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Abstract: We explore several aspects of replica synchronization with the goas of retrieving the value 1

of parameters for the Lorenz system. The idea is that of having a computer replica (slave) of a natural 2

system (master, simulated in this paper), and exploit the fact that slave synchronizes with the master 3

only if they evolve with the same parameters. As a byproduct, in the synchronized phase the state 4

variables of the slave and that of the master are the same, thus allowing to perform measurements 5

impossible on the real system. We review some aspects of master-slave synchronization using a 6

subset of variables, with intermittent coupling. We show how synchronization can be achieved 7

when some of the state variables are available for direct measurement using a simulated annealing 8

approach, and also when they are accessible only through a scalar function, using a pruned-enriching 9

ensemble approach, similar to genetic algorithms without cross-over. 10

Keywords: Master-slave synchronization, data assimilation, parameter estimation, Lorenz system 11

1. Introduction 12

There are many cases in which one is interested in forecasting the behaviour of a chaotic 13

system, the emblematic one is meteorology. The main obstacle is, of course, that in chaotic 14

systems by definition a small uncertainty amplify exponentially in time [1]. Moreover, even 15

if one assumes to have a good computational model of a natural, chaotic system, the exact 16

value of parameters is needed to have a faithful representation of dynamics. 17

Schematically, one can assume that the natural, or target system is well represented 18

by some dynamical system, possibly with noise. One can measure some quantities on this 19

system, but in general one is not free to choose which variable (or combination of variables) 20

to measure nor to perform measurements at any rate. 21

On the other hand, if one has a good knowledge of the system under investigation, 22

i.e., it can be modeled with good accuracy, a simulated “replica” of the system can be 23

implemented on a computer. If moreover one has the possibility of knowing the param- 24

eters and the initial state of the original system, so to keep the replica synchronized to it 25

(when running at the same speed), then the replica can be used to perform measurements 26

otherwise impossible, and to get accurate forecasting (when run at larger speed). 27

In general, the problem of extracting the parameters of a system from a time-series of 28

measurement on it, is called data assimilation [2]. 29

The problem in data assimilation is that of determining the state of the system and 30

the parameters by minimizing an error function between data measured on the target 31

and the respective data from the simulated system. A similar task is performed by the 32

back-propagation techniques in machine learning [3,4]. 33

The goal of this paper is that of approaching this problem from the point of view of 34

dynamical systems [5]. In this context the theme of synchronization is quite explored [6], 35

but it has to be extended in order to cover the application field of data assimilation. 36
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The synchronization technique is particularly recommendable when the noise (in the 37

measure and intrinsic to the system) is small, i.e., when the target system can be assumed 38

to be well represented by a deterministic dynamics, even if this dynamics is not continuous 39

(as in Cellular Automata [7]). 40

We shall investigate here the application of synchronization methods to the classic 41

Lorenz system [8]. 42

We shall start from the classic Pecora-Carrol master-slave synchronization scheme, 43

recalled in Section 2, in which the value of some of the state variables of the master is 44

imposed to the corresponding variables of the slave system. This choice of coupling 45

variables is denoted “coupling direction” in the tangent space of the system. 46

The synchronization threshold is connected to the value of the conditional Lyapunov 47

exponent [9,10], i.e., the exponential growing rate along the difference space between 48

master and slave, as reported in Section 3. 49

This scheme will be then extended to partial synchronization, i.e., to the case in which 50

only a portion of the value of the state variables of the master system signal is fed to the 51

slave, as shown in Section 4. We can thus establish the minimum fraction of signal (coupling 52

strength) able to synchronize the two replicas, that depends on the coupling direction. 53

