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Abstract: Gravity-aided inertial navigation system (GAINS) is an important development in au- 1

tonomous underwater vehicle (AUV) navigation. An effective path planning algorithm plays an 2

important role in the performance of navigation in long-term underwater missions. By combining the 3

gravity information obtained at each position with the error information from the INS, the posterior 4

Cramér-Rao bound (PCRB) of GAINS is derived in this paper. The PCRB is the estimated lower 5

bound of position variance for navigation along the planned trajectory. And the sum of PCRB is used 6

as the minimum cost from the initial state to the current state in the state space, and the position error 7

prediction variance of inertial navigation system (INS) is used as the minimum estimated cost of the 8

path from the current state to the goal state in the A* algorithm. Thus, a path planning method with 9

optimal navigation accuracy is proposed. According to simulation results, traveling along the path 10

planed by the proposed method can rapidly improve the positioning accuracy while consuming just 11

slightly more distance. Even when measuring noise changes, the planned path can still maintain 12

optimal positioning accuracy, and high positioning accuracy is possible for any trajectory located 13

within a certain range of the planned path. 14

Keywords: autonomous underwater vehicle (AUV); Gravity-aided inertial navigation system (GAINS); 15

A* optimization; path planning; posterior Cramér-Rao bound (PCRB) 16

1. Introduction 17

Autonomous underwater vehicles (AUV) usually use Inertial Navigation System (INS) 18

as the primary navigation device, but INS requires regular calibration to be able to perform 19

long-term missions. In underwater situation, traditional navigation methods (e.g., GPS) 20

are greatly limited due to the complexity and variability in the underwater environment[1– 21

3]. In contrast, the Gravity-Aided Inertial Navigation System (GAINS) is an advanced 22

technology used for underwater navigation that enables highly accurate position estimation 23

without emitting or receiving signals. To achieve this objective, GAINS utilizes a specially 24

designed navigation algorithm to compare the gravimeter’s measurements of gravity 25

anomalies at the current position with the stored gravity field data to effectively correct 26

the INS position.[4–7]. However, the variability of the gravity field significantly affects the 27

performance of GAINS, making the selection of suitable navigation areas crucial[8,9]. In 28

this regard, researchers have explored several quantitative characteristics such as variance, 29

roughness, slope, coefficient of variation, fractal dimension, and their combinations to 30

determine the efficiency of using gravity fields for navigation[10–12]. The navigation 31

map is then divided into two categories : informative (suitable for positioning) and non- 32

informative (not suitable for positioning) based on empirical thresholds[13]. Informative 33

areas are free to move around, while non-informative areas are to be avoided. And Then, 34

intelligent optimization algorithms like genetic algorithms, simulated annealing algorithms, 35

ant colony algorithms, and particle swarm algorithms, etc. are employed to optimize the 36

underwater path based on the position and motion information of underwater objects[14– 37

18]. Those approaches ensure optimal obstacle avoidance and the shortest possible paths 38

for efficient navigation. 39
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Previous path planning algorithms for GAINS often assumed that non-informative 40

areas were off-limits, leading to significant navigation errors. This assumption, however, 41

may not always hold true. Unsuitable places do not necessarily equate to restricted areas, 42

for example, a flat area unsuitable for navigation but without real obstacles. Furthermore, 43

research suggests that areas suitable for positioning based on local characteristics are 44

typically discrete and small, making it difficult to find connected informative areas [13, 45

19,20]. As a result, path planning using this approach is impossible in arbitrary sea areas, 46

particularly when non-informative areas surround the start or endpoints. Therefore, the 47

main objective of this study is to minimize the positioning error between departure and 48

destination, rather than focusing on factors such as avoiding islands or maintaining motion 49

control. 50

The performance of path planning is closely related to the navigation algorithm. 51

