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Abstract: In this work we introduce an end-to-end multi-modal neural network to segment the Gross
Tumor Volume (GTV) from 3D-CBCT’s during radiotherapy. We improve the tumor segmentation by
using a U-net which takes additional information such as the tumor mask generated at the planning
phase along with the CBCT volume. The mask contains relevant information about the tumor’s
location and can guide the model to use this knowledge appropriately to give a better prediction. This
technique could become an alternative to produce segmentation masks of GTV in CBCT automatically
during radiotherapy as in the traditional RT-pipeline, they are not segmented. We have evaluated
our model on a dataset of 82 patients who have undergone radiotherapy. We compare the results
of registered target volumes from planning CT as mask seed with 2 different types of multi-modal
architectures. Our model shows a DSC of 0.706+0.002 with Late Fusion and 0.702+0.015 with Early
Fusion using the GTV Mask. The performance of the two models on this mask is similar, so we
perform further experiments with different types of masks which suggest that Late Fusion model
produces a better segmentation of the tumor than the Early Fusion model. We also provide an ablation
study consisting of a single modality U-net and a metric based on the Planning CT mask registration.
It indicates a clear advantage of using our model to produce segmentation for this type of imaging.
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1. Introduction

Lung cancer is the leading cause of cancer related deaths which contributes upto 18%
of the total deaths which is estimated to be around 1.8 million [1]. Around 30-60% of
patients having lung cancer go through radiotherapy during their treatment [2]. Increased
dosage of X-rays on the cancer cells can break and destabilise its DNA (healthy cells are
also disturbed but have better recovery mechanism) and hence can stop them from growing
and might be able to reduce their volumes. [3]. There are multiple phases in classical
Radiotherapy pipeline such as the simulation, planning, and delivery [4]. In the planning
phase, a CT is acquired and annotated by experts to provide the accurate delineation of
the target and the organs at risk volume. Subsequently a plan is formulated and the shape
of the beams is calculated by inverse methods which could provide the prescribed dose
distribution. In the delivery phase, radiation is applied to the targeted region, while a
pre-treatment CBCT is acquired for accurate positioning of the patient’s bone anatomy with
the treatment couch. Figure 1 shows the classical radiotherapy pipeline. In this framework,
CBCT delineations, if existing, are never used. With the rise of new technology and
approaches such as Adaptive Radiotherapy(ART), it might be useful to segment CBCT’s.
ART is used to manage the change in the anatomical/functional structures which could be
caused due to various factors such as weight loss in the patient, shrinkage in the targeted
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area or inflammation in the patient’s body. Re-planning is a procedure in the course of ART
which selects the appropriate patient who could benefit by adopting a new plan and the
correct stage at which there is significant change in the anatomy. Since CBCT’s are the most
recent images of the patient and they can guide us with the evolution of the tumor from the
planning CT, it is important to acquire its segmentation for further analysis of the growth
of the tumor.

Time
Planning Phase Delivery Phase
CT Treatment Quality . |CBCT-Week1 CBCT - Week 6
Acquisition — ~ Plan  — Assurance Positioning Positioning
To To To Ty T

Delination of
Tumors/OAR

Figure 1. Traditional Radiotherapy showing the Planning and the Delivery of the Treatment

Automatic Delineation of the Tumor Volumes(TV) in CBCT can be useful to make
an automated decision about re-planning, without the extra burden on the medical staff.
Deformable Image Registration(DIR) is used for this purpose in which the Planning CT is
deformed to resemble the target image and then the same transformations are applied on
the Planning CT-masks which could give a close approximate of the target mask. Although
the quality of the segmentation highly depends on the type of registration, and the Planning
CT’s closeness to the daily image [5], moreover this method does not produce the perfect
segmentation of the CBCT and manual intervention is required to correct the contours.
CT-CBCT registration creates further problems as there are inconsistent intensities and so
an intensity correction of a voxel in CBCT is required [6]. Furthermore issues such as tumor
shrinkage from the time the CT had been taken, inter and intra observer segmentation
variability of the CT-mask needs to be taken care. Deep Learning architectures have been
getting more and more popular in the medical field. Convolutional Neural Networks
provide an elegant and efficient way to learn both a feature extraction model and a decision
model in an end-to-end manner [7]. With the use of gpu programming and extracting par-
allelism in training, we are able to train deeper networks [8] and architectures which could
be used for a wide range of problems such as classification, semantic segmentation, object
detection, domain adaptation and generative models. U-net architecture is very popular in
medical imaging for semantic segmentation [9]. It is a fully convolutional network where
a pixel-wise loss is calculated between the ground-truth and the prediction. The main
contribution of U-nets and the reason for its popularity are its long skip connections. ie.
The down-sampled feature maps are concatenated with the up-sampled feature maps. The
skip connection provides another way for the gradient to flow and it helps the network to
learn the lower level features which might get corrupted in case of auto-encoders. These
networks can be used for 3D-Data [10] as well, where we just replace the 2D-Convolution
and 2D-Max-pooling with a 3D-Convolution and 3D-Max-pooling respectively.
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Figure 2. Overview of the proposed pipeline for tumor volume segmentation

