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Abstract: The brain is a complex organ that controls body functions and homeostasis through the 

action of neuronal and glial cells. Neuronal activity is highly energy-dependent and requires large 

numbers of functional mitochondria to provide substantial amount of energy via mitochondrial ox-

idative phosphorylation (OXPHOS), the most efficient metabolic process to generate adenosine tri-

phosphate (ATP). Under stress conditions, neurons are particularly vulnerable to mitochondrial 

dysfunction, leading to decreased ATP synthesis, excessive generation of reactive oxygen species 

(ROS) and reactive nitrogen species (RNS), and intracellular Ca2+ dyshomeostasis, although not nec-

essarily in this order. Alzheimer's disease (AD) and Parkinson’s disease (PD) are the two most com-

mon neurodegenerative diseases in elderly and are characterized by the presence of abnormal pro-

tein aggregates and the progressive and irreversible loss of neurons in specific brain regions. The 

exact mechanisms underlying the etiopathogenesis of AD or PD remain unknown, but there is ex-

tensive evidence indicating that compromised mitochondrial energy metabolism along with a de-

pleted antioxidant system play a vital role in the pathophysiology of these neurological disorders. 

Toxic accumulation of proteins such as amyloid β peptides (Aβ) or amyloid precursor protein (APP) 

in AD and α-synuclein (α-syn) or leucine-rich repeat kinase 2 (LRRK2) in PD cause mitochondrial 

deficits through direct inhibition of electron transport chain (ETC) assembly and function, thereby 

resulting in further generation of ROS/RNS and disturbance of Ca2+ influx. Due to the improvement 

in life expectancy, the incidence of age-related neurodegenerative diseases has significantly in-

creased. There is no effective protective treatment or therapy available but rather only very limited 

palliative treatment. There is an urgent need for the development of preventive strategies and dis-

ease-modifying therapies (both neuroprotective and neurorestorative interventions) to treat AD/PD. 

Here, we review the capability of some heterocyclic compounds to modulate Ca2+ homeostasis and 

signaling with a potential role in regulating mitochondrial function and associated free radical pro-

duction during the development and onset of AD or PD. Moreover, we have included the chemical 

synthesis of a series of heterocycles and their derivatives.  
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Introduction 

The brain is particularly prone to oxidative insult due to a complex interconnected 

myriad of reasons, such as a high metabolic activity, neurotransmitter autoxidation, ele-

vated content of redox active transition metals, modest antioxidant defense, glutamate 

excitotoxicity, and altered calcium (Ca2+) influx and signaling processes.[1] An impaired 

antioxidant system or aberrant and sustained free radical formation can result in redox 

balance variations and concomitant alteration in redox-sensitive signaling pathways, lead-

ing to significant changes in the state or activity of a neuron. At physiological levels, brain 
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reactive oxygen species (ROS) and reactive nitrogen species (RNS) are second messengers 

involved in intracellular signaling but an elevated concentration of free radicals causes 

harmful effects to biological macromolecules that contribute to the aging process and the 

pathogenesis of neurodegenerative diseases.[2-5] Lipid peroxidation (LPO) consists in the 

abstraction of allylic hydrogen atoms from side chains of polyunsaturated fatty acids 

(PUFAs) by ROS and RNS. A major deleterious outcome of LPO is the generation of a 

variety of reactive aldehyde species, such as malondialdehyde (MDA) and 4-hydroxy-2-

nonenal (4-HNE). The reaction between O2•− and NO• leads to the formation of peroxyni-

trite, which targets tyrosine residues in proteins via free radical addition to generate 3-

nitrotyrosine (3-NT). Protein carbonylation is an oxidative stress-driven non-enzymatic 

and irreversible post-translational modification (PTM). The synthesis of protein carbonyls 

normally responds to the oxidative deamination of alkaline amino acids such as arginine, 

lysine, and histidine. Advanced glycation end products (AGEs) are formed in a non-enzy-

matic reaction among lipids, proteins or nucleic acids and reducing sugars. The interac-

tion of AGEs with their receptors RAGEs elicits oxidative stress. ROS/RNS may also inter-

act with nucleobases of the DNA (e.g., guanine) to form 8-hydroxy-2-deoxyguanosine (8-

OHdG) while oxidative RNA damage induces the production of 8-hydroxyguanosine (8-

OHG). 

Compelling evidence has demonstrated that mitochondrial electron transport chain 

(ETC) is the major endogenous source of ROS/RNS generation, although the endoplasmic 

reticulum (ER) and peroxisomes can be also an important site of free radical formation, 

showing a redox interplay between these organelles.[6] Specifically, respiratory chain com-

plexes I (NADH: ubiquinone oxidoreductase) and III (ubiquinol: cytochrome c oxidore-

ductase) produce high rates of O2•−. The ETC also comprises membrane-embedded pro-

teins in the inner mitochondrial membrane that shuttle electrons from NADH and FADH2 

to molecular oxygen. Simultaneously, protons are pumped from the mitochondrial matrix 

to the intermembrane space, thereby resulting in the reduction of oxygen to water. The 

energy released from these redox reactions is stored as a mitochondrial potential used to 

drive the phosphorylation of adenosine diphosphate (ADP) to form adenosine triphos-

phate (ATP). Moreover, PTMs involve enzyme-mediated covalent addition of specific 

functional groups (such as phosphorylation, ubiquitination, glycosylation, nitration, and 

methylation) to proteins after their synthesis. Redox-related PTMs can modulate the ac-

tivity of proteins implicated in a variety of cellular signaling pathways, such as protein 

folding and degradation, transcription factor expression and activity, and energy metab-

olism by regulating the tricarboxylic acid cycle (TCA) and glycolytic enzymes, fatty acid 

metabolism, and protein cysteine thiol nitrosation, sulfenylation or glutathionylation of 

the mitochondrial ETC complexes.[7-10] Oxidative DNA damage of the gene promoter en-

coding subunits of the F1 and F0 domains of ATP synthase has also been observed during 

aging and neurodegeneration.[11] Mitochondria along with the ER play an important role 

in controlling intracellular Ca2+ homeostasis, which regulates several vital neuronal pro-

cesses, including synaptic plasticity, metabolic regulation, proliferation, gene expression, 

and apoptosis through modulation of a number of enzymes such as phospholipases, pro-

teases, and nucleases. During aging and in neurodegenerative diseases, Ca2+ can be con-

verted from a physiological signal into a pathological effector. Cytosolic and organelle 

Ca2+ overload promotes Ca2+ mitochondrial accumulation, which triggers the opening of 

the mitochondrial permeability transition pore (mPTP) and the disruption of the mito-

chondrial membrane potential (ΔΨm). Sustained mPTP opening leads to Ca2+ release, mi-

tochondrial depolarization, OXPHOS disruption, compromised structural and functional 

integrity of the inner mitochondrial membrane, and release of cytochrome c and other 

apoptogenic proteins from the outer mitochondrial membrane.[12]  

AD and PD are neurodegenerative diseases that share common pathological features, 

including protein misfolding and aggregation, synaptic impairment, mitochondrial defi-

cits, axonopathy, and aberrant free radical production. In addition, altered Ca2+ homeo-

stasis and signaling may contribute to accelerating the pathogenesis of AD/PD. Ca2+ over-

load is mainly mediated by Aβ and tau in AD and α-synuclein (α-syn) and leucine-rich 
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repeat kinase 2 (LRRK2) in PD.[13-16] Modifications in neuronal Ca2+ influx via voltage-gated 

Ca2+ channels (VOCCs) and glutamate receptors promote excitotoxic Ca2+ accumulation 

and concomitant defective neurotransmission, impaired synaptic plasticity and damaged 

mitochondrial function, including increased ROS/RNS production, activation of mito-

chondrial permeability transition, stimulation of mitophagy and decreased ATP synthe-

sis.[16] Therefore, targeting aberrant Ca2+ homeostasis may represent a plausible option for 

the prevention and therapy of neurodegenerative diseases. We have reviewed a number 

of heterocyclic compounds that modulate Ca2+ signaling and homeostasis and can serve 

as a therapeutic target in both AD and PD. 

 

Mitochondrial deficits and oxidative stress as close partners in Alzheimer’s disease 

brain damage 

AD is the most common neurodegenerative disorder characterized by brain atrophy 

and impaired cognitive performance. Neuropathological studies have observed an extra-

cellular accumulation of amyloid beta (Aβ) and an intraneuronal deposition of insoluble  

neurofibrillary tangles (NFTs) containing hyperphosphorylated tau protein.[17] A large 

body of research has demonstrated that impaired mitochondrial function (and associated 

energy failure) is a causative factor of AD and occurs before development of Aβ plaques 

and NFTs, indicating this is an early event in the pathogenesis of the disease. Mitochon-

drial pathological changes drive disease progression, leading to an increased oxidative 

burden, synaptic degeneration, dysregulated Ca2+ homeostasis, and neuronal loss. This is 

consistent with the “mitochondrial cascade hypothesis” that postulates that bioenergetic 

deficits mediates AD.[18-20] Brain metabolic variations would be primarily responsible for 

mitochondrial dysfunction in AD. Glucose deprivation leads to reduced activity in the 

default mode network, an area that includes the posterior cingulate cortex, the precuneus, 

the medial prefrontal cortex, the inferior parietal cortex, and the medial temporal lobe and 

that preferentially associated with atrophy and amyloid and tau deposition in AD.[21-23] 

Positron emission tomography (PET) with [18F]-fluro-2-deoxyglucose analyses have 

shown a progressive decline in cerebral glucose metabolism in AD patients.[24-26] Glucose 

metabolism is connected to thiamine-dependent pathways, including the Krebs cycle and 

the pentose phosphate pathway, which are compromised in AD.[27-29] In addition, oxida-

tion of glucose by substrate-level and oxidative phosphorylation produces ATP molecules 

and results in a synergistic effect with mitochondria in metabolic pathways.  

Another specific event linked to mitochondrial failure in AD is the development of 

phenotypic changes in these organelles. Defective mitochondrial function is characterized 

by the abnormal formation of a subset of swollen mitochondria with distorted cristae. In-

deed, ultrastructural examination confirmed the presence of mitochondrial morphometric 

abnormalities in postmortem brain specimens from individuals with AD.[30,31] Postmortem 

examination of AD patients revealed a significant decrease in the numbers of intact mito-

chondria.[30] Furthermore, mitochondrial dysfunction correlates with certain enzyme defi-

ciencies, such as the α-ketoglutarate dehydrogenase complex (α-KGDH), pyruvate dehy-

drogenase complex (PDHC), and transketolase.[29,32-35] There is a direct relationship be-

tween reduced brain regional glucose metabolism and downregulated thiamine-depend-

ent enzyme activities (such as α-KGDH).[27,34] The most common feature found in AD is a 

deficiency in complex IV (cytochrome c oxidase, COX), which has been reported in the 

cortical and hippocampal brain regions[36-40] and platelets[36,41-43] of patients. Downregu-

lated complex IV activity has been also detected in AD cybrid cells.[44]  Cognitively normal 

subjects with a parental history of late-onset AD exhibited COX decreased activity in 

platelet mitochondria, suggesting a role for mitochondrial DNA (mtDNA) in maternal 

transmission, since no differences in COX activity were seen between paternal history of 

late-onset AD and controls.[45] All these empirical observations undeniably implicate mi-

tochondrial damage in the pathophysiology of AD. 
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Together with mitophagy, mitochondrial dynamics – a specialized type of mitochon-

drial autophagy – serves as a quality control mechanism for the maintenance of mitochon-

drial integrity and functionality and is crucial for neuronal homeostasis and survival. Mi-

tochondrial dynamics are tightly regulated by the fusion-fission machinery that promotes 

the generation or degradation of a mitochondrial syncytium. The molecular process of 

fusion is driven by the GTPases optic atrophy type 1 (Opa1) and mitofusin 1 (Mfn1) and 

mitofusin 2 (Mfn2) whereas dynamin-related protein (Drp1) interacts with the mitochon-

drial fission 1 protein (Fis1), the mitochondrial fission factor (Mff), and the mitochondrial 

dynamics proteins of 49 and 51 kDa (MiD49/51) to mediate mitochondrial fission.[46-48] Ax-

onal transport is a cellular mechanism that controls the active trafficking of proteins, li-

pids, organelles, and neurotransmitters, and is critical for the maintenance of the neuronal 

network function and viability. Kinesin motor proteins are responsible for the anterograde 

transport, which carries new synthesized material from the cell body to distal axons. Ret-

rograde transport is required for efficient distribution of cargoes from the axon terminals 

toward the soma and is mediated by dynein. It has been described a crosstalk between 

mitochondrial fusion and fission events and axonal transport integrity.[5,49,50] Mitochon-

drial deficits and free radical production, changes in redox homeostasis, and apoptosis 

correlate with abnormalities in mitochondrial dynamics and axonal transport.[5,51] An im-

balance between mitochondrial fusion and fission rates has been documented in AD. Mi-

tochondrial axonal transport is tightly interconnected with mitochondrial dynamics and 

play a prominent role in preserving mitochondrial morphology and quality control. 

mRNA and protein levels of Opa1, Mfn1 and Mf2 were reduced while gene expression 

and protein content of Drp1 and Fis1 were upregulated in postmortem brain samples from 

individuals with different Braak AD stages.[52] In primary neurons from AβPP mice, 

mRNA levels of genes involved in mitochondrial fusion were downregulated while the 

expression of mitochondrial fission-related genes were augmented, suggesting an exces-

sive mitochondrial fragmentation.[53] In the same study, AβPP neurons exhibited de-

creased mitochondrial anterograde axonal transport although retrograde mitochondrial 

motility remained unchanged in axonal projections. Mitochondrial axonal trafficking def-

icits, abnormal mitochondrial distribution, and increased content of 4-HNE and Ca2+-in-

duced H2O2 were detected in transgenic mice overexpressing human APP/Aβ (Tg mAPP 

mice).[54] 

Aβ aggregation may also determine mitochondrial function. Enhanced Aβ burden 

has been detected in mitochondria from autopsy specimens of late onset AD as in trans-

genic mice overexpressing mutant amyloid precursor protein (APP).[55,56] Aβ1-40 and Aβ1-42 

mitochondrial internalization is mediated by the receptor components TOM20, TOM40 

and TOM70 of the translocase of the outer membrane (TOM) complex and this transloca-

tion is independent of the ΔΨm.[57] The APP N-terminal fragment contains a mitochon-

drial targeting sequence that creates stable intermediate complexes with TOM and TIM 

complexes.[56] Moreover, Aβ can interact with Aβ-binding alcohol dehydrogenase 

(ABAD) in cerebral cortex mitochondria of sporadic individuals with AD and in cultured 

neurons from transgenic mice overexpressing ABAD and exposed to Aβ, resulting in a 

leakage of ROS.[58] Aβ (mainly oligomeric Aβ and Aβ42) can interact with cyclophilin D, a 

regulatory component of the mitochondrial mPTP, leading to synaptic pathology, mito-

chondrial stress and neuronal death in both the temporal cortex of AD patients and trans-

genic APP mice.[59] Aβ/cyclophilin D-mediated toxicity might involve a Ca2+ signaling 

mechanism.  

