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Abstract: Polymer single screw extrusion is a major industrial processing technique used to obtain 

plastics products. To assure high outputs, tight dimensional tolerances, and excellent product per-

formance, extruder screws may show different design characteristics. Barrier screws, which contain 

a second flight in the compression zone, have become quite popular as they promote and stabilize 

polymer melting. Therefore, it is important to design efficiently extruder screws and decide whether 

a conventional screw will do the job efficiently, or a barrier-screw should be considered instead. 

This work uses multi-objective evolutionary algorithms to design conventional and barrier screws 

(Maillefer screws will be studied) with optimized geometry. Processing of two polymers, Low Den-

sity Polyethylene and Polypropylene, is analyzed. A methodology based on the use of Artificial 

Intelligence (AI) techniques, namely data mining, decision making and evolutionary algorithms, is 

presented and utilized to obtain results with practical significance, based on relevant performance 

measures (objectives) used in the optimization. For the various case studies selected, Maillefer 

screws were generally advantageous for processing LDPE, while for PP the use of both types of 

screws would be feasible. 

Keywords: Polymer Extrusion; Barrier Screws; Multi-Objective Optimization; Data Mining, Deci-

sion Making; Number of Objectives reduction 

 

1. Introduction 

Plasticating single screw extruders are widely used in industry for the manufacture 

of an extensive array of plastics products such as pipes, tubing, profiles, film and sheet, 

electrical wire, filaments and yarns. In simple terms, an extruder consists essentially of an 

Archimedes-type screw rotating at constant frequency inside a hollow heated barrel, 

which also contains at one end a lateral aperture for feeding the polymer. A shaping die 

is connected to the opposite end of the barrel. As the screw rotates, the solid polymer 

depositing on the screw channel inlet is dragged forward, progressively melts and is 

forced to flow through the die. As new and more complex polymer systems began to be 

used (e.g., polymer blends, highly filled polymers, nanocomposites, biodegradable com-

pounds), and more challenging requirements were established (higher outputs, tighter 

dimensional tolerances, better product consistency), the geometry of extrusion screws 

evolved considerably. Early screws had a short length to diameter ratio (L/D) and con-

tained three geometric zones with different channel depths, commonly denoted as feed, 

compression and metering, which are associated with the solids conveying, melting and 
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melt conveying stages, respectively. However, this simple design evidenced limitations 

in terms of melting efficiency, dynamic stability and mixing ability, which progressively 

led to longer screws, the eventual use of grooved barrels, the insertion of mixing zones in 

the metering zone, and the development of barrier screws [1,2].  

Barrier screws contain a second flight in the compression zone. In this way, they seg-

regate the solid bed from the melt pool during melting, thus improving process stability, 

and increasing the contact area between the solid bed and the hot metallic channel, thus 

generating a higher melting rate. It has also been reported that these screws achieve better 

temperature homogeneity, but consume higher specific energy due to the additional 

stresses developing in the barrier gap [3]. Charles Maillefer [4] patented the first barrier 

screw (MBS) in 1959. It contains a second flight in the compression zone with a distinct 

helix angle, connecting the active and passive sides of the main flight. Since then, many 

other barrier designs have been developed (see, for example [5-11]), many finding practi-

cal industrial application in extrusion and/or injection moulding equipment. Rauwendaal 

[1, 2] assessed comparatively various barrier designs, assuming as major performance cri-

teria the evenness of the feed-barrier and barrier-metering geometric transitions, the nec-

essary melting length, the melt conveying capacity, and the manufacturing cost. The au-

thor concluded that the MBS screw is particularly adequate, albeit its relatively limited 

melting efficiency. The importance of the feed-barrier transition on flow stability was well 

illustrated by Park and Lyu [12] through the calculation of streamlines and velocity vec-

tors in this region. 

Several studies have demonstrated that the performance of barrier screws is rather 

sensitive to their design features and to the operating conditions selected [11-15]. It is gen-

erally presumed that the start of the barrier matches the inception of melting, and that the 

melting rate is identical to the rate of change of the cross-channel areas for solids and melt 

in the downchannel direction. However, in practice, a melt film between the barrel and 

the solid bed must develop upstream of the barrier to avoid plugging. Some designs of 

the feed-barrier transition are more capable of effectively separating the solid bed from 

the melt pool. If the barrier gap is too small, the molten film will accumulate as a melt pool 

in the solids channel, rather than crossing it and depositing in the melt channel. If the 

barrier is too wide (i.e., if the second flight is too thick), excessive shear heating at high 

screw speeds may develop. 

This work focuses on the design of barrier screws. Given the complexity of the task, 

purely empirical methods seem to have limited potential. On the other hand, direct use of 

numerical modelling routines may turn out to be costly and inefficient, as they rely on the 

capability of the user to gradually input geometries and/or operating conditions that are 

more appropriate. Also, to the authors’ knowledge, no specific design approaches for this 

type of screws have been proposed, i.e., where the modelling equations are employed in 

a prearranged sequence. The authors have recently published an extensive review on the 

optimization of extrusion and other processing techniques [16, 17]. These methodologies 

have been successfully used to design conventional single screw and co-rotating twin 

screw extruders Consequently, screw design will be approached here as a multi-optimi-

zation problem, whereby a process modelling package is used judiciously by an optimi-

zation algorithm in order to define a Pareto optimal solution. Moreover, a decision-mak-

ing methodology based on Artificial Intelligence (AI) techniques is applied to select the 

best screw. 

