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Abstract: In the literature, frames generated by unitary representations of groups (known as

group-frames) are studied only for Hilbert spaces. We make first study of frames for Banach spaces

generated by isometric invertible representations of discrete groups on Banach spaces. These frames

are characterized using left regular, right regular, Gram-matrices and group-matrices on classical

sequence spaces. A sufficiently large collection of functional-vector pairs using the double commutant

of the representation is identified which generate group-frames for Banach spaces. Subsequently, we

study Schauder frames generated by time-frequency shift operators on finite dimensional Banach

spaces. We derive Moyal formula, fundamental identity of Gabor analysis, Wexler-Raz criterion and

Ron-Shen duality in functional form.
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1. Introduction

In their Memoirs ‘Frames, Bases and Group Representations’ [1], Han and Larson initiated the

study of Parseval frames for Hilbert spaces generated by abstract countable groups which sheds light

on the structure of unitary representations of the given group. Recall that a countable group with

discrete topology is known as a discrete group. The definition of Parseval frame reads as follows.

Definition 1.1. [1,2] Let G be a countable set. A sequence {τg}g∈G in a Hilbert space H is said to be a

Parseval frame for H if

‖h‖2 = ∑
g∈G

|〈h, τg〉|
2, ∀h ∈ H.

Definition 1.1 is equivalent to the following equation:

h = ∑
g∈G

〈h, τg〉τg, ∀h ∈ H. (1)

One of the main objects in frame theory is to generate Parseval frames from a given vector. In this

regard, Han and Larson introduced the notion of frames generated by groups as follows [1].

Definition 1.2. [1] Let G be a discrete group and {τg}g∈G be a Parseval frame for a Hilbert space H. The

frame {τg}g∈G is said to be a group-frame if there exists a unitary representation π of G on H and a vector

τ ∈ H such that

τg = πgτ, ∀g ∈ G.

In this case, the representation π is called as frame representation and τ is called as a frame vector.

After the introduction of group-frames, several important results appeared which can be classified

according to types of groups as follows.
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(1) Finite groups [3–12].
(2) Discrete groups [13–16].
(3) locally compact groups [17,18].
(4) compact groups [19].
(5) Lie groups [20,21].
(6) ICC groups [22].

Similar to group-frames for Hilbert spaces, we can ask whether we can generate frames for Banach

spaces using groups. In this paper, we are interested in frames for Banach spaces which are generated

by discrete groups. Historically, it was Grochenig [23] who introduced frames for Banach spaces

known as Banach frames which do not demand the reconstruction of element using series similar

to the one given in Equation (1). In 1999, Casazza, Han, and Larson [24] introduced the notion of

unconditional Schauder frames (also known as framings) mainly taking the expansion property given

in Equation (1). Let X be a separable Banach space and X ∗ be its dual.

Definition 1.3. [24] Let G be a discrete group. Let {τg}g∈G be a sequence in X and { fg}g∈G be a sequence in

X ∗. The pair ({ fg}g∈G, {τg}g∈G) is said to be an unconditional Schauder frame (we write USF) for X if

x = ∑
g∈G

fg(x)τg, ∀x ∈ X , (2)

where the series in (2) converges unconditionally.

In this paper, we make a first attempt to understand USF which are generated by representations

of discrete groups in Banach spaces. We organize the paper as follows. In Section 2 we start by

mentioning the notion of group representation in Banach spaces. Then we introduce the notion of

group-frames (Definition 2.2) and show that the notion reduces to Definition 1.2 for Hilbert spaces

with unitary representations. Then we introduce a subclass of group-frames for Banach spaces called a

group-p-unconditional Schauder frame (group-p-USF) which factor through classical sequence spaces

(Definition 2.3).

Theorem 2.8 shows that representations giving group-p-USFs can be obtained by restricting

the standard left regular representation on sequence spaces. A connection between group-p-USFs

and group-matrices is derived in Theorem 2.10. We show in Theorem 2.11 group-p-USFs can be

characterized using algebraic equations. Theorem 2.13 gives a characterization of group-p-USFs using

standard left regular representation on sequence spaces. Proposition 2.14 and Theorem 2.17 show that

once a pair of functional and a vector which generate group-p-USF is non-empty then the set of all

such pairs is very large.

In Section 3 we do finite dimensional Gabor analysis in function form without using the inner

product. Even though it is true that finite dimensional Banach spaces can be made a Hilbert space,

rather putting an inner product, we believe that it is best to study just by using functional and vectors.

First important result of this section is Banach space version of Moyal formula, derived in Theorem 3.3.

Using this result we get that we have a large supply of Gabor-Schauder frames for finite dimensional

Banach spaces (Corollary 3.4). Then we study Gabor-Schauder frames generated by subgroups of the

group of all time-frequency shifts.

Theorem 3.8 derives fundamental identity of Gabor analysis for Banach spaces. Wexler-Raz

criterion for Gabor-Schauder frames is derived in Theorem 3.9. A partial Ron-Shen duality for

Gabor-Schauder frames is derived in Theorem 3.10.

2. Unconditional Schauder frames generated by groups

Throughout G denotes a group (need not be abelian). We denote the identity element of G by

e. Given a Banach space X , II(X ) be the set of all invertible linear isometries on X . The identity
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operator on X is denoted by IX . We use the following definition of representation in Banach spaces

throughout.

Definition 2.1. Let X be a Banach space and G be a topological group. A map π : G → II(X ) is said to be

an invertible isometric representation of G if the following condition hold:

(i) π : G → II(X ) is a group homomorphism, i.e.,

πgπh = πgh, ∀g, h ∈ G.

(ii) π is continuous in the following sense. For each fixed x ∈ X , the map

G ∋ g 7→ πgx ∈ X

is continuous.

In this section, we consider only discrete groups. Hence the condition (ii) is always satisfied.

Given two invertible isometric representations π : G → II(X ) and ∆ : G → II(Y), we say that

they are equivalent if there is an invertible operator T : X → Y which intertwines π and ∆. If the

intertwining operator is an invertible isometry, then we say that representations are invertible isometric

equivalent. For any discrete group G and p ∈ [1, ∞), we note that G always admit two invertible

isometric representations on ℓp(G) defined as follows. Let {δg}g∈G be the standard Schauder basis for

ℓp(G). We denote the coordinate functionals associated to {δg}g∈G by {ζg}g∈G.

(i) p-left regular representation λ : G → II(ℓp(G)) defined on {δg}g∈G and extended linearly as

λgδh := δgh, ∀g, h ∈ G.

(ii) p-right regular representation ρ : G → II(ℓp(G)) defined on {δg}g∈G and extended linearly as

ρgδh := δhg−1 , ∀g, h ∈ G.

With these preliminaries, we now set the following definition.