1.1. Proposition

Segmentation in CBCT is difficult due to soft tissue contrast and presence of scatter
artifacts. Due to these reasons it is difficult to perform a DIR between CT and CBCT.
Furthermore, it can be seen from our experiments that using a single modality Unet might
not be sufficient enough to delineate GTV in CBCT. Although it is important to delineate
CBCT for various tasks, there is no clear efficient method which is standardised or is being
practiced. In this work, our contributions are as follows -

*  We propose a multi-modal neural-network which uses CBCT and a registered CT-
Mask produced during Planning phase(as shown in Figure 2) to train an end-to-end
3D U-net to automatically delineate the Gross Tumor Volume in the CBCT. It produces
reasonably accurate contours of GTV during Radiotherapy.

*  We provide a comparison between two types of fusion - Early Fusion and Late Fusion
by using different types of imprecise CT-masks. This helps to take a better decision in
choosing the architecture.

Though the imprecise CT-masks should not be used to segment the tumor volumes clinically,
we used it to get a better comparison of both the architectures of the U-net. We have
organised the rest of the paper as follows. Section 2 describes some of the significant works
related to our study, Section 3 is devoted to provide details of the registration and our
network. Section 4 describes the information related to our experiments and the analysis
of our results. We show some illustrations and discuss the performance of our models in
Section 5, and finally, we conclude in Section 6.

2. Related Works

Generally, tumors are difficult to segment as they might be found in regions with
low contrast and hence it is more difficult to have accurate boundaries. Ge et al. [11]
introduced the Multi-input dilated (MD) U-net to segment bladder tumor. They mentioned
that the traditional U-net down-samples the original features to learn global features, but
it ends up in corrupting the local features of small sized objects. They replaced the max-
pooling operation of down-sampling with dilated convolution which increases the receptive
field. Furthermore they used multiple scaled inputs at different levels so that the context
information could be improved. Wang et al. [12] proposed a network i.e. A-net for the
semantic segmentation of tumors to be used in Adaptive Radiotherapy(ART). Their model
used a deep learning network with patches of 3x3 cm as the input. This helped their model
with low data size. Patches as input gives more consideration to the local level features
rather than global features. Though they used the initial weeks MRI volumes in the training
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set and the last MRI of the same patients in the testing set. As medical data is always limited
in perspective of annotation or data size, use of multiple modalities is getting more popular.
Wang et al. [12] used CT and MRI to create a 2 stage network which uses Cycle-Gan to
learn important features of the tumor. In the first stage, they have a cycle consistency
loss between the two domains, while they also introduced another structure loss for the
tumor which takes into account the shape and size of the tumor generated by the gan. In
the second stage, the pseudo MRI images are collected together with the few available
expert-annotated MRI scans to train the network. Li et al. [13] have introduced a multi-
modal network which uses CT and PET images to segment the tumor. PET images with
F-FDG(F-fluorodeoxy-glucose), helps to show a clearer contrast at the tumor boundaries.
Since these type of images have low spatial resolution, so a fusion of PET and CT is an
interesting approach. They generate a probability map of the tumor from CT using a FCN.
Then this map is fused with the intensity values of PET via a fuzzy variational model. Zhao
et al. [14] also used CT-PET images for segmentation. They introduced two networks . First,
a multitask network to extract the features maps from CT and PET images separately. Then,
they used another network comprising of cascaded convolution operations which gave the
segmentation map. Jin et al. [15] introduced the DeepTarget network which could delineate
GTV and CTV in CT guided with PET. They used two stream 3D fusion PSNN network
based on Unet and PHNN [16]. They first carry out a deformable registration between the
CT and the PET and segment GTV and organs at risk to use in the final network for CTV
delineation. Wang et al. [17] used multi-view fusion segmentation for GTV segmentation of
brain glioma on CT images. They used an encoder-decoder architecture similar to a U-net
which used 3(current, previous and next) 2D-CT images whose features are fused at the
decoder ie:Dense-Decoder. They mentioned that this type of input covered more spatial
region than 2D CNN while it had less parameters than 3D CNN. Ma et al. [18] proposed
a registration-guided deep learning architecture that used CBCT images and registered
CT-Masks to delineate Organs at Risk. They used two different types of registration on
the CT masks i.e. Rigid and Deformable Registration. They show that the deformable
registration performs better than the rigid registration. Segmentation of Cone Beam CT
is difficult due to lower soft tissue contrast and generation of artifacts. Fu et al. [19] used
a cross modality attention pyramid network to automatically segment bladder, prostate,
rectum, and left/right femoral heads in CBCT. This network consisted of 2 U-nets which
took one of the inputs i.e. CBCT or a synthetic MRI. The loss used for training is a combined
loss of the 2 Unet networks and also a loss from the late fusion of the features in the 2
decoders via an attention gate.