However, one cannot pretend to be able to perform measurements in continuous time, 54

as done in the original synchronization scheme, in which the experimental reference system 55

was a chaotic electronic circuit. 56

Therefore, we dealt with the problem of intermittency, i.e., performing measurements, 57

and consequently applying the synchronization scheme, only at certain time intervals. We 58

show that the synchronization scheme works also for intermittent measurements, provided 59

that the coupling strength is increased, as shown in Section 5. 60

In the case of systems with different parameters, the synchronization cannot be com- 61

plete, and we speak of generalized synchronization. We shall show in Section 7 that the 62

distance among systems can be interpreted as measure of the error, and exploited to obtain 63

the “true” value of parameters, using a simulated annealing scheme. 64

Finally, it may happen that the variables of the systems are not individually accessible 65

to measurements, a situation which forbids the application of the original method. In 66

this case one can still exploit schemes inspired by statistical mechanics, like the pruned 67

and enriching one, simulating an ensemble of systems with different state variables and 68

parameters, and selecting the instances with less error, cloning them with perturbations. 69

This kind of genetic algorithms is able to approximate the actual values of parameters, as 70

reported in Section 8. 71

Conclusions are drawn in the last section. 72

2. Pecora-Carrol synchronization 73

In 1990 Louis Pecora and Thomas Carrol introduced the idea of master-slave synchro- 74

nization [9]. They studied simulated systems, like the Lorenz [8] and Rössler [11] ones, and 75

also experimental electronic circuits [12]. 76

They considered two replicas of the same system, with same parameters. One of 77

the replica (the master) was left evolving unperturbed. Some of state variables of the 78

master replaced the corresponding variable of the slave system, which is therefore no more 79

autonomous. This topic was further explored in a 2015 paper [10]. 80

In order to get the main idea of this master-slave (or replica) synchronization, let us 81

consider first a one-dimensional, time-discrete dynamical system, like for instance the 82

logistic map [13]. It is defined by an equation of the kind 83

xn+1 = f (xn), (1)

where n labels the time interval. The usual Lyapunov exponent λ is defined as 84

λ = lim
N→∞

N

∑
n=1

log( f ′(xn)), (2)
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where f ′(x) = d f /dx. Let us now introduce a replica X such that 85

xn+1 = f (xn);

Xn+1 = (1− p) f (Xn) + p f (xn),
(3)

where p is the coupling parameter (coupling strength). 86

For p = 0 the two maps are uncoupled, and since they are assumed to be chaotic, they 87

generally take different values. For p = 1 map X immediately synchronizes with map x. 88

There is a critical value pc of the coupling parameter for which the synchronized state is 89

stable, and it is related to the Lyapunov exponent λ, 90

pc = 1− exp(−λ), (4)

as can be seen by taking the linearized difference among the maps. 91

This scenario holds also for higher-dimensional (K) maps, which can be written as 92

rn+1 = F(rn), (5)

where rn denotes the state of the system at iteration n and has K components. The system 93

has now K Lyapunov exponents, of which at least one, λMAX, is assumed to be positive. 94

The synchronization procedure in this case is 95

rn+1 = F(rn);

Rn+1 = (I− pC)F(Rn) + pCF(rn),
(6)

where now the coupling is implemented by means of a diagonal matrix C, with diagonal 96

entries equal to zero or one, defining the coupling directions. In the following we shall 97

indicate the diagonal of C as C = [cx, cy, cz]. 98

In the case in which C = I, i.e., all entries are mixed with the same proportion, the 99

stability of the synchronized phase is again related to the maximum Lyapunov exponent 100

λMAX, 101

pc = 1− exp(−λMAX), (7)

since the evolution of an infinitesimal difference among the replicas, δ, is given by 102

δn+1 = (1− p)J(x)δn, (8)

where J is the Jacobian of F 103

Jij =

(
∂Fi
∂xj

)
x=xn

. (9)

This scheme can be extended to continuous-time systems, by replacing the entries 104

from one system in the coupled differential equation, so 105

ṙ = F(r);

Ṙ = (I− pC)F(R) + pCF(r).
(10)

where now the Lyapunov exponents of the original system are given by the eigenvalues of 106

the (symmetrized) time-average of Jacobian Λ 107

Λ = lim
t→∞

1
2t

(∫ t

0
J(r(t)) +

(∫ t

0
J(r(t))

)T
)