Definition 2.2. Let G be a discrete group and ({ fg}g∈G, {τg}g∈G) be an USF for a Banach space X . The USF

({ fg}g∈G, {τg}g∈G) is said to be a group-USF if there exist an invertible isometric representation π of G on

X , a vector τ ∈ X and a functional f ∈ X ∗ such that

fg = f πg−1 , τg = πgτ, ∀g ∈ G. (3)

We first show that Definition 2.2 truly generalizes Definition 1.2. Let {τg}g∈G = {πgτ}g∈G be a

group-frame for a Hilbert space H. Let f be the functional on H defined by τ, i.e., f (h) = 〈h, τ〉, for all

h ∈ H. Then

fg(h) = f (πg−1 h) = 〈πg−1 h, τ〉 = 〈h, πgτ〉 = 〈h, τg〉, ∀h ∈ H.

Therefore fg is determined by τg for all g ∈ G.

It seems that we can not give a satisfactory theory for group-USF like that of group-frames for Hilbert

spaces. Therefore we study a class of group-USF’s defined as follows. Our definition is motivated from

the notion of p-approximate Schauder frames defined in [25].

Definition 2.3. Let p ∈ [1, ∞). A group-USF ({ fg}g∈G, {τg}g∈G) for a Banach space X is said to be a

group-p-USF if the following conditions hold.
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(i) The map (analysis operator) θ f : X ∋ x 7→ { fg(x)}g∈G ∈ ℓp(G) is a well-defined isometry.
(ii) The map (synthesis operator) θτ : ℓp(G) ∋ {ag}g∈G 7→ ∑g∈G agτg ∈ X is a well-defined bounded linear

operator.

In this case, the representation π is called as p-USF representation and the pair ( f , τ) is called as a p-USF

functional-vector.

We also need following generalization of Definition 2.3.

Definition 2.4. Let p ∈ [1, ∞) and G be a discrete group. A USF ({ fg}g∈G, {τg}g∈G) for a Banach space X

is said to be a p-USF if the following conditions hold.

(i) The map (analysis operator) θ f : X ∋ x 7→ { fg(x)}g∈G ∈ ℓp(G) is a well-defined isometry.
(ii) The map (synthesis operator) θτ : ℓp(G) ∋ {ag}g∈G 7→ ∑g∈G agτg ∈ X is a well-defined bounded linear

operator.

We begin by recording a characterization result of p-USFs which is motivated from the

characterization of Hilbert space frames by Holub [26].

Theorem 2.5. A pair ({ fg}g∈G, {τg}g∈G) is a p-USF for X , if and only if

fg = ζgU, τg = Vδg, ∀g ∈ G,

where U : X → ℓp(G), V : ℓp(G) → X are bounded linear operators such that VU = IX and U is an

isometry.

Proof. (⇐) Clearly θ f and θτ are bounded linear operators. Now let x ∈ X . Then

∑
g∈G

fg(x)τg = ∑
g∈G

ζg(Ux)Vδg = V

(

∑
g∈G

ζg(Ux)δg

)
= VUx = x. (4)

Note that, since U is isometry,

‖θ f x‖ =

∥∥∥∥∥∑
g∈G

fg(x)δg

∥∥∥∥∥ =

∥∥∥∥∥∑
g∈G

ζg(Ux)δg

∥∥∥∥∥ = ‖Ux‖ = ‖x‖, ∀x ∈ X .

(⇒) Define U := θ f , V := θτ . Then ζg(Ux) = ζg(θ f x) = ζg({ fk(x)}k∈G) = fg(x), ∀x ∈ X , Vδg =

θτδg = τg, ∀g ∈ G and VU = θτθ f = IX . Since θ f is an isometry, we also have U is an isometry.

We record the following important result from [25].

Theorem 2.6. [25] Let ({ fg}g∈G, {τg}g∈G) be a p-USF for X . Then

(i) IX = θτθ f .
(ii) G f ,τ := θ f θτ : ℓp(G) → ℓp(G) is a projection onto θ f (X ).

In [1], Han and Larson showed that upto unitary operator, frame representation is a piece of left

regular representation. With the help of following lemma we generalize their result for Banach spaces.

Lemma 2.7. If ({ fg}g∈G, {τg}g∈G) is a group-p-USF for X , then range of its analysis operator is invariant

under p-left-regular representation of G, i.e., λg(θ f (X )) ⊆ θ f (X ) for all g ∈ G.
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Proof. For any g ∈ G,

λgθ f x = λg

(

∑
h∈G

fh(x)δh

)
= ∑

h∈G

fh(x)δgh = ∑
u∈G

fg−1u(x)δu

= ∑
u∈G

f (πu−1gx)δu = ∑
u∈G

( f πu−1)(πgx)δu = θ f (πgx) ∈ θ f (X ), ∀x ∈ X .

Theorem 2.8. Every group-p-USF representation π of G is invertibly isometrically equivalent to a

subrepresentation of p-left-regular representation λ of G.

Proof. Let ({ fg}g∈G, {τg}g∈G) be a group-p-USF for X . Lemma 2.7 says that λg(θ f (X )) ⊆ θ f (X ) for

all g ∈ G. Therefore the map

∆g := λg|θ f (X ) : θ f (X ) → θ f (X ), ∀g ∈ G

is a well-defined invertible isometric representation of G. We show that ∆ and π are isometrically

invertibly equivalent. Note that θ f : X → θ f (X ) is an invertible isometry. We are done if we show that

θ f : X → θ f (X ) intertwines ∆ and π. This follows by doing a similar calculation as in the proof of

Lemma 2.7.

Vale and Waldron discovered that for finite groups, groups-frames can be characterized using

group-matrices [8]. We show that their result remains valid for Banach spaces. First we recall the

definition of group-matrix.

Definition 2.9. [27] Let G be a discrete group. A matrix A := [ag,h]g,h∈G over C is said to be a group-matrix

if there exists a function ν : G → C such that

ag,h = ν(g−1h), ∀g, h ∈ G. (5)

Let ({ fg}g∈G, {τg}g∈G) be a group-p-USF for X . Then we note that

fg(τh) = ( f πg−1)(πhτ) = f (πg−1hτ), ∀g, h ∈ G.

Let G f ,τ := θ f θτ be the Gramian of ({ fg}g∈G, {τg}g∈G) whose matrix w.r.t. the standard Schauder

basis {δg}g∈G for ℓp(G) is given by

[ fg(τh)]g,h∈G.

Now by defining ν : G ∋ g 7→ ν(g) := f (πgτ) ∈ C, we see from Equation (5) that G f ,τ is a group-matrix.

Next theorem shows that converse of this also holds.

Theorem 2.10. Let G be a discrete group. Then a p-USF ({ fg}g∈G, {τg}g∈G) for X is a group-p-USF for X

if and only if its Gramian G f ,τ is a group-matrix.

Proof. As we already derived only if part, we prove if part. Assume that the Gramian G f ,τ is a

group-matrix. Then there exists a function ν : G → C such that

ν(g−1h) = fg(τh), ∀g, h ∈ G.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2023                   doi:10.20944/preprints202304.0085.v1

https://doi.org/10.20944/preprints202304.0085.v1


6 of 21

Given g ∈ G, define

πg : X ∋ x 7→ πgx := ∑
h∈G

fh(x)τgh ∈ X

and

∆g : X ∋ x 7→ ∆gx := ∑
h∈G

fgh(x)τh ∈ X .