L= LCBCT + LsMRI + LLutePusion (1)

The synthetic MRI is made by training a CycleGan which learns the translation be-
tween CBCT and MRI [20]. For this purpose, they performed a rigid registration between
the two images. They also mention that errors in the registration could deteriorate the
performance of the segmentation by the network. Jia et al. [21] used a CycleGan to translate
CT (with contours) to a synthetic CBCT (with no contours) and used domain adaptation
with adversarial feature learning to train the CBCT segmentation network without any
CBCT annotations. They observed that with adversarial learning, the network produced a
higher DSC in comparison to the network which used sCBCT directly from the Cycle-Gan.

L = Lugy + AsegLseg 2)

They trained the domain discriminator first until a threshold and then started the
training of the CBCT, s-CBCT segmentation network which used the sCBCT contours for
calculating the dice loss. Brion et al. [22] also used an adversarial network for unsupervised
domain adaptation between annotated CT’s and non-annotated CBCT’s. They used a
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3D-Unet which were trained to segment CT images. Along with that they added a gradient
reversal layer(GRL) at the decoder which reduced the domain shift between the CT and
the CBCT. GRL is a custom layer where the gradients are changed and hard-coded. They
also introduced different strategies for intensity based data augmentation. It improves
generalization of CT models to use CBCT data without explicitly training with its contours.
We realised that there is a need for a segmentation network which uses the data produced
during the Planning Phase to delineate GTV in CBCT. Generally, multiple-modality for au-
tomatic segmentation would require extra data to be generated which could be considered
as burdensome as it would require an additional(MRI or PET) imaging modality. Since in
the planning phase we manually annotate the tumor, this information is important and
should be used for further delineation of the GTV in the CBCT. Though our approach is
similar to Lin Ma et al in terms of the input, but we differ from their approach as we use
the simplest form of registration i.e. Translation. We further perform analysis of different
fusion strategies using different types of inaccuracies in the CT-Mask. As mentioned in
[18], the OAR and the tumor volume are required to be delineated. As they segment the
organs at risk, we go forward to segment the GTV using this approach.