The Aβ25-35 peptide induced a rapid, specific and dose-dependent downregulation of 

COX activity in non-synaptic mitochondria isolated from rat brain.[60] Impaired energy 

metabolism, including inhibition of COX and several dehydrogenase activities together 

with deficiencies in mitochondrial respiration were reported in Aβ-treated non-synaptic 

rat brain mitochondria.[61] Synaptic mitochondria exhibited a larger age-dependent accu-

mulation of Aβ and mitochondrial abnormalities compared with non-synaptic mitochon-

dria, indicating that synaptic mitochondria are more prone to Aβ pathology.[54] Several 

familial and amyloid-based animal models of AD, including triple transgenic AD, APP, 
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Thy1, and COXd/AD mice display systemic mitochondrial dysfunction, including down-

regulated COX activity, impaired mitochondrial respiration, augmented glycolysis and 

marked oxidative insult.[62-65] Apolipoprotein E (APOE), the major genetic risk factor for 

late-onset AD, may directly interact with mitochondria, affecting its function, dynamics 

and motility. COX immunoreactivity was significantly depleted in post-mortem cortical 

samples and posterior cingulate cortex of young-adult APOE ε4 carriers.[66,67] In addition, 

proteins involved in the regulation of ketone and glucose metabolism were also af-

fected.[67] Aβ-induced persistent mitochondrial fission causes deleterious effects. Exposure 

to Aβ or overexpression of APP resulted in excessive mitochondrial fragmentation and 

abnormal mitochondrial distribution of in neuronal cultures.[68-70] Similar results were ob-

tained when crossing Drp1+/− mice with APP transgenic mice; partial reduction of Drp1 

protected against  APP/Aβ-induced mitochondrial and synaptic impairment.[71] In addi-

tion, Aβ can induce S-nitrosylation of Drp1, which increases its translocation into mito-

chondria.[72] Ca2+ signaling and oxidative stress are important contributors to Aβ-induced 

mitochondrial fragmentation. Aβ promotes mitochondrial Ca2+ influx and Ca2+/calmodu-

lin-dependent protein kinase II (CAMKII)-mediated protein kinase B (Akt) activation, 

thereby causing Drp1 phosphorylation and increasing its mitochondrial translocation.[73]  

Tandem mass tag multiplexed quantitative mass spectrometry revealed that tau pro-

tein can interact with a subset of mitochondrial proteins.[74] Intracellular accumulation of 

tau can disrupt mitochondrial function by downregulating complex I activity, diminish-

ing ATP synthesis and interrupting mitochondrial dynamics.[75] P301S tau mice exhibited 

reduced complex I (NADH: ubiquinone oxidoreductase), α-KGDHC and transketolase 

enzyme activity accompanied of lower mtDNA copy number and increased mitochon-

drial fission in the cerebral cortex.[35] The same study demonstrated that advanced gly-

cation end products were attenuated in tau mice, which showed an important oxidative 

and nitrosative damage. Tau can also cooperate with Aβ to induce a synergistic detri-

mental effect on mitochondria. Indeed, tau and Aβ interaction can exacerbate respiratory 

capacity abnormalities, inhibit both complex I and 4 activities, and disturb energy metab-

olism on isolated mitochondria from the cerebral cortex of triple transgenic AD mice.[76] 

The interplay between the NH2-truncated tau peptide and Aβ mediated mitochondrial 

dysfunction through the impairment of the adenine nucleotide translocator type 1 (ANT-

1), located in the inner mitochondrial membrane and responsible to catalyze the adenosine 

diphosphate-adenosine triphosphate (ADP/ATP) exchange.[77] 

Pathological p-tau exhibits lower affinity for the microtubule network, resulting in 

increased fission events. It has been shown that transgenic P301L tau mice display an un-

balanced concentration of mitochondrial dynamics-associated proteins in the hippo-

campi, with a diminished immunoreactivity of fusion proteins and elevated fluorescence 

signal of fission proteins.[78] Moreover, ablation of tau ameliorates mitochondrial function 

by preserving mitochondrial dynamics and structure and reducing oxidative insult. In 

particular, genetic deletion of tau caused a shift of mitochondrial dynamics towards fusion 

and upregulated both 4-HNE and Nrf2 mRNA levels in the mouse hippocampus.[79] In 

addition, genetic tau ablation blocks Aβ-mediated activation of glycogen synthase kinase 

3β (GSK3β) – a kinase responsible for tau phosphorylation – which leads to an improve-

ment of the anterograde axonal transport of mitochondria in primary hippocampal neu-

ron cultures from transgenic hAPP mice.[80] Tau mice expressing the R406W mutation 

showed axonal transport deficits that causes an accumulation of insoluble tau in the neu-

ronal perikarya and subsequent development of NFTs.[81] Diverse pathogenic isoforms of 

tau inhibited kinesin-based fast axonal transport by activating the PP1-GSK3 signaling 

pathway in isolated squid axoplasm.[82] 

Sustained mitochondrial dysfunction is a primary cause of an excessive generation 

of ROS/RNS in AD brains and leads to Aβ aggregation and toxicity.[83] Aggregation of Aβ 

or tau within mitochondria not only compromises the function of crucial mitochondrial 

proteins but also instigates oxidative stress. ROS/RNS promote Aβ and tau pathology via 

activation of p38 mitogen-activated protein kinase (MAPK).[84] The connection between 

Aβ1-40 and Aβ1-42 and mitochondrion interfered with its function and led to mitochondrial 
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oxidative damage in N2a cells overexpressing human wild-type APP and Tg2576 AD 

mice, which showed a downregulation in COX enzymatic activity and elevated content of 

H2O2 before Aβ plaque formation.[68] Aβ attenuated mitochondrial respiration and ∆Ψ 

generation induced by various substrates of complexes I and IV. The Aβ1–42 peptide en-

hanced the levels of ROS by inhibiting complex I activity and membrane LPO associated 

with complex IV deficiencies. Furthermore, a sharp increase in the GSSG/GSH ratio was 

observed in postmortem AD specimens, indicating a defective antioxidant defense sys-

tem.[85]  

Free radical-mediated chain of reactions that results in an oxidative deterioration of 

PUFAs is a key feature of AD. The LPO product malondialdehyde (MDA) is robustly in-

creased in the cerebral cortex and hippocampus of AD patients.[86,87] Levels of 4-HNE have 

been reported in different AD brain regions, including the temporal and entorhinal cortex 

and the hippocampus compared with age-matched controls.[88,89] Increased immunoreac-

tivity of 4-HNE parallel to reduced levels of antioxidant proteins and enzymes such as 

catalase, glutathione peroxidase, superoxide dismutase and peroxiredoxin were described 

in the superior temporal gyrus from APOE ε4 cases.[90] Moreover, high levels of the LPO 

markers 4-hydroxy-2-nonenal (4-HNE), F2-isoprostanes, and 8,12-iso-iPF2α-VI were 

found in the cerebral spinal fluid (CSF) specimens of AD patients.[91-93] Redox proteomic 

analyses revealed a significant lipoxidation and nitration of several key mitochondrial en-

zymes, including the ATP synthase in the hippocampus of AD subjects.[94,95] ROS-induced 

functional variations in the F1Fo-ATP synthase may represent a potential mechanism of 

OXPHOS deficiency in AD.[96] A large body of literature has shown that protein nitration 

is a feature of AD. The number of 3-NT-positive neurons was robustly enhanced in post-

mortem brain samples from AD cases.[97-100] Protein carbonyls are also upregulated in sub-

jects with AD though the expression pattern varies between different brain regions.[101] 

Carbonylation of proteins and AGEs plasma levels were specifically elevated in male AD 

patients.[102] The content of DNA strand breaks was higher in cerebral cortex and hippo-

campus specimens from individuals with AD compared to controls.[103,104] HPLC analysis 

revealed a prominent increase in 8-OHdG levels in DNA isolated from the brains of idio-

pathic AD cases while elevated 8-OHG immunoreactivity was described in temporal cor-

tex neurons of preclinical early-onset individuals with AD.[105,106] 

Impaired mitochondrial function and associated oxidative damage in Parkinson’s dis-

ease 

PD is a chronic neurodegenerative disease characterized by the loss of DA neurons 

in the substantia nigra (SN) and their axonal projections to the striatum. A histopatholog-

ical hallmark of the disease is the presence of neuronal cytoplasmic inclusions termed 

Lewy bodies (LB), which are predominantly composed of α-syn and, to a lesser extent, 

ubiquitin.[107] α-Syn can undergo PTMs, including nitration, ubiquitination, glycosylation 

and phosphorylation (serine 129 (pS129) is the dominant pathological modification of α-

syn).[5] SNCA gene point mutations or multiplications cause familial dominant PD. Based 

on PET and single photon emission computed tomography studies, a significant glucose 

hypometabolism was detected in the cerebral cortex of individuals with early-stage PD.[108] 

Using [18F]-fluro-2-deoxyglucose PET imaging, a robust attenuation in glucose metabo-

lism was found in the hippocampus and in the temporo-parietal and occipital regions of 

PD dementia (PDD) patients.[109] An independent study confirmed that PD subjects have 

decreased glucose metabolism in the occipital and inferior parietal lobes in comparison to 

the control group.[110]  There is a correlation between cerebral glucose intake and synaptic 

density in individuals with LB disease, but progressive glucose hypometabolism cannot 

be fully explained by synaptic degeneration.[111] Neurons metabolize glucose predomi-

nantly through the pentose phosphate pathway  (instead of using glycolysis) to preserve 

their redox status. Assessment of the levels of nicotinamide adenine dinucleotide phos-

phate (NADPH), an enzyme produced by the glucose-6-phosphate dehydrogenase, was 

performed in brain biopsy samples of mild PD cases (with low LB deposition) and mod-

erate-to-severe PD cases (with an important LB pathology). The findings suggested that 
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perturbed glucose metabolism is an early event in idiopathic PD.[112] Interestingly, in vitro 

and in vivo studies revealed that α-syn may play a central role in glucose uptake through 

the activation of the LPAR2/Gab1/PI3K/Akt signaling pathway.[113]  

Mitochondrial defects in PD also involve morphologically abnormal mitochondria, 

evidenced by organelle swelling and reduced cristae size and number. In SN neurons of 

patients with PD, around 80% of total mitochondria exhibited an irregular shape and 

swollen morphology with deranged cristae patterns.[114] Using electron microscopy, sub-

sets of mitochondria appeared swollen and rounded or enlarged in cybrid cell cultures 

prepared from platelet-derived mtDNA of sporadic PD cases.[115] Thiamine is an important 

cofactor for various critical enzymes involved in brain oxidative metabolism, including α-

KGDH, PDHC, and transketolase. In contrast to AD, the levels of thiamine remain un-

changed in the plasma of PD cases.[116] Nevertheless, free thiamine content was signifi-

cantly reduced in lumbar CSF specimens of PD subjects.[117] The cerebellar enzymatic ac-

tivity (but no protein concentration) of α-KGDH declined by 50% in PD patients and was 

independent of an overall decrease in mitochondrial numbers.[118] However, Mizuno and 

colleagues found an increased α-KGDH immunoreactivity in the SN of patients with idi-

opathic PD that correlates with disease severity.[119] Pyruvate dehydrogenase E1 subunit 

alpha 1 (PDHA1) regulates PDHC through reversible phosphorylation. Individuals with 

sporadic PD displayed lower PDHA1 fluorescence in both the putamen and SN relative 

to the control group.[120] The activity of α-KGDH, PDHC, and succinate dehydrogenase 

(SDH) and the respiratory function were inhibited in PC12 cells overexpressing monoam-

ine oxidase B (MAO B).[121] 

Systemic deficiencies in complex I assembly and decreased activity might result in 

impaired oxidative capacity, ensuing ROS/RNS overproduction, and progressive mito-

chondrial deficiencies, a major culprit in the degenerative process of DA neurons. Disturb-

ances in mitochondrial complex I were initially seen in SN tissue of postmortem human 

samples.[122,123] Noteworthy, inhibition of complex I was detected in the SN pars compacta 

(but not in SN reticulata).[124] Impaired catalytic activity of complex I has been found in the 

frontal cortex and in peripheral tissues such as, skeletal muscle, platelets and lymphocytes 

of late-onset PD subjects.[122,125-128] Nevertheless, a significant downregulation in the enzy-

matic activity of complex I/III was also reported in untreated patients with early-onset 

PD.[129] Progressive and permanent loss of complex I in mouse DA neurons resulted in 

impaired behavioral outcome and early axonal damage, which diminishes retrograde 

transport of striatal trophic factors and induces bioenergetic failure.[130] 

Mounting evidence supports the notion that defects in mitochondrial dynamics are 

likely a common mechanism leading to mitochondrial dysfunction and neurodegenera-

tive process in PD.[131] Perturbations in mitochondrial dynamics and disrupted motor-

cargo interactions have been observed in individuals with PD. Indeed, SN tissue from 

patients with sporadic PD displayed a significant immunoreactivity attenuation of both 

the short and long OPA1 isoforms, though no changes were noticed in MFN1 protein con-

centration.[114] p.A495V and p.G488R heterozygous OPA1 missense mutations were iden-

tified in individuals with parkinsonism and subclinical optic neuropathy.[132] OPA1 is fur-

ther linked to non-syndromic, idiopathic PD associated with aberrant changes in cristae 

structure and disrupted mitochondrial networks.[133] Altered trafficking along axons may 

represent a slow but steady feature disrupting mitochondrial homeostasis, since mito-

chondria undergo bidirectional transport along microtubule and actin filaments. Impaired 

axonal transport has been reported in clinical PD. In particular, SN DA neurons displayed 

low levels of kinesin heavy chain (KHC) and kinase light chain (KLC1) in subjects with 

early-onset PD while DYNLT3 immunoreactivity was markedly diminished in patients 

with late-onset PD.[134] Moreover, parkinsonized rats exhibited decreased content in mi-

tochondrial fusion proteins (OPA1 and MFN2), increased levels of mitochondrial fission 

proteins (DRP1) and attenuated anterograde (KHC and KLC1) retrograde (DYNLT3) ax-

onal transport.[2,135] Mitochondrial quality control also includes mitophagy, a mitochon-

drion-selective autophagic process to degrade dysfunctional or defective mitochon-

dria.[136,137] 
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α-Syn not only localizes in the cytosol but also at or in mitochondria of DA neurons 

in different systems, including cell cultures, rodent midbrain, and human subjects with 

PD.[5,138] Tom40 is an essential protein-conducting pore that directly interacts with α-syn 

for its import into mitochondria.[138] Protein levels of Tom40 (but not TOM20) were signif-

icantly attenuated in PD brains and transgenic mice overexpressing wild-type human α-

syn. In addition, depletion of TOM40 promoted α-syn accumulation, oxidative insult, and 

DNA damage but stereotaxic delivery of TOM40 reversed α-syn-induced pathological 

events.[139] The data suggest that α-syn interaction with the mitochondrial protein import 

machinery might be an upstream effect in α-syn-mediated toxicity. A specific association 

between wild-type α-syn and mitochondria-associated ER membranes was found in cells 

and transgenic mice expressing α-syn, a finding supported by the fact that α-syn predom-

inantly binds to lipid rafts and acidic phospholipid-rich membrane domains.[140] Di Maio 

et al. revealed a high-affinity binding between specific post-translationally modified α-syn 

and TOM20 in midbrain DA neurons of PD cases and rotenone-injected rats.[141] Such as-

sociation was not detected with TOM22, TOM40 or the component of the translocase of 

the inner membrane TIM23.  