Note that

fgu(τgh) = ν((gu)−1gh) = ν(u−1h) = fh(τu), ∀u, g, h ∈ G. (6)

Using Equation (6), we get

∆gπgx = ∆g

(

∑
h∈G

fh(x)τgh

)
= ∑

h∈G

fh(x)∆gτgh = ∑
h∈G

fh(x) ∑
u∈G

fgu(τgh)τu

= ∑
h∈G

fh(x) ∑
u∈G

fu(τh)τu = ∑
h∈G

fh(x)τh = x, ∀x ∈ X

and

πg∆gx = πg

(

∑
h∈G

fgh(x)τh

)
= ∑

h∈G

fgh(x)πgτh = ∑
h∈G

fgh(x) ∑
u∈G

fu(τh)τgu

= ∑
h∈G

fgh(x) ∑
u∈G

fgu(τgh)τgu = ∑
h∈G

fgh(x)τgh = x, ∀x ∈ X .

Therefore ∆g is the inverse of πg. We next show πg is isometry. For x ∈ X , using Equation (6) and θ f is

an isometry,

‖πgx‖p = ‖θ f (πgx)‖p = ∑
h∈G

| fh(πgx)|p = ∑
h∈G

∣∣∣∣∣ fh

(

∑
u∈G

fu(x)τgu

)∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣∑
u∈G

fu(x) fh(τgu)

∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣∑
u∈G

fu(x) fgg−1h(τgu)

∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣∑
u∈G

fu(x) fg−1h(τu)

∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣ fg−1h

(

∑
u∈G

fu(x)τu

)∣∣∣∣∣

p

= ∑
h∈G

| fg−1h(x)|p = ‖x‖p.

To show Equation (3) again using Equation (6),

πgτe = ∑
h∈G

fh(τe)τgh = ∑
u∈G

fg−1u(τe)τu = ∑
u∈G

fg−1u(τg−1g)τu

= ∑
u∈G

fu(τg)τu = τg, ∀g ∈ G
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and

( feπg−1)(x) = fe

(

∑
h∈G

fh(x)τg−1h

)
= ∑

h∈G

fh(x) fe(τg−1h) = ∑
h∈G

fh(x) fg−1g(τg−1h)

= ∑
h∈G

fh(x) fg(τh) = fg

(

∑
h∈G

fh(x)τh

)
= fg(x), ∀g ∈ G, ∀x ∈ X .

We are left with showing that π is a homomorphism. Let g, h ∈ G and x ∈ X . Then using Equation (6),

πgπhx = ∑
u∈G

fu(πhx)τgu = ∑
u∈G

fu

(

∑
v∈G

fv(x)τhv

)
τgu

= ∑
u∈G

∑
v∈G

fv(x) fu(τhv)τgu = ∑
u∈G

∑
v∈G

fv(x) fhh−1u(τhv)τgu

= ∑
u∈G

∑
v∈G

fv(x) fh−1u(τv)τgu = ∑
u∈G

fh−1u

(

∑
v∈G

fv(x)τv

)
τgu

= ∑
u∈G

fh−1u(x)τgu = ∑
v∈G

fv(x)τ(gh)v = πghx.

Kaftal, Larson and Zhang showed that group-frames can be characterized by using an algebraic

equation and involving inner proved (actually they proved it in the setup of operator-valued frames)

[28]. In the following result we generalize the result of Kaftal, Larson and Zhang to Banach spaces.

Theorem 2.11. Let G be a discrete group and ({ fg}g∈G, {τg}g∈G) be a p-USF for X . Then there is an

invertible isometric representation π of G on X for which

τg = πgτe, fg = feπg−1 , ∀g ∈ G (7)

if and only if

fug(τuh) = fg(τh), ∀u, g, h ∈ G. (8)

Moreover, the representation can be defined as

πg := θτλgθ f , ∀g ∈ G. (9)

Proof. (⇒) Let u, g, h ∈ G. Then we have

fug(τuh) = ( feπ(ug)−1)(πuhτe) = ( feπg−1u−1)(πuhτe) = ( feπg−1)(πhτe) = fg(τh).

(⇐) Let πg be defined by Equation (9). We are required to show that π is an invertible isometric

representation and satisfies Equation (7). We first show that it satisfies Equation (7). To do so, we claim

the identity

λgθ f θτ = θ f θτλg, ∀g ∈ G. (10)
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Using Equation (8) we verify Equation (10). Note that it suffices to verify Equation (10) at the standard

basis vectors δh, h ∈ G. Consider

θ f θτλgδh = θ f θτδgh = θ f τgh = ∑
u∈G

fu(τgh)δu = ∑
u∈G

fgu(τgh)δgu = ∑
u∈G

fu(τh)δgu

= ∑
u∈G

fu(τgh)λgδu = λg

(

∑
u∈G

fu(τh)δu

)
= λgθ f τh = λgθ f θτδh.

Now using Equation (10)

πgτe = θτλgθ f τe = θτλgθ f θτδe = θτθ f θτλgδe = IX θτλgδe = θτδg = τg, ∀g ∈ G

and

fe(πg−1 x) = fe(θτλg−1 θ f x) = fe

(

∑
u∈G

fu(x)θτλg−1 δu

)
= fe

(

∑
u∈G

fu(x)τg−1u

)

= ∑
u∈G

fu(x) fe(τg−1u) = ∑
u∈G

fu(x) fg−1g(τg−1u) = ∑
u∈G

fu(x) fg(τu)

= fg

(

∑
u∈G

fu(x)τu

)
= fg(x), ∀x ∈ X , ∀g ∈ G.

Now we show that π is an invertible isometric representation. First we need to show that it is bijective.

We note that, for g ∈ G, the operator ∆g := θτλg−1 θ f is the inverse of πg. In fact, using Equation (10),

πg∆g = θτλgθ f θτλg−1 θ f = θτθ f θτλgλg−1 θ f = IX ,

∆gπg = θτλg−1 θ f θτλgθ f = θτλg−1 λgθ f θτθ f = IX .

To show πg is an isometry, given x ∈ X ,

‖πgx‖p = ∑
h∈G

| fh(πgx)|p = ∑
h∈G

| fh(θτλgθ f x)|p = ∑
h∈G

∣∣∣∣∣( fhθτλg)

(

∑
u∈G

fu(x)δu

)∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣ fh

(

∑
u∈G

fu(x)θτλgδu

)∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣ fh

(

∑
u∈G

fu(x)τgu

)∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣∑
u∈G

fu(x) fh(τgu)

∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣∑
u∈G

fu(x) fgg−1h(τgu)

∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣∑
u∈G

fu(x) fg−1h(τu)

∣∣∣∣∣

p

= ∑
h∈G

∣∣∣∣∣ fg−1h

(

∑
u∈G

fu(x)τu

)∣∣∣∣∣

p

= ∑
h∈G

| fg−1h(x)|p = ‖x‖p.

Finally, we show that π is representation:

πgπh = θτλgθ f θτλhθ f = θτθ f θτλgλhθ f = IX θτλghθ f = πgh, ∀g, h ∈ G.

A careful observation on proof of “if" part of Theorem 2.11 gives the following result.

