigmoid layer at 203

the end. We calculate the loss between a discrete ground truth and a continuous sigmoid 204

output. We have compared two architectures, i.e. early fusion and late fusion. Figure 4 205

and Figure 5 shows the two fusion architectures respectively. In early fusion network the 206

information is fused from the first convolution itself while in the late fusion network it takes 207

place at the bottleneck layer. We used these two networks to understand the performance 208

when the registered CT mask is added/removed from the skip connections. 209

3.3. Evaluation Metric and Loss 210

We used the Dice loss to train the neural networks which is given by the Equation 3. 211

DiceLoss = 1 − DSC (3)

We use a collection of metrics to evaluate our models. Since Recall or Sensitivity 212

penalize errors in smaller segments [24] more than in bigger segments. It is considered 213

as a good measure to check the performance of smaller tumors. Hence, we used the Dice 214

Coefficient(DSC), Recall, Precision and Volume Similarity as a metric to compare different 215

models. 216

Recall =
TP

TP + FN
and Precision =

TP
TP + FP

(4)
217

VS = 1 −
||St| − |Sg||
|St|+

∣∣Sg
∣∣ (5)

where St and Sg are the volumes of the segments we need to compare. 218
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4. Experiments and Results 219

4.1. Dataset 220

The dataset is a private dataset which went through an anonymization process. The 221

patients were being treated for Non-Small Cell Lung Cancer(NSCLC). Eighty-Two patients 222

who went through radiotherapy with non-operated NSCLC were selected. They received 223

60-70 Gy RT. The procedure for the imaging was 3D Free Breathing acquisition while 224

injecting with an iodine contrast. SIEMENS CT was used for the acquisition of the planning 225

CT and a VARIAN CBCT was used for onboard imagery during radiotherapy. For each 226

patient there were around 6-7 CBCT generated during the radiotherapy process and 1 CT 227
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which was generated during the planning process. Each of these CBCT were registered with 228

the one previous to it, while the first one was registered with the CT. The observer pasted 229

the GTVn−1 on CBCTn and performing a threshold[-400, +175 HU] to exclude the healthy 230

tissues and to delineate GTVn. Finally, this GTV was visually reviewed and manually 231

adapted in case of apparent anatomical changes. Each of the slices were reconstructed to a 232

512x512 resolution. 233

4.2. Data Preprocessing 234

After the registration we resize the CBCT volume to [200,200,64] along with the 235

CT/CBCT masks. The intensities for the CBCT volume is rescaled to [0,1] for faster training. 236

We didn’t use any Data Augmentation in our method. Each CBCT is considered as a 237

different instance even if it is from the same patient. We chose 61 randomly selected 238

patients for the training set, 14 for the Validation Set and the remaining 7 in the Test set, 239

while constraining each patient to be found in exactly one of the sets. 240

4.3. Training 241

We use the Pytorch framework [25] to construct the neural network. The inputs are a 242

CBCT volume and a Registered CT-Mask volume to the U-net with each of them having 243

the shape of [200,200,64]. We use the Adam optimizer [26] with beta1 = 0.9 and beta2 = 244

0.999 and a learning rate of 0.0003 with a batch size of 2. It seems that 3D-BatchNorm is 245

important for the model for accurate delineation. We run each model for 100 epochs and 246

then we evaluate the performance of our network by using the best model which had the 247

lowest dice loss in the validation set. 248
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Figure 6. DSC Plot of Validation Set in Early Fusion and Late Fusion

4.4. Results 249

We show a comparison between 2 different Multimodal U-nets which uses different 250

kinds of CT-Masks. This helps us to compare the different models and it gives us an idea of 251

the better architecture in context of the tumor representation with the help of imprecise 252

masks. In the Early Fusion(EF) network, both the inputs are fused together from the 1st 253

Convolution. The features extracted from these inputs go through the network and the skip 254

connections. While in the Late Fusion(LF) network, the fusion takes place in the bottleneck 255

layer of the U-net, and so the features extracted from the CT-Mask are not present in the 256

skip connections. As the GTV of CT is a close approximation to the ground-truth of the 257

CBCT, it is essential to verify if the CT-Mask provides only the localization information 258
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and so it is important to test the training with more imprecise masks. So we compare the 259

different types of inputs mentioned below - 260

• CBCT + CT-GTV Mask 261

• CBCT + CT-CTV Mask 262

• CBCT + CT-PTV Mask 263

GTV, CTV and PTV masks are delineated manually by radiologists. The target i.e. GTV is 264

the same for all the 3 input masks. CTV and PTV Masks would add imprecision to the GTV 265

contours and so it would be useful to compare these models using these masks. Figure ?? 266

shows the comparison of DSC of the validation set between the two models during the 267

training. The CT DSC in the figure can be considered as a starting point which exhibits the 268

dice coefficient between the GTV CT-Mask and the GTV Ground-truth. It can be considered 269

as a baseline from where we improve our model. The difference between this value and the 270

CBCT+GTV, indicates the improvement in the prediction over the CT-Mask. Though both 271

the plots in the figure seem quite similar, there is a slight deviation in the training of the 272

CBCT + CT-PTV mask which causes a major difference in the performance of the test-set. 273

In this case, LF converges faster than EF, and also the gap between the 3 masks is lower in 274