. (11)
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In practice, however, the differential equation Eq. (10) is implemented as a map, by 108

discretizing the time, and therefore Lyapunov exponents are computed as in the previous 109

case. Using a simple Euler scheme, we have t = n∆t and r(t) = r(n∆t) = rn, and 110

rn+1 = rn + F(rn)∆t. (12)

In the tangent space 111

δrn+1 = (1 + J(rn)∆t)δrn, (13)

and the maximum Lyapunov exponent λMAX is 112

λMAX = lim
n→∞

1
n∆t ∑

n
log(1 + J(rn)∆t) ≃ lim

n→∞

1
n ∑

n
J(rn). (14)

The average growth of the distance δr is 113

δr(t) = δ0 exp(λMAXn∆t) = exp(λMAXt), (15)

for time intervals such that the linearized approximation is valid. 114

Notice that in the continuous-time version the Jacobian and the Lyapunov exponents 115

are defined in units of the inverse of time. 116

3. Conditional coupling 117

In the original Pecora-Carrol implementation [10], the signal from the master is fully 118

extracted , i.e., p = 1, so that for the R system, either a component is untouched, or it is 119

derived from the replica (r). 120

To be explicit, for the Lorenz system we have 121

ẋ = σ(y− x),

ẏ = −xz + ρx− y,

ż = xy− βz.

(16)

For instance, for a full coupling along the x direction (C = [1, 0, 0]), the replica will 122

follow the equation 123

X = x,

Ẏ = −xZ + ρx−Y,

Ż = xY− βZ.

(17)

It is possible to define the sub-Lyapunov [9] or, better, the conditional Lyapunov 124

exponents [10], by iterating the equation for the difference δr in the tangent space. For 125

instance, for the Lorenz system coupled along the x direction (C = [1, 0, 0]), we have 126

d
dt

(
δy
δz

)
=

(−1 −x
x −β

)
·
(

δy
δz

)
, (18)

giving two conditional exponents. The system synchronizes if both of them are negative. 127

Fig. 1 we report the value of the maximum conditional Lyapunov exponent as a 128

function of the coupling strength p for the Cx = [1, 0, 0], Cy = [0, 1, 0] and Cz = [0, 0, 1] 129

coupling directions. 130

As noted also in Ref [10], the Lorenz system synchronizes if coupled along the x and y 131

directions, but not along the z one, even for p = 1. 132
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Figure 1. Conditional Lyapunov maximal exponent for different coupling directions. Cx = [1, 0, 0],
Cy = [0, 1, 0], Cz = [0, 0, 1]. In the last one, in orange, we also show the distance d (normalized at it’s
maximum value obtained in the simulation) between the master and slave state variables for different
coupling strengths (see also Fig. 2).
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Figure 2. Asymptotic distance d as function of the coupling strength p for different coupling directions.
From the left to the right: C = [1, 1, 1], Cx = [1, 0, 0], Cy = [0, 1, 0].

Our observable was the average distance d, 133

d(t) = ||r(t)− R(t)|| =
√
(x(t)− X(t))2 + (y(t)−Y(t))2 + (z(t)− Z(t))2,

d =
1
T

∫ T

0
d(t)dt,

(19)

computed after a proper transient. 134

In Fig. 2 we show d as a function of the coupling strength p for different coupling 135

directions. For all the simulations we set σ = 10, β = 8/3, ρ = 28, and we use the 136

Euler integration scheme to integrate the equation with temporal step dt = 10−3. After a 137

transient time of free evolution we couple the master and the slave system every time step. 138

At T = 100 (simulation end time) we compute the distance d between the two systems. 139