Theorem 2.12. Let G be a discrete group and ({ fg}g∈G, {τg}g∈G) be a group-p-USF for X . Then λgθ f θτ =

θ f θτλg, ∀g ∈ G.
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Next we try to relate frame representation with p-right regular representation. This result was

first derived by Mendez, Bodmann, Baker, Bullock and McLaney in the context of binary frame [29].

Theorem 2.13. Let G be a discrete group and ({ fg}g∈G, {τg}g∈G) be a p-USF for X . Then there is an

invertible isometric representation π of G on X for which

τg = πgτe, fg = feπg−1 , ∀g ∈ G

if and only if

θ f θτ{ah}h∈G = ∑
g∈G

η(g)ρg{ah}h∈G, ∀{ah}h∈G ∈ ℓ
p(G),

where

η : G ∋ g 7→ η(g) := fe(πgτe) ∈ C. (11)

Moreover, the invertible isometric representation can be defined as

πg := θτλgθ f , ∀g ∈ G. (12)

Proof. (⇒) Let η be the function defined in Equation (11). Now for each δh,

θ f θτδh = θ f τh = ∑
u∈G

fu(τh)δu = ∑
u∈G

( f πu−1)(πhτ)δu

= ∑
u∈G

f (πu−1hτ)δu = ∑
g∈G

f (πgτ)δhg−1 = ∑
g∈G

f (πgτ)ρgδh

=

(

∑
g∈G

f (πgτ)ρg

)
δh =

(

∑
g∈G

η(g)ρg

)
δh.

(⇐) We note that p-left and p-right regular representations commute. In fact, for any g, h ∈ G and for

each standard basis vector δu, we have

λgρhδu = λgδuh−1 = δguh−1 = ρhδgu = ρhλgδu.

We then get

λgθ f θτδh = λg

(

∑
u∈G

η(u)ρuδh

)
= ∑

u∈G

η(u)λgρuδh

=

(

∑
u∈G

η(u)ρu

)
λgδh = θ f θτλgδh, ∀g ∈ G.

Now we claim the following:

fug(τuh) = fg(τh), ∀u, g, h ∈ G.

Consider

fug(τuh) = fug(θτδuh) = ζug(θ f θτδuh) = ζug

(

∑
v∈G

η(v)ρvδuh

)

= ∑
v∈G

η(v)ζugρvδuh = ∑
v∈G

η(v)ζugδuhv−1 = η(g−1h) = fg(τh), ∀u, g, h ∈ G.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 April 2023                   doi:10.20944/preprints202304.0085.v1

https://doi.org/10.20944/preprints202304.0085.v1


10 of 21

Hence claim holds. For each g ∈ G, we now define πg as in Equation (12). Now by doing a similar

calculation as in the converse part of proof of Theorem 2.11 we get that ({ fg}g∈G, {τg}g∈G) is a

group-p-USF for X .

After giving several characterizations for frame representations, we next seek to determine the

collection of functionals and vectors which generate group-frames. In the case of Hilbert spaces, Han

and Larson completely characterized vectors which generate group-frames using double commutant

of image of representation [1]. Even though we are unable to achieve this, we show that certain large

sets generate group-frames for Banach spaces. We first set some notations. Let G be a discrete group

and π : G → II(X ) be a invertible isometric representation. Assume that there is a vector τ ∈ X

and a functional f ∈ X ∗ such that ({ fg}g∈G, {τg}g∈G) is a group-p-USF for X . Define the set of all

group-p-USF vectors as

FG(π,X ) := {( f1, τ1) ∈ X ∗ ×X : ({ f1g}g∈G, {τ1g}g∈G) is a group-p-USF for X}.

By assumption FG(π,X ) 6= ∅. We naturally ask what is the structure of FG(π,X )? In the following

proposition we show that this set is quite large. We use the following notation in sequel. Given a subset

A of linear operators on X , by I∗(A) we mean the set of invertible isometric operators U : X → X

such that U ∈ A. Given f ∈ X ∗ and τ ∈ X , we define

f [I∗(A)−1, I∗(A)]τ := {( f U−1, Uτ) : U ∈ I
∗(A)}.

Proposition 2.14. If an invertible isometric representation π : G → II(X ) admits a functional-frame vector

( f , τ), then

f [I∗(π(G)′)−1, I∗(π(G)′)]τ ⊆ FG(π,X ). (13)

Proof. Let ( f1, τ1) ∈ f [I∗(π(G)′)−1, I∗(π(G)′)]τ. Then f1 = f U−1, τ1 = Uτ for some invertible

isometry U : X → X such that U ∈ I∗(π(G)′). Define f2g := f1πg−1 and τ2g := πgτ1, for all g ∈ G.

Now we see that

∑
g∈G

f2g(x)τ2g = ∑
g∈G

( f1πg−1)(x)πgτ1 = ∑
g∈G

( f U−1)(πg−1 x)πgUτ

= ∑
g∈G

( f πg−1)(U−1x)Uπgτ = U

(

∑
g∈G

( f πg−1)(U−1x)πgτ

)

= U

(

∑
g∈G

fg(U
−1x)τg

)
= UU−1x = x, ∀x ∈ X .

Therefore ({ f2g}g∈G, {τ2g}g∈G) is a group-p-USF for X and consequently ( f1, τ1) ∈ FG(π,X ).

We next try to show FG(π,X ) has another large set inside it. For this, we need following two

results.

Theorem 2.15. For any group G, and any 1 ≤ p < ∞,

λ(G)′ = ρ(G)′′ and ρ(G)′ = λ(G)′′.

Proof. We already know from the proof of Theorem 2.13 that p-left and p-right regular representations

commute, i.e.,

λgρh = ρhλg, ∀g, h ∈ G.
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Hence for every g ∈ G, λg ∈ ρ(G)′. By varying g, we get λ(G) ⊆ ρ(G)′. Taking commutant yield

λ(G)′ ⊇ ρ(G)′′. Now we prove the reverse inclusion. Let T ∈ λ(G)′. To show T ∈ ρ(G)′′ we need to

show that TS = ST for all S ∈ ρ(G)′. So let S ∈ ρ(G)′. Note that to verify TS = ST, it suffices to verify

TSδh = STδh for all h ∈ G. Let h ∈ G. Then

TSδh = TSρh−1 δe = Tρh−1 Sδe = Tρh−1

(

∑
g∈G

ζg(Sδe)δg

)

= ∑
g∈G

ζg(Sδe)Tρh−1 δg = ∑
g∈G

ζg(Sδe)Tδgh = ∑
g∈G

ζg(Sδe)Tλghδe

= ∑
g∈G

ζg(Sδe)λghTδe = ∑
g∈G

ζg(Sδe)λgh

(

∑
u∈G

ζu(Tδe)δu

)

= ∑
g∈G

ζg(Sδe) ∑
u∈G

ζu(Tδe)λghδu = ∑
g∈G

∑
u∈G

ζg(Sδe)ζu(Tδe)δghu

and

STδh = STλhδe = SλhTδe = Sλh

(

∑
u∈G

ζu(Tδe)δu

)

= ∑
u∈G

ζu(Tδe)Sλhδu = ∑
u∈G

ζu(Tδe)Sδhu = ∑
u∈G

ζu(Tδe)Sρ(hu)−1 δe

= ∑
u∈G

ζu(Tδe)ρ(hu)−1 Sδe = ∑
u∈G

ζu(Tδe)ρ(hu)−1

(

∑
g∈G

ζg(Sδe)δg

)

= ∑
u∈G

ζu(Tδe) ∑
g∈G

ζg(Sδe)ρ(hu)−1 δg = ∑
u∈G

∑
g∈G

ζu(Tδe)ζg(Sδe)δghu.