The paper is organized as follows: section 2 gives details concerning modelling of the 

extrusion process. In section 3, the methdology used for the optimization is presented in 

detail, while section 4 introduces the problem to be solved. The results are presented and 

discussed in section 5 and, finally, the conclusions are stated in section 6. 

2- Modelling of Plasticizing in Barrier Screws  

Several authors modelled melting in barrier screws, often with the aim of creating a 

tool capable of comparing the performance of various screw types and/or geometries. In-

gen Housz and Meijer [9] modified the original Tadmor’s melting model for conventional 
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screws, which stipulates that at any channel cross-section along the melting zone, the solid 

pellets are compacted and form a continuous bed separated from the inner barrel wall by 

a thin melt film, which in turn feeds a melt pool developing near to the active flight of the 

screw [10]. Considering a similar physical melting model, Amellal and Elbirli [11] solved 

numerically the various momentum and energy equations coupled to mass balances link-

ing the solid bed, the melt film near to the inner barrel wall, and the melt conveying zones, 

assuming a non-Newtonian non-isothermal approach and non-uniform solids velocity. 

Later, the existence of a melt film surrounding the solid bed was also taken into consider-

ation [18]. Han et al. [19, 20] extended this analysis by considering the presence of six 

functional regions at each channel cross-section, namely solid bed, melt conveying, and 

four melt films: at the barrier gap, near the inner barrel surface, near the screw root, and 

near to the screw flights.  

Concerning barrier screws for plasticating injection-molding, Kopplmayr et al. [21] 

took in the co-existence of five different regions: melt pool in the solids channel, melt pool 

in the melt channel, melt film between solids and inner barrel wall, leakage flow in the 

gap between the main flight and inner barrel wall, and melt flow in the barrier gap. A 

numerical approach based on finite-difference approximation schemes was developed, 

but little detail was given on the model implementation. With the aim of comparing the 

performance of various screw profiles, Park and Lyu [12] calculated pressure, tempera-

ture, velocity and streamlines in barrier screws, assuming non-Newtonian non-isothermal 

flow and using the Polyflow® commercial software. However, only the presence of melt 

was taken into consideration, even if the authors recognized – and observed experimen-

tally - that melt and solids coexist in the solids channel. Huang and Tseng [22] predicted 

fiber breakage in conventional and barrier screws in injection molding, but again the melt-

ing model adopted was not presented in sufficient detail to understand the underlying 

physical assumptions. 

In general, the above studies assumed that: i) the start of the barrier flight matches 

the onset of melting, and ii) the melting rate matches the down-channel rate of change of 

the cross-channel areas for solids or melt. As discussed in the previous section, experi-

mental evidence has shown the opposite. Therefore, changes either in the operating con-

ditions or in the screw geometry should jeopardize the validity of these assumptions. Con-

sequently, the authors proposed a melting model where the onset and rate of melting were 

decoupled from the start and position of the barrier [14], which is adopted in the present 

work. Based upon the melting analysis developed by Lindt and Elbirli [23] and Elbirli et 

al. [24] for a conventional screw, the model takes into account flow and heat transfer in 

seven regions of a general barrier screw cross-section, as schematized in Figure 1.  

The solids and melt channels are assumed as rectangular and stationary, the barrel 

slides at velocity Vb (with components in the transverse, Vbx, and down-channel, Vbz, 

directions). Region A represents the solid bed, regions C, D and E identify the melt films 

surrounding A, regions B and G designate the melt pools in the solids and melt channel, 

respectively, while F locates the melt film crossing the barrier gap. Melt leakage over the 

main flight tip is neglected. Flow in melt films is assumed as one-dimensional, flow in the 

melt pool is taken as two-dimensional. The progress of melting is modeled along sequen-

tial down-channel z increments. The mathematical description of each region involves 

different forms of the momentum and energy equations, together with the relevant 

boundary conditions, as well as force, heat and mass balances (see details in [14]). 

This melting model was inserted into a global plasticating package that describes 

flow and heat transfer along the extruder from hopper to die exit by linking articulately 

the individual process stages developing along the screw through suitable boundary con-

ditions [14]. In the down-channel direction, the stages are the following: i) gravity convey-

ing of pellets in the hopper; ii) drag solids conveying induced by friction forces in the first 

screw turns; iii) creation and growth of a thin film of melted material separating the solid 

bed from the surrounding screw wall(s) – this is usually known as delay zone; iv) melting 

in the barrier zone according to the mechanism discussed above; v) melt conveying; vi) 

melt pressure flow through the die. The location and extent of these stages depend on the 
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local thermo-mechanical conditions, i.e., they are not made a priori coincident with the 

position of specific geometrical screw features. The plasticating sequence is modeled 

along successive down-channel and die increments. If the calculated pressure at the die 

exit is higher than a predefined small value, the calculations are repeated.  

