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Abstract: We explore several aspects of replica synchronization with the goas of retrieving the value
of parameters for the Lorenz system. The idea is that of having a computer replica (slave) of a natural
system (master, simulated in this paper), and exploit the fact that slave synchronizes with the master
only if they evolve with the same parameters. As a byproduct, in the synchronized phase the state
variables of the slave and that of the master are the same, thus allowing to perform measurements
impossible on the real system. We review some aspects of master-slave synchronization using a
subset of variables, with intermittent coupling. We show how synchronization can be achieved
when some of the state variables are available for direct measurement using a simulated annealing
approach, and also when they are accessible only through a scalar function, using a pruned-enriching
ensemble approach, similar to genetic algorithms without cross-over.
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1. Introduction

There are many cases in which one is interested in forecasting the behaviour of a chaotic
system, the emblematic one is meteorology. The main obstacle is, of course, that in chaotic
systems by definition a small uncertainty amplify exponentially in time [1]. Moreover, even
if one assumes to have a good computational model of a natural, chaotic system, the exact
value of parameters is needed to have a faithful representation of dynamics.

Schematically, one can assume that the natural, or target system is well represented
by some dynamical system, possibly with noise. One can measure some quantities on this
system, but in general one is not free to choose which variable (or combination of variables)
to measure nor to perform measurements at any rate.

On the other hand, if one has a good knowledge of the system under investigation,
i.e., it can be modeled with good accuracy, a simulated “replica” of the system can be
implemented on a computer. If moreover one has the possibility of knowing the param-
eters and the initial state of the original system, so to keep the replica synchronized to it
(when running at the same speed), then the replica can be used to perform measurements
otherwise impossible, and to get accurate forecasting (when run at larger speed).

In general, the problem of extracting the parameters of a system from a time-series of
measurement on it, is called data assimilation [2].

The problem in data assimilation is that of determining the state of the system and
the parameters by minimizing an error function between data measured on the target
and the respective data from the simulated system. A similar task is performed by the
back-propagation techniques in machine learning [3,4].

The goal of this paper is that of approaching this problem from the point of view of
dynamical systems [5]. In this context the theme of synchronization is quite explored [6],
but it has to be extended in order to cover the application field of data assimilation.
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The synchronization technique is particularly recommendable when the noise (in the
measure and intrinsic to the system) is small, i.e., when the target system can be assumed
to be well represented by a deterministic dynamics, even if this dynamics is not continuous
(as in Cellular Automata [7]).

We shall investigate here the application of synchronization methods to the classic
Lorenz system [8].

We shall start from the classic Pecora-Carrol master-slave synchronization scheme,
recalled in Section 2, in which the value of some of the state variables of the master is
imposed to the corresponding variables of the slave system. This choice of coupling
variables is denoted “coupling direction” in the tangent space of the system.

The synchronization threshold is connected to the value of the conditional Lyapunov
exponent [9,10], i.e., the exponential growing rate along the difference space between
master and slave, as reported in Section 3.

This scheme will be then extended to partial synchronization, i.e., to the case in which
only a portion of the value of the state variables of the master system signal is fed to the
slave, as shown in Section 4. We can thus establish the minimum fraction of signal (coupling
strength) able to synchronize the two replicas, that depends on the coupling direction.

However, one cannot pretend to be able to perform measurements in continuous time,
as done in the original synchronization scheme, in which the experimental reference system
was a chaotic electronic circuit.

Therefore, we dealt with the problem of intermittency, i.e., performing measurements,
and consequently applying the synchronization scheme, only at certain time intervals. We
show that the synchronization scheme works also for intermittent measurements, provided
that the coupling strength is increased, as shown in Section 5.

In the case of systems with different parameters, the synchronization cannot be com-
plete, and we speak of generalized synchronization. We shall show in Section 7 that the
distance among systems can be interpreted as measure of the error, and exploited to obtain
the “true” value of parameters, using a simulated annealing scheme.

Finally, it may happen that the variables of the systems are not individually accessible
to measurements, a situation which forbids the application of the original method. In
this case one can still exploit schemes inspired by statistical mechanics, like the pruned
and enriching one, simulating an ensemble of systems with different state variables and
parameters, and selecting the instances with less error, cloning them with perturbations.
This kind of genetic algorithms is able to approximate the actual values of parameters, as
reported in Section 8.