Therefore, in this paper, the optimal paths will be considered by the results of the navigation 52

filtering algorithm. The posterior Cramér-Rao bound (PCRB) integrates information from 53

kinetics and measurement models; therefore, it comprises all sensor-obtained gravity field 54

information without the need for actually implementing the filtering algorithm[21–26]. A* 55

algorithm is one of the most common heuristic search algorithms, swiftly investigating a 56

possible set of solutions for a given issue using heuristic search techniques, focusing more 57

on the end answer than on sub-problems, which enables it to produce pathways fast and 58

with improved results[27,28]. This study uses PCRB as the cost function of A *, precisely 59

fusing the path planning and navigation filter estimation results. The characteristics of 60

the gravity fields at departure and destination are not limitations on the proposed path- 61

planning method. This study doesn’t add distance directly to the cost or heuristic function 62

like most shortest path trajectory designs do. Instead, the distance factor is included in 63

the INS error divergence variance. Hence, this method can plan the quickest path while 64

maintaining positioning accuracy. 65

The following arrangement of this paper is as follows. Section II derives the PCRB 66

model of GAINS, and Section III combines PCRB with A* to form the PCRB-based A* path 67

planning method. In Section IV, two simulation tests are done to see if the two planned 68

paths are the best ones. Finally, conclusions are given in Section V. 69

2. PCRB for Gravity-Aided Navigation System 70

In most cases, GAINS is modeled as a hidden Markov model (HMM), as shown in 71

Fig. 1, i.e., the observation depends only on the state of the Markov chain at that moment, 72

independent of the other states; the current moment state is related only to the previous 73

moment. The mathematical model of GAINS can be reduced to the following two discrete-
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Figure 1. Hidden Markov Model for GAINS
74

time equations.The first equation describes the evolution of the state vector, i.e., the INS 75

error propagation process 76

xt+1 = xt + ut + vt (1)

where xt is the state vector indicating the carrier position. ut represents the state increment 77

of INS. vt represents the state noise from IMU measurement error, Gaussian distribution, 78

and with covariance matrix Qt. 79
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The second equation describes the observed values of the gravity sensor and the 80

comparison with the reference map values by interpolation 81

yt = h(xt) + εt(xt) + wt (2)

where yt is the measurement of the gravimeter at time t, and h denotes the interpolation 82

method of the gravity sensors model combined with the reference data map, usually 83

sampling bilinear or Kriging interpolation. wt denotes the measurement noise of the 84

geophysical sensor, which is assumed to be additive Gaussian white noise. εt denotes the 85

reference data mapping error. Considering this error covariance depending on the location, 86

the variance matrix of the total observation error modeled as (3) [29]. 87

Rt =
σ2

m + C0β2δ4

4
+ σ2

g (3)

where Rt includes a combination of sensor measurements and map uncertainty. δ is the 88

map spatial resolution, σ2
m is the map mapping error variance. C0 is the variance of the 89

local gravity anomaly. β is the inverse of the square of the correlation distance, and σ2
g is 90

the gravimeter measurement error variance. 91

Under the assumption of additive Gaussian white noise, vt and wt, are assumed to 92

be independent of each other, and independent of x0. (1), (2) explicitly determine the 93

joint probability distribution p(Xt,Yt) of Xt(x0, · · · , xt) and Yt(y0, · · · , yt) at any moment 94

t with a known p(x0). 95

p(Xt+1,Yt+1) =p(Xt,Yt) · p(xt+1 | Xt,Yt) · p(yt+1 | xt+1,Xt,Yt)

=p(Xt,Yt) · p(xt+1 | xt) · p(yt+1 | xt+1)
(4)

where p(·) refers to the probability density of the variables described in the parameters of p. 96

The derivation of (4) makes use of the Markov property of the model i.e. p(xt+1 | Xt,Yt) = 97

p(xt+1 | xt), and p(yt+1 | xt+1,Xt,Yt) = p(yt+1 | xt+1). 98

PCRB is a lower bound on the mean squared error (MSE) of a deterministic parameter 99

estimate in parameter estimation, defined as the variance of any unbiased estimate being at 100

least larger than the inverse of the Fisher information. Whenever the estimate X̂t is based 101

on the sequence Yt, the mean square error for any unbiased estimator X̂t should satisfy the 102

following condition. 103

E
((

X̂t −Xt

)(
X̂t −Xt

)T
)
≥ Pt = J−1

t (5)

where Jt is the Fisher information matrix. 104

Jt = E
(
−∆Xt

Xt
log p(Yt,Xt)

)
(6)

where log p(Yt,Xt) denotes the joint probability density of Xt and Yt. Here and below, 105

∇ is the operator of the first order derivative, and ∆ is the operator of the second order 106

derivative. 107

Let Pt|t denote the PCRB of the state xt determined for a given measurement Yt. By 108

decomposing the lower bound (5) into subblocks, the estimated covariance of xt is lower 109

bounded by the lower right block of Pt, i.e. 110

E

([
X̂t−1 −Xt−1

x̂t − xt

][
X̂t−1 −Xt−1

x̂t − xt

]T
)