 

Figure 1. Melting mechanism in the cross-section of a barrier screw. A – solid bed; C, D, E – melt 

films surrounding the solid bed; B, G – melt pools in the solids channel and melt channel, respec-

tively; F – melt film crossing the barrier gap. Vb is the barrel sliding velocity, WB and WG are the 

widths of melt pools B and G, respectively, WS is the width of the solid bed, H is channel depth, HS 

is the depth of the solid bed, and δ denotes the thickness of a melt film (reproduced with permission 

from [14]) 

Figure 2 illustrates the computational predictions of major process parameters for a 

Maillefer-type barrier screw (total length L/D=30, length of the compression (barrier) zone 

of 5 L/D, compression ratio of 2.5). Fig 2a) depicts the axial profiles of the solid bed width 

(ratio of solids width, X, to solids channel width, Wsprofile), average melt temperature, 

Tmelt, and viscous dissipation (ratio of Tmelt to the local set temperature, Tb). The begin-

ning of melting does not coincide with the start of the barrier, and the melting rate, X/W, 

is distinct from the rate of variation of the channel width, Wsprofile. In the final melting 

stages (i.e., approximately at L/D=13), the physical presence of the barrier controls melt-

ing, which will have consequences on the mass output. Figure 2b) depicts the axial melt 

pressure and cumulative mechanical power consumption profiles, demonstrating how 

the high shear rates developing at the barrier gap originate high shear stresses, and corre-

spondingly, high melt pressures and power consumption [14]. These predictions were 

globally validated experimentally [25]. 
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Figure 2. Computational predictions for a Maillefer-type barrier; a) axial profiles of the solid bed 

width (ratio of solids width, X, to solids channel width, Wsprofile), average melt temperature, Tmelt, 

and viscous dissipation (ratio of Tmelt to the local set temperature, Tb); axial melt pressure and 

cumulative mechanical power consumption profile (reproduced with permission from [14]). 

3- Optimization Methodology 

3.1. Multi-Objective Optimization 

The design of extrusion-barrier screws approached as an optimization problem is 

multiobjective, meaning that there is the need to satisfy simultaneously several perfor-

mance measures (objectives), which are often conflicting and can have different im-

portance to the process. A multi-objective optimization problem can be defined mathe-

matically as [26, 27]: 
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where M is the number of objectives. 

The various objectives can be dealt with in three ways: a priori, a posteriori, or itera-

tively. In the first case, the decision maker (DM) initially defines the relative importance 

of the objectives and the performance of the solutions can be obtained through the use of 

aggregation functions, e.g., weighted sum, weighted product, or weighted Tchebycheff 

metric [28]. The optimum can be found using a traditional single-objective methodology. 

In the second alternative, the various objectives are optimized simultaneously in order to 

obtain a set of solutions denoted as the Pareto set. Therefore, two different spaces exist, 

that of the decision variables and the domain of the objectives. The optimization aims to 

find the solutions where all objective functions are optimized. The Pareto set is the set of 

non-dominated solutions, which are the solutions that are incomparable to each other, as 

it is not possible to state that one is better than another for all objectives simultaneously 

[26,27]. Figure 3 illustrates this concept using a problem with two objectives to maximize. 
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The comparison between solutions A and B shows that A is better in both objectives and, 

thus, A dominates B. The same happens when comparing solutions B and C. In this case, 

C dominates A, which means that all solutions belonging to the dark grey square domi-

nate solution A. However, when comparing any solution within the light grey squares 

(solutions D and E versus solution A), it is not possible to conclude that one is better than 

the other. The best solution can be selected by using additional preference information 

provided a posteriori by the DM [28]. In the third approach, the optimization and selection 

of solutions can be made iteratively and interleaved, i.e., the optimization algorithm de-

livers different solutions to the decision maker, who indicates the preferences, and then 

the optimization algorithm runs again [29].  

 

Figure 3. Concept of non-dominance. 

Taking into account the need to find a set of non-dominated solutions, the best way 

to deal with multi-objective optimization is to use population-based algorithms, such as 

Evolutionary Algorithms (EAs) [26, 27]. This type of algorithms is based on the metaphor 

of natural evolution, i.e., they use the concepts of mutation and crossover to evolve a pop-

ulation of individuals, which contains the potential solutions to the problem under study, 

along the successive generations. A better opportunity for reproduction is given to indi-

viduals with higher performance, that is, to individuals that have more capacity to sur-

vive. The new solutions (the offspring) are generated through genetic operators such as 

crossover and mutation, inheriting most of the parent characteristics. The selection oper-

ators enable the best individuals to have higher probability of being selected for produc-

ing offspring, and the variation operators allow the generation of new individuals [26, 27]. 

Selection is based on the quality of each individual, which is given by a fitness function 

that is associated with the objective or objective functions for single or multi-objective op-

timization, respectively.  

Recently, several efficient multi-objective optimization EAs (MOEA) have been pro-

posed [30-34]. Algorithm 1 outlines the general framework of MOEA.  

