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Abstract: Machine Learning (ML) was used to assess and predict urban air temperature (Tair) considering the 

complexity of the terrain features in Yerevan (Armenia). The estimation was performed based on the PLSR 

model with a high number (30) of input variables. The relevant parameters include a newly purposed 

modification of spectral index IBI-SAVI, which turned out to be strongly impacting on Tair prediction together 

with land surface temperature (LST). Cross-validation analysis on temperature predictions across a station-

centered 1000m circular area revealed quite a high correlation (R2Val = 0.77, RMSEVal = 1.58) between predicted 

and measured Tair from the test set. It was concluded the remote sensing is an effective tool to estimate Tair 

distribution where a dense network of weather stations is not available. However, further developments will 

include incorporation of additional weather parameters from the weather stations such as precipitation and 

wind speed, and the use of non-parametric ML techniques. 

Keywords: urban air temperature; land surface temperature; multiple independent variables; urban 

heat; remote sensing data; machine learning (ML); ML-driven partial least squares regression 

(PLSR) 

 

1. Introduction 

Air temperature (Tair) is a climate variable describing the energy and thermal balance in a very 

special zone of the Earth-atmosphere system, namely the surface of the Earth which is at the same 

time the very bottom layer of the atmosphere [1]. It is a useful factor in tracking the climate change 

associated with human activities, especially in urban areas, which represent the “peaks” of 

anthropogenic activities and where the climate change impact is expressed and sensed the most.  Tair 

is usually recorded by weather stations, which measure Tair between 1.5 - 2 m above ground and are 

distributed sparsely, thus failing to provide synoptic spatial coverage [2,3]. Moreover, urban areas 

are more heterogeneous than rural areas, hence the effective coverage of weather stations providing 

long-term observational data tends to be narrow [4,5], leaving large swathes of urban are-as 

unobserved. This is a reason to use remote sensing data for Tair prediction; remote sensing offers a 

possibility to track its seasonal behavior and especially its spatial distribution. Tair cannot be observed 

directly from space but thermal infrared sensors enable derivation of land surface temperature (LST), 

which is a limiting condition for the energy balance and is widely used to assess the spatial 

distribution of Tair [6,7].   

The methodologies and approaches to assess and predict Tair via remote sensing are different. 

They are mainly based on a hybrid methodology, which combines GIS and re-mote sensing data. For 

example, in 2008 Cristobel J et al. applied this methodology combining geographical variables (e.g. 
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altitude, latitude, continentality and solar radiation) and remote sensing predictors related with Tair 

such as albedo and LST and vegetation index NDVI obtained from Landsat sensors NOAA and 

TERRA (MODIS) and used multiple regression analysis and spatial interpolation techniques for data 

processing. The au-thors support that this combined approach underpins the best Tair models and 

NDVI and LST are the most powerful RS predictors in Tair modeling [8]. 

It is worth to recall that LST is a basic physical parameter to describe ecological, hydrological 

and atmospheric processes and has a strong relationship with near surface Tair. However, these two 

parameters have different responses to atmospheric conditions and their link becomes even more 

complex in mountainous complex terrain, and/or where weather stations are scarce. In 2020 

Mutiibwa D et al analyzed the benefits and some limitations of using LST as a variable for predicting 

Tair in two case study regions of Nevada well known for complex mountainous topography. Though 

with some limitations and complexities, the relationship between LST and Tair was found to be 

consistent [9].  

In 2020 Nikoloudakis N et al. applied the hybrid methodology to predict Tair in urban areas 

without LST. They developed and used predictive models, which are based on urban morphological 

peculiarities such as land cover and terrain, and in situ Tair measurements from urban weather 

stations [10].           

The modeling of urban Tair is much more complicated because of the heterogeneity, where the 

scarcity of weather stations hinders accurate spatial representation of Tair [11]. It is further 

complicated in mountainous urban areas [12]. The use of Machine learning (ML) approaches 

increases the accuracy of the estimations of Tair [13].  A wide variety of statistical and ML models 

have been used so far. Among them the most popular ones still remain multiple regression, ANN 

models [1,11,12,14–16], with differences in results mainly due to the selection of input variables.    