≥
[

∗ ∗
∗ Pt|t

]
(7)
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Correspondingly, 111

Jt = E

{[
−∆Xt−1

Xt−1
−∆xt

Xt−1

−∆Xt−1
xt −∆xt

xt

]
log p(Yt,Xt)

}
=

[
At Bt
BT

t Ct

]
(8)

From (8) it follows that 112

P−1
t|t = Ct − BT

t A−1
t Bt (9)

Insert (4) into (8) to get the recursive update 113

Jt+1 = E

−

 ∆Xt−1
Xt−1

∆xt
Xt−1

∆xt+1
Xt−1

∆Xt−1
xt ∆xt

xt ∆xt+1
xt

∆Xt−1
xt+1 ∆xt

xt+1 ∆xt+1
xt+1

 log p(Yt+1,Xt+1)

 =

 At Bt 0
BT

t Ct + Dt St
0 ST

t Zt


(10)

where 0 denotes the block matrix of zero entries of appropriate dimensionality. 114

Comparing with (9), it follows that 115

P−1
t+1|t+1 = Qt −

[
0 ST

t
][ At Bt

BT
t Ct + Dt

]−1[ 0
St

]
= Zt − ST

t

(
P−1

t|t + Dt

)−1
St (11)

Under the assumption that the noise wn and vn of (1) and (2) are zero-mean Gaussian and 116

invertible covariance matrices, Qt and Rt, respectively, therefore 117

− log p(xt+1 | xt) = c1 +
1
2
[xt+1 − xt]

TQ−1
t [xt+1 − xt] (12)

− log p(yt | xt) = c2 +
1
2
[yt − h(xt)]

T R−1
t [yt − h(xt)] (13)

where c1 and c2 are constants. Thus, in the equation (11), 118

Dt =E
(
−∆xt

xt log p(xt+1 | xt)
)
= Q−1

t (14)

St =E
(
−∆xt+1

xt log p(xt+1 | xt)
)
= −Q−1

t (15)

Zt =E
(
−∆xt+1

xt+1 log p(xt+1 | xt)
)
+ E

(
−∆xt+1

xt+1 log p(yt+1 | xt+1)
)

=Q−1
t + HT

t+1R−1
t+1Ht+1 (16)

where Ht = ∇h(xt) and Ht is the gradient of h(·) at the true position at time t. In the above 119

derivation, the expectation of both the measurement noise and the position is 0, so the 120

expectation E(•) is computed only at the current true position. 121

Bringing the equation (14)-(16) into the equation (11) gives 122

Pt+1|t+1 =

[
HT

t+1R−1
t+1Ht+1 + Q−1

t − Q−1
t

(
P−1

t|t + Q−1
t

)−1
Q−1

t

]−1

=

[
HT

t+1R−1
t+1Ht+1 +

[
Qt + Pt|t

]−1
]−1

(17)

The derivation of (17) makes use of the Woodbury matrix identity[30]. 123

(A + UCV)−1 = A−1 − A−1U
(

C−1 + VA−1U
)−1

VA−1 (18)
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HT
t R−1

t Ht in (17) is only related to the position and represents the gravitational positioning 124

information obtained from the map, and the square root of the trace of this matrix is used 125

as the scalar navigation information map. 126

Mt =
√

tr{HT
t R−1

t Ht} (19)

A further expansion of equation (17) using the Woodbury matrix identity gives a more 127

interesting form 128

Pt+1|t = Pt|t + Qt (20)

Pt+1|t+1 = Pt+1|t − Pt+1|tHT
t+1

(
Ht+1Pt+1|tHT

t+1 + Rt+1

)−1
Ht+1Pt+1|t (21)

(20) and (21) constitute the recursive form of the PCRB for the state estimation in GAINS, 129

where (20) is the one-step prediction covariance and (21) is the posterior filter covariance. 130

The recursively estimated PCRB is consistent with the error covariance Riccati recursion of 131

the Kalman filter to the system by linearizing the model around the true state sequence. 132

This also indicates that the Kalman filter can obtain the optimal solution under the 133

assumption of linear Gaussian white noise, and its state covariance can reach the PCRB. 134