Mitochondria-targeted α-syn may cause structural damage to the organelle. Differ-

entiated DA cells transduced with α-syn exhibited compromised mitochondrial structural 

integrity, including massive swelling, abnormal morphology, and distorted cristae.[142] In-

hibition of complex I activity and altered levels of complex I-related proteins also occur as 

a consequence of α-syn mitochondrial import, which can further increase endogenous 

content of α-syn, thereby initiating a feed-forward cycle. Thus, accumulation of α-syn led 

to 3-fold decrement in complex I activity in the SN of postmortem PD brains.[138] Selective 

reduction in complex I immunoreactivity was observed in midbrain homogenates of AAV-

A53T α-syn-transduced rats.[2] The fluorescence intensity of Ndufs3, a subunit of complex 

I, arose downstream α-syn-TOM20 association in cultured cells.[141] A significant decrease 

of the complex I subunit NDUFB8 was reported in α-syn transgenic mice.[139]  

α-Syn plays an important role in controlling mitochondrial integrity by regulating 

dynamics, transport, and clearance. A53T and A30P mutations in α-syn elicited mitochon-

drial fragmentation via a DRP1-independent pathway and increased OPA1 cleavage in 

crude mitochondrial fractions from M17 cells.[140] Mitochondrial fragmentation mediated 

by α-syn can occur in either a Drp1-independent or -dependent mechanism in HeLa 

cells.[143] The authors also showed that overexpression of MFN1 or MFN2 fusion proteins 

did not prevent fragmentation, supporting the idea that α-syn plays a selective role in 

fission events. α-Syn-induced mitochondrial fragmentation precedes OXPHOS disturb-

ances, including mitochondrial respiration and ΔΨm.[143] Preformed α-syn fibrils per-

turbed mitochondrial fission-fusion cycle by attenuating OPA1 levels and increasing 

DRP1 immunoreactivity in cultured rat ventral midbrain DA neurons.[5] Combined expo-

sure to α-syn fibrils and rotenone resulted in an additive toxicity. Human neural stem cells 

overexpressing A53T mutant α-syn increased the amount of short round-shaped (frag-

mented) mitochondria despite the concentration of both MFN and Drp1 remained un-

changed, supporting a physiological role for α-syn in regulating mitochondrial morphol-

ogy probably linked to an association between the N-terminal region and the mitochon-

drial membrane.[144] Furthermore, the C-terminal domain of α-syn triggered mitochon-

drial fragmentation and oxidation.[145] α-Syn-induced fragmented mitochondrial pheno-

type was reversed following co-expression of DJ-1, PINK1 or parkin.[146]  

Primary ventral midbrain neuronal cultures incubated with synthetic α-syn fibrils 

displayed axonal transport deficiencies, with variations in kinesin and dynein markers.[5] 

Live-imaging analyses revealed no differences in anterograde and retrograde mitochon-

drial content between wilt-type or mutated α-syn and the control group.[144] Nevertheless, 

overexpression of α-syn (especially A53T α-syn) in embryonic stem cells led to alterations 

in mitochondrial flux, suggesting an imbalance in mitochondrial distribution along axons. 

AAV delivery of human α-syn in the medulla oblongata gradually spread to more rostral 

brain regions – following a stereotypical pattern that may reflect neuron-to-neuron trans-

mission – and accumulated in dystrophic axons, where was distributed and propagated 
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in both ipsilateral and contralateral sides via axonal transport.[147] Inhibition of LRRK2 ki-

nase activity promoted α-syn movement toward the presynaptic terminal in primary hip-

pocampal neuron cultures transfected with α-syn.[148] Reduced levels of pS935 LRRK2 (an 

indirect assessment of LRRK2 kinase activity) mediated α-syn accumulation in presynap-

tic terminals of the mouse SN and striatum.[148] The C-terminal truncation of α-syn is re-

sponsible for retrograde motility of mitochondria.[145] In addition, membrane potential is 

required for α-syn transport, a process dependent on the mitochondrial ATP pool.[138] Cells 

transfected with α-syn promoted Ca2+ trafficking from the ER to the mitochondria via mi-

tochondria-associated ER membranes.[149] However, α-syn depletion inhibits agonist-stim-

ulated Ca2+ entry into mitochondrial matrix. 

Higher OH• concentration was detected in isolated mitochondrial fractions from pri-

mary DA neuron cultures transfected with α-syn relative to the control group.[138] Protein 

thiol oxidation was a feature of cell cultures incubated in the presence of oligomeric, 

pS129, or DA-modified α-syn.[141] Moreover, knockdown of endogenous α-syn expression 

resulted in a robust reduction of protein thiol oxidation in SN DA neurons. Elevated Mi-

toSox-red fluorescence was observed in cell lines expressing α-syn, which was mitigated 

by SIRT3.[150] Exposure to exogenous α-syn fibrils augmented ROS/RNS production by in-

creasing the MitoSox (O2•–) signal and the levels of 3-NT in primary midbrain neuronal 

cultures.[5] AAV-driven overexpression of human mutated A53T α-syn into the rat SN elic-

ited systemic oxidative insult, including LPO and protein nitration in the ipsilateral hem-

isphere.[2] Either wild-type or A53T α-syn accumulation in isolated mitochondria from hu-

man neuroblastoma cells induced peroxidation of lipids and NO• formation, the later sen-

sitive to intramitochondrial ionized Ca2+.[151] Cells expressing α-syn displayed an aberrant 

content of mtDNA deletions and oxidative DNA lesions.[139] In summary, specific derange-

ments in complex I are responsible for α-syn conformational changes, impaired mitochon-

drial function and biogenesis, exacerbated oxidative stress and Ca2+ dysregulation, lead-

ing to DA neuron degeneration.  

 

Ca2+ dysregulation and downstream effects in Alzheimer’s disease  

Ca2+ signaling in neurons is often started by activation of plasma membrane channels 

including voltage-gated Ca2+ channels (VOCCs), receptor-operated Ca2+ channels 

(ROCCs) as, for instance, NMDA receptors or other Ca2+-permeable such as transient re-

ceptor channels (TRP) or store-operated channels (SOCs) driven by Stim and Orai protein 

family members (Figure 1) whose opening induces Ca2+ influx into cells due to the large 

electrochemical gradient for Ca2+. Ca2+ signaling also starts following activation of Ca2+ 

release channels in the ER such as IP3 receptors after G protein-coupled receptor mediated 

phospholipase C activation induced mainly by glutamate metabotropic receptors or ace-

tylcholine muscarinic receptors. Ca2+ release also takes place through ryanodine receptor 

channels activated by different messengers, including Ca2+ itself, which is responsible of 

the Ca2+-induced, Ca2+ release (CICR) mechanism, a process known to be primed by chem-

icals like caffeine. Ca2+ influx and Ca2+ release mechanisms enhance the cytosolic free in-

tracellular Ca2+ concentration ([Ca2+]cyt) leading to neuron cell activation as stated above. 

This process is limited by endogenous Ca2+ buffers, particularly Ca2+ binding proteins such 

as calbindin, and Ca2+ extrusion systems, including plasma membrane Ca2+ ATPases 

(PMCAs), sarcoplasmic and ER Ca2+ ATPases (SERCAs), and Na+/Ca2+ exchangers (NCXs) 

that remove Ca2+ from cytosol back to the extracellular space and/or to intracellular orga-

nelles, principally, the ER. Mitochondria also work as Ca2+ removing organelles. In this 

case, Ca2+ is not pumped in or exchanged but enters the mitochondrial matrix through the 

mitochondrial Ca2+ uniporter (MCU) complex, containing an activated Ca2+ channel that 

promotes mitochondrial Ca2+ uptake in favor of a massive electromotive force, the ΔΨm 

(Figure 1). In fact, subtle modifications in ΔΨm may considerably influence mitochondrial 

Ca2+ uptake ability.[152] Ca2+ uptake by mitochondria activated the Krebs cycle and energy 

production but excess leading to mitochondrial Ca2+ overload may enhance oxidant stress 

and mPTP, leading to apoptosis. In contrast to other organelles, mitochondria are not Ca2+ 
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stores and accordingly, mitochondrial Ca2+ excess returns to the cytosol in a substantially 

slow fashion, in exchange for Na+ through mitochondrial Na+-Li+/Ca2+ exchangers (NCLX).  

 

Figure 1. Heterocycles target Ca2+ dyshomeostasis leading to mitochondrial Ca2+ overlad, oxidative 

damage and neuronal degeneration in AD and PD. 

The MCU is a low affinity Ca2+ channel. Therefore, only very high Ca2+ concentrations 

limited in time and space (Ca2+ hot spots or microdomains) efficiently activate MCU and 

mitochondrial Ca2+ uptake. As a consequence, only those mitochondria closely located to 

sites of generation of these Ca2+ microdomains such as IP3 receptor channels at the ER and 

some Ca2+ channels at the plasma are able to efficiently take up Ca2+.[153] We used mito-

chondria-targeted aequorin to monitor, for the first time, the coupling of Ca2+ release and 

mitochondrial Ca2+ uptake in the soma and neurites of neurons in primary cultures.[154,155] 

This configuration limits mitochondrial Ca2+ overload involved in mPTP. However, if Ca2+ 

influx or Ca2+ release mechanisms are enhanced and/or sustained, or Ca2+ buffers or extru-

sion systems are saturated, then mitochondrial Ca2+ overload may occur leading to neuron 

cell death. In the last few years, a large body of evidence indicates that changes in intra-

cellular Ca2+ homeostasis may contribute to neuron damage in AD and PD.[156] 
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Early evidence suggested that neurons obtained from mouse models of AD displayed 

changes in intracellular Ca2+ homeostasis, including alterations in resting levels of intra-

cellular Ca2+ and Ca2+ stores.[157] These changes could be associated to the effects of muta-

tions in the APP and presenilins PS1 and PS2, which process APP either directly or indi-

rectly via  excessive production of Aβ species. Mounting evidence indicates that prese-

nilins may work as ER leak channels, so presenilin mutations involved in familial AD 

cases would lead to variations in Ca2+ store content and Ca2+ release.[158] In addition, ele-

vated generation of Aβ species tend to oligomerize and eventually aggregate, thereby re-

sulting in the formation of toxic Aβ species. The mechanism by which Aβ species promote 

neuron damage is not totally understood. First indications suggested that Aβ proteins 

could integrate in lipid bilayers and form Ca2+-permeable pores termed amyloid chan-

nels.[159] We showed that Aβ1-42 oligomers, the assembly state that probably correlates bet-

ter with cognitive deficits in AD, increase Ca2+ influx in rat cerebellar and hippocampal 

neurons, followed by mitochondrial Ca2+ overload as monitored by bioluminescence im-

aging in individual neurons expressing mitochondria-targeted aequorin.[160,161] Mitochon-

drial Ca2+ overload induced by Aβ1-42 oligomers promote mPTP opening followed by re-

lease of cytochrome c and apoptosis. Importantly, prevention of mitochondrial Ca2+ up-

take without affecting the rise in cytosolic Ca2+ protected neurons. For instance, small mi-

tochondrial depolarization – that reduces the driving force for mitochondrial Ca2+ uptake 

– diminishes the mitochondrial Ca2+ overload and the ensuing release of cytochrome c and 

apoptosis.[160]  

Interestingly, a number of non-steroidal anti-inflammatory drugs (NSAIDs), such as 

the aspirin metabolite salicylate, and over the counter NSAIDs such as sulindac sulfide, 

indomethacin, ibuprofen and its enantiomer R-flurbiprofen (that partially depolarize mi-

tochondria at low concentrations) resulted in the inhibition of both the mitochondrial Ca2+ 

overload and the resulting apoptosis. Thus, Aβ neurotoxicity depends largely on mito-

chondrial Ca2+ overload and any compound targeting MCU, or ΔΨm may protect against 

Aβ oligomer-induced pathology. Therefore, mitochondrial Ca2+ emerged as a potential 

new target to prevent AD[162] that could be targeted by different compounds, like the anti-

biotic minocycline, able to prevent neurotoxicity[163] or drugs like methadone that promote 

neurotoxicity.[164] Interestingly, clinical data suggested that some of these compounds, par-

ticularly several NSAIDs, showed a neuroprotective effect in several animal models of 

AD. R-Flurbiprofen, an enantiomeric form of flurbiprofen lacking anti-inflammatory ac-

tivity was selected for a large AD clinical trial. Unfortunately, this trial failed probably 

because selected patients undergo large neuron cell death at the time of recruitment. The 

question remains whether NSAIDs and mitochondria are still good candidates for devel-

oping new drugs against AD.[165] Overall, data suggest a critical role for intracellular Ca2+ 

dyshomeostasis in AD that is amenable for the development of novel pharmacological 

agents to be tested in further clinical trials.[166] 

In addition to the contribution of excitotoxicity, mutations in APP and/or presenilins 

and the overproduction of Aβ oligomers, a critical component that is often overlooked is 

the critical influence of aging. We have developed an in vitro model of neuronal aging 

based on long-term culture of rat hippocampal neurons that, under specific conditions, 

acquire an aging phenotype. We reported that Ca2+ responses induced by activation of 

VOCCs after plasma membrane depolarization and neurotoxins, including the glutamate 

receptor agonist NMDA and Aβ oligomeric forms, were significantly elevated in aged 

neurons compared to young neurons.[167,168] These functional changes were associated to 

changes in the expression of NMDA receptor subunits. Interestingly, NMDA and Aβ oli-

gomers increased mitochondrial Ca2+ overload and apoptosis only in aged neurons but 

not in young cells, possibly because the cytosolic Ca2+ responses evoked by the neurotox-

ins were high enough to induce mitochondrial Ca2+ overload only in aged neurons, thus 

implying a critical role of mitochondrial Ca2+ in cell dead induced by these agonists.  

Neuroinflammation also plays a pivotal role in the etiopathogenesis of AD. A critical 

component of inflammation is the activation of Toll-like receptors (TLRs), transmembrane 
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pattern-recognition receptors of the innate immune system that recognize diverse patho-

gen-derived and tissue damage-related ligands and induce the corresponding immune 

response in specific cells. Recent data suggest that TLR signaling contributes to the path-

ogenesis of AD and other age-related, neurodegenerative diseases.[169] Consistently, we 

recently demonstrated that the TLR4 agonist lipopolisacharide (LPS) induces Ca2+ re-

sponses and apoptosis in hippocampal aged neurons in vitro while no effects were ob-

served on young neurons.[170] These effects were prevented by administration of TLR4 an-

tagonists. Consistently, TLR4 expression is significantly increased in aged neurons rela-

tive to young cells. Treatment of aged neurons with Aβ oligomers enhanced TLR4 expres-

sion as well as LPS-mediated Ca2+ responses and neuron cell loss. These data indicate that 

both aging and Aβ oligomers may contribute to increase the susceptibility to neuroinflam-

mation in rat hippocampal neurons.[171] 

The data also suggest that aging neurons undergo significant changes in expression 

and/or activity of molecular players involved in Ca2+ transport that renders them more 

vulnerable to damage. We reported that long-term cultures of rat hippocampal neurons 

underwent such Ca2+ remodeling.[172] Specifically, aged neurons show enhanced resting 

[Ca2+]cyt and Ca2+ store content and release from ER, together with increased Ca2+ transfer 

from the ER into mitochondria. Moreover, aged neurons exhibited a significant decrease 

in the so-called store-operated Ca2+ entry (SOCE), a pathway that has been related to den-

dritic spine stability and memory storage. Therefore, these changes in Ca2+ homeostasis 

found in aging neurons may favor energy production at the risk of increased susceptibility 

to mitochondrial Ca2+ overload and cell death as well as reduced spine stability. These 

functional changes correlated with altered expression of the ER IP3 receptor, mitochon-

drial MCU, NMDA and TLR4 receptors, and the plasma membrane molecular players 

involved in SOCE.[173] Interestingly, treatment of aged neurons with Aβ oligomers further 

exacerbated most of the changes involved in Ca2+ remodeling associated to aging and the 

susceptibility to cell death, including resting Ca2+, Ca2+ store content, and Ca2+ responses 

to NMDA and TLR4.[173] Administration of Aβ oligomers also decreases further SOCE in 

aged neurons. We proposed that neuronal aging is associated to Ca2+ remodeling that fa-

vors energy production at the expense of increased susceptibility to damage and de-

creased ability for memory formation. In addition, this process is exacerbated by the gen-

eration of Aβ oligomers, leading to pathological aging that contributes to the development 

of AD.[174]  

The mechanism by which Aβ peptide species, particularly oligomers, promote neu-

ron damage is not totally understood. The proposal that Aβ species form Ca2+ permeable 

pores or channels responsible for Ca2+ entry is not widely accepted.[166] Alternatively, it has 

been proposed that Aβ oligomers bind an activate plasma membrane Ca2+ channels, par-

ticularly NMDA receptor channels.[175] We have recently shown that Ca2+ responses to Aβ 

oligomers were highly dependent on synaptic networking.[176] In particular, we demon-

strated that generation of spontaneous, synchronous [Ca2+]cyt oscillations in neurons are 

abolished by many different blockers of synaptic transmission (such as NMDA receptor 

antagonists) and blockers of action potential propagation (tetrodotoxin). In the absence of 

networking activity, Ca2+ responses to the Aβ oligomers are smaller and are inhibited only 

by NMDA receptor antagonists and blockers of the formation of amyloid channels (such 

as NA7). In addition, combination of these two blockers essentially abolished Ca2+ re-

sponses induced by Aβ oligomers.[176] These findings suggest the involvement of both 