Conclusions are drawn in the last section.

2. Pecora-Carrol synchronization

In 1990 Louis Pecora and Thomas Carrol introduced the idea of master-slave synchro-
nization [9]. They studied simulated systems, like the Lorenz [8] and Rossler [11] ones, and
also experimental electronic circuits [12].

They considered two replicas of the same system, with same parameters. One of
the replica (the master) was left evolving unperturbed. Some of state variables of the
master replaced the corresponding variable of the slave system, which is therefore no more
autonomous. This topic was further explored in a 2015 paper [10].

In order to get the main idea of this master-slave (or replica) synchronization, let us
consider first a one-dimensional, time-discrete dynamical system, like for instance the
logistic map [13]. It is defined by an equation of the kind

Xp1 = f(xn), 1
where 1 labels the time interval. The usual Lyapunov exponent A is defined as
N

A= lim Y log(f'(xn)), )

N—>oon:1
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where f/(x) = df /dx. Let us now introduce a replica X such that

Xn+1 = f(xﬂ);
Xpt1 = (1=p)f(Xn) + pf(xn),

where p is the coupling parameter (coupling strength).

For p = 0 the two maps are uncoupled, and since they are assumed to be chaotic, they
generally take different values. For p = 1 map X immediately synchronizes with map x.
There is a critical value p, of the coupling parameter for which the synchronized state is
stable, and it is related to the Lyapunov exponent A,

®)

pe=1—exp(=A), 4)

as can be seen by taking the linearized difference among the maps.
This scenario holds also for higher-dimensional (K) maps, which can be written as

tny1 = F(ra), %)

where r,; denotes the state of the system at iteration 7 and has K components. The system
has now K Lyapunov exponents, of which at least one, Ay1ax, is assumed to be positive.
The synchronization procedure in this case is

Tny1 = F(rn)}

6
Ryi1 = (I—pC)F(Ry) + pCF(ry), ®)

where now the coupling is implemented by means of a diagonal matrix C, with diagonal
entries equal to zero or one, defining the coupling directions. In the following we shall
indicate the diagonal of C as C = [cy, ¢y, ¢2].

In the case in which C = [, i.e,, all entries are mixed with the same proportion, the
stability of the synchronized phase is again related to the maximum Lyapunov exponent
AMAX,

pe =1 —exp(—Amax), ()

since the evolution of an infinitesimal difference among the replicas, J, is given by

Opt1=(1—p)J(x)6n, (8)

oF;
v (5. ’

This scheme can be extended to continuous-time systems, by replacing the entries
from one system in the coupled differential equation, so

where | is the Jacobian of F

i = F(r);

R = (I— pC)E(R) + pCE(r). (10)

where now the Lyapunov exponents of the original system are given by the eigenvalues of
the (symmetrized) time-average of Jacobian A

A= lim (/Otm(t)) + </0tI(r(f))>T>- (11
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In practice, however, the differential equation Eq. (10) is implemented as a map, by
discretizing the time, and therefore Lyapunov exponents are computed as in the previous
case. Using a simple Euler scheme, we have t = nAt and r(t) = r(nAt) = r,, and

i1 = rn + F(rn)At. (12)

In the tangent space
Otpi1 = (14 J(rn) AL o1y, (13)

and the maximum Lyapunov exponent Apjax is
AMAX = hm — Zlog (T4 J(rq)At) =~ hm 2] ). (14)

The average growth of the distance 6r is

or(t) = dp exp(AmaxnAt) = exp(Amaxt), (15)

for time intervals such that the linearized approximation is valid.
Notice that in the continuous-time version the Jacobian and the Lyapunov exponents
are defined in units of the inverse of time.

3. Conditional coupling

In the original Pecora-Carrol implementation [10], the signal from the master is fully
extracted , i.e., p = 1, so that for the R system, either a component is untouched, or it is
derived from the replica (r).

To be explicit, for the Lorenz system we have

x=0(y—x),
y=—-xz+px—y, (16)
Z = xy — Pz.