 

Algorithm 1 MOEA 

1: P ← Initialization () 

2: repeat 

3: R ← MatingSelection (P) 

4: Q ← Variation (R) 

5: P ← EnvironmentalSelection (P ∪ Q) 

6: until stopping criterion is met 

 

The algorithm starts with the initialization, in which a population of solutions is ran-

domly generated within the search space. Then, this population is subjected to the evolu-
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tionary process by the sequential application of the mating selection, variation and envi-

ronmental selection procedures. The mating selection consists in selecting parents from 

the population for reproduction with a higher probability for fitter individuals, consider-

ing the existence of multiple objectives. Variation involves the use of evolutionary opera-

tors that are applied to the chromosomes of parent individuals for producing offspring. 

Finally, the environmental selection procedure is based on the concept of the survival of 

the fittest from natural evolution, forming the population of the next generation from the 

multiset of the current and offspring populations. The differences between the existing 

MOEAs are related to the design of its procedures, but all fit in this algorithm. 

The present work adopts the Smetric Selection Evolutionary Multiobjective Optimi-

zation Algorithm (SMS-EMOA), proposed by Beume et al. [43], which is a state-of-the-art 

MOEA that proved to be very efficient in solving real-world optimization problems. In 

this algorithm, the population is subjected to a steady-state evolutionary process where a 

single offspring is produced in each generation. The mating selection is performed by se-

lecting a set of different population members at random, but distributed along the whole 

Pareto front. In the variation operator, a single offspring is generated by recombining se-

lected parent individuals. Then, the environmental selection procedure consists in updat-

ing the population by removing the individual with the smallest hypervolume contribu-

tion in the last nondominated front. Evolution takes place for the number of generations 

specified by the user. 

3.2. Data mining methodology and decision making 

Usually, dealing with Multi-Objective Optimization Problems (MOOP) requires 

some degree of interaction with a DM, i.e., with an expert in the field. Simultaneously, 

albeit the high amount of data and the potentially complex relationships between the var-

iables and the objectives and between the objectives, these must be established to support 

the optimization and decision processes. Moreover, in such complex processes the DM 

must understand the optimization process as well as the procedure for selecting solutions. 

Therefore, it is desirable to: i) use data analysis to define the above relationships; ii) to 

determine whether all objectives are really necessary or if their number can be reduced; 

iii) to explain the solutions found; and iv) to provide a very good approximation to the 

final solution to be used in the real problem studied. This can be done by linking data 

analysis tools with optimization methodologies. 

For these purposes, this work uses the DAMICORE (proposed in 2011) framework 

based on the estimation of distances by compression algorithms, called NCD. This algo-

rithm showed a good performance when tested in a problem similar to the one being 

studied here, allowing simultaneously an easy explanation of the decision process to the 

DM. In this framework, a Feature Sensitivity Optimization based on Phylogram Analysis 

(FS-OPA) [35-37] is applied to find the set of the principal features of the problem consid-

ering the real context, i.e., its feature interactions and their contribution to a target or an 

objective. In the context of this work, a phylogram is a diagram representing the relation-

ships and distances between different groups of variables and/or objectives in the form of 

a branching diagram. The branches on a phylogram are proportional to the amount of 

changes between different variables and/or objectives 

DAMICORE is a constructor of models based on phylograms able to deal with any 

type of data (integer, real and complex numbers, categorical, images, sound, etc., and mix-

tures of them), involving sequentially the following main tasks: 

1) Generate a distance matrix from the data using the Normalized Compression Dis-

tance (NCD) metric [38]; 

2) Construct evolutionary trees using phylogram based modelling. DAMICORE uses 

a distance reconstruction algorithm called Neighbour Joining (NJ) in which the quality of 

the models is improved by a systematic resampling strategy [36]; 

3) Perform community detection by analyzing the phylograms found and extract im-

portant and trustworthy information from them. In this case, a Complex Network ap-

proach known as Fast Newman (FS) is applied [39]. In this way, it will be possible to find 
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subgroups of data that share information (DNA), designated as clades, which identify the 

communities. 

The application of this methodology encompasses the generation of phylograms with 

information delivered in two levels of learning: 

1. In the first level, the aim is to find clades, each representing a cluster of variables 

sharing information. For optimization purposes, each of these clusters represents the 

set of variables with important interactions. The result is a table with a list of variables 

with a cluster per row; 

2. In the second level of learning, the FS-OPA calculates the contribution of each clade 

to the objectives, by measuring the distance between the clades of objectives (oclade) 

to each variable clade (vclade) using the phylogram obtained. These distances corre-

spond to an estimation of the influence of a clade on the improvement of an objective. 

As a result, three matrices are produced, one with the phylogram distances from 

vclades to oclades, the second with the relative phylograms distances from each var-

iable to each objective, and the third with the distances between each objective and 

the other objectives. 

This methodology was recently applied to another extrusion problem with different 

objectives: i) to learn from computational data [40], ii) decision making [41], and iii) re-

duction of the number of objectives [42, 43]. In the last case, the objectives to be selected 

were chosen using both the phylogram and the table with the distance of objectives–ob-

jectives, as follows: 

1. choose the objective(s) of the less distant clusters; 

2. choose one objective of the more distant (single) cluster; 

3. choose objective(s) from each of the remaining clusters taking also into account 

the phylogram and the expertise of the DM(s) on the process. 