4. Partial conditional coupling 140

We can naturally generalize the definition of maximum conditional Lyapunov expo- 141

nents also when we do not have a full coupling, i.e., p < 1, looking for the synchronization 142

threshold pc, for which d(p) goes to zero. 143

From the plots reported in Fig. 2, one can see that for the x and y coupling there is a 144

well defined synchronization threshold, similar to that obtained for the uniform coupling. 145

For the z coupling, the maximum Lyapunov exponent is always positive (albeit small), and 146

no synchronization is possible. 147

This behaviour is showed in Fig. 1, were we plot the maximum conditional Lyapunov 148

exponent for different coupling strength p and different coupling direction C. For the z 149

coupling, we also plot the distance d(p) for some p (as Fig. 2). 150

One can see also that in the un-synchronized phase, the distance d(p) exhibits a non- 151

monotonous behavior, except in the vicinity of the synchronization transitions, Fig. 2. This 152

aspect will be analyzed in Section 7. 153
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Figure 3. The dependence of the synchronization threshold on the intermittent parameter k such that
τ = k∆t for different coupling directions and it’s linear fit obtained using the first 20 time steps. The
other parameters of the simulation are: dt = 10−3 and kmax = 50 for C = [1, 0, 0], kmax = 100 for the
others.

C = [1, 1, 1] Cx = [1, 0, 0] Cy = [0, 1, 0]
λlin 0.995 8.840 2.670
λfit 0.961 8.619 2.555

Table 1. Maximum conditional Lyapunov exponent estimated using the asymptotic distance |d|
between Master and coupled Slave systems (λsim) and derived from linear fit (λfit).

5. Intermittent synchronization 154

In real applications, it is generally impossible to get a signal from one system and 155

inject it into the replica in a time-continuous way. Pecora and Carrol were able to do it 156

using electronic circuits [9], but if one need to pass through a measurement system, it is 157

expects that this device has a finite bandwidth, i.e., a finite measurement time. 158

So the question becomes: is it possible to synchronize two replicas measuring one 159

quantity only at time intervals τ? 160

Numerically, if the equations are integrated using a constant time step ∆t, this means 161

that the replacement or mixing of components is applied every k time steps, so that τ = k∆t. 162

For homogeneous coupling (C = [1, 1, 1]), the linear analysis for simply tells that 163

(Equation 7) 164

pc = 1− exp(−λMAX∆t · k) = 1− exp(−λMAXτ), (20)

i.e., intermittent synchronization is equivalent to the standard synchronization for a system 165

with a larger Lyapunov exponent. 166

Then, for small τ, we have 167

pc = λMAXτ. (21)

This relationship holds numerically also for other coupling directions, as shown in 168

Fig. 3. In the figure we also plot the linear fit obtained using the first 20 points. 169

The estimated values obtained from the linear fit (λfit), compared with the values (λlin) 170

computed using equation 21 with pc estimated numerically (Fig. 2), are summarized in 171

Table 1. 172

6. Generalized synchronization 173

What happens if the two coupled replicas evolve using different values of parameters 174

σ, ρ, β [6,14]? Even when the coupling parameters (directions and intensity) are above 175

threshold, the distance d remains finite. Let us indicate with σ′, ρ′, β′ the parameters of the 176

slave system. 177

We can define a parameter distance D, 178

D =
√
(σ− σ′)2 + (ρ− ρ′)2 + (β− β′)2, (22)
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Figure 4. Heat map of the state-variable distance d for different values of parameter coupling
D = πD0 (0 ≤ π ≤ 1) and state-variable coupling p for some state-variable coupling directions C
and parameter coupling direction χ. (a) C = [1, 1, 1], χ = [1, 1, 1]; (b) Cx = [1, 0, 0], χ = [1, 1, 1]; (c)
Cz = [0, 0, 1], χ = [1, 1, 1];. The line π = 0 corresponds to Fig. 2.
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Figure 5. The state-variable distance d (dashed line) and parameter distance (color) as a function of
temperature θ for p = 0.6≫ pc and different coupling directions C. (a) C = [1, 1, 1]; (b) C = [1, 0, 0];
(c) C = [0, 1, 0]. We set θ = 1, ϵ = 10−4, T = 100.