Therefore λ(G)′ = ρ(G)′′. Finally λ(G)′′ = ρ(G)′′′ = ρ(G)′.

Theorem 2.16. For any discrete group G and for every 1 ≤ p < ∞, the map

Φ : ρ(G)′′ ∋ A 7→ Φ(A) := JAJ ∈ λ(G)′′

is an algebra isomorphism, where

J : ℓp(G) ∋ {ag}g∈G 7→ J{ag}g∈G := ∑
g∈G

agδg−1 ∈ ℓ
p(G).

Moreover, we have the following.

(i) If U ∈ ρ(G)′′ is invertible (resp. isometry), then Φ(U) is invertible (resp. isometry).
(ii) If V ∈ λ(G)′′ is invertible (resp. isometry), then Φ−1(V) is invertible (resp. isometry).

Proof. We first note that J is an isomorphism and J2 = Iℓp(G). Before showing Φ is an isomorphism,

we need to show that it is well-defined. Let A ∈ ρ(G)′′. We try to show that JAJ ∈ λ(G)′′ which

says Φ is well-defined. By Theorem 2.15, showing JAJ ∈ λ(G)′′ is same as showing JAJ ∈ ρ(G)′. Let

g ∈ G be arbitrary. We claim that JAJρg = ρg JAJ. Since {δh}h∈G is a basis for ℓp(G) it suffices to show

JAJρgδh = ρg JAJδh, for all h ∈ G. Now noting A ∈ λ(G)′, we get
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JAJρgδh = JAJδhg−1 = JAδgh−1 = JAλgδh−1 = Jλg Aδh−1

= Jλg

(

∑
u∈G

ζu(Aδh−1)δu

)
= ∑

u∈G

ζu(Aδh−1)Jλgδu

= ∑
u∈G

ζu(Aδh−1)Jδgu = ∑
u∈G

ζu(Aδh−1)δu−1g−1

and

ρg JAJδh = ρg JAδh−1 = ρg J

(

∑
u∈G

ζu(Aδh−1)δu

)
= ∑

u∈G

ζu(Aδh−1)ρg Jδu

= ∑
u∈G

ζu(Aδh−1)ρgδu−1 = ∑
u∈G

ζu(Aδh−1)δu−1g−1 .

Clearly Φ is linear. Since J2 = Iℓp(G), Φ is multiplicative. Through a direct calculation we see that

inverse of Φ is the map λ(G)′′ ∋ B 7→ JBJ ∈ ρ(G)′′.

Following is the most important result for generators of group-frames for Banach spaces.

Theorem 2.17. Let π : G → II(X ) be a invertible isometric representation of a group G which admits a

functional-vector ( f , τ). Then

f [I∗(π(G)′′)−1, I∗(π(G)′′)]τ ⊆ FG(π,X ). (14)

Proof. Let g ∈ G and define ∆g := λg|θ f (X ). Theorem 2.8 says that π is invertible isometrically

equivalent to the representation ∆ with functional-vector (ζe(θ f θτ), θ f θτδe). Therefore, without loss of

generality we may assume that

X = θ f (X ), π = ∆, G = {λg|θ f (X ) : g ∈ G}, τ = θ f θτδe, f = ζe(θ f θτ).

Let U : θ f (X ) → θ f (X ) be an invertible isometry such that U ∈ I∗(π(G)′′). We need to show that

( f U−1, Uτ) ∈ FG(π,X ). Define τ̃ := Uτ, τ̃g := πgτ̃ and f̃ := f U−1, f̃g := f̃ πg−1 for all g ∈ G.

To prove the theorem, now it suffices to show that ({ f̃g}g∈G, {τ̃g}g∈G) is an group-p-USF for X . Let

x = θ f y ∈ θ f (X ). Using Theorem 2.15 and Theorem 2.16, we may assume that U ∈ {λg|θ f (X ) : g ∈ G}′.

Since θ f θτz = z for all z ∈ θ f (X ) and U : θ f (X ) → θ f (X ), we then have θ f θτU = U. Therefore

∑
g∈G

f̃g(x)τ̃g = ∑
g∈G

( f̃ πg−1)(x)πgτ̃ = ∑
g∈G

(( f U−1)πg−1)(x)πgUτ

= ∑
g∈G

f (U−1πg−1 x)πgUτ = ∑
g∈G

(ζeθ f θτ)(U
−1πg−1 x)πgUθ f θτδe

= ∑
g∈G

ζe(θ f θτU−1πg−1 x)πgUθ f θτδe = ∑
g∈G

ζe(θ f θτU−1λg−1 x)λgUθ f θτδe

= ∑
g∈G

ζe(θ f θτλg−1U−1x)Uλgθ f θτδe = ∑
g∈G

ζe(λg−1 θ f θτU−1x)Uθ f θτλgδe

= ∑
g∈G

ζg(θ f θτU−1x)Uθ f θτδg = Uθ f θτθ f θτU−1x

= Uθ f θτU−1x = UU−1x = x.
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Han and Larson characterized (with an equality) frame vectors for Hilbert spaces (see Theorem

6.17 in [1]). Later Kaftal, Larson and Zhang noticed that the set of all frame vectors is path-connected

in norm topology (see Theorem 8.1 in [28]). Based on these, we raise the following questions.

Problem 2.18. Given an invertible isometric representation π : G → I∗(X ) which admits a functional-vector

( f , τ), characterize FG(π,X ). In particular, classify Banach spaces, groups and representations such that

(i) f [I∗(π(G)′)−1, I∗(π(G)′)]τ = FG(π,X ).
(ii) f [I∗(π(G)′′)−1, I∗(π(G)′′)]τ = FG(π,X ).

Problem 2.19. Is FG(π,X ) ⊆ X ∗ ×X path connected in the norm-topology?

3. Finite Gabor-Schauder frames

In this section we study Schauder frame generated by time-frequency shifts on finite abelian

groups for finite dimensional Banach space Co(G). Our main motivation comes from the Gabor analysis

on finite abelian groups presented by Pfander in [30] and Feichtinger, Kozek and Luef in [31]. Let G be

a finite abelian group with identity e, o(G) be the order of G and Ĝ be the set of all characters of G.

We denote the circle group by T. Then Ĝ becomes a group with respect to pointwise multiplication of

characters. The character which sends every element of G to 1 is called as identity character and is

denoted by 1G. Let {δg}g∈G be the standard basis for Co(G) and {ζg}g∈G be the coordinate functionals

associated with {δg}g∈G. For x = (xg)g∈G, y = (yg)g∈G ∈ Co(G), we set

x · y := (xgyg)g∈G

and

x∗ := (xg)g∈G.