For instance, for a full coupling along the x direction (C = [1,0,0]), the replica will
follow the equation

X =x,
Y=—-xZ+px-Y, (17)
Z =xY - BZ.

It is possible to define the sub-Lyapunov [9] or, better, the conditional Lyapunov
exponents [10], by iterating the equation for the difference ér in the tangent space. For
instance, for the Lorenz system coupled along the x direction (C = [1,0,0]), we have

d foy\ (-1 —x oy
a(it)= (0 5) () "
giving two conditional exponents. The system synchronizes if both of them are negative.
Fig. 1 we report the value of the maximum conditional Lyapunov exponent as a
function of the coupling strength p for the C, = [1,0,0], C, = [0,1,0] and C; = [0,0, 1]
coupling directions.

As noted also in Ref [10], the Lorenz system synchronizes if coupled along the x and y
directions, but not along the z one, even for p = 1.
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Figure 1. Conditional Lyapunov maximal exponent for different coupling directions. Cy = [1,0,0],
Cy =[0,1,0], C; = [0,0,1]. In the last one, in orange, we also show the distance d (normalized at it’s
maximum value obtained in the simulation) between the master and slave state variables for different
coupling strengths (see also Fig. 2).
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Figure 2. Asymptotic distance d as function of the coupling strength p for different coupling directions.
From the left to the right: C = [1,1,1], Cx = [1,0,0], C, = [0,1,0].

Our observable was the average distance d,

ﬂﬂzW@—RwH:J@@—X®V+W®—Y®F+@®—Z@ﬂ

PR WL (19)
= = t)dt,

7 ) am
computed after a proper transient.

In Fig. 2 we show d as a function of the coupling strength p for different coupling
directions. For all the simulations we set ¢ = 10, B = 8/3, p = 28, and we use the
Euler integration scheme to integrate the equation with temporal step dt = 1073. After a
transient time of free evolution we couple the master and the slave system every time step.
At T = 100 (simulation end time) we compute the distance d between the two systems.

4. Partial conditional coupling

We can naturally generalize the definition of maximum conditional Lyapunov expo-
nents also when we do not have a full coupling, i.e., p < 1, looking for the synchronization
threshold p,, for which d(p) goes to zero.

From the plots reported in Fig. 2, one can see that for the x and y coupling there is a
well defined synchronization threshold, similar to that obtained for the uniform coupling.
For the z coupling, the maximum Lyapunov exponent is always positive (albeit small), and
no synchronization is possible.

This behaviour is showed in Fig. 1, were we plot the maximum conditional Lyapunov
exponent for different coupling strength p and different coupling direction C. For the z
coupling, we also plot the distance d(p) for some p (as Fig. 2).

One can see also that in the un-synchronized phase, the distance d(p) exhibits a non-
monotonous behavior, except in the vicinity of the synchronization transitions, Fig. 2. This
aspect will be analyzed in Section 7.
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Figure 3. The dependence of the synchronization threshold on the intermittent parameter k such that
T = kAt for different coupling directions and it’s linear fit obtained using the first 20 time steps. The
other parameters of the simulation are: dt = 1073 and kyay = 50 for C = [1,0,0], kyax = 100 for the
others.

C=[1,1,1 | C:=1[10,0] | ¢, =[0,1,0]

Nin 0.995 8.840 2.670
Afit 0.961 8.619 2.555

Table 1. Maximum conditional Lyapunov exponent estimated using the asymptotic distance |d|

between Master and coupled Slave systems (Agjny,) and derived from linear fit (Agy).

5. Intermittent synchronization

In real applications, it is generally impossible to get a signal from one system and
inject it into the replica in a time-continuous way. Pecora and Carrol were able to do it
using electronic circuits [9], but if one need to pass through a measurement system, it is
expects that this device has a finite bandwidth, i.e., a finite measurement time.

So the question becomes: is it possible to synchronize two replicas measuring one
quantity only at time intervals 7?

Numerically, if the equations are integrated using a constant time step At, this means
that the replacement or mixing of components is applied every k time steps, so that T = kAt.