A most important component of regression models is the number of variables, which can range 

from one to a few tens. For example, up  to 7 variables (skin temperature (LST),  elevation,  the 

Normalized Difference Water Index (NDWI),  Sky View Factor (SVF), incident solar radiation, 

distance from the ocean, and  atmospheric water vapor) were used by Hung Chak [17],  24 variables 

by Modeste Meliho (ACDC (Aqua day clear-sky coverage), ACNC (Aqua night clear-sky coverage), 

ADVA (Aqua day view angle), ADVT (Aqua day view time), AE31 (Aqua Band 31 Emissivity),AE32 

Aqua Band 32 Emissivity, ALSTD (Aqua day land surface temperature), ALSTN (Aqua night land 

surface temperature), ANVA (Aqua night view angle), ANVT (Aqua night view time),TCDC (Terra 

day clear-sky coverage),TCNC (Terra night clear-sky coverage), TDVA (Terra day view angle), TDVT 

(Terra day view time),TE31 (Terra Band 31 Emissivity), TE32 (Terra Band 32 Emissivity),TLSTD 

(Terra day land surface temperature), TLSTN (Terra night land surface temperature), TNVA (Terra 

night view angle), TNVT(Terra night view time), Elevation (DEM), Hillshade (HSD), Sky-view, 

Slope) [1], 10 variables by Hanna Meyer (LST, DEM, Slope, aspect, sky-view, month, season, time, 

sensor, ice) [18], 11 variables by Yongming Xu (monthly daytime Ts, monthly nighttime Ts, monthly 

percent of cloudy days, monthly percent of cloudy nights, monthly NDVI, monthly NDSI, monthly 

albedo, monthly solar radiation, annual landcover, elevation, and TI) [19], 6 variables  by Phan 

Thanh Noi (AQUA daytime, AQUA nighttime, TERRA daytime, and TERRA nighttime) and two 

additional auxiliary datasets (elevation and Julian day)),  5 variables by Long Li (Daytime LST, 

Night-time LST, NDVI, Night-time light, DEM) [20], 9 variables by Yongming Xu (land surface 

temperature (LST), normalized difference vegetation index (NDVI), modified normalized difference 

water index (MNDWI), latitude, longitude, distance to ocean, altitude, albedo, and solar radiation) 

[19], up to 10 variables by Munkhdulam Otgonbayar (daytime and nighttime LST data (LSTd and 

LSTn), quality information (QCd and QCn), observation information (DvA, NvA, DvT, and NvT), 

emissivity data (Em31 and Em32), clear sky coverage (CsD and CsN), Elevation, Slope, Aspect, 

Latitude, Longitude) [21],  7 variables by Chunling Wang (Digital elevation model (DEM), LST, 

Downward Shortwave Radiation (DSR), Normalized Difference Vegetation Index (NDVI), and Land 

Cover (LC), latitude (LAT) and declination of the sun) [22]. 
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In this study, a PLSR model was used to assess and predict urban Tair considering more than 30 

variables. To the best of our knowledge, statistical regression models starting from 30 variables have 

not been presented elsewhere in existing literature. 

One more difference with the urban study cases described above lies in the complexity of the 

mountain features with respect to the size of the considered area, and the sparse configuration of 

weather stations. This study focuses on the city of Yerevan, Armenia, which stands out for unique 

geographical parameters, in particular for the high variation range of absolute elevation, exceeding 

500m (>1600ft) on a small area covering about 220 sq km. The area has a dry climate, and only 3 

weather stations are operating, which limits the information on spatial variation of Tair. In other case 

studies from literature, like Athens and Heraklion (Greece), Los Angeles (USA), Seoul (South Korea), 

Vancouver (Canada), Erbil (Iraq), where Tair predictions were performed using remote sensing data 

[10,12,16,23] such a combination is never found.  

