Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2023 d0i:10.20944/preprints202304.0060.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle

K. MAHESH KRISHNA
Post Doctoral Fellow
Statistics and Mathematics Unit
Indian Statistical Institute, Bangalore Centre
Karnataka 560 059, India
Email: kmaheshak@gmail.com
Date: April 5, 2023

Abstract: Let ({f;}}_,{7;}=1) and ({gr}jL,, {wk}}L,) be p-Schauder frames for a finite dimensional
Banach space X'. Then for every € X'\ {0}, we show that
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where
O : X >z (f5(2)j=y € ([n]); 04 : X 22— (g(2))iy € P([m])

and ¢ is the conjugate index of p. We call Inequality (1) as Functional Donoho-Stark-Elad-Bruckstein-
Ricaud-Torrésani Uncertainty Principle. Inequality improves Ricaud-Torrésani uncertainty
principle [IEEE Trans. Inform. Theory, 2013]. In particular, it improves Elad-Bruckstein uncertainty
principle [IEEE Trans. Inform. Theory, 2002] and Donoho-Stark uncertainty principle [STAM J. Appl.
Math., 1989].
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1. INTRODUCTION

While Heisenberg’s uncertainty principle [3] (English translation of original 1927 paper) is one of the
greatest inequalities in the first half of the 20 century, Donoho-stark uncertainty principle [1] is one of the
greatest inequalities in the second half of the 20 century. For h € C¢, let ||h||o be the number of nonzero

entries in h. Let": C% — C¢ be the Fourier transform.

Theorem 1.1. (Donoho-Stark Uncertainty Prinlaiple) For every d € N, 0
~ N2
hllo + [|h ~
&) (M) > lolfllo > d. A€ T\ {0},

In 2002, Elad and Bruckstein generalized Inequality (2) to pairs of orthonormal bases [2]. To state the
result we need some notations. Given a collection {7;}”_; in a finite dimensional Hilbert space H over K
(R or C), we define

O : H > hs Oh = (b)), € K™
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Theorem 1.2. (Elad-Bruckstein Uncertainty Principle) @/ Let {m;}7_;, {w;}j—, be two orthonor-

mal bases for a finite dimensional Hilbert space H. Then

<||9Th||o + [16nllo

2
e R

— |<Tj7w]€>|2, Yh € H\ {0}.
1<j,k<n
Note that Theorem[I.1]follows from Theorem[I.2] In 2013, Ricaud and Torrésani showed that orthonormal

bases in Theorem can be improved to Parseval frames @

Theorem 1.3. (Ricaud-Torrésani Uncertainty Principle) [@ Let {7;}}_1, {w;}j—; be two Parseval
frames for a finite dimensional Hilbert space H. Then

<||9Th||0 + ||9whH0
2
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In this paper, we derive uncertainty principle for finite dimensional Banach spaces which contains Theorem

[[-3] as a particular case.

2. FUNCTIONAL DONOHO-STARK-ELAD-BRUCKSTEIN-RICAUD-TORRESANI UNCERTAINTY PRINCIPLE

In the paper, K denotes C or R and X denotes a finite dimensional Banach space over K. Identity
operator on & is denoted by Iy. Dual of X is denoted by A*. Whenever 1 < p < 0o, ¢ denotes conjugate
index of p. For d € N, standard finite dimensional Banach space K¢ over K equipped with standard || - |,
norm is denoted by ¢7([d]). Canonical basis for K¢ is denoted by {d,}7_, and {¢;}}_; be the coordinate
functionals associated with {(2}?21. We need the following variant of p-approximate Schauder frames
defined by Krishna and Johnson in .

Definition 2.1. Let X' be a finite dimensional Banach space over K. Let {7;}]_; be a collection in
X and {f;}}_, be a sequence in X*. The pair ({f;}}_1,{7;}}=1) is said to be a p-Schauder frame
(1< p<oo) for X if the following conditions hold.

(i) For every x € X,

lzlP = If ()P
j=1

(ii) For every x € X,

x = Z fi(x)Tj.
j=1
We easily see that condition (i) in Definition says that the map
O : X 32— (f(x))j=1 € €([n])

is a linear isometry. Like Holub’s characterization of frames for Hilbert spaces , following theorem

characterizes p-Schauder frames.
Theorem 2.2. A pair ({f;}7_;,{7;}}—1) is a p-Schauder frame for X if and only if
fi=qU, 7=V, Vi=1,...n,
where U : X — (P([n]), V : €P([n]) — X are linear operators such that VU = Iy and U is an isometry.

Following is the crucial result of this paper.
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Theorem 2.3. (Functional Donoho-Stark-Elad-Bruckstein-Ricaud- Torrésani Uncertainty Prin-
ciple) Let ({f;}7_1,{m;}7—1) and ({gr}7y, {wk}ie,) be p-Schauder frames for a Banach space X. Then
for every x € X\ {0}, we have

1
- max | fj(wr)]
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S)sn,lskRsm

3) 10215 65215 > and. (10,5105 >

Proof. Let x € X \ {0} and ¢ be the conjugate index of p. First using 0 is an isometry and later using

04 is an isometry, we get

[el[” = 052" = Z fi@P =Y |fi@P

j€Esupp(fsx)
m p P
SHD ') STIERY| B D) SABTT
j€supp(fsx) k=1 j€supp(fsx) k=1
p p
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On the other way, first using 6, is an isometry and 0 is an isometry, we get
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(]
Corollary 2.4. Theorem[1.3 follows from Theorem[2.3.
Proof. Let {7;}"_,, {w;}}_; be two Parseval frames for a finite dimensional Hilbert space H. Define
fitHoh—=(h1)eK;, gj:H>h— (hw;)eK, VI<j<n.
Then p=¢q =2, 0, =0y, 0, =04 and
[fi(wr)| = [wr, 73)], V1 <k <n.
(]

Theorem brings the following question.
Question 2.5. Givenp, m, n and a Banach space X, for which pairs of p-Schauder frames ({f;}7_1,{7;}}-1)

and ({gr iy, {wr i), we have equality in Inequality (@)?
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