NMDA receptors and the amyloid channels in the primary response to Aβ oligomers that 

are further enhanced by networking activity. In support of this notion, we also showed 

that non-neuronal cells expressing NMDA receptors exhibited Ca2+ responses to oligo-

mers, in contrast to cells lacking NMDA. Expression of NMDA receptor subunits 

NR1/NR2A and NR1/NR2B in these cells restored Ca2+ responses to NMDA but not to Aβ 

oligomers. These data suggest that Aβ oligomers may promote Ca2+ entry via both amy-

loid channels and NMDA receptors. Thus, NMDA receptors appear necessary but not 

sufficient for Ca2+ responses to oligomers. Furthermore, Aβ oligomers may activate distant 

neurons intertwisted by synaptic connections, thus favoring the spreading of excitation 
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by the recruiting of further NMDA receptors and specific VOCCs, leading to massive Ca2+ 

entry, excitotoxicity, and neuron degeneration in AD.[176]  

Accordingly, intracellular Ca2+ homeostasis and its dysregulation play a pivotal role 

in the susceptibility to neuron damage during aging, neuroinflammation, excessive pro-

duction of amyloid peptides, excitotoxicity, and mutated presenilins, all of them processes 

involved in AD. We are currently working on the development of novel drugs targeting 

these pathways, for example, the synthesis of marine heterocyclic compounds.[177] 

 

Altered Ca2+ homeostasis and concomitant neurotoxicity in Parkinson’s disease 

Damage of SN DA is considered a main mechanism responsible for PD. These neu-

rons are under extreme bioenergetic demand because of three particular features: (i) the 

maintenance of a giant axonal tree that requires anterograde/retrograde transport of cyto-

solic metabolites and organelles, (ii) the maintenance and propagation of action potentials 

(APs) and the restoring of ionic gradients, and (iii) the large number of synaptic vesicles 

cycling. Related to the elevated energy requirement, SN DA neurons display large [Ca2+]cyt 

oscillations that can boost mitochondrial OXPHOS activity, which may render them vul-

nerable to damage when neurons are challenged by different stressors like genetic muta-

tions, mitochondrial toxins or defective aging (Figure 1). 

In 2007, Surmeier and cols. proposed for the first time that reliance of DA neurons on 

L-type VOCCs sensitive to dihydropyridines or Cav1.3 channels, for rhythmic pacemak-

ing rendered them vulnerable to different stressors known to promote PD. These authors 

demonstrated that reliance of pacemaking activity on these VOCCs increased in a time-

dependent manner and differed from young SN DA neurons, that apparently, use alter-

native mechanisms for pacemaking activity common to other neuron types unaffected in 

PD.[178] Interestingly, it appears that these juvenile mechanisms remain latent in aged neu-

rons, such that inhibition of Cav1.3 turn on the pacemaking mechanism to the juvenile 

form, thus protecting DA neurons from damage. Specifically, treatment with isradipine, a 

blocker of Cav1.3 channels, reversed the pacemaking phenotype and protected against 

different PD toxins. Data prompted the consideration of dihydropyridines, used for dec-

ades as hypertensive treatment, could be a novel approach for PD.[179] The present view is 

that spike-activated Ca2+ influx mediated by Cav1.3 channels may trigger Ca2+ release from 

the ER that is transferred to mitochondria to stimulate mitochondrial OXPHOS by two 

Ca2+-dependent mechanisms: a mechanism mediated by the MCU-dependent Ca2+ uptake 

and enhanced Krebs cycle and mitochondrial respiration, and another mechanism de-

pendent of the malate-aspartate shuttle. The disruption of any of the two mechanisms 

results in the impairment of the ability of DA neurons to sustain a spike activity. Thus, 

although this feedforward mechanism attends DA neurons bioenergetic demands linked 

to sustained spiking, it also underlies the increased oxidative stress and damage with ag-

ing or disease.[180] 

Whether targeting mitochondria oxidant stress is enough to prevent PD progression 

has been extensively examined. Unfortunately, these attempts have failed so far to show 

efficacy. Recent epidemiological studies provided evidence of a significant correlation be-

tween low PD risk and the use of Cav1 channel inhibitors such as dihydropyridines. A 

recent Phase III clinical trial using isradipine did not show beneficial effects on PD pa-

tients. The reasons for the trial failure may be associated to the extensive damage of DA 

neurons in patients already at the time of diagnosis and/or recruitment, and/or the low 

level of isradipine concentration achieved in vivo in the central nervous system due to 

large drug clearance.[181] Despite this failure, there is still a substantial interest in develop-

ing novel drugs selectively targeting Ca2+ signaling in DA neurons.  

For instance, cyclic α-aryl β-dicarbonyl derivatives are important scaffolds in medic-

inal chemistry that have been used for developing new candidate agents for treating PD. 

Specifically, a palladium-catalyzed coupling reactions of haloarenes were conducted re-

cently with diverse five- to seven-membered cyclic β-dicarbonyl derivatives that include 

barbiturate, pyrazolidine-3,5-dione, and 1,4-diazepane-5,7-dione. The coupling reactions 
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of different para- or meta-substituted aryl halides were efficient when Pd(tBu3P)2, Xphos, 

and Cs2CO3 are used in 1,4-dioxane reflux conditions. Consequently, several 5-aryl barbi-

turates were synthesized to be used as new scaffolds of Cav1.3 channel inhibitors with an 

IC50 at 1.42 μM.[182] 

Modulation of calcium signaling and homeostasis by heterocyclic compounds in Alz-

heimer’s disease and Parkinson’s disease 

Extensive evidence has demonstrated that dysregulation of Ca2+ homeostasis and sig-

naling are mechanisms that play an essential role in the etiopathogenesis of AD and PD. 

Aβ peptides are involved in the excessive accumulation of intracellular Ca2+ through the 

formation of Ca2+-permeable pores in the plasma membrane or by increasing Ca2+ influx 

via activation of L-type VOCCs and NMDA or AMPA receptors.[14,15] On the other hand, 

genetic mutations in presenilin or activation of inositol 1,4,5-trisphosphate (IP3) and 

ryanodine receptors promote Ca2+ leak in the ER, which produces an elevation of both 

cytosolic and mitochondrial Ca2+ concentration.[183-185] Mutations in the gene encoding for 

LRRK2, which are associated with both familial and sporadic PD, elicited transcriptional 

upregulation of the mitochondrial Ca2+ uniporter and the mitochondrial Ca2+ uptake 1 

protein in post-mortem human brain, fibroblasts, and primary mouse cortical neurons.[16] 

Pathological mutant LRRK2 enhanced mitochondrial Ca2+ uptake and dendritic injury but 

increased mitochondrial Ca2+ release restored Ca2+ homeostasis and was neuroprotective. 

These findings demonstrated that LRRK2-driven neurodegeneration raises susceptibility 

to mitochondrial Ca2+ overload and implicates mitochondrial Ca2+ dyshomeostasis in the 

pathogenesis of PD. Moreover, knockdown or inhibition of IP3 kinase B led to α-syn ag-

gregation and phosphorylation in primary cortical neurons from mice incubated with α-

syn fibrils, which increases (i) Ca2+ release from the ER, (ii) mitochondrial Ca2+ content, 

and (iii) mitochondrial respiration.[13] We have found some heterocyclic compounds with 

the capability of modulating Ca2+ uptake that can be considered as promising pharmaco-

logical agents for the treatment of AD and PD (Table 1). 

Table 1. Summary of heterocycle compounds effects on AD and PD. Status: https://clinicaltri-

als.gov/. 

eterocyclic Com-
pound 

Chemical Name Target Proposed Mechanism 
Effect on Neurodegener-
ative Diseases. Status of 

Clinical Trials 

1. ANAVEX2-73 
    (Blarcamesine) 

Tetrahydro-N,N-
dimethyl-2,2-di-

phenyl-3-fu-
ranmethana-

mine hydrochlo-
ride 

mAChRs 
 

S1R 

• ↓ Ca2+ release 
• ↓ Mitochondrial 

stress  
• Activated antioxidant 

response pathway 
• Limited apoptosis 

Memory improvement 
and neuroprotective ef-

fects in AD and PD.  
• AD (Phase 2/3) 

• PD Dementia (Phase 2) 
• PD (Phase 1) 

2. Caffeine 
     (Mateine) 

1,3,7-Trimethyl-
3,7-dihydro-1H-
purine-2,6-di-

one 

A2AR 
 

RyR (+) 

• ↓ Oxidative damage 
• ↓ Aβ levels 

• ↓ α-Synuclein  aggre-
gates 

• Restored AChE and 
Na+/K+ ATPase activity 

Reduced risk of develop-
ing AD and PD 

 
Epidemiological studies: 

PD, possible motor bene-
fits 

3. Diltiazen 
    (Cardizem) 

(2S,3S)-5-(2-(Di-
methyla-

mino)ethyl)-2-
(4-methoxy-

phenyl)-4-oxo-
2,3,4,5-tetrahy-

dro-
benzo[b][1,4]thi

Non-dihy-
dro-pyri-

dine  
VOCC 

• ↓ Ca2+ entry 
• ↓ Oxidative damage 

• ↓ Inflamatory re-
sponse 

Reduced risk of develop-
ing AD and PD 

 
Epidemiological  & Ran-

domization Studys 
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azepin-3-yl ace-
tate 

4. Latrepirdine 
    (Dimebon) 

3,6-Dimethyl-9-
(2-methyl-

pyridyl-5)-ethyl-
1,2,3,4-tetrahy-
dro-γ-carboline 
dihydrochloride 

H1R 
 

Other 
Ca2+ Chan-

nels 

• ↓ Ca2+ release and en-
try 

• ↓ Aβ levels 
• ↓ Oxidative damage 

to lipids 
• Inhibitor AChE 
• ↓ α-Synuclein  

Cognitive and psychiatric 
benefit in AD 

Improvement in cognitive 
decline in HD 

Status: 
• AD (Discontin-

ued) 
• HD (Discontin-

ued) 

5. Nifedipine 
    (Procardia) 

3,5-Dimethyl 
2,6-dimethyl-4-
(2-nitrophenyl)-

1,4-dihydro-
pyridine-3,5-di-

carboxylate 

L-Type 
VOCC 

• ↓ Ca2+ entry 
• ↓ Secreted Aβ  

• ↓ Oxidative damage 

Reducing risk developing 
AD and PD 

 
Epidemiological  & Ran-

domization Studies 

6. Nimodipine 
    (Nimotop) 

3-isopropyl 5-(2-
methoxyethyl) 
2,6-dimethyl-4-
(3-nitrophenyl)-

1,4-dihydro-
pyridine-3,5-di-

carboxylate 

L-Type 
VOCC 

• ↓ Ca2+ entry 
• Neuroprotection  

• ↓ Aβ toxicity  
• ↓ Oxidative damage 

• Abolished pacemaking 
activity in DA neurons 

Reducing risk developing 
AD and PD 

 
Epidemiological & Ran-

domization Studies 

1. ANAVEX2-73 

ANAVEX2-73 (Blarcamesine) is a non-selective muscarinic acetylcholine receptor 

(mAChR) and alfa-1 receptor (S1R) ligand that exhibits an important affinity for its phar-

macological targets at micromolar concentration.[186] σ1 Receptors are ubiquitously ex-

pressed in the central nervous system (CNS) and are located at mitochondria-associated 

ER membranes, where they interact with IP3 receptors to regulate Ca2+ exchange between 

the ER and mitochondria, thereby resulting in reduced mitochondrial stress, regulation of 

ion channels, activation of the nuclear erythroid 2-related factor 2 (NRF2) / antioxidant 

response element (ARE) pathway, and limited apoptosis.[187,188] IP3 receptor-mediated Ca2+ 

release correlates with variations in the availability of mitochondrial Ca2+ and ATP syn-

thesis.[189] A formal concept analysis (FCA) combined with the Knowledge Extraction and 

Management (KEM) environment was able to identify ANAVEX2-73 (tetrahydro-N,N-di-

methyl-2,2-diphenyl-3-furanmethanamine hydrochloride) as a potential genomic bi-

omarker of disease and therapeutic response in a phase IIa clinical trial.[190] An ongoing 

randomized, double-blind  phase III trial of this compound is evaluating the bioavailabil-

ity, safety, tolerability, and effectiveness of the treatment in patients with AD 

(NCT03790709), PD with dementia (NCT03774459) and Rett syndrome (NCT03758924).  

Intraperitoneal administration of ANAVEX2-73 (0.3-1 mg/kg) reversed scopolamine- 

and dizocilpine-induced learning impairments one week after intracerebroventricular in-

jection of the neurotoxic Aβ25-35 peptide in mice.[191] Using the same mouse model, treat-

ment with ANAVEX2-73 inhibited the phosphatidyl-inositol 3-kinase (PI3K)/Akt path-

way, thereby resulting in the activation of GSK-3β, improvement of behavioral deficits, 

and limitation of Aβ seeding and tau-induced pathology.[192] Moreover, the drug pre-

served mitochondrial integrity and function in isolated mitochondria from the hippocam-

pal brain region of Aβ25-35 injected mice by increasing the activity of complex IV and oxy-

gen consumption at all states.[193] Exposure to ANAVEX2-73 also decreased the peroxida-

tion of lipids, Bax/Bcl-2 ratio (that determines the cell susceptibility to apoptosis) and cy-

tochrome c release. In an independent study, ANAVEX2-73 restored the respiratory con-

trol ratio and preserved complex IV levels from Aβ toxicity in a Ca2+-dependent fashion 

that regulates several tricarboxylic  acid cycle (TCA) enzymes including α-ketoglutarate 
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dehydrogenase complex and isocitrate dehydrogenase, responsible for NADH produc-

tion, a substrate for complex I.[194]  ANAVEX2-73 displayed a synergic effect with donepezil 

(but not with memantine) and restored spontaneous alternation and passive avoidance 

response in a non-transgenic mouse model of AD.[195] Incubation with ANAVEX2-73 elic-

ited the accumulation of LC3-II-positive puncta and succeeding autophagic flux in cell 

cultures. C. elegans expressing GFP-LGG-1 (a marker of autophagy) treated with 

ANAVEX2-73 exhibit increased autophagic activity. In addition, administration of 

ANAVEX2-73 to Aβ42-expressing nematodes upregulated proteostasis capacity, ulti-

mately resulting in a dissociation and clearance of Aβ42 aggregates.[196] 

 In summary, ANAVEX2-73 modulates Ca2+ release after its interaction with IP3 recep-

tors and prevents mitochondrial failure in multiple ways, including through the activation 

of the NRF2/ARE pathway that directly controls the expression of several antioxidant and 

anti-inflammatory genes. In addition, the molecule promotes autophagosome biogenesis 

and autophagic flux to degrade aggregated proteins and damaged organelles (such as mi-

tochondria). 

ANAVEX2-73 (1-(2,2-diphenyltetrahydro-3-furanyl)-N,N-dimethylmethanamine hy-

drochloride) 1 unique total synthesis was reported by Foscolos and co-workers.[197] The 

key step during the synthesis is the reduction-opening of lactone 7 to provide 1,4-diol 8, 

which was subsequently converted by acid-catalyzed cyclodehydration to ANAVEX2-73 

1 (Scheme 1). 

 

Scheme 1. Unique total synthesis of ANAVEX2-73 1 reported by Foscolos and co-workers. 