Hence, the objectives of the current study are: 

1. Considering the complexity of the terrain configuration in Yerevan, to assess for the first time 

the feasibility of estimating urban Tair based on remote sensing data alone  

2. Estimate the Urban Tair of the city of Yerevan using the PLSR model with a high (30) number 

of input variables.  

To the best of our knowledge, so far, no investigations have been performed that could answer 

these questions.   

2. Materials and Methods 

2.1. Test site, description and terrain/climate features 

Yerevan is the capital of Armenia, covering an area of approximately 220 km2 with 1.1 million 

inhabitants, which represents 36% of the total population and 56% of urban population. The density 

of population in Yerevan exceeds 4900 inhabitants/km2 [24]. 

Yerevan lies on a plain on the edge of the Ararat Valley at altitudes of 850–1.400 m (Figure 1). It 

has a dry continental climate. The average annual Tair is between 9.1 ⁰C and 12.1 ⁰C, with a seasonal 

fluctuation of 27 ⁰C between average summer and winter temperatures. Winters are cold with a lot 

of snowfall and average temperatures in January ranging between - 5 ⁰C and - 2.5 ⁰C, with absolute 

minimum Tair between - 21⁰C and - 31⁰C. Springs are brief, characterized by volatile weather. 

Summers are long, hot and dry, with average Tair between 22.1 and 25.4 ⁰C. The absolute maximums 

of Tair registered in July are between 40⁰C and 43⁰C [25,26]. The study area is located in the dry 

subtropical climate zone. Thus, climate change is especially expressed in increasing amplitude of 

urban Tair swings, as discussed later. 
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Figure 1. Geographical location and hypsometry of Armenia and Yerevan and the distribution of the 

weather stations on territory of Yerevan: 1. Yerevan_agro; 2. Yerevan_aerologia; 3.Arabkir. 

During summer, winds blowing from the mountains (north-east) to the valley (south-west) 

sometimes reach a speed of 15–20 m/s. The duration of the heating season is between 137 and 161 

days. Annual rainfall is 286–440 mm peaking in November while the highest share of rainy days is 

in May. Yerevan also enjoys a lot of sunshine. The annual average of sunshine is 2578 h. Hours of 

sunshine per day will vary from an average of 7 in winter to 13 in summer [26]. 

Figure 1 shows the geographical location of Yerevan on the territory of Armenia reflecting the 

mountainous character of the surface. The figure also shows an unequal distribution of weather 

stations, which are located in the north and west of the city on different altitudes (see Table1). As 

mentioned above, this pattern limits the possibility to observe spatial variations of Tair.  

Table 1. Geographical coordinates and altitude of the weather stations operating on the territory of 

Yerevan. 

N Name of station Latitude Longitude Height a. s. l. (m) 

1.  Yerevan_agro 40°11’19” N 44°23’55’’ E 942 

2.  Yerevan_aerologia 40°13’2” N 44°29’59’’ E 1134 

3.  Arabkir 40°11’43” N 44°30’44’’ E 1113 

Since the late 80s, land cover in Yerevan has been changing rapidly, which results in potential 

sharpening of the natural conditions of the city on the recent climate changes. The last national 

communication on climate change shows that in 1981–2013 the summer heat wave in Yerevan has 

increased about 40 days on average [27,28]. Some studies were conducted to investigate the reasons. 

For instance, Tepanosyan et al. investigated the influence of spatial-temporal changes of land cover 

on the territory of Yerevan city on the surface urban heat, using time series of remote sensing data 

(Landsat TM/ETM+/OLI-TIRS images) [26]. However, no studies have been conducted so far on 

developing approaches to enhance visualization and to monitor spatial-temporal variation of Tair 

using remote sensing data and technologies for this area. 
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2.2. Preparation of input data 

2.2.1. Satellite data 

Figure 2 shows the steps of the study. The input data consists of open-source remote sensing 

(RS) surface reflectance products from LANDSAT 4-5TM; 7ETM; 8 OLI/TIRS covering the season 

from June to August for years between 1984-2020, obtained and directly processed in Google Earth 

Engine (GEE). Two gaps can be observed in the time sequence in 2003 and 2012; the corresponding 

data was discarded due to low quality. Cloud mask and cloud filtering were implemented using the 

CFMASK algorithm, as well as a per-pixel saturation mask [29]. Spectral indices also were calculated 

to complement the list of input data, which consisted of Normalized Difference Vegetation Index-

NDVI, Normalized Difference Water Index - NDWI, and Index based Buildup Index-Soil adjusted 

vegetation index (IBI-SAVI) (1). 