For homogeneous coupling (C = [1,1,1]), the linear analysis for simply tells that
(Equation 7)

pe =1 —exp(—AmaxAt - k) =1 — exp(—AmaxT), (20)

i.e., intermittent synchronization is equivalent to the standard synchronization for a system
with a larger Lyapunov exponent.
Then, for small 7, we have

Pc = AMAXT. (21)

This relationship holds numerically also for other coupling directions, as shown in
Fig. 3. In the figure we also plot the linear fit obtained using the first 20 points.

The estimated values obtained from the linear fit (Ag;), compared with the values (Ay,)
computed using equation 21 with p. estimated numerically (Fig. 2), are summarized in
Table 1.

6. Generalized synchronization

What happens if the two coupled replicas evolve using different values of parameters
o,0,B [6,14]? Even when the coupling parameters (directions and intensity) are above
threshold, the distance d remains finite. Let us indicate with ¢/, o/, B the parameters of the
slave system.

We can define a parameter distance D,

D=\/lc—cP+(p—p)+(B-pP @)
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Figure 4. Heat map of the state-variable distance d for different values of parameter coupling
D = Dy (0 < 7 < 1) and state-variable coupling p for some state-variable coupling directions C
and parameter coupling direction x. (a) C = [1,1,1], x = [1,1,1]; (b) Cx = [1,0,0], x = [1,1,1]; (¢)
C; =10,0,1], x = [1,1,1];. The line 7t = 0 corresponds to Fig. 2
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Figure 5. The state-variable distance d (dashed line) and parameter distance (color) as a function of
temperature 0 for p = 0.6 > p. and different coupling directions C. (a) C = [1,1,1]; (b) C = [1,0,0];
() C=1[0,1,0]. Weset = 1,e = 1074, T = 100.

which is zero for the previous coupling schemes. We can also generalize the coupling
among replicas, similar to what done for state variables, Eq.(6), introducing a parameter
coupling direction x = [x., Xp, Xg] and a strength 77 so that the parameters of the slave
replica are

o =0+ xen(op —0),
p' = p+xpe(o1 —p),
B =B+ xpm(Br—B),

where 071, p1, B1 are the values of parameters corresponding to 7t = 1, reachable according
to the “direction” x.

We can notice that the distance among state variables d decreases smoothly with p — p,
and D only for a small interval of D near zero. Clearly, d > 0 for p < p., even for D = 0,
which is what we have seen in Section 4.

Some simulation results are presented in Fig. 4, in which the asymptotic state-variable
distance d is reported as a function of the distance between parameters D = 7Dy and
state-variable coupling p. The parameter coupling 7t always goes from 0 to 1, so the initial
parameter distance Dy corresponds to the larger value of D. The line D = 0 corresponds to
the distance reported in Fig. 5.

Clearly, in the absence of synchronization for D = 0 (C = [0,0, 1], Fig. 5-(c)), there is
no synchronization for D > 0. In the other cases, there is a region near the synchronized
phase in which d goes smoothly to zero. Notice that in Fig. 5-(c)) the larger distance d
occurs for p = 1 and large D. This is probably due to the fact that when coupled along the
z directions, the two replicas may stay on different “leaves” of the attractor, which is almost
perpendicular to z.

Notice also that the d landscape is not smooth far from the synchronized phase. We
consider this aspect in the following section.
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7. Parameter estimation

We are now able to exploit the fact the the distance d goes to zero if p > p. and
D = 0, thus allowing to determine the parameters of the master system r by varying the
parameters of the simulated replica R.

However, since the convergence of d to zero is not monotonous with D, we relay of a
simulated annealing technique [15], that allows to overcome the presence of local minima.
We introduce a fictitious temperature 6, and assume that the distance d is the analogous to
an energy to be minimized.

We assume that the the synchronization time 7 and the coupling direction C, cannot
be modified at will by experimenters, being fixed by the characteristic of the measure
instruments and of the actuators. We insure to be in the condition p > p,, i.e., such that if
the parameter distance is null, D = 0, synchronization occurs.

The idea is the following: we simulate the coupled system for a time interval T,
measuring the state variable distance d, after which one of the parameter o, p,  is varied
by a small amount. We repeat the simulation starting from the same conditions, except the
varied parameter, and compute again d. If d decreases the variation is accepted. It is also
accepted if d increases, with a probability

Ad
Pacc = exp (_ 9) ’ (23)

otherwise it is discarded.