which is zero for the previous coupling schemes. We can also generalize the coupling 179

among replicas, similar to what done for state variables, Eq.(6), introducing a parameter 180

coupling direction χ = [χσ, χρ, χβ] and a strength π so that the parameters of the slave 181

replica are 182
σ′ = σ + χσπ(σ1 − σ),
ρ′ = ρ + χρπ(ρ1 − ρ),
β′ = β + χβπ(β1 − β),

where σ1, ρ1, β1 are the values of parameters corresponding to π = 1, reachable according 183

to the “direction” χ. 184

We can notice that the distance among state variables d decreases smoothly with p− pc 185

and D only for a small interval of D near zero. Clearly, d > 0 for p < pc, even for D = 0, 186

which is what we have seen in Section 4. 187

Some simulation results are presented in Fig. 4, in which the asymptotic state-variable 188

distance d is reported as a function of the distance between parameters D = πD0 and 189

state-variable coupling p. The parameter coupling π always goes from 0 to 1, so the initial 190

parameter distance D0 corresponds to the larger value of D. The line D = 0 corresponds to 191

the distance reported in Fig. 5. 192

Clearly, in the absence of synchronization for D = 0 (C = [0, 0, 1], Fig. 5-(c)), there is 193

no synchronization for D > 0. In the other cases, there is a region near the synchronized 194

phase in which d goes smoothly to zero. Notice that in Fig. 5-(c)) the larger distance d 195

occurs for p = 1 and large D. This is probably due to the fact that when coupled along the 196

z directions, the two replicas may stay on different “leaves” of the attractor, which is almost 197

perpendicular to z. 198

Notice also that the d landscape is not smooth far from the synchronized phase. We 199

consider this aspect in the following section. 200
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7. Parameter estimation 201

We are now able to exploit the fact the the distance d goes to zero if p > pc and 202

D = 0, thus allowing to determine the parameters of the master system r by varying the 203

parameters of the simulated replica R. 204

However, since the convergence of d to zero is not monotonous with D, we relay of a 205

simulated annealing technique [15], that allows to overcome the presence of local minima. 206

We introduce a fictitious temperature θ, and assume that the distance d is the analogous to 207

an energy to be minimized. 208

We assume that the the synchronization time τ and the coupling direction C, cannot 209

be modified at will by experimenters, being fixed by the characteristic of the measure 210

instruments and of the actuators. We insure to be in the condition p > pc, i.e., such that if 211

the parameter distance is null, D = 0, synchronization occurs. 212

The idea is the following: we simulate the coupled system for a time interval T, 213

measuring the state variable distance d, after which one of the parameter σ, ρ, β is varied 214

by a small amount. We repeat the simulation starting from the same conditions, except the 215

varied parameter, and compute again d. If d decreases the variation is accepted. It is also 216

accepted if d increases, with a probability 217

pacc = exp
(
−∆d

θ

)
, (23)

otherwise it is discarded. 218

The temperature θ is slowly lowered (multiplying θ by a factor 1− ϵ) every T time 219

interval. As shown in Fig. 5, in this way it is possible to exploit the synchronization 220

procedure to get the value of the parameters in the master replica. In fact, for θ sufficiently 221

low, the distance |d| between master and slave state variables (dashed line in figure) drops 222

to zero. For similar values of temperature (but not always the same), also the distances 223

|∆| between master and slave parameters drop to zero (continuous color lines). Clearly, 224

this procedure works only for deterministic dynamical systems with little or no noise on 225

measurement, and with very low dimensionality. 226

8. Pruned-enriching approach 227

The previous scheme cannot be always followed, since we assumed to be able to mea- 228

sure some of the variables of the master system and inject this value (at least intermittently) 229

in the slave one. 230

However, this might be impossible, either because the state variables x, y, z are not 231

accessible individually, or because those that are accessible do not allow the synchronization 232