(((NDBI + 1) - ((SAVI + 1) + (MNDWI + 1)) / 2)) / (((NDBI + 1) + ((SAVI + 1) + (MNDWI + 1)) / 2)) (1)

 

Figure 2. Methodological flowchart of the study. 

The IBI-SAVI is a combined indicator, which we propose for use in this context. It is calculated 

from Normalized Difference Build-up Index -NDBI, SAVI, Modified Normalized Difference Water 

Index-MNDWI. The formula was modified partly following suggestions by Xu [30], and introducing 

further changes in rescaling SAVI to match the other rescaled indexes. 

The LST for each year as an input data was calculated using Landsat LST Web Application.  

This online web application provides fast and easy access to the global scale LST from the Landsat 

archives based on the single channel (SC) algorithm [26,31–33]. Input data contains also geographical 

data such as elevation and its derivatives (aspects, slopes). Solar radiation was also modeled from 

DEM and sun location using area solar radiation toolset of ArcMap. The elevation ruggedness is 

calculated as Terrain Ruggedness Index, which is used to characterize the elevation difference of the 

DEM's adjacent cells [34]. Several single bands (RGB, NIR, SWIR1/2) of RS data complement the list 

of the input data.  
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Weather data (Tair, cloud cover, dew point, wind direction, wind speed, solar radiation) have 

been acquired from Armenia State Hydromet Service for three weather stations (Figure 1). We 

decided not to include precipitation as it is reputed to have a delayed effect on temperature, and it 

would not introduce additional relevant information. The dates of measurements were selected to 

match the dates of RS data acquisition as closely as possible. However, only two stations cover the 

whole considered time period (1984-2020); the third station (Yerevan-Aerology) covers only years 

between 2011-2020. 

As Tepanosyan et al. stated, several approaches are possible when studying the relationship 

between RS data and climatic factors [26]. According to the first approach, maps of the several 

climatic parameters should be produced using interpolation methods, which requires data from a 

sufficient number of weather stations. In our case, the terrain shape and very few weather stations 

make this approach not viable [35–38]. The second approach implies studying relationships between 

climatic data from weather stations and average Spectral index values obtained from pixels 

surrounding the respective stations [39,40]. In this case study the second approach was used and 

mean NDVI, NDWI, IBI-SAVI values across a station-centered circular area were extracted; using 

multitemporal data, a time series was formed for each station. Many studies accepted 3 × 3 pixels 

window size as the optimal one for deriving average values of the spectral indices such as NDVI 

[39,40]; in this study the averaged values were instead calculated over differently sized circular 

windows around the weather stations. The rationale was to investigate the spatial dependence of the 

parameter impact; the selected sizes were 30m, 100m, 200m, 300m, 400m, 500m, 600m, 700m, 800m, 

900m, 1000m. Further increase of the radius results in an overlap of the areas between two weather 

stations.   

2.2.2. Weather data 

As explained in section 2, we considered weather data from 3 weather stations located in or 

around Yerevan. In this paper we limited ourselves to considering Tair. Investigations about other 

possible weather variables will be the subject of the future work.  

Initially we considered all measurements, whereas at a successive stage outlier were removed 

before reprocessing. 

In order to detect potential outliers among data, the boxplot technique was used: parameter 

values that were outside the (Quartile 1 – 1.5 * Interquartile range) - (Quartile 3 + 1.5 * Interquartile) 

range were considered as outlier candidates. However, only acquisitions labeled as outlier candidates 

on all parameters were finally considered outliers and removed. All other candidates i.e. outside the 

range but not on all variables were still retained. This was done to ensure that only data items that 

could be considered outliers with a high degree of confidence were removed. 