The temperature 6 is slowly lowered (multiplying 6 by a factor 1 — €) every T time
interval. As shown in Fig. 5, in this way it is possible to exploit the synchronization
procedure to get the value of the parameters in the master replica. In fact, for 6 sufficiently
low, the distance |d| between master and slave state variables (dashed line in figure) drops
to zero. For similar values of temperature (but not always the same), also the distances
|A| between master and slave parameters drop to zero (continuous color lines). Clearly,
this procedure works only for deterministic dynamical systems with little or no noise on
measurement, and with very low dimensionality.

8. Pruned-enriching approach

The previous scheme cannot be always followed, since we assumed to be able to mea-
sure some of the variables of the master system and inject this value (at least intermittently)
in the slave one.

However, this might be impossible, either because the state variables x,y, z are not
accessible individually, or because those that are accessible do not allow the synchronization
(for instance, if only the z variable is accessible, as illustrated in Section 4).

We can take profit of the Takens theorem [16], that states that the essential features
(among which the maximum Lyapunov exponent) of a strange attractor {r() };—c can
be reconstructed by intermittent observations w, = f(r(nAT)) using the time series
Wy, Wy_1, Wy—2,... as surrogate data, provided that their number is larger than the di-
mensionality of the attractor [17]. Other conditions are that the observation interval AT be
large enough to have observations w, sufficiently spaced, but not so large that the w, are
scattered along the attractor, making the reconstruction of the trajectory impossible. It is
therefore generally convenient to take an interval At substantially larger than the minimum
At = 7, but of the same order of magnitude.

What is interesting, is that one can choose for f an arbitrary function of the original
variables, provided that their correspondence is smooth. We therefore employed a method
inspired by the pruned-enriching technique [18,19] or genetic algorithm without cross-
over [20].

We assume that we can only measure a function f(x,y,z) = f(r) of the master system,
at time intervals 7. The master system evolves with parameters g = (o, p, B).

We simulate an ensemble {R;};_; _; composed by & replicas, each one starting from
state variables R;(0) (i = 1,...,h) and evolving with the same equation as the master
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Pruned
and enriching

Pruned
and enriching

Initial pool of replicas

Figure 6. The schematic of the pruned-enriching method. The variation of the duplication of the
nearer replicas is either on one of the state variables or one of parameters.

one with parameters {Q;},—1,_;, where Q; = (0, p;, Bi). At beginning R;(0) and Q; are
random quantities.

We let the ensemble evolve for a time interval T and then we measure the distance
di = |f(r(T)) — f(R;(T))|. We sort the replicas according with d; and we replace the half
with larger distances following an evolutionary law based on a cloning and perturbation
scheme, as shown in Fig. 6. For a more detailed description of the procedure we can refer
to algorithms 1 and 2.

First of all we need to set the initial condition. Given a set of measures {f(r(t))} =
{f(rn)}, fort =ty,to+7,...,to +nt,..., T, we map the dynamics in an embedding space
of size d, defined by the vectors wy, = (f(rn), f(*n-1),.-., f(*n—4,+1)). Then we randomly
initialize the initial conditions R;(0) and the initial value of the parameters Q; of the h
replicas, in a range consistent with the physical values. To create the initial embedding
vectors of the replicas, we evolve the ensemble for a time Tty > deT.

Now we can start with the optimization problem. For a number of repetitions M, we
evolve the ensemble using a time step df up to time t = T. At each further interval T we
update the embedding vector w; substituting the oldest measurement with the new one
and compute the euclidean distances d; between the W; and the reference w(t) computed
on the master system.

The distance d; is used as cost function of our optimization problem. In the Parameters
updating step of Algorithm 2, we sort the elements of the set in ascending order according
to d; and replace the second half of the set with a copy of the first half with either a random
perturbation of amplitude J in one of the parameters, or a random perturbation of the state
variables, see Algorithm 2.