3. A* Algorithm Path Planning Design Based on PCRB 135

The A* algorithm is a heuristic search algorithm that is recursive in nature and can 136

follow certain steps, starting from the original state and gradually searching to the optimal 137

solution. The A* algorithm uses the overhead G between nodes in the graph, and a heuristic 138

function H related to the current task to find the optimal path. 139

F(n) = G(n) + H(n) (22)

Where, F(n) is the valuation function of a node, which indicates the combined priority of 140

that node considered in the selection of node n. G(n) denotes the actual generation value 141

from the starting point to the current node. H(n) denotes the cost estimate of the current 142

node to the target point, which is the prediction function. 143

The computation in PCRB is in the time domain and the A* algorithm works in 144

the spatial domain. To facilitate the combination of PCRB with the A* algorithm, the 145

coordinates at t time are assumed to be n. Correspondingly, the estimated position PCRB 146

in n coordinates is Pn|n. The INS position error dispersion is assumed to be time-dependent 147

only, and the coefficient of linear drift of the position error variance with time is Qt. Denote 148

the Euclidean distance from the current point (xc, x f ) to the parent node (x f , x f ) by d f , and 149

denote the distance from the current point to the target node by dg to denote the Euclidean 150

distance from the current point to the target node. 151

d f =
√
(xc − x f )2 + (yc − y f )2 (23)

dg =
√
(xc − xg)2 + (yc − yg)2 (24)

The position error uncertainty of INS grows linearly over a certain time period, and the 152

relationship between Qn and distance is as follows. 153

Qn = Qt · d f /V(n) (25)

where V(n) is the average velocity of the carrier during the sampling interval. 154

The main goal of this paper is to identify the path that minimizes the total posterior 155

filtering errors of navigation at each current waypoint. We accomplish this by using the 156
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PCRB Pn|n at the present position n as the cost function G(n) for the current node in the A 157

algorithm. 158

Pn+1|n = Pn|n + Qn (26)

Pn+1|n+1 = Pn+1|n − Pn+1|nHn
n+1

(
Hn+1Pn+1|n HT

n+1 + Rn+1

)−1
Hn+1Pn+1|n (27)

(26) represents the navigation error covariance of the one-step prediction, and (27) rep- 159

resents the correction of the one-step prediction by the posterior information from the 160

reweighted force measurement to obtain the PCRB. Obviously the Pn|n matrix is a square 161

matrix whose diagonal elements represent the error variance in two orthogonal directions, 162

X direction (eastward) and Y direction (northward). In this paper, the sum of the traces 163

of the PCRB of the localization error at each point on the trajectory is used as a metric to 164

quantify the navigation accuracy of this path, i.e. 165

G(n + 1) = G(n) +
√

tr{Pn+1|n+1} (28)

where tr{•} means trace operation. 166

The heuristic function is the expected navigation error for the increase of the current 167

position to the target position. Based on the fact that the INS position error can be considered 168

as linearly divergent in the short term, the heuristic function is set to 169

H(n) =
√

tr{Qt · dg/V(n)} (29)

Assuming that the current node is n and the actual cost is G(n), the complete computation 170

steps of F(n + 1) for its child node n + 1 are as follows. 171

1) Calculate the distance dg from the child node to the target node according to equation 172

(24), and bring in equation (29) to calculate the estimated value H(n + 1). 173

2) The distance d f from the child node to the parent node is calculated according to 174

equation (23) and brought into equation (25) to get Qn. 175

3) Substitute Qn into equation (26) to get Pn+1|n+1 then bring (28) to calculate G(n + 1) 176

of the child nodes. 177

4) Combining the obtained G(n + 1) and H(n + 1), 178

F(n + 1) = G(n + 1) + H(n + 1) (30)

The A* algorithm controls the points in the map by setting the open list and close list. 179

The pseudo code table of PCRB-based A* path planning algorithm is as follows: 180

4. Simulation 181

The numerical gravity map of the simulation shown in Fig. 2 is derived from the global 182

ocean gravity field 1′ × 1′ model produced by Sandwell’s team [31], and the accuracy of 183

the gravity field of the selected experimental region is better than 1.7mGal. The maximum 184

gravity anomaly in the region is 40.8mGal and the minimum is −37.2mGal. The gravity 185

anomaly is highly undulating and contains various topographic features such as peaks, 186

slopes, and flats, which are suitable for path planning analysis. Since the actual horizontal 187

distances of longitude and 1′ latitude of 1′ are different, in order to unify the navigation 188

errors, this paper converts the earth coordinates into geographic coordinates centered on 189