3. Materials and Methods
3.1. GTV Seed for Localisation of Tumor

We propose an end-to-end 3D-Unet which uses the CBCT volume for segmentation of
Gross Tumor Volume(GTV) in patients undergoing Radiotherapy. GTV segmentation is a
difficult task to train any deep learning network, as tumors can be of different shape/size
and generally can be formed in low contrast regions [5]. Hence it may be difficult to clearly
identify them. Due to this reason we add additional data to guide the model towards the
spatial location of the tumor. To help in the localization we use registered CT-masks of the
GTV so as to identify the region close enough to the tumor where the network should focus
in delineating the GTV accurately. As these masks are the closest possible approximation of
the CBCT tumor, they can provide useful information to the network. Though there should
be a balance of information, as too much dependence on the mask might affect the overall
performance of the model. One of the reasons of using such a method is that CBCT’s are
only used for image guidance and are rarely delineated manually, and so there exists a
problem of limited data [18]. This type of model helps in solving this limitation as it guides
the network towards the GTV. This method could help in saving time and resources as we
can avoid using difficult algorithms such as atlas, DIR which are dependent on a specialised
type of registration. Figure 3 describes our proposed framework for segmenting the gross
tumor volume. Here Ty represents the temporal checkpoint where the Planning CT was
acquired, while T}, represents the same for the corresponding CBCT. The CT and CBCT
were acquired on different days and so the position of the patient and the tumor might be
different. Registration is a common technique used in medical imaging for comparing two
images/volumes. It is used to transform different data to the same coordinate system [23].
Different types of registration change the images in different ways. We use a translation
registration, so as to align the 3D volume of the CT to the 3D volume of the CBCT. The same
transformations are then applied on the CT-masks. This process needs to be examined for
each of the patient. As an incorrect registration can produce errors which gets propagated
to the segmentation network. We used the Plastimatch library for this task. Entire volumes
of different sizes (CT and CBCT) were registered with each other. This operation is very
essential for our model as only after the registration, we can obtain the appropriate location
of the tumor in CT with respect to the CBCT. We performed registration for each of the
tumor volumes ie: GTV, CTV, PTV.

3.2. Network Architecture

We have used multimodal 3D U-net which takes input as CBCT and the registered
CT Mask. 3D U-net [10] is one of the most popular networks for 3D Image Semantic
Segmentation. We used 6 blocks (Convolutions, Batch Norm and Relu) in the encoder and
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Figure 3. Proposed Framework for Multimodal Segmentation of the Gross Tumor Volume

the decoder part of the U-net, and a bottleneck layer with 2 identical blocks, also we used
3d max-pooling layers to reduce the dimensions and strided convolutions for up-sampling
and to get back to the same shape as the segmentation map. We use a 1 x 1 Conv3d layer
after the decoder layer, to change the channel output to 1. There is a sigmoid layer at
the end. We calculate the loss between a discrete ground truth and a continuous sigmoid
output. We have compared two architectures, i.e. early fusion and late fusion. Figure 4
and Figure 5 shows the two fusion architectures respectively. In early fusion network the
information is fused from the first convolution itself while in the late fusion network it takes
place at the bottleneck layer. We used these two networks to understand the performance
when the registered CT mask is added /removed from the skip connections.

3.3. Evaluation Metric and Loss

We used the Dice loss to train the neural networks which is given by the Equation 3.
DiceLoss =1 — DSC 3)

We use a collection of metrics to evaluate our models. Since Recall or Sensitivity
penalize errors in smaller segments [24] more than in bigger segments. It is considered
as a good measure to check the performance of smaller tumors. Hence, we used the Dice
Coefficient(DSC), Recall, Precision and Volume Similarity as a metric to compare different

models.
TP . TP
Recall = TPLEN and Precision = TP L EP 4)
[15¢] — 1Sg]|
VS=1— ———7-=+ (5)
S| + [Sg ]

where St and Sg are the volumes of the segments we need to compare.
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Figure 4. Early Fusion Multimodal 3D-Unet
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Figure 5. Late Fusion Multimodal 3D-Unet

4. Experiments and Results
4.1. Dataset

The dataset is a private dataset which went through an anonymization process. The
patients were being treated for Non-Small Cell Lung Cancer(NSCLC). Eighty-Two patients
who went through radiotherapy with non-operated NSCLC were selected. They received
60-70 Gy RT. The procedure for the imaging was 3D Free Breathing acquisition while
injecting with an iodine contrast. SIEMENS CT was used for the acquisition of the planning
CT and a VARIAN CBCT was used for onboard imagery during radiotherapy. For each
patient there were around 6-7 CBCT generated during the radiotherapy process and 1 CT
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DSC

which was generated during the planning process. Each of these CBCT were registered with
the one previous to it, while the first one was registered with the CT. The observer pasted
the GTV,,_1 on CBCT, and performing a threshold[-400, +175 HU] to exclude the healthy
tissues and to delineate GTV;,. Finally, this GTV was visually reviewed and manually
adapted in case of apparent anatomical changes. Each of the slices were reconstructed to a
512x512 resolution.