We add some check to be sure to not have inconsistent values of parameters (in our
case all the Q; need to be positive). After that we compute Q, the estimated parameters, as
mean of the fist half of the ensemble elements.
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Figure 7. Parameters distance D at interval M for different amplitudes J with (a) Q; randomly
initialized in the interval (0.5,30) and (b) Q; initialized near the “true” values Q by adding a random
noise of amplitude € = 0.5. (c) Variance of the distance D for different amplitudes § for the last
interval. The vertical lines indicate when the ensemble was restored to ¢ = 0. The Q; are initialized as
in (a).

Since in general we assume M > T/dt, the number of time steps in the simulated
trajectories, when t = T we restart the ensemble simulation at the initial time step, restoring
initial random condition in the state space but without changing the parameters, and we
recompute the initial vector W; evolving the ensemble member up to time f = Trygys.

We analyze the convergence problem for different value of 5. We suppose to have
access at only the x component of the real system, i.e. our measurement function is simply
f(r) = x. We evolve the system up to T = 100 with time step dt = 0.01 and we measure
every T = 0.2. We embed the system in a embedding space of dimension d. = 5.

The ensemble is composed by h = 10000 replicas and we repeat the procedure for
M = 50000 times. The final results are showed in Fig. 7. In Fig. 7-a we initialize the
ensemble parameters randomly in the interval (0.5,30) and we measure the distance
D in the parameters space (Eq. (22)) for different §. Notice that, starting from a large
initial distance, larger values of J, are more effective for the convergence. The opposite
phenomenon is reported in Fig. 7-b. Here we assume to approximately know the true
parameter values with an error € and we test the dependence of the amplitude J in a fine
tuning regime. In this case, starting from a relative small distance, smaller values of ¢ are
more effective.

In Fig. 7-c instead we show the behavior of the variance of the parameter distance
D during the optimization for different amplitude 6. With a small amplitude ¢ for the
parameters updating step, the elements of the ensemble rapidly converge to the local
minimum before having explored the parameter space sufficiently so, small amplitude
values of 6 can be useful only for a fine tuning approach. Using large values of J instead
is helpful to better explore the parameters landscape and allows to converge to the true
values but with noisy results. These considerations suggest the use of an adaptive value of
the parameter ¢.

Inspired from these results we modify the updating ruled introducing a variable
amplitude § = (51, 63,...,0 R), where, for every ensemble members i, §; = d;(d;). Then, for
each replica we defined an amplitude that modulates the variation step in an self-consistent
manner. To test this choice we simply put

5; = d;. (24)

In Fig. 8 we plot the behaviour of 50 ensemble members randomly chosen in the
pruned-enriching optimization problem with the amplitude factor J defined as in Eq. (24).
We suppose to be in the same situation of the last simulations, so we measure the real sys-
tem only in the C, direction every T = 0.2. The ensemble dimension is equal to i = 10000
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| real | ens. mean | ens. variance
o | 10.000000 9.997584 0.003873
B | 2.666667 2.664959 0.001000
o | 28.000000 | 28.017719 0.004583

Table 2. Estimated parameters obtained using the pruned-enriching algorithm with ¢ variable. On

the last column we also show the variance on the ensemble members of the estimated parameters.

407 L 15.0
L12.5
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s
]
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Figure 8. The distance between variable (black points, right axes) and parameters (left axes) as a
function of time in the pruned-enriching method for 50 randomly selected replicas of the 1 = 10000
used to estimated the parameters. We consider the situation where only measurement in coupling
direction C = [1,0,0] are available at every k = 20 temporal steps dt, so we embed our time series in
an embedding space of dimension d, = 5.

and we choose the embedding dimension d. = 5. In this simulation we run the algorithm
for M = 80000 intervals. The numerical results as show in Table 2.

The pruned-enriching procedure is similar to a genetic algorithm without cross-over.
In general the cross-over operation aims at combining locally-optimised solutions, and
depends crucially by the coding of the solution in the “genome”. When the cost function
is essentially a sum of functions of variables coded in the solution in nearby zones, the
cross-over can indeed allow a jump to an almost-optimal instance. In this case we encode
the parameters simply using their current values (a single genome is a vector of 3 real
numbers), so there is no indication for this option to be present. It is possible however
to pick parameters from “parents” instead of randomly altering them. Since the pool of
tentative solutions is obtained by cloning those corresponding to the lowest distances from
the master one, we expect little improvements using parameter exchange.