3. Statistical analysis and modeling 

To study the relationships between Tair and satellite data, a Pearson correlation analysis 

including significance estimation was first carried out to identify the best candidates to contribute to 

Tair estimation. For this purpose, the calculated mean and standard deviation (SD) values of the 

components/variables were input. At this level, however, no actual parameter selection was done, 

leaving it to an automated process to be implemented at a later stage. 

All statistical analyses were done using the Python programming language using Jupyter. Linear 

regression (LR) was implemented by Scikit learn algorithm “LinearRegression” [41]. Tair prediction 

was treated as a supervised regression problem. Therefore, the Partial Least-Squares Regression 

(PLSR) was selected in this research as the statistical approach for evaluation. For all models, the 

input dataset was randomly split into training (75%) and testing (25%) sets. 

PLSR regression was run considering various possible combinations of the input parameters, 

starting from a single variable and progressively increasing the number of variables. The Variable 

Importance in Projection (VIP) scores were used to prioritize selections of input variables. VIP scores 

estimate the importance of each variable in the projection used in a PLSR model and is often used for 
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variable selection. A variable with a VIP score close to or greater than 1 (one) can be considered 

important in a given model [21,42]. 

Each combination was tested for Mean Square Errors in predicting the training set. It was found 

that the optimal MSE values were obtained for 10 variables. 

Further expansion of the input set did not lead to any improvement in MSE, which actually 

worsened. The input set to the prediction process was then set to the list above, and predictions were 

compared with the test set. 

4. Results and discussions 

Pearson values are reported in Table 2. The reported figures suggest that LST-mean has the most 

significant influence (r=0.79; p<0.001) on Tair. All other components such as IBI-SAVI-mean (r=0.35; 

p<0.001), SWIR1-mean (r≈0.3; p<0.001), SWIR2I-mean (r≈0.3; p<0.001), Red-mean (r≈0.3; p<0.001) 

show significant positive correlation. Green-mean, Blue-means and Aspect_SD correspondingly 

(r≈0.2; p<0.001), (r≈0.14; p<0.01) and (r≈0.11; p<0.01) also show significant positive correlation with 

Tair. Some other components such as NDWI_mean (r= -0.35; p<0.001), NDVI_mean (r= -0.25; p<0.001), 

NDWI_SD (r= -0.24; p<0.001) NDVI_SD (r= -0.26; p<0.001), IBI SAVI_SD and SWIR2_SD (r= -0.13; 

p<0.001) show significant negative correlation with Tair. In fact, two components contribute the most 

information to the temperature prediction and one of them is the modified IBI-SAVI index. This will 

be compared with results of automated selection as explained in the following. 

Table 2. Pearson correlations between Tair and all components. 