Finally, the WSFM technique [44] was used to quantify the significance of the solu-

tions, taking into account the relative importance of the different objectives. WSFM is 

based on the concept of rubbers, whereby each point in the Pareto front is connected by a 

line between the point identifying the solution and perpendicular to the Cartesian axes. 

Then, a stress (wi) is calculated for each line, taking into account the weights previously 

defined (wi) and the value of the objective at that point. The stress function, T(x), is deter-

mined by: 

( )( )( )XfxT wi
i

max)( =  (2) 

Finally, the best solutions are those that minimize T(x) (for more details, see Ferreira 

et al. [44]). 

4- The barrier screw to be designed  

The methodology proposed will be applied to the extruder shown in Figure 4, fitted 

with a MBS screw. The figure illustrates the main geometrical features of the equipment 

and identifies the decision variables, which comprise: i) the operating conditions: screw 

speed (N), barrel temperature profile in three zones (Tb1, Tb2 and Tb3), and ii) the screw 

geometry: length of the feed and compression zones (L1 and L2), and internal screw di-

ameters in the feed and metering zones (D1 and D3). In the particular case of an MBS 

screw, L2 is the axial length of the barrier and two additional design variables are also 

defined, namely the thickness of the barrier flight (Wf) and the clearance/gap between the 

barrel and the barrier flight (Hf). The length of the metering zone (L3) is obviously deter-

mined from the difference between the total screw length (L) and L1+L2. 

Table 1 presents the physical, thermal and rheological properties of the two commer-

cial polymers considered for the design of the screw, a low density polyethylene (LDPE) 

and a polypropylene (PP), which represent well the typical characteristics of extrusion-

grade materials. The rheological properties are quantified by the Carreau-Yasuda law: 
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In these equations,  is the melt viscosity at temperature T and at shear rate  , 0, n, , 

and a are material constants resulting from adjusting the equation to the experimental 

data, and T0 is the reference temperature. 

Table 1- Physical, thermal and rheological properties of the polymers used in this work: LDPE (LU-

POLEN 33FM, LyondellBasell;) and PP (ISPLEN 030G1E, Repsol YPF) 

Property LDPE PP Units 

Density 
Solids (s)  495.0 691 Kg/m3 

Melt (m) g0 923 902 kg/m3 

Friction 

coefficients 

Internal  0.53 0.50 --- 

Hopper  0.30 0.30 --- 

Barrel  0.40 0.45 --- 

Screw  0.20 0.25 --- 

Thermal 

conductivity 

Solids ks 0.141 0.210 W/m °C 

Melt km 0.078 0.180 W/m.°C 

Specific 

Heat 

Solids (Cs) C0 2725.0 1882.0 J/kg 

Melt (Cm) C0 2574.0 1975.0 J/kg 

Enthalpy of melting h 116100.0 120490.0 J/kg 

Melting temperature Tm 100.3 169.1 °C 

Viscosity  

(Carreau-Yasuda law) 

0 33000.0 3041.5 Pa.s 

E/R 5000.0 4023.3 K 

 1.00 0.17 S 

a 1.80 1.82 --- 

n 0.35 0.35 --- 

T0 423.15 533.15 K 

As identified in Table 2, the design/optimization was performed considering six ob-

jectives, which consist of major process performance criteria, namely mass output, length 

of screw required for melting, average melt temperature at die exit, mechanical power 

consumption, a measure of distributive mixing (WATS) proposed by Pinto and Tadmor 

[54], and viscous dissipation. The aim of the optimization (two objectives to maximize and 

four to minimize) and the allowable range of variation are also specified. Tables 3 and 4 

present the different case studies selected for each material. In Cases 1 to 6 for LDPE, and 

Cases 8 to 11 for PP, the operating conditions were defined and kept constant, while for 

Cases 7 and 12 the operating conditions can vary within the range specified. Table 4 indi-

cates the geometrical parameters to be optimized and their range of variation. The opti-

mization exercise was extended to an equivalent conventional three-zone screw (CS), in 

order to compare the performance of the two types of geometries. An additional variable 

designated as “case” and ranging in the interval [0,1] was created for this purpose. If 

“case” is lower or equal to 0.5, the program activates the variables corresponding to the 



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Conventional Screw (CS), otherwise, the MBS is considered. In this way, during the evo-

lution process, the EA does not lose information concerning both screws, even if one type 

of screw is activated for a certain solution.  

 

Figure 4. Extruder geometry. 

Table 2. Optimization objectives, aim of the optimization and allowed range of variation (values for 

PP between brackets). 

Objectives Aim xmin xmax 

Output – Q (kg/hr) Maximize 1 30 

Length for melting – L (m) Minimize 0.1 0.9 

Melt temperature at die exit – T (°C)* Minimize 150 (190) 210 (240) 

Power consumption – Power (W) Minimize 0 9200 

WATS Maximize 0 1300 

Viscous dissipation - TTb Minimize 0.9 1.2 

Table 3. Cases studies for LDPE (the operating conditions are included as decision variables in case 

7). 