(for instance, if only the z variable is accessible, as illustrated in Section 4). 233

We can take profit of the Takens theorem [16], that states that the essential features 234

(among which the maximum Lyapunov exponent) of a strange attractor {r(t)}t→∞ can 235

be reconstructed by intermittent observations wn = f (r(n∆T)) using the time series 236

wn, wn−1, wn−2, ... as surrogate data, provided that their number is larger than the di- 237

mensionality of the attractor [17]. Other conditions are that the observation interval ∆T be 238

large enough to have observations wn sufficiently spaced, but not so large that the wn are 239

scattered along the attractor, making the reconstruction of the trajectory impossible. It is 240

therefore generally convenient to take an interval ∆t substantially larger than the minimum 241

∆t = τ, but of the same order of magnitude. 242

What is interesting, is that one can choose for f an arbitrary function of the original 243

variables, provided that their correspondence is smooth. We therefore employed a method 244

inspired by the pruned-enriching technique [18,19] or genetic algorithm without cross- 245

over [20]. 246

We assume that we can only measure a function f (x, y, z) = f (r) of the master system, 247

at time intervals τ. The master system evolves with parameters q = (σ, ρ, β). 248

We simulate an ensemble {Ri}i=1,...,h composed by h replicas, each one starting from 249

state variables Ri(0) (i = 1, . . . , h) and evolving with the same equation as the master 250
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Figure 6. The schematic of the pruned-enriching method. The variation of the duplication of the
nearer replicas is either on one of the state variables or one of parameters.

one with parameters {Qi}i=1,...,h, where Qi = (σi, ρi, βi). At beginning Ri(0) and Qi are 251

random quantities. 252

We let the ensemble evolve for a time interval T and then we measure the distance 253

di = | f (r(T))− f (Ri(T))|. We sort the replicas according with di and we replace the half 254

with larger distances following an evolutionary law based on a cloning and perturbation 255

scheme, as shown in Fig. 6. For a more detailed description of the procedure we can refer 256

to algorithms 1 and 2. 257

First of all we need to set the initial condition. Given a set of measures { f (r(t))} = 258

{ f (rn)}, for t = t0, t0 + τ, . . . , t0 + nτ, . . . , T, we map the dynamics in an embedding space 259

of size de defined by the vectors wn =
(

f (rn), f (rn−1), . . . , f (rn−de+1)
)
. Then we randomly 260

initialize the initial conditions Ri(0) and the initial value of the parameters Qi of the h 261

replicas, in a range consistent with the physical values. To create the initial embedding 262

vectors of the replicas, we evolve the ensemble for a time TTrans ≥ deτ. 263

Now we can start with the optimization problem. For a number of repetitions M, we 264

evolve the ensemble using a time step dt up to time t = T. At each further interval τ we 265

update the embedding vector wi substituting the oldest measurement with the new one 266

and compute the euclidean distances di between the W i and the reference w(t) computed 267

on the master system. 268

The distance di is used as cost function of our optimization problem. In the Parameters 269

updating step of Algorithm 2, we sort the elements of the set in ascending order according 270

to di and replace the second half of the set with a copy of the first half with either a random 271

perturbation of amplitude δ in one of the parameters, or a random perturbation of the state 272

variables, see Algorithm 2. 273

We add some check to be sure to not have inconsistent values of parameters (in our 274

case all the Qi need to be positive). After that we compute Q̃, the estimated parameters, as 275

mean of the fist half of the ensemble elements. 276
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Figure 7. Parameters distance D at interval M for different amplitudes δ with (a) Qi randomly
initialized in the interval (0.5, 30) and (b) Qi initialized near the “true” values Q by adding a random
noise of amplitude ϵ = 0.5. (c) Variance of the distance D for different amplitudes δ for the last
interval. The vertical lines indicate when the ensemble was restored to t = 0. The Qi are initialized as
in (a).