N Variables Correlation coefficient (r)  p_value 

1.  Blue_mean 0.1374137 2.0728e-3 

2.  Green_mean 0.1564202 4.472e-4 

3.  Red_mean 0.2612906 3.004e-9 

4.  NIR_mean 0.0125771 7.790636e-1 

5.  SWIR1_mean 0.2861474 7.066e-11 

6.  SWIR2_mean 0.2990162 8.715e-12 

7.  NDVI_mean -0.252406 1.048e-8 

8.  NDWI_mean -0.3451834  1.946e-15 

9.  IBI SAVI_mean 0.348421 1.022E-15 

10.  LST_mean 0.7921705 1.022e-15 

11.  Aspect_mean -0.0700592 1.176829e-1 

12.  Slope_mean -0.0632945 1.576022e-1 

13.  Elev_mean -0.0810757 7.00863e-2 

14.  Rugged_mean -0.0616125 1.689591e-1 

15.  Sol_rad_mean -0.1930203 1.385e-5 

16.  Blue_SD -0.0980034 2.84362e-2 

17.  Green_SD -0.0927548 3.81405e-2 

18.  Red_SD -0.0702113 1.16886e-1 

19.  NIR_SD -0.0703557 1.161338e-1 

20.  SWIR1_SD -0.0904733 4.3163e-2 

21.  SWIR2_SD -0.1321922 3.0613e-3 

22.  NDVI_SD -0.2639066  2.061e-9 

23.  NDWI_SD -0.2410586  4.831e-8 

24.  IBI SAVI_SD -0.1247979 5.1978e-3 

25.  LST_SD -0.0077571 8.626332e-1 

26.  Aspect_SD 0.1097252 1.40961e-2 

27.  Slope_SD -0.0265121 5.542198e-1 

28.  Elev_SD -0.0986305 2.74328e-2 

29.  Rugged_SD -0.022174 6.208505e-1 

30.  Sol_rad_SD 0.0385449 3.897596e-1 
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As mentioned above the spatial dependence of the parameter impact was investigated for the 

selected sized areas 30m, 100m, 200m, 300m, 400m, 500m, 600m, 700m, 800m, 900m, 1000m through 

PLSR estimation. The table below shows the estimation results for the all-sized areas. Prior to the 

PLSR run the estimation of variable impacts and the selection of the parameters (VIP) were 

conducted.  

The estimated importance of the 30 predictor variables in the PLS regression model for all the 

sized buffer zones is shown in the Figure 3. 

 
 

(a) (b) 

 
 

(c) (d) 

  
(e) (f) 
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(g) (h) 

 

 

(i) (j) 

 
(k) 

Figure 3. PLSR variable importance for each circled zone: a) 30m; b) 100m; c) 200m; d) 300m; e) 400m; 

f) 500m; g) 600m; h) 700m; i) 800m; j) 900m; k) 1000m. 

As mentioned above the selection of the sizes were stopped on the 1000m because the further 

increase of the radius results in an overlap of the areas between two weather stations.  

As seen in Table 3 the number of VIP components varies over increasing the radius of the circles 

around the weather stations. The table x shows that the quantity of the components (predictor 

variables) stabilized. 
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Table 3. The PLSR descriptive for the different sized areas with VIP scores. 

PLSR  

descriptive 
30 m 100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m 1000 m 

R2Train 0.72 0.73 0.73 0.75 0.75 0.74 0.75 0.75 0.75 0.76 0.76 

RMSETrain 1.68 1.66 1.65 1.58 1.58 1.61 1.60 1.59 1.59 1.57 1.56 

R2CV 0.68 0.68 0.68 0.71 0.71 0.70 0.71 0.70 0.70 0.71 0.72 

RMSECV 1.80 1.79 1.80 1.70 1.70 1.73 1.73 1.74 1.74 1.71 1.67 

R2Test 0.70 0.71 0.71 0.73 0.72 0.73 0.72 0.74 0.74 0.75 0.77 

RMSETest 1.78 1.73 1.75 1.69 1.71 1.69 1.72 1.65 1.65 1.61 1.58 

N of VIP  

components 
14 14 10 14 14 13 14 10 10 10 10 

The VIP scores for the 1000m buffer zone are shown in Table 4. LST-mean has the highest VIP 

score (2.77). According to table X the following variables have VIP scores greater than 1 (one): 

SWIR2_mean (1.42), IBI SAVI-mean (1.29) NDWI-mean (1.23). Blue-mean, red-mean and 

SWIR1_mean show scores of approximately 1.1 and NDVI_SD has a VIP score of 1.0. All the others 

are close to or below 1. 

Table 4. The list of the variables with VIP scores. 