2. Caffeine 

Caffeine (Mateine), a purine alkaloid present in several plants (Coffea, Camellia, Cola, 

Cirus, Ilex, Paullinia, and Theobroma), is the most consumed psychoactive substance in the 

world.[198] Coffee contains a variety of compounds such as caffeine, chlorogenic acid, 

cafestol, diterpenes and kahweol.[199] Moreover, coffee is a rich source of bioactive compo-

nents that contribute to its biological activity, including potassium (K+), magnesium 

(Mg2+), niacin and potent antioxidants (chlorogenic acid and tocopherol).[200] Research 

studies have established a strong relationship between frequent caffeine consumption and 

reduced risk of developing AD and PD, with no detectable adverse effects in the CNS in 

an exposed population. A large body of literature has shown that mutations in presenilins 

are linked with Ca2+ signaling dysregulation and elevated Ca2+ release from the ER in neu-

ronal cultures expressing mutant PS,[201-203] transgenic mice engineered to overexpress mu-

tant PS1,[204,205] and fibroblasts from subjects with AD.[206-208] PS induces excessive Ca2+ ac-

cumulation and release in part via its biochemical interaction with the IP3 receptor Ca2+ 

release channel, thereby resulting in an anomalous regulation of Ca2+ signaling pathways 

and stimulation of APP processing and Aβ synthesis,[209-211] even prior the formation of 

plaques and NFTs.[212] Ca2+ storage content is higher in mutant presenilin-1 (PS1) knock-in 

neurons primary cortical neurons from a triple transgenic mouse model of AD (3xTg-AD) 

compared to non-transgenic cells.[213] Caffeine exposure altered Ca2+ signaling and pro-

moted its release, which was independent of extrusion mechanisms or variations in the 

steady-state concentration of specific Ca2+-binding proteins. However, this effect was at-

tributed to the activation of the ryanodine receptors (RyRs) that become sensitized to so-

called process of Ca2+-induced release by caffeine. 

The CAIDE longitudinal epidemiological study suggested an association between 

mid-life moderate coffee (but no tea) consumption and late-life reduced risk of dementia 
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and AD.[214] Specifically, caffeine intake (3-5 cups per day) reversed cognitive impairment 

(assessed by Mini-Mental State Examination) in a gender-specific manner (women age 65 

and older). A recent mendelian randomization study found that genetically predicted 

higher caffeine content in the plasma correlates with diminished risk of AD.[215] Following 

confounding adjustment, it has been described that long-term coffee consumption (≥ 2 

cups/day) was associated with a significant cognitive decline decrease in pathological Aβ 

deposition. Nevertheless, no changes were observed in cortical thickness, cerebral white 

matter hyperintensities or cerebral glucose metabolism, which are features also related to 

the neurodegenerative process.[216] The Honolulu Heart Program provided the first evi-

dence showing a potential beneficial effect of caffeine intake in PD patients. Coffee drink-

ers (28 oz or more per day) had 5-fold lower incidence of developing PD compared to non-

caffeine drinkers following an adjustment for both age and pack-years of cigarette smok-

ing.[217] This study was further supported by Ascherio and colleagues.[218] In addition, con-

sumption of decaffeinated coffee was not associated with decreased risk of PD, suggesting 

that caffeine, rather than other coffee components, accounts for the inverse association 

observed. The findings showed a significant negative correlation between caffeine intake 

and risk of developing PD in men but a U-shaped relationship among women. The risk of 

PD was similar in women using hormones and women who never used hormones. Inter-

estingly, caffeine diminished the risk of PD in menopausal women that did not take hor-

mone replacement but there is a higher risk (4-fold) among hormone users with high caf-

feine.[219] The risk of PD was even lower when coffee intake is combined with cigarette 

smoking and nonsteroidal anti-inflammatory drug use, resulting in a cumulative effect.[220] 

A different clinical trial confirmed that caffeine consumption mitigates the risk of PD, 

but its neuroprotective properties may vary depending on its interaction with other fac-

tors, such as obesity and low serum cholesterol levels, which can modify the risk of having 

PD.[221] A meta-analysis involving a large number of participants found a non-linear rela-

tionship between coffee consumption and the incidence of PD that achieves the maximum 

protective effect at 3 cups per day.[222] However, the authors described a linear dose rela-

tionship of reduced risk of PD with both tea and caffeine consumption, especially in men 

compared to women and in European and Asian population relative to USA residents. 

Based on an open-label, dose-escalation study, caffeine had potential motor and non-mo-

tor benefits in subjects with PD, with the maximum tolerated dose of 100-200 mg/day bis 

in die (BID) without affecting sleep quality.[223] In a randomized controlled trial, admin-

istration of 200 mg caffeine BID for six weeks did not improve daytime somnolence in PD 

patients but  possessed the potential to reverse motor symptoms.[224] Transgenic mice over-

expressing the human APP gene carrying the Swedish mutation (APPsw) treated with 0.3 

mg/mL caffeine in the drinking water for 5 months exhibited an improvement in multiple 

behavioral measurements.[225] In addition, enzyme-linked immunosorbent assay showed 

a significant downregulation of both Aβ40 and Aβ42 levels and decreased PS1 and β-secre-

tase (BACE) protein concentration in the hippocampus of these AD mice. Oral supple-

mentation with caffeine for 4 months restored motor performance, anxiety and memory 

deficits, prevented neuronal death in the CA1 pyramidal layer of the hippocampus, and 

promoted neurogenesis in the absence of detectable pathological effects on the Aβ pathol-

ogy in transgenic Tg4-42 and 5xFAD mouse models of AD.[226] Caffeine did not alter the 

optical density or mRNA expression levels of A1 or A2A receptors in the mouse cerebral 

cortex or hippocampus.  

Aβ burden was reduced in both brain and plasma of APPsw and APP/PS1 mice 

(which contain human transgenes for both APP bearing the Swedish mutation and PSEN1 

containing a L166P mutation) following either acute or chronic caffeine administration.[227] 

However, amyloid plasma levels were not correlated with (i) Aβ brain content, (ii) cogni-

tive impairment, and (iii) pro-inflammatory cytokine levels in aged mice. Animals receiv-

ing caffeine also display an enhanced memory performance. It has been also demonstrated 

that long-term administration of caffeine is protective in the THY-Tau22 transgenic mouse 

model of progressive AD-like tau pathology by limitation of spatial memory abnormali-

ties, tau phosphorylation, oxidative stress, and inflammation.[228] Since persistent (but no 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2023                   doi:10.20944/preprints202304.0098.v1

https://doi.org/10.20944/preprints202304.0098.v1


18 

acute) administration of caffeine increases cerebrospinal fluid (CSF) secretion in rats in 

comparison to the control-treated group, it has been proposed that chronic caffeine intake 

can promote CSF production combined with an elevated cerebral blood flow velocity and 

Na+/K+-ATPase levels.[229] Protein kinase A (PKA) is a heterotetrametric enzyme comprised 

of two regulatory and two catalytic subunits that plays an essential role in cell prolifera-

tion with an anti-apoptotic activity. The cyclic adenosine monophosphate (cAMP)-re-

sponse element binding protein (CREB) is a transcription factor that modulates a subset 

of genes implicated in cognition and neuron survival. c-Jun N-terminal kinase (JNK) and 

extracellular signal-regulated kinase (ERK) are mitogen-activated protein kinases that can 

trigger apoptotic signaling by the upregulation of pro-apoptotic genes through the activa-

tion of specific transcription factors or directly, by catalyzing protein phosphorylation. 

Administration of caffeine upregulated PKA activity, induced CREB phosphorylation, 

and reduced the levels of phosphorylated JNK and ERK in the striatum (but no frontal 

cortex) of APPsw mice, suggesting that caffeine pro-apoptotic signaling.[230] Caffeine in-

take resulted in memory capacity improvement and increased hippocampal brain neu-

rotrophic derived factor (BNDF) and tyrosine receptor kinase B (TrkB) immunoreactivity 

in PS1/APP double transgenic mice and rats treated with aluminum chloride.[231,232] 

Caffeine also has a neuroprotective role in PD. Exposure to caffeine preserved the 

degeneration of the nigrostriatal DAergic pathway in neurotoxin-based animal models of 

PD, such as rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and 6-hy-

droxydopamine (6-OHDA). Histopathological and immunohistochemical characterization 

of brain tissue from rotenone-exposed rats show a significant degeneration of SN DA neu-

rons and their projections into the striatum. However, administration of caffeine provided 

a dose-dependent therapeutic effect against rotenone-mediated neurotoxicity.[233] Injection 

of caffeine through a peritoneal route improved the behavioral phenotype, normalized 

brain enzymatic activities of both acetylcholinesterase (AChE) and Na+/K+-ATPase (which 

play an important role in memory and learning) and mitigated neuroinflammation and 

oxidative damage in rotenone-treated rats.[234]  Caffeine modulated striatal protein content 

and catalytic activity of cytochrome P450 (a membrane-bound hemoprotein that plays a 

central role in the detoxification of xenobiotics), glutathione-S-transferases (a family of 

phase II detoxification enzymes involved in the protection of macromolecules from attack 

by ROS, reactive electrophiles, environmental carcinogens, and chemotherapeutic agents) 

and vesicular monoamine transporter-2 (VMAT-2, an integral presynaptic protein that 

controls the packaging and release of DA and other neurotransmitters from synaptic ves-

icles) in mice receiving MPTP for 4 weeks.[235] Using ex vivo 1H-[13C]-NMR spectroscopy, 

Bagga et al. found that pretreatment with caffeine increased neuronal glutamatergic and 

GABAergic metabolic activity, and neurotransmission in MPTP-injected mice.[236] Oral 

supplementation with the coffee component eicosanoyl-5-hydroxytryptamide attenuated 

MPTP-induced nigrostriatal DAergic cell loss in mice, displayed both antioxidant and 

anti-inflammatory properties and normalized phosphoprotein phosphatase 2A (PP2A) 

methylation and activity.[237]  

Intraperitoneal injection of 10-20 mg/kg day of caffeine improved motor dysfunction 

and increased catecholamine levels in a rat model of 6-OHDA-induced striatal lesion.[238] 

Striatal injection of 6-OHDA elicited apomorphine-induced rotation and impaired loco-

motor activity in parallel with a loss of DA immunoreactivity and an inflammatory re-

sponse, but administration of caffeine ameliorated the behavioral and pathological PD-

like phenotype. Moreover, it has been also reported that administration of caffeine in the 

drinking water can exert neuroprotective effects by decreasing the number of inclusions 

positive for pS129 α-syn, content of TUNEL-stained apoptotic cells, LC3-mediated macro-

autophagy, and lysosome-associated membrane protein type 2A (LAMP2A) chaperone-

related autophagy in mice that received an intracerebral injection of synthetic α-syn fibrils 

with the A53T missense mutation.[239]  Regarding its potential mechanism of action, caf-

feine is an antagonist of the adenosine-2A receptor (A2AR), which are predominantly lo-

calized in the GABAergic striatopallidal neurons projecting from the caudate nucleus and 

the putamen to the external segment of the globus pallidus (indirect pathway).[240]  A2ARs 
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colocalize with DA2 receptors to form heteromeric complexes that mediate the allosteric 

antagonism between adenosinergic and DAergic transmission.[241] Noteworthy, a double-

blind, randomized, crossover study  showed that treatment with caffeine improved the 

pharmacokinetic profile of levodopa by reducing its plasma concentration-time profile 

and by prolonging its effect.[242]  

In summary, while caffeine has complex biological and pharmacological profiles, ex-

perimental evidence indicates that caffeine readily crosses the blood-brain barrier and ex-

erts its action by antagonizing A2ARs and confers neuroprotection by stimulating mito-

chondrial function and by attenuating excitatory neurotransmitter release, oxidative in-

sult, and neuroinflammation. Clinical trials have shown that caffeine significantly en-

hances AD-related memory loss and improves motor symptoms in PD patients. In addi-

tion, caffeine has a well-established long-term safety profile. Together with its low cost 

and high availability, caffeine is a promising therapeutic agent for the treatment of neuro-

degenerative diseases. 

The most recent total caffeine (1,3,7-trimethyl-3,7-dihydro-1H-purine-2,6-dione) 2 

synthesis was reported by Narayan in 2003 from uracil 9.[243] N-Methylation in the pres-

ence of a strong base such as sodium hydride in dimethylsulfoxide (DMSO) produced 1,3-

dimethyluracil 10, which was nitrated  and subsequently reduced to 5-amino-1,3-dime-

thyluracil 12, using iron and hydrochloric acid. Compound 13 was obtained following two 

conventional steps and resulted in the formation of theophylline 14 after a reduction pro-

cess and an intramolecular heterocyclization reaction with iron and acetic acid. The final 

methylation at position 7 led to the generation of caffeine 2. Therefore, synthesis of caffeine 

needed seven reaction steps with an ~10% overall yield (Scheme 2). 

 

Scheme 2. Synthesis of caffeine 2 reported by Narayan in 2003 from uracil 9. 

In recent years, new and improved methodologies for the N-methylation of theophyl-

line 14 have been published. A novel technique uses the Q-tube apparatus in water at over 

boiling temperature as a green solvent.[244] In a different study, Schnürch’s group opti-

mized the employment of quaternary ammonium salts as monoselective N-methylation 

reagents (Scheme 3).[245]  

 

Scheme 3. New methodologies applied for the N-methylation of theophylline 14. 
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3. Diltiazem 

Diltiazem (Cardizem) is a non‐dihydropyridine Ca2+ channel blocker with antihyper-

tensive, antiarrhythmic and vasodilation properties. The drug selectively targets the 

VOCCs, which are the primary mediators of Ca2+ influx into neurons in response to mem-

brane depolarization. P/Q- and N-type VOCCs regulate neurotransmitter release upon ar-

rival of the action potential to the axon terminal in the presynaptic neuron. Glutamate 

release promotes postsynaptic Ca2+ trafficking by activation of NMDA receptors 

(NMDAR) or through an indirect pathway involving L-type VOCCs.[246] Reduced Ca2+ 

transient at presynaptic or postsynaptic sites can mitigate glutamate-induced excitotoxi-

city. Therefore, administration of Ca2+ channel blockers has become an interesting ap-

proach for the treatment of neurodegenerative diseases. PET and postmortem analyses of 

different brain regions (such as cerebral cortex and amygdala) from AD subjects revealed 

a marked inhibition of AChE enzymatic activity, responsible for the hydrolytic metabo-

lism of the neurotransmitter acetylcholine into acetate and choline.[247-249] In contrast, ad-

ministration of Aβ25-35 peptide upregulated the activity of AChE through modulation of 

the L-type VOCCs (increasing intracellular Ca2+ concentration) in embryonal carcinoma 

P19 cells.[250] When cultures were incubated in the presence of diltiazem, the authors found 

a 75% loss of AChE enzyme activity.  