Case 
Operating 

conditions 

Decision variables 

N (rpm) Tb1 (°C) Tb2 (°C) Tb3 (°C) Geometry 

1 Constant 40 140 140 140 Table 4 

2 Constant 60 140 140 140 Table 4 

3 Constant 80 140 140 140 Table 4 

4 Constant 40 180 180 180 Table 4 

5 Constant 60 180 180 180 Table 4 

6 Constant 80 180 180 180 Table 4 

7 Variable [40-80] [140-180] [140-180] [140-180] Table 4 

Table 3. Case studies for PP (the operating conditions are included as decision variables in case 7). 

Case 
Operating 

conditions 

Decision variables 

N (rpm) Tb1 (°C) Tb2 (°C) Tb3 (°C) Geometry 

8 Constant 40 200 200 200 Table 4 

9 Constant 40 230 230 230 Table 4 

10 Constant 70 230 230 230 Table 4 

11 Constant 100 230 230 230 Table 4 

12 Variable [40-100] [200-230] [200-230] [200-230] Table 4 
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Table 4. Geometrical parameters of both CS and MBS screws. 

Screw Type Decision Variables 

CS 
case 

L1 L2 D1 D3 P e   

MBS L1_ L2_ D1_ D3_ P_ e_ Hf wf 

Range of variation [0,1] [190,400] [190-,400] [18,22] [22,26] [25,35] [3,4] [0.3,0.9] [2,4] 

5- Results and discussion  

5.1- Optimization anlysis 

This section presents and discusses the optimization results using the SMS-EMOA 

algorithm. Figure 5 displays the bi-objective optimization runs for LDPE, cases 1 and 4, in 

terms of length for melting (L) versus output (Q) (figures 5.A) and 5.C)), and degree of 

mixing (WATS) versus output (Q) (figures 5.B) and 5.D)). Due to the random generation 

of the initial population, the number of CS and MBS is very similar. However, when com-

paring the initial and final populations, it becomes evident that the MOEA used is able to 

increase considerably the performance of the solutions, since the values for the two objec-

tives are much higher, following the direction shown of the arrows. For case 1 (figures 

5.A) and 5.B)), for N = 40 rpm and Tbi= 140°C (Table 3), the best screw to use is the MBS. 

This is not true for case 4 (Figures 5.C) and 5.D)), for N =40 rpm and Tbi=180°C (Table 3), 

where for L vs. Q there is a single solution representing a CS, but for WATS vs. Q there are 

two regions, one represented by CS for higher values of the degree of mixing, and another 

represented by MBS for higher values of output. This can be explained by the fact that for 

higher barrel temperatures (case 4) the polymer melts earlier in the CS due to the heat 

conducted from the barrel, thus making available a longer channel length for melt con-

veying and, consequently, for higher WATS. Simultaneously, in this case the length of the 

Pareto front is higher, providing more options for choosing the best screw.  

Figure 6 compares the results obtained for cases 1 to 3 in the same domains as before, 

i.e., L vs. Q and WATS vs. Q. As anticipated, when the screw speed increases (from case 1 

to case 3) the Pareto optimal front moves in the direction of higher outputs, but in all cases, 

the best solutions are only for MBS screws. However, when the same variation of screw 

speed is tested together with higher barrel temperature profiles (cases 4 to 6, figure 7), the 

outcome might be different. For the lower screw speed, when optimizing together Q and 

WATS, the solutions obtained include both CS and MBS screws, again because of earlier 

polymer melting in the CS. 

Figure 8 shows the results for case 7, in which the operating conditions (N and Tbi) 

are also decision variables, i.e., they are allowed to change in the range of variation indi-

cated in Table 3. The results are very similar to those of case 3, when N and Tbi are fixed 

at 80 rpm and 180° C. Indeed, both the screw speed the barrel temperature profile con-

verge to the upper limits (80 rpm and 180ºC). In fact, Fig 6 demonstrates that the optimal 

Pareto fronts obtained for case 3 dominate those for cases 1 and 2, this being the reason 

for the similarity of the results for cases 3 and 7. 
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Figure 5. Bi-objective optimization (Length for melting, L and WATS) for LDPE: A) and B) case 1; 

C) and D) case 4 (the number of solutions in the initial population for each type of screw, CS and 

MBS, is similar). The arrows indicate the direction of optimization. 

 

Figure 6. Bi-objective optimization (Length for melting, L and WATS) for LDPE for cases 1 to 3. 

 

Figure 7. Bi-objective optimization (Length for melting, L and WATS) for LDPE for cases 4 to 6. 
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Figure 8. Bi-objective optimization (Length for melting, L and WATS) for LDPE for case 7 (left – Q 

vs L; right – Q vs WATS): A) and B). 

Figures 9 and 10 show similar results for PP. Figure 9 displays the initial and final 

populations for the two bi-objective optimization runs of case 8, L vs. Q and WATS vs. Q. 