4.2. Data Preprocessing

After the registration we resize the CBCT volume to [200,200,64] along with the
CT/CBCT masks. The intensities for the CBCT volume is rescaled to [0,1] for faster training.
We didn’t use any Data Augmentation in our method. Each CBCT is considered as a
different instance even if it is from the same patient. We chose 61 randomly selected
patients for the training set, 14 for the Validation Set and the remaining 7 in the Test set,
while constraining each patient to be found in exactly one of the sets.

4.3. Training

We use the Pytorch framework [25] to construct the neural network. The inputs are a
CBCT volume and a Registered CT-Mask volume to the U-net with each of them having
the shape of [200,200,64]. We use the Adam optimizer [26] with betal = 0.9 and beta2 =
0.999 and a learning rate of 0.0003 with a batch size of 2. It seems that 3D-BatchNorm is
important for the model for accurate delineation. We run each model for 100 epochs and
then we evaluate the performance of our network by using the best model which had the
lowest dice loss in the validation set.

Early Fusion Late Fusion

1.0

1.0

2
A
CBCT + PTV CBCT + PTV
02 | CBCT + CTV 02 | CBCT + CTV
' CBCT + GTV ’ CBCT + GTV
=== CTDSC --- CTDSC
00 T T T T 00 T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Figure 6. DSC Plot of Validation Set in Early Fusion and Late Fusion

4.4. Results

We show a comparison between 2 different Multimodal U-nets which uses different
kinds of CT-Masks. This helps us to compare the different models and it gives us an idea of
the better architecture in context of the tumor representation with the help of imprecise
masks. In the Early Fusion(EF) network, both the inputs are fused together from the 1st
Convolution. The features extracted from these inputs go through the network and the skip
connections. While in the Late Fusion(LF) network, the fusion takes place in the bottleneck
layer of the U-net, and so the features extracted from the CT-Mask are not present in the
skip connections. As the GTV of CT is a close approximation to the ground-truth of the
CBCT, it is essential to verify if the CT-Mask provides only the localization information
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and so it is important to test the training with more imprecise masks. So we compare the
different types of inputs mentioned below -

e CBCT + CT-GTV Mask
e CBCT + CT-CTV Mask
e CBCT + CT-PTV Mask

GTV, CTV and PTV masks are delineated manually by radiologists. The targeti.e. GTV is
the same for all the 3 input masks. CTV and PTV Masks would add imprecision to the GTV
contours and so it would be useful to compare these models using these masks. Figure ??
shows the comparison of DSC of the validation set between the two models during the
training. The CT DSC in the figure can be considered as a starting point which exhibits the
dice coefficient between the GTV CT-Mask and the GTV Ground-truth. It can be considered
as a baseline from where we improve our model. The difference between this value and the
CBCT+GTYV, indicates the improvement in the prediction over the CT-Mask. Though both
the plots in the figure seem quite similar, there is a slight deviation in the training of the
CBCT + CT-PTV mask which causes a major difference in the performance of the test-set.
In this case, LF converges faster than EF, and also the gap between the 3 masks is lower in
LF than in EF with similar performance.

’ CBCT ‘ Fusion ‘ Tumor Mask DSC VS Recall Precision
Yes EF GTV 0.702+0.015 | 0.837+0.037 | 0.845+0.007 | 0.853+0.010
Yes LF GTV 0.706+0.002 | 0.859+0.018 | 0.824+0.003 | 0.818+0.006
Yes EF CTV 0.680+0.017 | 0.839+0.022 | 0.804+0.013 | 0.735+0.057
Yes LF CTV 0.708+0.028 | 0.850+0.052 | 0.822+0.011 | 0.740+0.022
Yes EF PTV 0.460+0.016 | 0.667+0.113 | 0.788+0.019 | 0.465+0.089
Yes LF PTV 0.665+0.012 | 0.860+0.028 | 0.787+0.009 | 0.686+0.033
Yes | NA NA 0.425+0.025 | 0.57420.020 | 0.6080.037 | 0.266+0.041 |
No NA GTV 0.577
No NA CTV 0.378
No NA PTV 0.189