Epidemiological data obtained from individuals with PD indicate that long-term 

treatment with  Ca2+ channel blockers targeting Ca2+ channels of DA neurons may repre-

sent a potential therapeutic strategy, reducing the risk for developing the disease.[251-253] A 

larger study involving 65,001 patients, reinforced the connection between Ca2+ channel 

blockers and diminished incidence of PD.[254] In addition, centrally acting Ca2+ channel 

blockers prevent nigrostriatal DAergic degeneration in parkinsonian mice and non-hu-

man primates and improve survival rate in vitro.[178,255,256] There is evidence supporting a 

beneficial effect of diltiazem against DA toxicity in human neuroblastoma cells.[257] Cav1.2 

and Cav1.3 are L-type VOCCs regulate DAergic neuron spontaneous firing activity in the 

SN region of the brain. DA neurons fire either in a low frequency single-spike pattern or 

transiently, in a high-frequency so-called burst mode. Data from animal models support 

clinical observations showing that diltiazem has positive effects on AD-induced pathol-

ogy. Ca2+ channel blockers, such as diltiazem, protect neurons from Aβ-induced influx of 

Ca2+ ions and downstream toxicity as well as decrease the amyloid content by facilitating 

the clearance rate.[258,259] Excessive neuronal Ca2+ influx contributes to neuronal dysfunc-

tion and degeneration that underlies cognitive disturbances in AD. Neuronal cultures in-

cubated with Aβ peptides led to an enhanced Ca2+ entry.[260] Furthermore, endogenous 

accumulation of oligomeric Aβ led to an upregulated expression of L-type VOCCs 

(Cav1.2).[259] Diltiazem improved survival rate and decreased Ca2+ intracellular concentra-

tion by blocking L-type Ca2+ channels in vitro. Diltiazem protected MC65 neuroblastoma 

cells from the toxicity mediated by the APP C-terminal fragment by improving cell sur-

vival.[261]  

In addition, the Aβ25-35 fragment decreased both secreted APP and Aβ while pro-

moted cell-associated APP in chick sympathetic neurons. Enhanced APP secretion with 

no variations in the amount of cell-associated APP occurred in response to diltiazem.[262] 

The accumulation of exogenous Aβ significantly attenuated cell viability and proliferation 

(determined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, 

MTT) in primary hippocampal neuronal cultures, which was reversed by exposure to dil-

tiazem.[13] This study also provided evidence supporting that Aβ toxicity shows an early 

Ca2+-independent phase and a late Ca2+-dependent phase. Spontaneous alternation behav-

ior, a reliable measure of short-term of spatial working memory, was significantly in-

creased in mice treated with diltiazem.[263] Chronic exposure to aluminum or any other of 

its forms in the drinking water has been associated with higher risk of developing AD.[264-

266] Aluminum accumulation has been detected in the brain of AD cases, where causes 

neurofibrillary degeneration in neurons.[267] Bouras et al. found a specific increased content 

of aluminum within NFTs in both the inferior temporal cortex  and hippocampus of indi-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2023                   doi:10.20944/preprints202304.0098.v1

https://doi.org/10.20944/preprints202304.0098.v1


21 

viduals with AD.[268] Aluminum induces Aβ protein conformational modifications and ag-

gregation (including amyloid fibrillation) either in vitro or in vivo.[269-272] Aluminum chlo-

ride has been reported to cause dementia (AD accounts for the ~70% of cases) but admin-

istration of diltiazem reversed learning and memory deficits, AChE upregulation, and ox-

idative damage in mice.[273] Ginkgo biloba augmented the bioavailability of diltiazem by 

modulating cytochrome P450 3A activity in both the rat liver and small intestine.[274] 

It has been reported that Cav1.2 and Cav1.3 L-type VOCCs are susceptible of degen-

eration during the progression of PD.[275-277] During spontaneous action potentials, L-type 

VOCCs contribute to Ca2+ oscillations in the soma and dendrites of constantly active mid-

brain DA neurons. The extended opening of L-type VOCCs throughout autonomous 

pacemaking induces prolonged cytoplasmic Ca2+ trafficking and its overload in SN DA 

neurons, leading to mitochondrial oxidative stress.[275,277] L-type VOCCs-mediated altera-

tion of the steady-state of DA levels is responsible for causing downstream oxidative stress 

and α-syn-induced toxicity.[278] In contrast, some studies suggest that administration of 

Ca2+ channel blockers (including diltiazem) could be associated with the development of 

parkinsonian symptoms, particularly, in subjects that already had subclinical idiopathic 

PD pathology.[279,280] Despite there is a lack of research investigating the potential antioxi-

dant effect of diltiazem in AD or PD, it has been found that its intraperitoneal injection 

decreased the levels of nitrite (an indirect assessment of nitric oxide) and MDA (a lipid 

peroxidation marker) and upregulated the activity of several antioxidant enzymes such 

as reduced glutathione, catalase, and superoxide dismutase in a streptozotocin-induced 

rat model of diabetes.[281] High-performance liquid chromatography analysis showed a 

significant decline of MDA content in perfused rabbit hearts treated with diltiazem.[282] 

Oral supplementation with diltiazem for two weeks reduced thiobarbituric acid-reactive 

species (TBARS, a by-product of LPO) and nitrite content and upregulated superoxide 

dismutase (SOD) and reduced glutathione enzymatic activities in an aluminum chloride 

mouse model of AD.[273] Because of their autonomous pacemaking activity coupled to ac-

tion potentials, SN DA neurons have particularly high energetic (ATP) demands and may 

be subjected to elevated levels of basal oxidative stress.[283] 

Likewise, the anti-inflammatory effect of diltiazem in patients with AD or PD has not 

yet been examined. Diltiazem produced a dose-dependent inhibitory effect on T-cell pro-

liferation.[284] Individuals undergoing cardiopulmonary bypass surgery displayed at in-

crease in IL-6 content, which was significantly attenuated following diltiazem administra-

tion.[285] Enhanced levels of the anti-inflammatory cytokine IL10 were observed in subjects 

with unstable angina receiving diltiazem.[286] Moreover, intraperitoneally injected dilti-

azem reduced IL-10 and TNF-α (but no nitrite/nitrate and IL-6) plasma concentration in 

BALB/c mice injected with bacterial lipopolysaccharide (LPS).[287] Synthetic Aβ25-35 frag-

ments added to human fetal brain cell cultures activates microglia and increases the levels 

of intracellular Ca2+ in a time-dependent fashion.[288] Treatment with the L-type VSCCs 

antagonist diltiazem resulted in a transmembrane diminished Ca2+ influx that abolishes 

microglial stimulation. Cav1.2 VOCCs (particularly α1 subunit) are highly expressed in 

reactive astrocytes of mice overexpressing Aβ protein precursor (AβPP), which is specifi-

cally linked to an Aβ plaque deposition.[289] Cav1.2 channels are also expressed in micro-

glia. Variations in the balance between M1 (pro-inflammatory) and M2 (anti-inflamma-

tory) microglial phenotypes are related to PD. It has been demonstrated that diltiazem-

induced blockade of L-type VOCCs promotes pro-inflammatory M1 transition and de-

creases anti-inflammatory M2 macrophage polarization in mouse microglia-derived MG6 

cells, resulting in an upregulated iNOS mRNA expression and downregulated arginase 

levels.[290] In addition, knockdown of microglial Cav1.2 led to behavioral impairment, DA 

neuron degeneration in the SN of MPTP-injected mice compared to control group, and 

reduce polarization toward the M1 phenotype. 

In summary, the L-type VOCC diltiazem is a Ca2+ antagonist that can be used to treat 

dementia and dementia-related diseases due to its capability of improving cognitive def-

icits, such as learning and memory capacity. The drug also improves neuron survival and 

exhibits both antioxidant and anti-inflammatory properties. Diltiazem can cause nausea 
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and vomiting, pulmonary oedema, and renal failure. Diltiazem, together with verapamil, 

are the most toxic Ca2+ channel blockers in overdose and their toxicity is associated with 

significant cardiovascular collapse, metabolic problems (e.g., hyperglycemia) and vascu-

lar smooth muscle tone deficits. 

The first racemic synthesis of diltiazem (2-(2-dimethylaminoethyl)-5-(4-methoxy-

phenyl)-3-oxo-6-thia-2-azabicyclo[5.4.0]undeca-7,9,11-trien-4-yl]ethanoate) 3 was de-

scribed in 1990.[291] The first asymmetric total synthesis of (+)-diltiazem was reported by 

Naito and co-workers, using a diastereoface differentiating nucleophilic addition as the 

key step to create the two contiguous stereogenic centers.[292] Schwartz used the separation 

of diastereomeric glycidic esters (15 and 16) by direct crystallization as the key step, based 

on their marked difference in solubility.[293] Enantiomerically pure glycidic ester 15, the 

required isomer for the synthesis of (+)-diltiazem 3, was the major product obtained (54% 

yield) (Scheme 4).  

 

Scheme 4. Schwartz’s strategy for the synthesis of (+)-diltiazem 3. 

In 1994, Jacobsen et al. used a manganese-catalyzed asymmetric epoxidation of cin-

namate esters for the preparation of an enantiomerically pure key intermediate 18 in the 

synthesis of 3 (Scheme 5).[294] 

 

Scheme 5. Preparation of the enantiomerically pure key intermediate 18 for the synthesis of (+)-dil-

tiazem 3. 

To date, more synthetic routes to prepare (+)-diltiazem 3 from a chiral epoxide inter-

mediate have been reported. The enantiomerically pure epoxide has been obtained by the 

introduction of a chiral auxiliary in the reaction[295,296], utilization of Yang’s catalyst[297],  ad-

dition of metal complexes[298] or by direct acquisition.[299] 

A useful synthetic methodology employed to induce chirality in the product is the 

utilization of lipase[300,301] or baker’s yeast catalysed reactions.[302] The most recent approach 

employed for total synthesis of (+)-diltiazem 3 was reported by Chen and colleagues in 

2022.[303] Racemic keto ester 19, obtained in two steps from commercially available rea-

gents, is converted into enantiomerically pure hydroxy ester 20 by ketoreductase-cata-

lyzed dynamic reductive kinetic resolution. Two conventional steps (ring closure and ring 

opening) are further taken to produce an intermediate 21, which is readily subjected to 

intramolecular acid-catalyzed amidation. Two additional steps from intermediate benzo-

thiazepinone 22 are required to obtain (+)-diltiazem 3. This chemoenzymatic synthesis in-

volves eight steps to obtain (+)-diltiazem 3 in ~45% overall yield (Scheme 6). 
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Scheme 6. Chemoenzymatic synthesis of (+)-diltiazem 3 proposed by Chen and colleagues in 2022. 

4. Latrepirdine 

Latrepirdine (Dimebon) is a carboline that blocks H1 histamine receptor (H1R) activ-

ity. A broad spectrum of effects on neurologically relevant targets was proposed based on 

various cell- and animal-based studies. The compound is a potent reversible and compet-

itive inhibitor of both AChE and butyrylcholinesterase, which leads to elevated acetylcho-

line content and concomitant boosting of cognitive performance.[304,305] Besides its anti-his-

taminic properties, latrepirdine can modulate a wide range of other neurotransmitter re-

ceptors (such as DA, serotonin, glutamate, α-adrenergic, and imidazole).[306,307] Studies car-

ried out in rat cerebral neurons confirmed the inhibitory effect of latrepirdine on NMDA 

receptors and involve the polyamine site of the NMDA NR2B subunit (the target for his-

tamine) as a potential binging site.[304,308] Latrepirdine has also been shown to interact with 

Ca2+ channels; for example, its administration effectively blocked the activity of L-type 

VOCCs (IC50 = 57 μM) in cerebellar granule neurons.[309] A pilot clinical trial carried out in 

patients with mild-to-moderate AD given latrepirdine for 8 weeks showed an important 

reduction of neuropsychiatric symptoms (depression) and a significant cognitive function 

enhancement together with a lack of hematological and biochemical disturbances.[304] 

Drug safety and efficacy were also examined in moderate-to-severe AD subjects 

(NCT00912288). Data from a phase II randomized, double-blind, placebo-controlled clin-

ical study showed a significant improvement in cognition, function, and behavioral out-

come following 60 mg/day latrepirdine for 26 and 52 weeks (6 months extension phase) 

in individuals with mild-to-moderate AD with no adverse effects recorded.[310] CONNEC-

TION and CONTACT phase III trials (NCT00838110) failed to show significant improve-

ment in any primary or secondary outcome measures of cognition in patients treated with 

latrepirdine.[311] A phase II randomized, placebo-controlled trial of latrepirdine showed a 

protective effect against cognitive impairment in subjects with mild-to-moderate Hun-

tington’s disease.[312] Results from the double-blind, placebo-controlled Phase III HORI-

ZON trial (NCT00920946) revealed that latrepirdine failed to achieve statistical signifi-

cance for co-primary endpoints in individuals with mild-to-moderate Huntington's dis-

ease. A meta-analysis study revealed that latrepirdine did not ameliorate overall cogni-

tion, but the molecule enhanced the neuropsychiatric inventory scale, used to assess psy-

chopathology in dementia patients.[306] 

Cerebellar granule neurons incubated with the Aβ25-35 peptide displayed morpholog-

ical alterations, cell loss, and dysregulated intracellular Ca2+ homeostasis.[309] Nevertheless, 
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exposure to latrepirdine preserved neurons against Aβ-mediated toxicity through inhibi-

tion of the L-type VOCCs current. Intraperitoneal administration of latrepirdine reversed 

learning and memory loss following chronic partial deprivation of cerebral cholinergic 

functions, which causes dementia in rats.[305] Latrepirdine had the capability of modulat-

ing cognitive ability in 5xFAD mice, though it was unable to mitigate Aβ-associated pa-

thology.[313] P301S tau mice consistently performed better on both the inverted grid and 

accelerating rotarod tests after latrepirdine treatment, suggesting that the molecule is as-

sociated with enhanced motor performance.[314] Treatment with latrepirdine 15 min prior 

scopolamine-induced memory impairment significantly ameliorated delayed matching-

to-sample task accuracy (to assess memory) in young adult and aged Rhesus macaques.[315] 

Treatment with latrepirdine in the drinking water for 4 months resulted in improved cog-

nitive function in TgCRND8 mice although did not modify neither Aβ40 or Aβ42 content, 

suggesting APP processing as a direct target of the drug.[316] FDG-PET studies revealed an 

increased cerebral glucose utilization in aged mice in response to latrepirdine expo-

sure.[317] Augmented succinate dehydrogenase activity, ΔΨm, and ATP synthesis were 

normalized following latrepirdine administration in differentiated SH-SY5Y cells and pri-

mary neuron cultures from mouse cerebral cortex with no differences in the mtDNA copy 

number, thereby suggesting a restoration of mitochondrial function.[318] Preservation of 

mitochondrial shape, mass, and respiratory chain complex activities were seen following 

latrepirdine treatment in cells incubated with Aβ.[319] The compound can also preserve mi-

tochondrial function by targeting the mPTP opening induced by the Aβ25-35 peptide and 

MPP+ (1-methyl-4-phenylpyridinium).[320] Mitochondrial accumulation of Ca2+ induces de-

polarization of the mitochondrial membrane and, if large and sustained enough, a subse-

quent irreversible opening of the mPTP. Moreover, no changes were observed in pivotal 

metabolic enzymes, suggesting that latrepirdine’s neuroprotective effect is independent 

of promoting mitochondrial energy metabolic pathways.[309] 

It has been shown that short-term exposure to latrepirdine causes: (i) Aβ accumula-

tion and increased secretion of APP metabolites in mouse N2a neuroblastoma cells over-

expressing APPsw; (ii) higher levels of Aβ42 in isolated cortical synaptoneurosome prepa-

rations from TgCRND8 mice; and (iii) enhanced Aβ40 levels in the hippocampal interstitial 

fluid of Tg2576 AD mice.[321] Either Ca2+ or Aβ25-35 toxic fragment promoted mitochondrial 

LPO but administration of latrepirdine inhibited oxidative damage to lipids.[320,322] In ad-

dition, the molecule has been shown to prevent LPO induced by tert-butyl hydroperoxide 

in rat brain mitochondrial homogenates.[323] In addition, administration of the drug dimin-

ished the content of hyperphosphorylated tau-positive dystrophic neurons in the mouse 

spinal cord while no changes in the levels of inflammatory markers were detected. 