the map center position through equation (31) and equation (32) 190

dE = (λ1 − λ0) cos(φ0)Rnπ/180 (31)

dN = (φ1 − φ0)Rmπ/180 (32)

where dE is the eastward distance from the center of the map and dN is the northward 191

distance from the center of the map. φ0 is the latitude of the coordinate origin. Earth’s 192
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Add the start point s to the open list and set the initial value F(0) = 0.
Repeat the following procedure:
a) Iterate through the open list to find the node with the smallest F value and use it as

the current node n to be processed.
b) Moves the node to be processed to the close list.
c) For each of 8 grid points adjacent to the current node:

i Ignore if it is already in the closed list;
ii If it is not in the open list, add it and set the current node as its parent,

recording the F, G and H values of this node;
iii If it is already in the open list, check if this path (i.e., via the current node

to this node) is better. Using the trace of G as a reference, a smaller value
indicates that this path has a smaller localization covariance. If so, set its
parent node to the current node and recalculate its G value and F value. The
open list is sorted by F values and needs to be reordered after the change.

d) Stop, when
i) The endpoint is added to the open list, and the path is found at this point.
ii) The find focus fails and the open list is empty, when there is no path.

e) Let n = n + 1 and deal with the next node.
Starting from the end point, each node moves along its parent node until the start point,
saving the path.

radius (long semi-axis) Re = 6378137m. Oblateness of the earth f = 1/298.3. The radius of 193

principal curvature of the meridian circle Rm = Re(1 − 2 f + 3 f (sin(φ0))
2). The radius of 194

the Earth’s circle of latitude Rn = Re(1 + f (sin(φ0))
2). And then the origin is shifted to the 195

lower left corner of the map to get the figure 2,and the spatial resolution of the map after 196

interpolation is 1km.
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Figure 2. Simulation map
197
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The measure of trajectory performance uses the Root Mean Square Error (RMSE), 198

which is the square root of the ratio of the square of the deviation of the predicted value 199

from the true value to the number of observations n. 200

RMSE =

√
1
N

n

∑
i=1

({x̂i} − {xi}) (33)

where {x̂i} is the estimated value of the trajectory heading coordinates, {xi} is the true value 201

of the trajectory heading coordinates, and N is the number of Monte Carlo experiments. 202

The estimated coordinates x̂ are calculated using the SITAN algorithm, which is 203

essentially an extended Kalman filter algorithm. The state error propagation is 204

∆xt+1 = ∆xt + vt (34)

where ∆xt is the position error of INS, i.e. x̂t = xINS − ∆xt. 205

SITAN fits a linear observation model using stochastic linearization techniques 206

zt = h(xt)− yt ≈ H∆xt + ε (35)

The fitting expression for H = [hλ, hφ] in the observed model is 207

hλ =
1

L(2L + 1)(L + 1)δ


n=i−1
m=j+L

∑
n=i−L
m=j−L

∆gM(n, m)−

n=i+L
m=j+L

∑
n=i+1
m=j−L

∆gm(n, m)

 (36)

hφ =
1

L(2L + 1)(L + 1)δ


n=i+L
m=j−1

∑
n=i−L
m=j−L

∆gM(n, m)−

n=i+L
m=j+L

∑
n=i−L
m=j+1

∆gm(n, m)

 (37)

(36) and (37) describe the process of calculating the observation matrix H for gravity 208

anomaly data. The variables used are: (n, m) which represents the grid of the INS indicator 209

position on the digital gravity map; ∆gM = h(xt) which is the gravity anomaly extracted 210

from the digital map based on the INS indicated position; ∆gm = yt which is the gravity 211

anomaly measured in real-time; δ which is the spacial resolution of the digital map; and L 212

which represents the number of grid points in the length of the fitted interval. 213

The center point of the fitted region is the INS position, and the size of the region is 214

determined by the position error covariance of INS. To calculate the observation matrix H, 215

gravity anomaly values of all grid points in the region are used. Generally, a more accurate 216

INS indicator position leads to a smaller INS confidence interval, resulting in a more precise 217

linearized observation model. 218

4.1. Test 1 219

The starting point (start1) of Test 1 in the planned path is located at (58, 73) in Fig. 220

2. The point is located within the slope area, where contour lines are densely distributed. 221

The ending point, on the other hand, has coordinates of (65, 9). Table 1 lists the simulation 222

conditions.