From the classical Fourier analysis on finite abelian groups, we note that we have the following

properties (see [32]).

(1) o(G) = o(Ĝ).
(2) If ξ, χ ∈ Ĝ, then 〈ξ, χ〉 = δξ,χ, where

〈ξ, χ〉 :=
1

o(G) ∑
g∈G

ξ(g)χ(g). (15)

(3) If g, h ∈ G, then 〈g, h〉 = δg,h, where

〈g, h〉 :=
1

o(Ĝ)
∑

ξ∈Ĝ

ξ(g)ξ(h). (16)

Given ξ ∈ Ĝ, the modulation operator Mξ : Co(G) → Co(G) is defined by

Mξ(xg)g∈G := (ξ(g)xg)g∈G, ∀(xg)g∈G ∈ C
o(G).

Given k ∈ G, the translation operator Tk : Co(G) → Co(G) by

Tk(xg)g∈G := (xg−k)g∈G, ∀(xg)g∈G ∈ C
o(G).

Let λ := (k, ξ) ∈ G × Ĝ. By composing modulation operator and translation operator we get the

time-frequency shift operator π(k, ξ) : Co(G) → Co(G) defined as
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π(λ) = π(k, ξ) := Mξ Tk.

Thus the action of π(λ) is given by

π(λ)(xg)g∈G = (ξ(g)xg−k)g∈G, ∀(xg)g∈G ∈ C
o(G).

Following properties of time-frequency shift operators will be used and are well-known.

Theorem 3.1. [31] Let λ = (k, ξ), µ = (l, χ) ∈ G × Ĝ. Then

(i) π(λ + µ) = χ(k)π(λ)π(µ).
(ii) π(λ)π(µ) = χ(k)ξ(l)π(µ)π(λ).

(iii) π(λ)−1 = ξ(k)π(−λ).

Motivated from discrete Gabor analysis over finite abelian groups (see [30,31]) we set the following

notion. We emphasis here that, even though it is true that Co(G) is a Hilbert space, given a Banach

space structure on it, thinking of Co(G) as a Hilbert space in frame theory will not work. A recent

influential instance is in defining the notion of ‘Frame Potential’ for Banach spaces where usual direct

generalization of Hilbert space frame potential failed (see Proposition 2.5 in [33]).

Definition 3.2. Given a subgroup Λ ⊆ G × Ĝ, a nonzero f ∈ (Co(G))∗ and a nonzero τ ∈ Co(G), the pair

({ f (π(λ)−1)}λ∈Λ, {π(λ)τ}λ∈Λ) is called as a Gabor-Schauder system. If the operator

S f ,τ,Λ : Co(G) ∋ x 7→ ∑
λ∈Λ

f (π(λ)−1x)π(λ)τ ∈ C
o(G)

is invertible, then ({ f (π(λ)−1)}λ∈Λ, {π(λ)τ}λ∈Λ) is called as a Gabor-Schauder frame.

We are interested in subgroups Λ of G × Ĝ, which will give Gabor-Schauder frames. First we

show that the full lattice G × Ĝ will give a Gabor-Schauder frame. Given a nonzero f ∈ (Co(G))∗, we

define analysis operator

W f : Co(G) ∋ x 7→ W f x := ( f (π(λ)−1x)
λ∈G×Ĝ

∈ C
o(G×Ĝ)

and given a nonzero τ ∈ Co(G), we define synthesis operator

Vτ : Co(G×Ĝ) ∋ (aλ)λ∈G×Ĝ
7→ ∑

λ∈G×Ĝ

aλπ(λ)τ ∈ C
o(G).

Our first result is that composition of previous two operators give scalar times identity.

Theorem 3.3. For f ∈ (Co(G))∗ and τ ∈ Co(G),

VτW f = o(G) f (τ)I
Co(G) . (17)

Proof. Let x = (xg)g∈G ∈ Co(G) and τ = (τg)g∈G. Then
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VτW f x = Vτ( f [π(λ)−1x])
λ∈G×Ĝ

= ∑
λ∈G×Ĝ

f [π(λ)−1x]π(λ)τ

= ∑
(k,ξ)∈G×Ĝ

f [ξ(k)π(−k,−ξ)(xg)g∈G]π(k, ξ)(τg)g∈G

= ∑
(k,ξ)∈G×Ĝ

f [ξ(k)((−ξ)(h)xh+k)h∈G)](ξ(g)τg−k)g∈G = ∑
(k,ξ)∈G×Ĝ

f [(ξ(k + h)xh+k)h∈G](ξ(g)τg−k)g∈G

=


 ∑

(k,ξ)∈G×Ĝ

f [(ξ(k + h)xh+k)h∈G]ξ(g)τg−k




g∈G

=


 ∑

(k,ξ)∈G×Ĝ

f [(ξ(k + h)ξ(g)xh+k)h∈G]τg−k




g∈G

=


∑

k∈G
∑

ξ∈Ĝ

f [(ξ(k + h)ξ(g)xh+k)h∈G]τg−k




g∈G

=


∑

k∈G

f


∑

ξ∈Ĝ

(ξ(k + h)ξ(g)xh+k)h∈G


 τg−k




g∈G

=


∑

k∈G

f


∑

ξ∈Ĝ

ξ(k + h)ξ(g)xh+k




h∈G

τg−k




g∈G

= o(G)

(

∑
k∈G

f
[
δk+h,gxh+k

]
h∈G

τg−k

)

g∈G

= o(G) ∑
g∈G

∑
k∈G

f
[
δk+h,gxh+k

]
h∈G

τg−kδg = o(G) ∑
g∈G

∑
k∈G

f

[

∑
h∈G

δk+h,gxh+kδh

]
τg−kδg

= o(G) ∑
g∈G

∑
k∈G

∑
h∈G

δk+h,gxh+k f [δh]τg−kδg = o(G) ∑
g∈G

∑
k∈G

xg f [δg−k]τg−kδg

= o(G) ∑
g∈G

xg f

[

∑
k∈G

τg−kδg−k

]
δg = o(G) ∑

g∈G

xg f [(τk)k∈G]δg = o(G) f (τ)x.

We call Equation (17) as Schauder-Moyal formula for Banach space. It is easy to see that for

Hilbert spaces, whenever f is determined by τ, Schauder-Moyal formula reduces to familiar Moyal

formula. Schauder-Moyal formula immediately gives the following corollary.

Corollary 3.4. If f ∈ (Co(G))∗ and τ ∈ Co(G) are such that f (τ) 6= 0, then

x =
1

o(G) f (τ) ∑
λ∈G×Ĝ

f (π(λ)−1x)π(λ)τ, ∀x ∈ C
o(G). (18)

In other words,

({ f (π(λ)−1)}
λ∈G×Ĝ

, {π(λ)τ}
λ∈G×Ĝ

)

is a Gabor-Schauder frame for Co(G).

We call Equation (18) as the inversion formula for Banach space. It reduces to inversion formula

for the short-time Fourier transform for Hilbert spaces, whenever f is determined by τ.