Latrepirdine can also have a pro-autophagic activity, with a selective autophagic elimina-

tion of protein aggregates. Latrepirdine induces MTOR- and ATG5-dependent autophagy, 

which results in decreased levels of intracellular APP metabolites, including Aβ in the 

neocortex and hippocampus of TgCRND8 AD mice.[324] Latrepirdine can also stimulate 

autophagy-mediated degradation of α-syn in differentiated SH-SY5Y neurons and in the 

mouse brain.[325] Immunohistochemical analyses found a significant decrease in the num-

ber of TDP-43-like inclusions in cells transfected with TDP-43.[326] α-Syn pathogenic and 

toxic effect was markedly reduced in S. cerevisiae, SH-SY5Y cells, and the mouse brain 

through a selective autophagic protein degradation.[325] Administration of latrepirdine at-

tenuated methamphetamine- (but not MPTP) induced cytotoxicity in mice in a body tem-

perature-independent manner, suggesting a neurotoxin-specific protective effect.[13] How-

ever, the authors only measured the concentration of DA in the mouse striatum, with a 

lack of assessment of other additional key factors associated with neurodegenerative pro-

cesses. Increased lifespan and motor performance parallel to reduced γ-syn aggregation, 

number of proteinaceous inclusions, and the inflammatory response were observed in 

transgenic mice overexpressing γ-syn treated with latrepirdine in the drinking water.[314] 

In contrast, exposure to the drug failed to protect DAergic neurons in C. elegans and mouse 

models of PD.[327] Fourteen-old-month α-syn transgenic mice receiving latrepirdine did 
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not exhibit neurochemical, behavioral, or histopathological variations relative to the con-

trol group. Noteworthy, these mice recapitulate some pathological features typically man-

ifested at the early onset of the disease.[328] 

In summary, psychiatric symptoms (such as depression) and learning and cognitive 

measures were restored in AD patients undergoing latrepirdine treatment, in part due to 

its ability to increase acetylcholine concentration by inhibition of either AChE or histamine 

receptors. Latrepirdine may elicit neuroprotective activity by promoting mitochondrial 

function and clearance of a range of intracellular inclusions through the stimulation of 

autophagy. The molecule may also regulate several targets involved in AD pathology, 

such as neurotransmitter receptor activity, stabilization of Ca2+ signaling, and LPO. Toxi-

cological studies have shown that latrepirdine is safe and a well-tolerated drug. A dosage 

exceeding the therapeutic range by 100 times for a period of 2 months did not cause any 

physiological changes or pathology in guinea pigs, rats, or dogs.[304,329]  

Latrepirdine  (2,3,4,5-tetrahydro-2,8-dimethyl-5-[2-(6-methyl-3-pyridinyl)ethyl]-1H-

pyrido[4,3-b] indole) 4 was originally synthesized using the Fischer-indole reaction.[330] A 

more recent synthesis reported by Zheng et al. employed p-toluidine 23 and 2-methyl-5-

vinylpyridine 24 as commercial starting materials and achieved the desired product 4 in 

16% yield over four reactions steps.[331] Moreover, cyclization of compound 26 and 1-

methylpiperidin-4-one 27 was carried out with 80% HAc in a one-pot two steps reaction 

instead of using benzene and HCl/EtOH (Scheme 7). 

 

 

Scheme 7. Synthesis of latrepirdine 4 reported by Zheng et al. 2022. 

The synthesis of latrepirdine 4 has also been performed using the chemistry of ruthe-

nium (III) catalysts in a concise and efficient manner.[332] The reaction comprised six steps, 

which required three purification processes only with an ~47% overall yield. The key step 

involved the stereoselective formation of γ-carboline 32 from ortho-substituted aryl azide 

31 catalysed by RuCl3·nH2O (Scheme 8).  
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Scheme 8. Ruthenium (III) catalysis used in the synthesis of latrepirdine 4. 

5. Nifedipine 

Nifedipine (Procardia) is a first-generation dihydropyridine Ca2+ channel blocker 

used to treat hypertension and to control angina pectoris. Nifedipine is a selective antag-

onist of the L-type VOCCs that plays an essential role in neuronal processes triggered by 

membrane depolarization, thereby contributing to Ca2+-mediated events activated by sig-

naling pathways and diverse stimuli, including neurotransmitter release, rhythmic firing, 

gene expression, etc.[333] There is growing evidence that nifedipine may be an effective 

therapeutic agent for the treatment of neurodegenerative diseases, including AD and PD. 

APOE ε4 peptide-induced increase in the concentration of intracellular Ca2+ and transcrip-

tional activity of cAMP-response element-binding protein (CREB) in rat hippocampal 

neuronal cultures was reduced after administration of nifedipine, suggesting that L-type 

VOCCs are involved in neuron responses to APOE ε4.[334] In culture of primary mouse 

hippocampal neurons, Aβ enhanced the content of cytosolic Ca2+ and concomitant phos-

phorylation of serine-880 in the AMPA-selective glutamate receptor 2 (GluR2), which 

leads to attenuated synaptic activity.[335] In contrast, exposure to nifedipine diminished 

Ca2+ levels and GluR2 phosphorylation and increased cell surface GluR2. It has been re-

ported that Aβ-mediated toxicity promotes the activation of the Ca2+-calmodulin kinase II 

(CaMKII)/AMP-activated protein kinase (AMPK) pathway.[336,337] Exposure to nifedipine 

mitigated Aβ toxicity by preserving cell viability in SH-SY5Y cells stably transfected with 

an empty vector or expressing the cellular prion protein, indicating that Ca2+ influx via L-

type VOCCs is involved in Aβ-induced neurotoxicity.[338] Administration of nifedipine sig-

nificantly diminished the content of secreted Aβ1-42 and key components of the gamma 

secretase complex (e.g., PS-1) in H4 neuroglioma cells overexpressing APP, without trig-

gering cell death.[339] Primary CNS neurons cultured from PS1-deficient mice showed 

higher susceptibility to oxidative stress but exposure to nifedipine increased the survival 

rate, suggesting that L-type VOCCs-mediated Ca2+ influx via was responsible for the neu-

ronal loss.[340]  

It has been suggested that deficits in APP−/− mice are associated with alterations in 

Ca2+ homeostasis. Treatment with nifedipine (but not the NMDAR blocker 2-amino-5-

phosphonovaleric acid) restored post-hypoxic related damage, leading to an improve-
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ment of neuron functional deficiencies such as population spike amplitude and depolar-

ized resting ΔΨm in hippocampal slices from mice lacking APP.[341] To determine the spe-

cific pathways involved in altered Ca2+ homeostasis, primary cortical neuron cultures from 

3xTg-AD or APPsw mice were incubated with intracellular Aβ.[342] Quantitative measure-

ments displayed a marked boost in resting [Ca2+]cyt concentration (further enhanced by 

extracellular Ca2+ efflux) that was blocked by nifedipine, suggesting that elevated Ca2+ in-

flux occurs through L-type VOCCs. An age-dependent increase of L-type VOCC ampli-

tude was described in CA1 pyramidal neurons (but not CA3 or dentate granule neurons) 

in 3xTgAD mice relative to wild-type mice, consistent with the notion that CA1 neurons 

are prone to p-tau/NFT pathology due to an excessive Ca2+ trafficking.  Nevertheless, Ca2+ 

current was limited by nifedipine, which attributes to the L-type VOCCs the enhanced 

intracellular Ca2+ pool.[343] The stromal interaction molecule 1 (STIM1) is a type I trans-

membrane protein that plays a pivotal role in Ca2+ influx. Stim1 positively modulates 

Orai1 channels for store-operated Ca2+ entry and negatively modulates L-type VOCCs. 

STIM1 protein levels were decreased in the medium frontal gyrus of patients diagnosed 

with AD.[344] STIM1-KO differentiated cells displayed an elevated Ca2+ entry in response 

to membrane depolarization, which was nifedipine-sensitive. Primary hippocampal neu-

ronal cultures from 5xFAD mice exposed to nifedipine inhibit abnormal VOCC and store 

operated Ca2+ (SOC) entry, a process regulated mainly by STIM1. In contrast, STIM2 was 

responsible to modulate depolarization-mediated Ca2+ entry through VOCCs into cells 

with full Ca2+ stores.[345] Intracellular Ca2+ responses to membrane depolarization were po-

tentiated by the V337M mutant tau in diverse cell cultures, which were inhibited following 

administration of nifedipine. These findings suggest that upregulation of L-type VOCCs-

mediated Ca2+ influx results from destabilization of microtubules triggered by tau muta-

tions.[346] Late insoluble (but not soluble or early insoluble) tau aggregates activated sensi-

tive Ca2+ channels, thereby increasing Ca2+ signaling, cell loss, and oxidative damage (O2•− 

levels) in primary cultures of rat cortical neurons and astrocytes.[347] The rate of ROS pro-

duction was significantly diminished in the presence of the NADPH oxidase inhibitor 

AEBSF (2-aminoethyl) benzenesulfonyl fluoride hydrochloride), indicating that ROS for-

mation was NADPH oxidase-dependent. In addition, administration of nifedipine limited 

tau-mediated Ca2+ influx, generation of ROS, and overall toxicity. The data demonstrated 

that: (i) tau effect depends on its aggregation state, and (ii) late insoluble aggregates incor-

porate into the membranes, resulting in an ionic current alteration and VOCC stimulation. 

The subthalamic nucleus (STN) has been proposed to play a central role in the dis-

rupted function of the basal ganglia circuitry associated with PD. Distinct activity pat-

terns, such as increased burst firings, have been observed in STN neurons and represent 

a pathognomonic electrophysiological feature linked to PD. High-frequency stimulation 

of the STN or pharmacological blockade of the subthalamopallidal network in monkeys 

and rats improved motor symptoms.[348-350] Patch-clamp studies performed in rat brain 

slices showed that around 50% of STN neurons display the intrinsic property of switching 

from single-spike activity to burst-firing mode.[351] Treatment with nifedipine caused an 

irreversible reduction in burst frequency and abolished burst firing. Furthermore, the role 

of VOCCs was investigated in STN neurons. Based on nifedipine effects on the frequency 

and current curve, it was established that both short- and long-duration rebound bursting 

neurons contain nifedipine-sensitive Cav1.2-1.3 channels, which only contribute to re-

bound activity in STN neurons with long-lasting rebounds.[352] High-frequency stimula-

tion-induced oscillations in the STN resulted at least in part from Ca2+ entry through the 

high-threshold potential nifedipine-sensitive L-type VOCCs.[353] Pasternak et al. reported 

that nifedipine was not linked to significantly lower risk of developing PD, but the small 

sample size undermined the findings.[354] Nifedipine exposure did not have a significant 

effect on DA neuron survival but exhibited a stimulatory impact on neurite length. The 

actions of cholinesterases such as AChE and butyrylcholinesterase on Ca2+ conductance 

may be responsible for the trophic effect on neurite outgrowth in embryonic ventral mid-

brain cultures.[355] Nifedipine limited both glutamate- and NMDA-related CREB phos-

phorylation. Stimulation of D1 receptors or cAMP pathway in primary striatal neuron 
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cultures produced cytosolic accumulation of Ca2+ that interacted with nifedipine, resulting 

in Ca2+-mediated CREB phosphorylation and c-fos gene expression.[356]  

Injection of nifedipine into the dorsal striatum did not affect apomorphine-induced 

rotational behavior, indicating that it had no effect on DAergic transmission.[357] In a dif-

ferent study, microinjection of 6-OHDA resulted in a significant upregulation of mRNA 

levels of the Cav1.2 Ca2+ channel α1 subunit in the ipsilateral SN.[358] Subcutaneous injec-

tion of 3.5 mg/kg nifedipine significantly decreased apomorphine-induced rotation and 

partially restored striatal DA concentration in 6-OHDA-lesioned rats. These findings im-

ply that L-type VOCCs are directly connected with DA neurodegeneration. Nifedipine 

prevented nobiletin- (a natural polymethoxy flavonoid extracted from the fruit peel of 

citrus) induced DA release in the CA1 region of the hippocampus of MPTP-injected 

mice.[359] The high-threshold Ca2+ spike (HTS) and the slow oscillatory potential (SOP) are 

diverse Ca2+ conductances that play an important role in the generation of action potentials 

in SN DA neurons. While nifedipine showed a slight inhibitory effect on HTS, the mole-

cule was able to block SOP. Moreover, nifedipine steadily abolished the spontaneous fir-

ing pattern.[360] Quinpirole is a D2 receptor agonist that inhibits Ca2+ current in both 6-

OHDA-lesioned and reserpine-injected rats.[361] However, quinpirole inhibitory effect was 

reversed by nifedipine. These data suggest that DA-depletion leads to a rearrangement of 

the high voltage-activated (HVA) Ca2+ current profile, an outcome also observed in mon-

ogenic forms of PD (DJ1 mice). Rotenone-treated SH-SY5Y cells incubated with nifedipine 

showed a concentration-dependent decrease in Ca2+ trafficking, suggesting that the neu-

rotoxin activates the L-type VOCCs opening.[362] The results also demonstrated that Ca2+ 

is involved in rotenone-mediated apoptosis and ROS production. Pretreatment with nife-

dipine increased cell survival, synaptic vesicle exocytosis, and neurite outgrowth as well 

as mitigated DA release and generation of ROS (using the dichlorodihydrofluorescein di-

acetate (DCFH-DA) probe) in PC12 treated with rotenone.[363] These results indicated that 

intracellular Ca2+ plays an important role in rotenone-induced DA toxicity. Quantitative 

assessment in organotypic sagittal vibrosections from p10 rat brain, showed that L-type 

VOCC inhibitor nifedipine do not exert a neurotoxic activity on DAergic or cholinergic 

neurons.[364] Even though nifedipine did not protect cholinergic neurons, the drug coun-

teracted axotomy-mediated DA neuron degeneration in the SN but not in the ventral teg-

mental area, possibly by regulating proinflammatory cytokine release. 

In summary, nifedipine is an antagonist of L-type VOCCs antagonist involved in Aβ 

and tau pathology, neurotoxin-induced DA degeneration, Ca2+ homeostasis and signaling, 

synaptic function, oxidative insult, and apoptotic cell death. The primary manifestation of 

nifedipine-related toxicity is hypotension secondary to loss of systemic vascular re-

sistance. Subacute and subchronic toxicity studies indicated that oral administration of 

nifedipine has a safety profile at doses of up to 50 mg/kg in rats over a period of thirteen 

weeks. In dogs, no damage was detected up to 100 mg/kg dosage for a period of four 

weeks. Rats tolerated daily intravenous administration of 2.5 mg/kg nifedipine over a pe-

riod of three weeks while dogs tolerated up to 0.1 mg/kg nifedipine for six days. An over-

dose of nifedipine can induce severe hypotension, systemic vasodilation, and reflex tach-

ycardia.  

The first total synthesis of nifedipine 5 was reported in 1989 by Singh, who used an 

acid-catalyzed reaction of an enamine with two perhydro-heterocycles.[365] Other synthetic 

procedures were reported in the following years using different methodologies.[366-370] 

Solid phase synthesis was also applied [371,372] as well as one-pot solvent-free synthesis.[373-

375] The most common synthetic procedure to obtain pyridines is using the Hantzsch reac-

tion.[376-383] The preparation of 1,4-dihydropyridines requires two equivalents of β-keto es-

ter, an aldehyde and nitrogen donor. Sudalai and co-workers utilized dimethylmalonate 

35 as the β-keto ester, 2-nitro-benzaldehyde 36 for the aldehyde and ammonium acetate 

as the nitrogen donor (Scheme 9).[384] 
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Scheme 9. Hantzsch reaction used in the preparation of nifedipine 5. 

This reaction has a great number of modifications, such as the utilization of different 

homogeneous[385-388] or heterogeneous[389-391] catalysts, and the variation of the solvent.[392] 

In 2021, nifedipine  (3,5-dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-

dicarboxylate) 5 was synthesised through a photoinduced iron-catalysed ipso-nitration via 

single-electron transfer.[393] Aryl iodine 37 changed the iodine to nitro substituent to obtain 

5 with good yield induced by photocatalysis (Scheme 10). 

 

Scheme 10. Synthesis of nifedipine 5 through a photoinduced iron-catalysed ipso-nitration via sin-

gle-electron transfer. 

The first flow multicomponent synthesis of nifedipine 5 was reported elsewhere.[394] 

Methanol solutions of compounds 36, 38 and 39 were loaded to a heated 10 mL stainless 

steel coil reactor (150 °C) at 0.167 mL min−1 to obtain nifedipine 5 in 71% yield (Scheme 

11). 

 

Scheme 11. First flow multicomponent synthesis of nifedipine 5. 

More recently, Xiang et al. described a green methodology for the synthesis of nifedi-

pine 1.[395] A metal-free multicomponent cycloaddition of ketones with an ammonium cat-

ion under a CO2 atmosphere is used to obtain the desired dihydropyridine derivatives. 