N Predictor variables VIP scores 

1.  Blue-mean 1.112 

2.  Green-mean 1.018 

3.  Red-mean 1.098 

4.  NIR-mean 0.682 

5.  SWIR1-mean 1.066 

6.  SWIR2-mean 1.414 

7.  NDVI-mean 0.898 

8.  NDWI-mean 1.224 

9.  IBI SAVI-mean 1.285 

10.  LST-mean 2.772 

11.  Aspect-mean 0.660 

12.  Slope-mean 0.667 

13.  Elevation-mean 0.642 

14.  Terrain ruggedness-mean 0.666 

15.  Solar radiation-mean 0.661 

16.  Blue-SD 0.729 

17.  Green-SD 0.691 

18.  Red-SD 0.658 

19.  NIR-SD 0.712 

20.  SWIR1-SD 0.909 

21.  SWIR2-SD 0.894 

22.  NDVI-SD 1.011 

23.  NDWI-SD 0.922 

24.  IBI SAVI-SD 0.585 

25.  LST-SD 0.959 

26.  Aspect-SD 0.745 

27.  Slope-SD 0.650 

28.  Elevation-SD 0.710 

29.  Terrain ruggedness-SD 0.649 

30.  Solar radiation-SD 0.687 
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The results of the PLSR model received for 1000m buffer zone are shown in Figure 4. As it can 

be seen, the PLSR model provides satisfactory results both for calibration (R2Cal = 0.72, RMSECal = 1.67) 

and validation (R2Val = 0.77, RMSEVal = 1.58). 

  

(a) (b) 

Figure 4. Scatter plot of predicted vs. measured Tair contents when validating the PLSR model: a. cross 

validation; b. testing. 

In this work, using PLSR driven by a wide range of predictor variables (30) values of Tair on an 

area with complex terrain features such as Yerevan (Armenia) have been predicted with high 

accuracy of RMSEVal =1.58 C. In the process, it was noticed that 5 predictor variables of the selected 

10 with the high VIP scores also feature comparatively high (LST-mean: r=0.79; p<0.001) correlation 

coefficients (IBI-SAVI-mean: r=0.35; p<0.001 and SWIR2-mean; SWIR1-mean & Red-mean: r≈0.3; 

p<0.001). However, this shows that among these 5 variables Landsat-derived land surface 

temperature plays a key role in modeling Tair, with all other variables having a significantly smaller 

impact. The studies of Otgonbayar et al, concluded that PLSR represents well even seasonal and 

spatial variations in Tair when time-series of LST were included as predictor variables [21].  

The results of the importance analysis highlighted a pool of parameters, which impact the most 

on Tair. The heterogeneity of the area makes it particularly difficult to venture guesses on the reasons 

for the composition of such pool of variables. 

Previous studies on estimating urban Tair from remote sensing data were performed using more 

advanced ML models such as Random Forest, Cubist, Support Vector Machine (SVM), and neural 

networks to estimate urban air temperature [12,15,43]. Though we saw the great potential of the 

remote sensing data to estimate the Tair on Yerevan’s territory there is still a strong need to continue 

the studies using above-mentioned advanced ML models. 

5. Conclusion 

The main purpose of the research described in this paper was to assess the feasibility of 

estimating urban Tair, in a complex terrain configuration, based on remote sensing data alone using 

the PLRS model with a high amount of input variables. The novelty of this study includes the features 

of the considered area, complex and with a broad distribution of different elevations, and the high 

number of environmental parameters considered, exceeding 30. The key findings are outlined below: 

1. Of the 30 parameters considered, 10 can be identified as relevant and can be used alone in the 

prediction; adding more parameters won’t improve prediction, but will require more 

computational resources; 

2. the relevant parameters include a newly proposed modification of index IBI-SAVI, which turned 

out to be strongly impacting on Tair prediction; 
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3. Cross-validation analysis on temperature predictions across a station-centered 1000m circular 

area revealed quite a high correlation (R2Val = 0.77, RMSEVal = 1.58) between predicted and 

measured Tair from the test set; 

4. In light of the above, we may estimate that remote sensing is an effective tool to estimate Tair 

distribution where a dense network of weather stations is not available. 

Future developments will include incorporation of additional weather parameters from the 

weather stations such as precipitation and wind speed, and the use of non-parametric Machine 

Learning (ML) techniques, whose structure may be more suitable to represent the complex link 

between observables and target parameters in a complex environment like the one considered in this 

study. 
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