Table 1. Comparison of the models with different types of Masks as Input - Rows 1-6 show the full
model, Last four rows show the ablation study - (row 7) with single modality U-Net using CBCT as
input and (rows 8-10) only the TV registration

Table 1 shows the performance of both the models on each of the type of masks. We
can observe that the LF outperforms EF in all types of the masks. Even though the DSC in
CBCT with GTV mask for EF is close to the DSC of LF, it is interesting to see that the CBCT
with PTV mask of LF performs fairly better. Furthermore, the Volume Similarity(VS) is
always higher in LF than in EF, while using the same CT-Mask. This would suggest that
LF’s volume is closer to the ground-truth’s volume. Since LF does not use the mask in the
skip connection, it can be reasoned that this model is less dependent on the mask and so it
is having a better representation of the tumor.

Ablation study is displayed in the last 4 rows. On the 4th last row, we gave the current
CBCT information only to the segmentation process and did not use the registered TV from
planning CT. It shows a clear detrimental gap in performance. The 3 last rows correspond
to the opposite: It shows only the registration from planning CT to CBCT without using a
U-Net network. These lines represents the DSC between the different registered CT masks
and the GTV ground-truth. It can be seen that the accuracy of the registered masks is
improved by these models and they can represent the tumor volume in a better way.

5. Illustrations

The tumors which are attached to the lung wall nodules is generally difficult to
segment as they are in low contrast regions. Though operations such as threshold and
reshaping the tumor can be appropriately done by the network, problem arises when the
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tumor lie is in these difficult regions. Hence the network uses the CT-Mask for its accurate  zes
delineation, but too much dependency on the CT-Mask may prevent the network to learn 206
accurate features of the tumor. Therefore, there should be a critical balance to learn the 2e7
features between the CT-Mask and the CBCT Volume by the network. Figure 7 shows a 208
comparison of the test images by using different masks on the two different types of fusion. 200
We display the middle slice of the tumor where the density of tumor pixels is generally 300
hlgh 301

Groundtruth CBCT Only EF-GTV LF-GTV EF-CTV LF-CTV EF-PTV LF-PTV

. ] . . ] , W RN | .
2 48 4 4 4 AN

Figure 7. Comparison of the Prediction in Test Set

In single modality i.e. CBCT Only, we can observe that the model learns about the
tumor location, but in most of the low contrast regions it fails to identify the tumor(As
can be seen in Figure 7(b.) and (c.)). Due to this reason we require another modality as an
input to the network. Moreover in these instances the physicians needed an additional PET
image to correctly identify the functional part of the tumor and delineate them as shown in
the Figure 8.

Hence, the registered CT Mask helps the model to identify the tumor location in low
contrast. Furthermore, we noticed that in the EF-PTV model, the network gets too much
dependent on the imprecise CT-Mask, and hence affects its performance. The late fusion
shows improved performance as the CT-Mask is not included in the skip connections.
Also we observed that none of the models could accurately remove the bones which could
be seen in Figure 7(a.), as they are not found in the CT-Mask which indicates that the
performance of the model could be improved by being more dependent on the features
from the CBCT Volume than the CT-Mask. In addition, this patient has the tumor found on


https://doi.org/10.20944/preprints202304.0129.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023 d0i:10.20944/preprints202304.0129.v1

11 0f 13

Figure 9. CT Image(Coronal and Axial) for the patient having tumor above the lungs.

the location above the lungs and so it adds complexity for the model to identify it. The CT
Scan image for the tumor for this patient is shown in Figure 9.

6. Conclusion

We put forward an end-to-end multi-modal network based on the popular 3D U-
net for the segmentation of tumors during Radiotherapy with the use of simple minimal
registration i.e. Translation. This model can be an alternative to the popular atlas method for
automatic segmentation which is heavily dependent on the performance of the deformable
registration. We compared different types of CT Masks and evaluated two types of fusion
techniques between the inputs. In our analysis we found that Late Fusion had a better
performance of segmenting the tumor that the Early Fusion Model. In future, we might be
able to further improve the performance by using a new loss function which penalises the
dependency of the model on the CT-Mask, or even by a different type of fusion technique.
It might be a good idea to have a bigger dataset to help in generalization. We are further
planning to use this type of model in multi-task learning for regression/classification tasks
along with the segmentation.
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