Recall that given linear operators T, S : Co(G) → Co(G), if we define

〈T, S〉HS := ∑
g∈G

〈Tδg, Sδg〉,

then the space L(Co(G)) of all linear operators from Co(G) to itself is a Hilbert space w.r.t. inner product

〈T, S〉HS. We denote this Hilbert space by HS(Co(G)). We need the following result in continuation.
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Theorem 3.5. [31] The family

{
1√

o(G)
π(λ)

}

λ∈G×Ĝ

(19)

is an orthonormal basis for HS(Co(G)).

Recall that given a subgroup (also known as lattice) Λ ⊆ G × Ĝ, we define the adjoint subgroup

of Λ, denoted by Λ0 as

Λ0 := {µ ∈ G × Ĝ : π(λ)π(µ) = π(µ)π(λ), ∀λ ∈ Λ}.

Theorem 3.1 says that Λ0 is a subgroup of G × Ĝ. Now given a nonzero vector τ ∈ Co(G) and a nonzero

functional f ∈ (Co(G))∗, we define the Gabor-Schauder frame operator S f ,τ,Λ : Co(G) → Co(G) as

S f ,τ,Λx := ∑
λ∈Λ

f (π(λ)−1x)π(λ)τ, ∀x ∈ C
o(G).

Following key result will be used repeatedly. It mainly uses group properties of Λ.

Theorem 3.6. Let Λ be a subgroup of G × Ĝ, τ ∈ Co(G) and f ∈ (Co(G))∗. Then for each µ ∈ Λ, the

time-frequency shifts π(µ) commute with the Gabor-Schauder frame operator S f ,τ,Λ.

Proof. Since π(µ) is invertible, to show π(µ)S f ,τ,Λ = S f ,τ,Λπ(µ) it suffices to show that

π(µ)−1S f ,τ,Λπ(µ) = S f ,τ,Λ. Let x ∈ Co(G) and µ = (l, χ). Now using the fact that G is a group

and using Theorem 3.1,

π(l, χ)−1S f ,τ,Λπ(l, χ)x = π(l, χ)−1


 ∑

(k,ξ)∈Λ

f [π(k, ξ)−1π(l, χ)x]π(k, ξ)τ




= ∑
(k,ξ)∈Λ

f [π(k, ξ)−1π(l, χ)x]π(l, χ)−1π(k, ξ)τ

= ∑
(k,ξ)∈Λ

f [(π(l, χ)−1π(k, ξ))−1x]π(l, χ)−1π(k, ξ)τ

= ∑
(k,ξ)∈Λ

f [(χ(l)π(−l,−χ)π(k, ξ))−1x]χ(l)π(−l,−χ)π(k, ξ)τ

= ∑
(k,ξ)∈Λ

f [(π(−l,−χ)π(k, ξ))−1x]π(−l,−χ)π(k, ξ)τ

= ∑
(k,ξ)∈Λ

f [(ξ(−l)π(−l + k,−χ + ξ))−1x]ξ(−l)π(−l + k,−χ + ξ)τ

= ∑
(k,ξ)∈Λ

f [π(−l + k,−χ + ξ)−1x]π(−l + k,−χ + ξ)τ = S f ,τ,Λx.

Recall that (see [34]) a pair ({ f j}
n
j=1, {τj}

n
j=1) is said to be an approximate Schauder frame (written

as ASF) for Co(G) if the operator

S f ,τ : Co(G) ∋ x 7→ S f ,τx :=
n

∑
j=1

f j(x)τj ∈ C
o(G)
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is invertible. Also we recall that an ASF ({gj}
n
j=1, {ωj}

n
j=1) for Co(G) is said to be a dual for

({ f j}
n
j=1, {τj}

n
j=1) if

x =
n

∑
j=1

f j(x)ωj =
n

∑
j=1

gj(x)τj, ∀x ∈ C
o(G).

It is an easy observation that the ASF ({ f jS
−1
f ,τ}

n
j=1, {S−1

f ,ττj}
n
j=1) is always a dual for ({ f j}

n
j=1, {τj}

n
j=1).

This is called as canonical dual of ({ f j}
n
j=1, {τj}

n
j=1). Following corollary says that canonical dual of

Gabor-Schauder frame is again a Gabor-Schauder frame.

Corollary 3.7. Let Λ be a subgroup of G × Ĝ, τ ∈ Co(G) and f ∈ (Co(G))∗. If

({ f (π(λ)−1)}λ∈Λ, {π(λ)τ}λ∈Λ) is a Gabor-Schauder frame for Co(G), then its canonical dual can be written

as ({φ(π(λ)−1)}λ∈Λ, {π(λ)ω}λ∈Λ) for some ω ∈ Co(G) and φ ∈ (Co(G))∗. In other words, there exist

ω ∈ Co(G) and φ ∈ (Co(G))∗ such that ({φ(π(λ)−1)}λ∈Λ, {π(λ)ω}λ∈Λ) is a Gabor-Schauder frame for

Co(G) and

x = ∑
λ∈Λ

φ(π(λ)−1x)π(λ)τ = ∑
λ∈Λ

f (π(λ)−1x)π(λ)ω, ∀x ∈ C
o(G).

Proof. Canonical dual for ({ f (π(λ)−1)}λ∈Λ, {π(λ)τ}λ∈Λ) is given by

({ f (π(λ)−1S−1
f ,τ,Λ)}λ∈Λ, {S−1

f ,τ,Λπ(λ)τ}λ∈Λ). Define ω := S−1
f ,τ,Λτ and φ := f S−1

f ,τ,Λ. Then using

Theorem 3.6,

{S−1
f ,τ,Λπ(λ)τ}λ∈Λ = {π(λ)S−1

f ,τ,Λτ}λ∈Λ = {π(λ)ω}λ∈Λ,

{ f (π(λ)−1S−1
f ,τ,Λ)}λ∈Λ = { f (S−1

f ,τ,Λπ(λ)−1)}λ∈Λ = {φ(π(λ)−1)}λ∈Λ.

Next result is the key result of this section.

Theorem 3.8. Let Λ be a subgroup of G × Ĝ and τ ∈ Co(G), f ∈ (Co(G))∗. Then

S f ,τ,Λx = ∑
λ∈Λ

f (π(λ)−1x)π(λ)τ =
o(Λ)

o(G) ∑
µ∈Λ0

f (π(µ)−1τ)π(µ)x =
o(Λ)

o(G)
S f ,x,Λ0 τ, ∀x ∈ C

o(G).

(20)

Proof. Theorem 3.5 says that

S f ,τ,Λ = ∑
µ∈G×Ĝ

〈
S f ,τ,Λ,

1√
o(G)

π(µ)

〉

HS

1√
o(G)

π(µ)

= ∑
µ∈G×Ĝ

cµπ(µ), where cµ :=
1

o(G)

〈
S f ,τ,Λ, π(µ)

〉
HS

, ∀µ ∈ G × Ĝ.
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Let µ ∈ G × Ĝ and λ ∈ Λ. Theorem 3.1 then gives a dµ,λ ∈ T such that π(λ)−1π(µ)π(λ) = dµ,λπ(µ).