Table 1. Simulation parameters setting

Carrier velocity V 5m/s
Initial position covariance P(x0) diag([1, 1])km2/s
Process noise covariance Qt diag([0.01, 0.01]2)m2/s
Measurement noise covariance Rt 4mGal2

Map Spatial Resolution δ 1km
Number of Monte Carlo runs 1000
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Fig.3 displays the contours of Mn, calculated from equation (19). A comparison 223

between this and the gravity anomaly contours in Fig. 2 reveals that regions with denser 224

contours correspond to larger Mn. This suggests that more gravity information is available 225

in such areas. 226

Following the proposed method, the planned path intersects the region with maximum 227

information. To determine the optimality of the planned path, we established several 228

equally spaced curves for comparison, including the shortest Direct path and seven others 229

labelled L3, L4, ... ,L9, from left to right. The paths are shown in Fig. 3. We conducted 230

1000 random simulations using the Monte Carlo method and identical parameters as 231

those outlined in Table 1. Each trajectory was divided into 100 sampling points by equal 232

Euclidean distances.
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Figure 3. Planed path, Direct path, and trajectory L3, L4, . . . , L9 in Test 1
233

Fig. 4 provides a comparison of the localization accuracy achieved using different 234

trajectories in Test 1. As can be seen from Fig. 4, the RMSE of all paths decreases rapidly 235

during the initial stage since the starting point 1 is located in a region with high Mn 236

values. However, the planned trajectory outperforms all other paths in terms of localization 237

accuracy. 238

The black curve represents the planned path, while the gray curve denotes the straight- 239

line path. Although the planned trajectory covers approximately 10km more distance than 240

the straight-line trajectory, the RMSE converges fastest with the path length when sailing 241

along the planned path. Moreover, the RMSE remains the lowest among all paths, with 242

convergence accuracy stabilizing around 0.1km after reaching 20km. 243

The sum of RMSE of the trajectories are shown in Fig. 5. Among all the trajectories, L8 244

shows the closest trace to the planned path, including partial path overlap. However, the 245

trend of RMSE for these four trajectories is similar, with the planned trajectory exhibiting 246

the smallest value. L7 and L9 also show good positioning accuracy, indicating that the 247

trajectories near the planned path can also achieve high localization accuracy. Nevertheless, 248

the planned path remains the better choice as it exhibits the highest positioning accuracy. 249

Furthermore, the planned path maintains reliable positioning accuracy between L7 and L9, 250

even if it deviates from the intended route. This ensures that the carrier does not get lost, 251

reducing the risk of losing the carrier significantly. The planned trajectory is the optimal 252
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choice since it offers both high localization accuracy and reliability in maintaining this 253

accuracy, especially in regions with high Mn values. 254

4.2. Test 2 255

Test 1 indicates that the RMSE of all trajectories decreases rapidly during the initial 256

phase because the starting point is located in a gravity informative region. Test 2 changed 257

the starting point (start2) to (30, 58), situated at a relatively gentle seabed. As shown in Fig. 258

6, this location has a smaller Mn value, indicating that less gravity information can be used 259

at the initial position. In the figure, the black curve represents the planned trajectory, while 260

the gray curve represents the direct trajectory. 261

To further Test the proposed method, we generated 10 additional paths between 262

the starting and ending points, with each path having a lateral distance of 5.5km. All 12 263

trajectories are depicted in Fig. 6, where the black curve corresponds to the planned path, 264

while the gray Direct path represents the shortest path directly connecting the starting and 265

ending points. We named these newly added paths from left to right as L3, L4, ..., L12, and 266

each trajectory is divided into 100 sampling points by equal Euclidean distance.
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Figure 6. Planned path, Direct path, and trajectories L3, L4, . . . , L12 in Test 2
267

Fig. 6 displays the distribution of 12 trajectories. The RMSE of the position error for 268

these trajectories is plotted in Fig. 7, while the sum of RMSE values for each trajectory 269

is presented in Fig. 8. The starting point of Test 2 is situated in an area with a small Mn 270

value. In addition to the planned trajectory, there are two lines, L3 and L4, through the 271

region with large Mn values on the left areas. Among all lines, L4 shows a long overlap 272

with the planned trajectory during its initial phase. From Fig. 7, it can be observed that the 273