Again, there is a clear improvement along the generations. However, in this instance the 

CS solutions prevail in the final population. This happens because melting of PP occurs 

very fast in the screw, due to its thermal properties. Consequently, not only it is not nec-

essary to use a barrier screw to assist/force melting, the CS also performs better concerning 

the other optimization objectives, i.e., WATS vs. Q. The same is observed in Figure 10, 

where the effect of increasing screw speed is depicted. As for LDPE (Figure 6), the optimal 

Pareto front solutions allowed a higher output when the screw speed is increased. Never-

theless, at higher screw speeds (Figure 10.E)) the higher outputs are only achieved by 

MBS, as they imply later polymer melting in the screw. 

 

Figure 9. Bi-objective optimization (Length for melting, L and WATS) for PP for case 8. 
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Figure 10. Bi-objective optimization (Length for melting, L and WATS) for PP: A) and B) case 9; C) 

and D) case 10; E) and F) case 11. 

Figures 11 and 12 present the optimization results for six-objectives for LDPE and PP, 

respectively. Each column depicts the bi-dimensional representation of optimal Pareto 

fronts for the six objectives for cases 1, 4 and 7 for LDPE (Figure 11) and for cases 8, 11 and 

12 for PP (Figure 12). Note that this is a six-dimensional space from which it is difficult to 

infer the best solution (or solutions) to select since in this high dimensional space is very 

difficult the solution that fist all objectives simultaneously. Therefore, the methodology 

discussed in section 3.2 will be applied to cases 7 and 11. This includes the definition/se-

lection of the relevant objectives using the DAMICORE, and the application of a decision 

making methodology to select the best solutions. Throughout this process it is important 

that the decision maker has a good understanding about the solutions found. This will be 

performed in the next section. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2023                   doi:10.20944/preprints202304.0048.v1

https://doi.org/10.20944/preprints202304.0048.v1


 

 

Figure 11. Two-dimensional representation of the optimization results for six-objectives for LDPE: 

A) case 3; B) case 6; C) case 7. 

 

Figure 12. Two-dimensional representation of the optimization results for six-objectives for PP: A) 

case 8; B) case 11; C) case 12. 

5.1- Analyis of the optimization process 
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The application of DAMICORE to the six-objectives problem of case 7 yields the 

phylograms for the initial and final populations of figure 13 and the resulting Tables of 

distances 5 and 6. In the figure, the objectives are identified in boxes. The decision varia-

bles (DVs) and the objectives are clustered, taking into account the NCD metrics (section 

3.2). Observation of the phylograms allows identifying the clusters that share information, 

as well as the distances DVs-DVs, DVs-objectives, and objectives-objectives. The distances 

are represented by the path that is necessary to go through, i.e., the length of the branches 

on a phylogram. For the final population, the objectives are grouped in the sets (Q, L), 

(Power, WATS), (T) and (TTb). From these phylograms, it is possible to determine those 

distances. For example, Table 5 shows the distances of DVs-objectives for the final popu-

lation ordered from the lowest to the highest. The following conclusions can be drawn: 

• On average, the most important DVs are L2_, case, N and L1_; 

• Q and L are more influenced by L2_ and L1_; 

• Power and WATS are influenced by L2_, case, N and L1_; 

• T and TTb constitute two separate groups, even considering that TTb is equal to T/Tb, 

and this happens because Tb is changing. 

The question now is how to choose the solution (or solutions) to be used, based on 

this six-dimensional objective space. The application of any aggregation method would 

be limited, since the DM would not be informed of any explanation concerning the choice, 

i.e., he/she must trust the method. A better way is to check the existing relations between 

the objectives in order to possibly remove a few from the process of decision. For that 

purpose, the rules defined at the end of section 3.2 are applied to Table 6, where the dis-

tances between the objectives are presented. The application of rule 1 allows selecting 

Power and WATS, rule 2 allows selecting TTb and rule 3 selects Q (or any of the others 

with the same distance, L or T). Then, by applying the WSFM (equation 2) for the objec-

tives selected (Q, Power, WATS and TTb), the results presented in table 9 are obtained. In 

this example, two different set of weights are used, one attributing equal importance to 

all objectives (0.25), the other attributing higher importance to output (0.5) and equal sig-

nificance to the remaining (0.1667). The best solutions are those with lower t(X) value. 

Table 9 demonstrates that these two sets of solutions have a balanced performance when 

taking into account all objectives. When the relative importance of output is higher, the 

other decision variables are adjusted to maintain this equilibrium, but different solutions 

are found in both cases. Also, these adjustments are made in screw speed (N), barrel tem-

perature in the third zone (Tb3), length of the feed zone (L1_), height of channel in the 

metering zone (H3_) and Pitch (P_). These results are coherent with the practical response 

of the extruder, i.e., by following this decision process the DM is able to understand the 

optimization mechanism and is also able to select an informed solution. 

When applied to PP, the DM process is more complex because the final Pareto opti-

mal fronts include both the CS and MBS. Indeed, the most relevant DVs indicated in Table 

7 (obtained from the phylogram of figure 14) are related to both types of screws, namely 

‘case’, L2_, L1_, N, L2 and L1. Following the same strategy, i.e., based on the distances 

objectives-objectives (Table 8) and on the rules of section 3.2, Q, T, Power, WATS and TTb 

are selected. In this situation, only objective L could be discarded. 
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Figure 13. DAMICORE analysis for case 7 (LDPE) with six objectives. 