Thus, using methyl acetoacetate 38 and o-nitrobenzaldehyde 36, in the presence of ammo-

nium chloride (NH4Cl) and CO2 in aqueous solution, 5 was obtained in 32% yield (Scheme 

12). 
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Scheme 12. Green methodology for the synthesis of nifedipine 5 reported by Xiang et al. 2021. 

6. Nimodipine 

Nimodipine (Nimotop) is a Ca2+ channel blocker utilized to prevent brain damage as 

a consequence of reduced blood flow. The molecule antagonizes the Cav1.2-1.3 L-type 

VOCCs, showing a greater affinity for the Cav1.2 channel.[396] As a highly lipophilic com-

pound, nimodipine can easily cross the BBB and reaches elevated concentrations in the 

CSF. The drug has specific binding affinity for dihydropyridine receptors, in contrast to 

nifedipine that shows predominantly peripheral effects. Nimodipine has been proposed 

to be of potential therapeutic utility in clinical trials of subjects with AD or PD. The bene-

ficial effects attributable to nimodipine are related to clinical symptoms, cognitive func-

tion, and overall physical activity. The drug was shown to be more effective in primary 

degenerative dementia rather than in multi-infarct dementia.[397] A multicenter, double-

blind, placebo controlled, randomized clinical trial of nimodipine (30 mg/kg tris in die) 

for 3 months demonstrated its efficacy to prevent behavioral, cognitive or affective im-

pairments in patients with primary degenerative dementia of the Alzheimer's type.[398,399] 

An identical dose of nimodipine resulted in a marked improvement of the global func-

tional state in individuals with mental deterioration of degenerative or vascular origin.[400] 

A review article of several double-blind, placebo-controlled clinical trials using nimodi-

pine demonstrated its beneficial properties in elderly subjects suffering from a cognitive 

impairment syndrome.[401] The first randomized, double-blind, controlled trial focusing on 

subcortical vascular dementia was carried out in 2005 and concluded that nimodipine 

might exert a protective effect against cardiovascular comorbidities.[402] 

Clinical observations have been confirmed by experimental research. Nimodipine 

possess the potential to reverse learning and memory defects in both young and aged 

hypertensive rats.[403,404] Bilateral injection of Aβ1-42 in the entorhinal cortex of rats led to 

delayed acquisition in a spatial reference memory task and decreased excitatory transmis-

sion. Long-term treatment with nimodipine prevented aged-related attenuation of learn-

ing and memory through modulation of synaptosome Ca2+-binding proteins.[405] Admin-

istration of nimodipine improved reversal spatial learning impairment and synaptic cur-

rent defects associated with Aβ pathology.[406,407] Age-related increase of the L-type Ca2+ 

channel protein α1D in the CA1 region of the hippocampus correlated with higher work-

ing memory defect, but nimodipine-treated rats for several months exhibited lower α1D 

immunoreactivity and improved spatial working memory.[408] Nimodipine ameliorated 

scopolamine-induced cognitive decline via its regulatory effect on the brain-derived neu-

rotrophic factor (BDNF) and acetylcholine, which were elevated in both the cortex and 

hippocampus.[409] Nimodipine also ameliorated memory failure in aged rhesus mon-

keys.[410] Sustained depolarization-mediated increase of cytosolic levels of Ca2+ (but not re-

leased from the ER) produce substantial amounts of intraneuronal Aβ1-42 and cell death in 

primary rat cortical neuron cultures. Exposure to nimodipine reduced Ca2+ influx and as-

sociated Aβ1-42 accumulation.[411] Nimodipine restored the neurophysiological responses of 

ghrelin on the ΔΨm in young but not older neurons from Tg2576 female mice incubated 

with the oligomeric Aβ1-42 fragment, indicating that Aβ-mediated intracellular Ca2+ dysreg-

ulation is only reversible during the early stages of Aβ pathology.[412] MTT assay and mor-

phometric cell counting showed that treatment with nimodipine protected both rat corti-
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cal and hippocampal neurons from Aβ25-35-induced cell death.[413] In primary rat hippo-

campal neuron cultures, Aβ25-35 fragment triggered reversible enhancement in intracellu-

lar Ca2+ content and bursts of action potentials, which were exacerbated after extracellular 

Mg2+ removal. Treatment with the L-type blocker nimodipine inhibited Aβ25-35-mediated 

toxic effects in both cortical and hippocampal neuronal cultures.[414,415] A different study 

using the same cultures confirmed that addition of nimodipine limited Aβ25-35-related Ca2+ 

uptake and apoptotic effect.[416,417] Patch-clamp recording studies demonstrated that ni-

modipine inhibits Aβ25-35 peptide excessive Ca2+ current density. Nevertheless, exposure to 

nimodipine did not mitigate inhibit oxidative damage associated to Aβ25-35. These results 

suggest that Aβ significantly enhances Ca2+ trafficking via nimodipine-sensitive L-type 

VSCCs, which leads to free radical-induced neuronal loss. 

Okadaic acid promoted phosphorylation of tau by increasing Ca2+ influx through L-

type VOCCs, since nimodipine attenuates phospho-tau levels in SH-SY5Y neuroblastoma 

cells.[418] H4/APPsw cells or primary neuronal cultures derived from the cerebellum of 

Tg2576 AD mice incubated with nimodipine displayed an augmented Aβ42 secretion. In 

addition, a comparable effect was described in Tg2576 mice injected with nimodipine, 

which showed a marked increase in Aβ42 plasma concentration. Thus, the drug may mod-

ulate the release of Aβ42 through an elusive mechanism rather than its capacity to inhibit 

Ca2+-influx pathways.[419] Driving tau expression in M4/6 neurons led to increased sensi-

tivity of Ca2+ transients to nimodipine. This effect was ablated in M4/6 neurons co-express-

ing tau and Ca-α1D-RNAi.[420] Moreover, the authors demonstrated that knockdown of 

the Drosophila L-type Ca2+ channel Ca-α1D reverses tau-induced olfactory memory ab-

normalities by restoring Ca2+ handling. Elevated Ca2+ concentration aggravated Aβ-medi-

ated behavioral impairment and defective chemotaxis, resulting in a shortened lifespan in 

C. elegans overexpressing Aβ1-42.[421] Exposure to nimodipine extended lifespan and res-

cued motor lesions, synaptic deficiencies, and DAergic degeneration in worms. Further-

more, nimodipine limited Aβ aggregation via through upregulation of glutathione S-

transferase activity, resulting in an attenuation of oxidative damage. LPS-treated rats ex-

hibited important memory deficits, enhanced synaptosomal Ca2+ uptake, and microglial 

(but not astrocytic) stimulation with subsequent cytokine storm but administration of ni-

modipine reversed LPS-induced toxicity.[422] A dose-dependent depletion of Aβ-stimu-

lated IL-1β content and release was detected following nimodipine exposure in both the 

N13 microglia cell line and cultures of primary mouse microglia together with reduced 

cell loss.[423] In addition, the molecule mitigated Aβ-induced intracellular accumulation of 

IL-1β in mice receiving a stereotaxic hippocampal injection of oligomeric Aβ1-42 peptide. 

A more recent study reported that nimodipine combined with piracetam results in a 

significant improvement of cognitive abilities and quality of life scores in patients with 

vascular dementia after an ischemic stroke.[424] Sadleir et al. showed that oral administra-

tion of nimodipine to 5XFAD mice did not have a beneficial effect on amyloid pathology, 

since the molecule did not prevent neuritic dystrophy or reduce cortical or hippocampal 

Aβ content.[425] However, the treatment did not exacerbate the AD phenotype, suggesting 

a safety and tolerability profile. It has been described that iron uptake, which competes 

with Ca2+ for entry into neurons through the L-type VOCCs, can be inhibited with nimodi-

pine in a dose-dependent fashion in potassium chloride stimulated neuronal cells.[426] The 

data suggest that, under cellular iron overload conditions, iron uptake occurs through L-

type VOCCs. Subcutaneous delivery of nimodipine reversed behavioral abnormalities, 

preserved the number of DAergic neurons in the locus coeruleus, and attenuated micro-

glial activation in LPS-infused rats.[427] Exposure to nimodipine blocked DA neuron pace-

maker activity, which can be restored by virtual Cav1.3 channels.[428] In contrast, virtual 

NMDAR were not capable of restoring regular pacing in nimodipine-silenced DA neu-

rons. In vitro and in vivo studies demonstrates that incubation with nimodipine abolishes 

autonomous pacemaking in DA neurons and the underlying ΔΨm oscillations.[178] 

Primary culture of cerebellar granule neurons incubated with MPP+ led to prominent 

cell death but nimodipine limited the effect of the neurotoxin.[429] MPP+ elevated cytosolic 
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Ca2+ content and induced cell death parallel to mitochondrial depolarization and fragmen-

tation in vitro.[430] However, exposure to nimodipine diminished Ca2+ levels, improved cell 

survival rate, and restored mitochondrial morphology. Nimodipine also ameliorated 

MPTP-induced behavioral phenotype and limited striatal DA depletion, SN neuronal loss, 

and oxidative insult without regulating MAO-B activity. The data indicated that nimodi-

pine has the ability to improve mitochondrial function and integrity and involves L-type 

VOCCs in MPTP-mediated nigrostriatal DA neurodegeneration. In a different study, the 

same authors reported defective function in proteins involved in the modulation of intra-

cellular Ca2+ homeostasis, including calbindin and calpain. This abnormal function was 

rescued by nimodipine treatment.[431] A different report showed that nimodipine had no 

effect on behavioral impairment and striatal DA depletion but preserved DA neurons 

from death in marmosets injected with MPTP.[256] Similar findings were observed in 

MPTP-treated mice, in which treatment with nimodipine protected DA neurons in the SN 

but no changes were found in the striatum.[255] 

Nimodipine simultaneously upregulated DA release whilst suppress AChE release 

in both rat cerebral cortex and striatum.[432] Nimodipine prevented dendritic spine loss 

and behavioral abnormalities but not associated rotational asymmetry in DA-grafted 

rats.[433] Moreover, exposure to nimodipine did not impact DA graft survival but promoted 

graft reinnervation of striatum. Continuous-release pellets of nimodipine prevented loco-

motor disturbances, in unilateral 6-OHDA mesencephalic lesions.[434] Intrastriatal injection 

of 6-OHDA in rats caused a significant loss of retrogradely fluorogold and DAergic la-

belled neurons in the SN at 1-month post-injection. Nimodipine treatment failed to im-

prove behavioral phenotype or nigrostriatal DA degeneration.[435] Exposure to nimodipine 

increased survival of SN (but not VTA) DA neurons in axotomy-induced rat model.[364] 

Although the precise mechanism remains elusive, the ability of the drug to counteract the 

inflammatory processes may be crucial for mitigating axotomy-induced neurodegenera-

tion. Knockdown of Homer1, a postsynaptic density scaffold protein that regulates syn-

aptic plasticity and Ca2+ signaling, preserved DA neurons from MPP+ toxicity.[436] This pro-

tective effect was linked to attenuated Ca2+-mediated ROS generation, which in turn, was 

dependent on the modulatory activities on ER Ca2+ trafficking and release through plasma 

membrane Ca2+ channels. Nimodipine significantly decreased the amount of NO• and 

LPS-activated microglia, which releases pro-inflammatory mediators such as interleukin-

1β (IL-1β), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α).[437] In addition, 

in the absence of microglia, pretreatment with nimodipine did not exert a neuroprotective 

effect against MPP+-mediated DA toxicity. Nimodipine also downregulated DA uptake in 

neuron-glia cultures from mice lacking functional NADPH oxidase (an enzyme involved 

in the production of O2•−) incubated with LPS. Taken together, these findings indicate that 

nimodipine protects DAergic neurons by mitigating the inflammatory response and by 

inhibiting NADPH oxidase-ROS signaling pathway. 

In summary, the L-type Ca2+ channel blocker antagonist nimodipine protects from 

Aβ and presenilin pathology and from LRRK2- and α-syn-induced toxicity. The molecule 

ameliorates behavioral outcome, increases synaptic transmission and neuron survival, im-

proves mitochondrial function, and attenuates oxidative stress and inflammation. Ni-

modipine is, in general, well tolerated although sensations of warmth and skin reddening 

can occur. High concentrations of the drug can result in reduced blood pressure, head-

ache, nausea, muscle weakness, and gastrointestinal complaints.[397-399] Isolated CNS 

symptoms, such as insomnia, tachycardia, and increased motor activity have been re-

ported. Nimodipine exhibits a low incidence of severe side-effects. 

A solid-phase synthesis was reported by Gordeev in 1996 for the preparation of ni-

modipine (3-(2-Methoxyethyl) 5-propan-2-yl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydro-

pyridine-3,5-dicarboxylate) 6 and other bioactive dihydropyridines.[438] Condensation of 

the immobilized N-tethered enamino component 42 with the corresponding 2-benzyli-

dene α-keto ester 43 provided the conjugated enamine 44. This intermediate was treated 

with trifluoroacetic acid to obtain the free enamino ester which spontaneously cyclizes in 

solution to afford the desired product 6 (Scheme 13). 
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Scheme 13. Solid-phase synthesis of nimodipine 6 reported by Gordeev. 

More recently, due to a considerable demand of nimodipine in the Russian market, 

Pharm. Sintez Co. has developed a new technology to produce the drug in pilot 

batches.[439] The approach includes the production of 1-methylethyl-3-amino-crotonate 48 

and 2-methoxyethyl-2-(3-nitrobenzyl-idene)acetoacetate 49. Cyclocondensation of both 

compounds, 48 and 49, employing iPrOH as the solvent and in the presence of hydrochlo-

ric acid, afforded the final product 6 in high yield and purity (Scheme 14). 

 

Scheme 14. Production of nimodipine 5 in pilot batches by Pharm. Sintez. Co. 

Abbreviations 

Ac: acetate; DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene; DMAP: 4-dimethylamino-

pyridine; DMF: dimethylformamide; DMSO = dimethyl sulfoxide; Dppf = 1,1'-bis(diphe-

nylphosphino)ferrocene; GDH: glutamate dehydrogenase; NADP+: nicotinamide-adenine 

dinucleotide phosphate; Tf: trifluoromethanesulfonate; TFA: trifluoroacetic acid; THF: tet-

rahydrofuran; Tos = Ts: toluenesulfonyl. 

Conclusions and Future Directions 
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Multiple candidate drugs for treating AD or PD have failed over the last years. Fur-

ther research is still needed to determine the therapeutic time window and the stage of 

the disease that should be used in clinical trials. Neuropathological and biochemical as-

sessments support the notion that mitochondrial dysfunction causes an increase of free 

radicals and Ca2+-induced toxicity, which are important factors in the neurodegenerative 

process described in AD and PD. Based on the combination of preclinical and clinical data, 

there is a general consensus that development of therapeutic interventions targeting mi-

tochondrial Ca2+ signaling may slow or stop the progression of neurodegenerative dis-

eases, including AD and PD. A set of strategies to normalize mitochondrial Ca2+ homeo-

stasis and signaling has been described. One potential approach involves Ca2+ uptake 

blockade through the L-type VOCCs, which inhibits Ca2+ transient at either presynaptic 

or postsynaptic sites and attenuates glutamate-mediated excitotoxicity. Selective antago-

nists of Cav1.2-1.3 L-type VOCCs also exhibit beneficial properties since prolonged open-

ing of L-type channels results in augmented Ca2+ release and influx and its accumulation 

in DA neurons. Chemical synthesis, also revised here, may lead to the development of 

novel derivatives with increased efficiency and/or availability. The capability of heterocy-

clic agents of modulating mitochondrial Ca2+ content and signaling and the ability to pre-

serve mitochondrial biogenesis and function provides a plausible biological basis for their 

neuroprotective effect. In summary, decreasing the susceptibility of neurons to injury 

should not only reduce the incidence of AD or PD but also slow the progression, broad-

ening the therapeutic window for patients with early-stage disease. 
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