RMSE of the planned trajectory, L3, and L4 decreases the fastest. These three trajectories 274

have an RMSE of approximately 0.75km at a trajectory length of 15 km. Line L5 also passes 275

through a large Mn area but not as much as L3, L4, and the planned trajectory. Therefore, 276

its positioning error decreases faster than other trajectories after the three. 277

However, the remaining trajectories, L6-L12 and the direct trajectory, exhibit a bias 278

towards the east in the beginning phase, resulting in slower decrease of their position errors. 279

The RMSE of the planned trajectory reaches minimum at 50km, followed by maintaining 280

convergence. The speed of convergence and convergence down line of the planned trajec- 281

tory are significantly better than the other trajectories. Furthermore, the sum of RMSE of 282

the planned trajectory, presented in Fig8 is 42km, which makes it the optimal path among 283
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all 12 trajectories. L4 has the second-best performance, with an RMSE of 44km. On the 284

other hand, the direct trajectory exhibits a disappointing performance, with a large position 285

error located in the region of very small Mn values in the beginning stage. Its RMSE 286

curve decreases slowly, and the sum of RMSE is the largest among all trajectories, reaching 287

80km. Hence, these results indicate that the positioning accuracy in the initial stage holds a 288

significant influence on the RMSE of the entire path. 289

4.3. The impact of Changing the Measurement Noise on the Paths 290

In practice, the statistical characteristics of gyroscope and accelerometer noise in 291

inertial navigation systems are usually known and stable after careful calibration, so the 292

process noise is stable. Therefore, the main factor to consider is the impact of gravity 293

measurement errors. And since gravity measurement noise is affected by carrier motion, 294

waves, and inaccurate map modeling, its variance is difficult to estimate accurately, so path 295

planning should be considered to adapt to different measurement noise. The calculation of 296

the sum of RMSE of two experimental trajectories is carried out by changing the standard 297

deviation of the measurement noise
√

Rt to obtain Table 2.

Table 2. Sum of RMSE of the trajectories in Test 1
√

Rt
(mGal)

sum of RMSE (km)
Planed Direct L3 L4 L5 L6 L7 L8 L9

1 8.1 12.8 21.6 19.5 13.8 10.0 9.5 9.0 9.6
2 14.4 22.8 38.0 34.3 24.6 17.7 16.7 15.7 16.8
3 20.9 33.4 56.0 50.4 36.3 25.7 24.0 22.5 24.2
4 27.4 44.6 75.6 67.1 49.2 34.0 31.4 29.3 31.7

298

Table 3. Sum of RMSE of the trajectories in Test 2

√
Rt

(mGal)
sum of RMSE (km)

Planed Direct L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
1 30.4 66.4 40.0 31.3 35.8 41.5 54.1 52.5 53.9 49.3 44.7 50.0
2 41.8 78.5 55.4 43.4 46.7 54.3 67.6 64.2 68.6 62.8 63.0 67.7
3 54.6 93.3 73.2 56.6 59.0 68.7 84.5 79.4 86.3 80.5 84.3 89.0
4 68.1 110.0 92.5 70.7 72.2 84.7 104.0 97.1 106.0 101.0 108.0 112.2

In an overall view in table 2 and table 3, increasing the amount of measurement noise 299

will increase the lower limit of positioning error, but will not change the ranking of the 300

lower limit size of the curve, so the planned trajectory always has higher positioning 301

accuracy than the other curves. Therefore, the planned trajectory is always optimal. And 302

with the increase of the measurement noise, the improvement of the localization accuracy 303

of the planned trajectory is more obvious. The optimality of the planned trajectory is not 304

affected by gravimetric measurements, so that the planned trajectory can be navigated in 305

one determined ocean mission to achieve the optimal navigation accuracy. In addition, 306

the RMSE of a spatially close trajectory to the planned path is also close to the RMSE of 307

the planned trajectory. Therefore, even if the real path deviates from the planned one by a 308

small amount, it is possible to obtain a high positioning accuracy by gravity information. 309

5. Conclusion 310

This article proposed a method to plan a path that aims for the best positioning 311

accuracy by using the Postiori Cramer-Rao bound of Gravity-aided Inertial Navigation 312

System as the cost value in the A* algorithm. This path planning method is not limited 313

by the ocean gravity field and can plan the trajectory with the minimum navigation error 314

between any start and end points. The next work is to find the set of trajectories within 315

a certain error requirement in which the carrier can achieve higher positioning accuracy 316

without strictly following a certain trajectory, thereby improving the mobility of the carrier. 317
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