Since in general we assume M > T/dt, the number of time steps in the simulated 277

trajectories, when t = T we restart the ensemble simulation at the initial time step, restoring 278

initial random condition in the state space but without changing the parameters, and we 279

recompute the initial vector W i evolving the ensemble member up to time t = TTrans. 280

281

We analyze the convergence problem for different value of δ. We suppose to have 282

access at only the x component of the real system, i.e. our measurement function is simply 283

f (r) = x. We evolve the system up to T = 100 with time step dt = 0.01 and we measure 284

every τ = 0.2. We embed the system in a embedding space of dimension de = 5. 285

The ensemble is composed by h = 10000 replicas and we repeat the procedure for 286

M = 50000 times. The final results are showed in Fig. 7. In Fig. 7-a we initialize the 287

ensemble parameters randomly in the interval (0.5, 30) and we measure the distance 288

D in the parameters space (Eq. (22)) for different δ. Notice that, starting from a large 289

initial distance, larger values of δ, are more effective for the convergence. The opposite 290

phenomenon is reported in Fig. 7-b. Here we assume to approximately know the true 291

parameter values with an error ϵ and we test the dependence of the amplitude δ in a fine 292

tuning regime. In this case, starting from a relative small distance, smaller values of δ are 293

more effective. 294

In Fig. 7-c instead we show the behavior of the variance of the parameter distance 295

D during the optimization for different amplitude δ. With a small amplitude δ for the 296

parameters updating step, the elements of the ensemble rapidly converge to the local 297

minimum before having explored the parameter space sufficiently so, small amplitude 298

values of δ can be useful only for a fine tuning approach. Using large values of δ instead 299

is helpful to better explore the parameters landscape and allows to converge to the true 300

values but with noisy results. These considerations suggest the use of an adaptive value of 301

the parameter δ. 302

Inspired from these results we modify the updating ruled introducing a variable 303

amplitude δ =
(
δ1, δ2, . . . , δR

)
, where, for every ensemble members i, δi = δi(di). Then, for 304

each replica we defined an amplitude that modulates the variation step in an self-consistent 305

manner. To test this choice we simply put 306

δi = di. (24)

In Fig. 8 we plot the behaviour of 50 ensemble members randomly chosen in the 307

pruned-enriching optimization problem with the amplitude factor δ defined as in Eq. (24). 308

We suppose to be in the same situation of the last simulations, so we measure the real sys- 309

tem only in the Cx direction every τ = 0.2. The ensemble dimension is equal to h = 10000 310
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real ens. mean ens. variance
σ 10.000000 9.997584 0.003873
β 2.666667 2.664959 0.001000
ρ 28.000000 28.017719 0.004583

Table 2. Estimated parameters obtained using the pruned-enriching algorithm with δ variable. On
the last column we also show the variance on the ensemble members of the estimated parameters.

Figure 8. The distance between variable (black points, right axes) and parameters (left axes) as a
function of time in the pruned-enriching method for 50 randomly selected replicas of the h = 10000
used to estimated the parameters. We consider the situation where only measurement in coupling
direction C = [1, 0, 0] are available at every k = 20 temporal steps dt, so we embed our time series in
an embedding space of dimension de = 5.

and we choose the embedding dimension de = 5. In this simulation we run the algorithm 311

for M = 80000 intervals. The numerical results as show in Table 2. 312

313

The pruned-enriching procedure is similar to a genetic algorithm without cross-over. 314