To add the cross-over in our procedure we modify the algorithms such that, for every
element of the second half of the ensemble, we chose randomly if update the parameters
as Algorithm 2 or do the cross-over step generating the new replica from two parents
randomly chosen from the first half of the ensemble. Children inherit randomly two of the
parameters from one parent and one from the other.

Without any a priori information about the true parameter values we randomly
initialize the initial states and the parameters, so, using the cross-over operation can
introduce a bias in the early stages of the optimization problem, as can be seen in Fig. 9,
where we compare the estimated parameters for different repetitions using an amplitude
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Algorithm 1 Pruned-enriching algorithm.

Require: {w(t)},6, Q;, R;, dt, T, M, Trans
m <0
t+0
while m < M do
m<—m+1
if t == T then
t<0
W <— Ensemble evolution up to t = Trans and store measure every T
else
if t o< T then
W <« Update with f(R)
d < Euclidean distance d(w(t), W)
Q < Parameters updating step > Algorithm 2
Q «+ Mean of first R/2 ensemble elements
end if
R <+ Evolution step with time step dt and Q as parameters
tt+dt
end if
end while
return Q

Algorithm 2 Parameters updating step.

Require: R,4,d, W, w(t)
index < argsort(d) > return index of d sorted in ascending order
for i in range(R/2,R) do
Q; < Qj with j random integer in (0, R/2)
if random(0,1) < 0.5 then
k < random integer in (1,2, 3)
Qjx < Qj + random(—4,9)
while Qik < 0do
Qik — Q]k + random(O, 5)
end while
else
Rjx < Rjx + random(—4, )
end if
end for
return Q



https://doi.org/10.20944/preprints202304.0127.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023 d0i:10.20944/preprints202304.0127.v1

13 of 14

10.251° 1059
10.00] TR g 1001 g 2 s s
9.75 95
A 3
2.75{ 4 . 2.75
250 2.50
285
28.07 o A
g 28.0] 3R IS oot B e a
o75] | 275
0 20000 40000 GOGOO 80000 100000 0 20000 40000 60000 80000 100000
(a) (b)

Figure 9. Estimation (x) and standard deviation (blue area) of the parameters computed using the
first half of the ensemble with (a) and without (b) cross-over. The true values are also shown (dotted
orange lines).

6 = 0.8 with (Fig. 9a) and without (Fig. 9b) cross-over at every t = T. As the other
simulations we randomly initialize the initial states and parameter values of the ensemble,
we evolve the system, after the transient time Try,y5, up to T = 100 with dt = 0.01 and we
suppose to be able to measure the x direction with T = 0.2.

The cross-over allow to make jumps in the parameters space, but in the early stage of
the optimization process these jumps can cause the ensemble convergence to wrong values.
On the other hand, the cross-over can reduce the variance of the ensemble estimation, so
it can help in the last steps, or for fine tuning. Future work is needed to explore more in
details this option.

9. Conclusions

We have shown that it is possible to exploit several aspects of the master-slave syn-
chronization to retrieve the parameters of the master system (assumed to be a real, physical
one) though a simulated replica. In this way;, it is also possible to perform measurements
impossible on the real system, using the simulated replica.

We have extended the original Pecora-Carrol synchronization scheme [10], to partial
and intermittent coupling.

We have shown that synchronization can be achieved when some of the state variables
are available for direct measurement and that the parameters of the original systems can be
reconstructed by synchronization using a simulated annealing approach,.

We have then shown that the synchronization method can be exploited to retrieve
unknown parameters even when variables are accessible only through a scalar function,
using a pruned-enriching ensemble approach, similar to genetic algorithms without cross-
over, which is then introduced without remarkable improvements.

This works is only a first glimpse into a wide field. The proposed methods can be
applied to other dynamical systems, and their limits are still to be precisely defined.

Other important questions concern the dimensionality of systems, since real systems
are only exceptionally described by low-dimensional dynamical systems, and the influence
of noise that always affect real-life measurements.
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