LF than in EF with similar performance. 275

CBCT Fusion Tumor Mask DSC VS Recall Precision

Yes EF GTV 0.702±0.015 0.837±0.037 0.845±0.007 0.853±0.010
Yes LF GTV 0.706±0.002 0.859±0.018 0.824±0.003 0.818±0.006
Yes EF CTV 0.680±0.017 0.839±0.022 0.804±0.013 0.735±0.057
Yes LF CTV 0.708±0.028 0.850±0.052 0.822±0.011 0.740±0.022
Yes EF PTV 0.460±0.016 0.667±0.113 0.788±0.019 0.465±0.089
Yes LF PTV 0.665±0.012 0.860±0.028 0.787±0.009 0.686±0.033
Yes NA NA 0.425±0.025 0.574±0.020 0.608±0.037 0.266±0.041
No NA GTV 0.577
No NA CTV 0.378
No NA PTV 0.189

Table 1. Comparison of the models with different types of Masks as Input - Rows 1-6 show the full
model, Last four rows show the ablation study - (row 7) with single modality U-Net using CBCT as
input and (rows 8-10) only the TV registration

Table 1 shows the performance of both the models on each of the type of masks. We 276

can observe that the LF outperforms EF in all types of the masks. Even though the DSC in 277

CBCT with GTV mask for EF is close to the DSC of LF, it is interesting to see that the CBCT 278

with PTV mask of LF performs fairly better. Furthermore, the Volume Similarity(VS) is 279

always higher in LF than in EF, while using the same CT-Mask. This would suggest that 280

LF’s volume is closer to the ground-truth’s volume. Since LF does not use the mask in the 281

skip connection, it can be reasoned that this model is less dependent on the mask and so it 282

is having a better representation of the tumor. 283

Ablation study is displayed in the last 4 rows. On the 4th last row, we gave the current 284

CBCT information only to the segmentation process and did not use the registered TV from 285

planning CT. It shows a clear detrimental gap in performance. The 3 last rows correspond 286

to the opposite: It shows only the registration from planning CT to CBCT without using a 287

U-Net network. These lines represents the DSC between the different registered CT masks 288

and the GTV ground-truth. It can be seen that the accuracy of the registered masks is 289

improved by these models and they can represent the tumor volume in a better way. 290

5. Illustrations 291

The tumors which are attached to the lung wall nodules is generally difficult to 292

segment as they are in low contrast regions. Though operations such as threshold and 293

reshaping the tumor can be appropriately done by the network, problem arises when the 294
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tumor lie is in these difficult regions. Hence the network uses the CT-Mask for its accurate 295

delineation, but too much dependency on the CT-Mask may prevent the network to learn 296

accurate features of the tumor. Therefore, there should be a critical balance to learn the 297

features between the CT-Mask and the CBCT Volume by the network. Figure 7 shows a 298

comparison of the test images by using different masks on the two different types of fusion. 299

We display the middle slice of the tumor where the density of tumor pixels is generally 300

high. 301

Groundtruth CBCT Only EF-GTV LF-GTV EF-CTV LF-CTV EF-PTV LF-PTV

a.)

b.)

c.)

d.)

e.)

f.)

Figure 7. Comparison of the Prediction in Test Set

In single modality i.e. CBCT Only, we can observe that the model learns about the 302

tumor location, but in most of the low contrast regions it fails to identify the tumor(As 303

can be seen in Figure 7(b.) and (c.)). Due to this reason we require another modality as an 304

input to the network. Moreover in these instances the physicians needed an additional PET 305

image to correctly identify the functional part of the tumor and delineate them as shown in 306

the Figure 8. 307

Hence, the registered CT Mask helps the model to identify the tumor location in low 308

contrast. Furthermore, we noticed that in the EF-PTV model, the network gets too much 309

dependent on the imprecise CT-Mask, and hence affects its performance. The late fusion 310

shows improved performance as the CT-Mask is not included in the skip connections. 311

Also we observed that none of the models could accurately remove the bones which could 312

be seen in Figure 7(a.), as they are not found in the CT-Mask which indicates that the 313

performance of the model could be improved by being more dependent on the features 314

from the CBCT Volume than the CT-Mask. In addition, this patient has the tumor found on 315
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Figure 8. PET Scan Images used for the Delineation of the Tumors for patients having tumors in low contrast regions.

Figure 9. CT Image(Coronal and Axial) for the patient having tumor above the lungs.

the location above the lungs and so it adds complexity for the model to identify it. The CT 316

Scan image for the tumor for this patient is shown in Figure 9. 317

6. Conclusion 318

We put forward an end-to-end multi-modal network based on the popular 3D U- 319

net for the segmentation of tumors during Radiotherapy with the use of simple minimal 320

registration i.e. Translation. This model can be an alternative to the popular atlas method for 321

automatic segmentation which is heavily dependent on the performance of the deformable 322

registration. We compared different types of CT Masks and evaluated two types of fusion 323

techniques between the inputs. In our analysis we found that Late Fusion had a better 324

performance of segmenting the tumor that the Early Fusion Model. In future, we might be 325

able to further improve the performance by using a new loss function which penalises the 326

dependency of the model on the CT-Mask, or even by a different type of fusion technique. 327

It might be a good idea to have a bigger dataset to help in generalization. We are further 328

planning to use this type of model in multi-task learning for regression/classification tasks 329

along with the segmentation. 330
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