In general the cross-over operation aims at combining locally-optimised solutions, and 315

depends crucially by the coding of the solution in the “genome”. When the cost function 316

is essentially a sum of functions of variables coded in the solution in nearby zones, the 317

cross-over can indeed allow a jump to an almost-optimal instance. In this case we encode 318

the parameters simply using their current values (a single genome is a vector of 3 real 319

numbers), so there is no indication for this option to be present. It is possible however 320

to pick parameters from “parents” instead of randomly altering them. Since the pool of 321

tentative solutions is obtained by cloning those corresponding to the lowest distances from 322

the master one, we expect little improvements using parameter exchange. 323

To add the cross-over in our procedure we modify the algorithms such that, for every 324

element of the second half of the ensemble, we chose randomly if update the parameters 325

as Algorithm 2 or do the cross-over step generating the new replica from two parents 326

randomly chosen from the first half of the ensemble. Children inherit randomly two of the 327

parameters from one parent and one from the other. 328

Without any a priori information about the true parameter values we randomly 329

initialize the initial states and the parameters, so, using the cross-over operation can 330

introduce a bias in the early stages of the optimization problem, as can be seen in Fig. 9, 331

where we compare the estimated parameters for different repetitions using an amplitude 332
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Algorithm 1 Pruned-enriching algorithm.

Require: {w(t)}, δ, Qi, Ri, dt, τ, M, TTrans
m← 0
t← 0
while m < M do

m← m + 1
if t == T then

t← 0
W ← Ensemble evolution up to t = TTrans and store measure every τ

else
if t ∝ τ then

W ← Update with f (R)
d← Euclidean distance d(w(t), W)
Q← Parameters updating step ▷ Algorithm 2
Q̃← Mean of first R/2 ensemble elements

end if
R← Evolution step with time step dt and Q as parameters
t← t + dt

end if
end while
return Q̃

Algorithm 2 Parameters updating step.

Require: R, δ, d, W , w(t)
index← argsort(d) ▷ return index of d sorted in ascending order
for i in range(R/2, R) do

Qi ← Qj with j random integer in (0, R/2)
if random(0, 1) < 0.5 then

k← random integer in (1, 2, 3)
Qik ← Qjk + random(−δ, δ)
while Qik < 0 do

Qik ← Qjk + random(0, δ)
end while

else
Rik ← Rjk + random(−δ, δ)

end if
end for
return Q
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Figure 9. Estimation (x) and standard deviation (blue area) of the parameters computed using the
first half of the ensemble with (a) and without (b) cross-over. The true values are also shown (dotted
orange lines).

δ = 0.8 with (Fig. 9a) and without (Fig. 9b) cross-over at every t = T. As the other 333

simulations we randomly initialize the initial states and parameter values of the ensemble, 334

we evolve the system, after the transient time TTrans, up to T = 100 with dt = 0.01 and we 335

suppose to be able to measure the x direction with τ = 0.2. 336

The cross-over allow to make jumps in the parameters space, but in the early stage of 337

the optimization process these jumps can cause the ensemble convergence to wrong values. 338

On the other hand, the cross-over can reduce the variance of the ensemble estimation, so 339

it can help in the last steps, or for fine tuning. Future work is needed to explore more in 340

details this option. 341

9. Conclusions 342

We have shown that it is possible to exploit several aspects of the master-slave syn- 343

chronization to retrieve the parameters of the master system (assumed to be a real, physical 344

one) though a simulated replica. In this way, it is also possible to perform measurements 345

impossible on the real system, using the simulated replica. 346

We have extended the original Pecora-Carrol synchronization scheme [10], to partial 347

and intermittent coupling. 348

We have shown that synchronization can be achieved when some of the state variables 349

are available for direct measurement and that the parameters of the original systems can be 350

reconstructed by synchronization using a simulated annealing approach,. 351

We have then shown that the synchronization method can be exploited to retrieve 352

unknown parameters even when variables are accessible only through a scalar function, 353

using a pruned-enriching ensemble approach, similar to genetic algorithms without cross- 354

over, which is then introduced without remarkable improvements. 355

This works is only a first glimpse into a wide field. The proposed methods can be 356

applied to other dynamical systems, and their limits are still to be precisely defined. 357

Other important questions concern the dimensionality of systems, since real systems 358

are only exceptionally described by low-dimensional dynamical systems, and the influence 359

of noise that always affect real-life measurements. 360
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