Using Theorem 3.6,

∑
µ∈G×Ĝ

cµπ(µ) = π(λ)−1S f ,τ,Λπ(λ) = π(λ)−1


 ∑

µ∈G×Ĝ

cµπ(µ)


π(λ)

= ∑
µ∈G×Ĝ

cµπ(λ)−1π(µ)π(λ) = ∑
µ∈G×Ĝ

cµdµ,λπ(µ).

Therefore

∑
µ∈G×Ĝ

cµ(1 − dµ,λ)π(µ) = 0, ∀λ ∈ Λ.

Since {π(λ)}
λ∈G×Ĝ

is linearly independent (Theorem 3.5), we then have cµ(1 − dµ,λ) = 0, for all

λ ∈ Λ, for all µ ∈ G × Ĝ. Let µ /∈ Λ0. We claim that cµ = 0. If this is not true, then 1 − dµ,λ = 0 for all

λ ∈ Λ. But then we have π(µ)π(λ) = π(λ)π(µ) for all λ ∈ Λ which says µ ∈ Λ0 which is impossible.

So claim holds. Hence the formula for the Gabor-Schauder frame operator reduces to

S f ,τ,Λ = ∑
µ∈Λ0

cµπ(µ). (21)

Now let µ ∈ Λ0. Then using Equation (19),

cµ =
1

o(G)

〈
S f ,τ,Λ, π(µ)

〉
HS

=
1

o(G) ∑
g∈G

〈S f ,τ,Λδg, π(µ)δg〉

=
1

o(G) ∑
g∈G

〈

∑
λ∈Λ

f (π(λ)−1δg)π(λ)τ, π(µ)δg

〉
=

1

o(G) ∑
λ∈Λ

∑
g∈G

f (π(λ)−1δg)〈π(λ)τ, π(µ)δg〉

=
1

o(G) ∑
λ∈Λ

∑
g∈G

f (π(λ)−1δg)〈π(µ)−1π(λ)τ, δg〉 =
1

o(G) ∑
λ∈Λ

∑
g∈G

f
[
〈π(µ)−1π(λ)τ, δg〉π(λ)−1δg

]

=
1

o(G) ∑
λ∈Λ

f

[

∑
g∈G

〈π(µ)−1π(λ)τ, δg〉π(λ)−1δg

]
=

1

o(G) ∑
λ∈Λ

f

[
π(λ)−1 ∑

g∈G

〈π(µ)−1π(λ)τ, δg〉δg

]

=
1

o(G) ∑
λ∈Λ

f (π(λ)−1π(µ)−1π(λ)τ) =
1

o(G) ∑
λ∈Λ

f (π(µ)−1π(λ)−1π(λ)τ)

=
1

o(G) ∑
λ∈Λ

f (π(µ)−1τ) =
o(Λ)

o(G)
f (π(µ)−1τ).

By substituting the value of cµ in Equation (21) finally gives

S f ,τ,Λ =
o(Λ)

o(G) ∑
µ∈Λ0

f (π(µ)−1τ)π(µ).

We call Equation (20) as Fundamental Identity of Gabor-Schauder Frames (FIGSF) or

Schauder-Wexler-Raz identity or Schauder-Janssen representation of Gabor-Schauder frame

operator S f ,τ,Λ. It represents the frame operator corresponding to Λ in terms of frame operator

corresponding to Λ0. For Hilbert spaces it reduces to the usual Fundamental Identity of Gabor

Analysis (famously known as FIGA) derived in [30] and [31]. First major consequence of FIGSF is the

following criterion.
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Theorem 3.9. Let Λ be a subgroup of G × Ĝ and τ ∈ Co(G), f ∈ (Co(G))∗. Then

x = ∑
λ∈Λ

f (π(λ)−1x)π(λ)τ, ∀x ∈ C
o(G) ⇐⇒ f (π(µ)−1τ) =

o(G)

o(Λ)
δµ,0, ∀µ ∈ Λ0. (22)

Proof. (⇒) We have that the Gabor-Schauder frame operator S f ,τ,Λ is identity operator. Theorem 3.8

then says that

I
Co(G) =

o(Λ)

o(G) ∑
µ∈Λ0

f (π(µ)−1τ)π(µ) =
o(Λ)

o(G)
f (τ)I

Co(G) +
o(Λ)

o(G) ∑
µ∈Λ0\{(0,0)}

f (π(µ)−1τ)π(µ).

By Theorem 3.5, the collection {π(λ)}
λ∈G×Ĝ

is linearly independent. Thus the validity of previous

equation gives

f (τ) =
o(G)

o(Λ)
, f (π(µ)−1τ) = 0, ∀µ ∈ Λ0 \ {(0, 0)}.

(⇐) Using Equation (20),

S f ,τ,Λx =
o(Λ)

o(G) ∑
µ∈Λ0

f (π(µ)−1τ)π(µ)x =
o(Λ)

o(G)
f (τ)x +

o(Λ)

o(G) ∑
µ∈Λ0\{(0,0)}

f (π(µ)−1τ)π(µ)x = x, ∀x ∈ C
o(G).

We call Equation (22) as Schauder-Wexler-Raz criterion. This is a generalization of Wexler-Raz

criterion derived in [30] and [31]. The criterion says when we can say that certain pairs give

Gabor-Schauder frames by checking an algebraic equation on the adjoint lattice. We conclude by

deriving the following result, which we call partial Schauder Ron-Shen duality. Note that for Hilbert

spaces, the theorem is if and only if’ (see [30] and [31]).

Theorem 3.10. Let Λ be a subgroup of G × Ĝ and τ ∈ Co(G), f ∈ (Co(G))∗. If

({ f (π(λ)−1)}λ∈Λ, {π(λ)τ}λ∈Λ) is a Gabor-Schauder frame for Co(G), then both sets {π(µ)−1τ}µ∈Λ0 and

{ f (π(µ)−1)}µ∈Λ0 are linearly independent.

Proof. Without loss of generality we may assume that S f ,τ,Λ = I
Co(G) . Now Theorem 3.9 says that

f (π(µ)−1τ) =
o(G)

o(Λ)
δµ,0, ∀µ ∈ Λ0.

Let λ, µ ∈ Λ0 be such that λ 6= µ. Then, since Λ0 is a group, we get that f (π(λ)−1π(µ)−1τ) = 0. We

now suppose that ∑µ∈Λ0 cµπ(µ)−1τ = 0 for some cµ ∈ C. Then for each λ ∈ Λ0, we have

0 = f


π(λ)−1


 ∑

µ∈Λ0

cµπ(µ)−1τ




 = ∑

µ∈Λ0

cµ f (π(λ)−1π(µ)−1τ) = cλ
o(G)

o(Λ)
.

Therefore {π(λ)τ}λ∈Λ0 is linearly independent. On the other hand, let ∑µ∈Λ0 dµ f (π(µ)−1) = 0 for

some dµ ∈ C. Then for each λ ∈ Λ0, we have

0 = ∑
µ∈Λ0

dµ f (π(µ)−1π(λ)−1τ) = dλ
o(G)

o(Λ)
.

Therefore { f (π(µ)−1)}µ∈Λ0 is linearly independent.
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