Table 5. Distances between DVs and objectives for case 7 (LDPE). 

 'Q' 'L' 'T' 'Power' 'WATS' 'TTb' Average 

'L2_' 0.21 0.21 0.36 0.28 0.28 0.56 0.32 

'case' 0.36 0.36 0.21 0.28 0.28 0.43 0.32 

'N' 0.36 0.36 0.21 0.28 0.28 0.43 0.32 

'L1_' 0.21 0.21 0.36 0.28 0.28 0.56 0.32 

'e' 0.5 0.5 0.21 0.43 0.43 0.28 0.39 

'P' 0.5 0.5 0.21 0.43 0.43 0.28 0.39 

'L2' 0.56 0.56 0.28 0.5 0.5 0.21 0.43 

'L1' 0.56 0.56 0.28 0.5 0.5 0.21 0.43 

'H1' 0.71 0.71 0.43 0.64 0.64 0.21 0.55 

'H3' 0.71 0.71 0.43 0.64 0.64 0.21 0.55 

'Tb1' 0.86 0.86 0.56 0.79 0.79 0.36 0.7 

'H1_' 0.86 0.86 0.56 0.79 0.79 0.36 0.7 

'Tb3' 0.86 0.86 0.56 0.79 0.79 0.36 0.7 

'Tb2' 0.86 0.86 0.56 0.79 0.79 0.36 0.7 

'e_' 0.93 0.93 0.64 0.86 0.86 0.43 0.77 

'P_' 0.93 0.93 0.64 0.86 0.86 0.43 0.77 

'H3_' 0.93 0.93 0.64 0.86 0.86 0.43 0.77 

'wf' 1 1 0.71 0.93 0.93 0.5 0.84 

'Hf' 1 1 0.71 0.93 0.93 0.5 0.84 
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Table 6. Distances between objectives for case 7 (LDPE). 

 
'Q' 'L' 'T' 'Power' 'WATS' 'TTb' Average 

'Q' 0.00 0.07 0.36 0.28 0.28 0.56 0.26 

'L' 0.07 0.00 0.36 0.28 0.28 0.56 0.26 

'T' 0.36 0.36 0.00 0.28 0.28 0.28 0.26 

'Power' 0.28 0.28 0.28 0.00 0.07 0.50 0.24 

'WATS' 0.28 0.28 0.28 0.07 0.00 0.50 0.24 

'TTb' 0.56 0.56 0.28 0.50 0.50 0.00 0.40 

 

Table 10 shows the solutions chosen for three different sets of weights: i) objectives 

with identical importance (weights equal to 0.2), ii) output with higher importance 

(weight equal to 0.4, the remaining equal to 0.1), and iii) output with predominant im-

portance (weight equal to 0.6, the remaining equal to 0.08). The results are the same for 

the set of weights i) and ii), including two MBS and three CS, while for set iii) all screws 

are MBS. In all solutions found, the operating conditions do not change. When a CS was 

selected, the balance between the solutions was accomplished at the cost of L and P, while 

for the MBS the relevant DVs are only L1_ and L2_. However, the range of variation of the 

objectives for these optimal Pareto front solutions is higher. This is probably due to the 

presence of more objectives in the calculation of t(X), when compared to the results ob-

tained for LDPE. 

This demonstrates that in a complex real world optimization problem such as barrier 

extrusion screw design, it is important to offer the DM not only the solutions, but also an 

insight about the problem.  

 

Figure 14. DAMICORE analysis for case 12 (PP) with six objectives. 

 

 

Table 7. Distances between DVs and objectives for case 12 (PP). 

 
'Q' 'L' 'T' 'Power' 'WATS' 'TTb' Average 

'case' 0.21 0.21 0.64 0.28 0.28 0.43 0.34 
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'L2_' 0.36 0.36 0.50 0.28 0.28 0.28 0.34 

'L1_' 0.36 0.36 0.50 0.28 0.28 0.28 0.34 

'N' 0.21 0.21 0.64 0.28 0.28 0.43 0.34 

'L2' 0.43 0.43 0.43 0.36 0.36 0.21 0.36 

'L1' 0.43 0.43 0.43 0.36 0.36 0.21 0.36 

'wf' 0.56 0.56 0.28 0.50 0.50 0.21 0.43 

'Hf' 0.56 0.56 0.28 0.50 0.50 0.21 0.43 

'Tb3' 0.64 0.64 0.07 0.56 0.56 0.28 0.46 

'e_' 0.71 0.71 0.28 0.64 0.64 0.36 0.55 

'P_' 0.71 0.71 0.28 0.64 0.64 0.36 0.55 

'H3_' 0.86 0.86 0.43 0.79 0.79 0.50 0.70 

'H1_' 0.86 0.86 0.43 0.79 0.79 0.50 0.70 

'Tb2' 0.93 0.93 0.50 0.86 0.86 0.56 0.77 

'Tb1' 0.93 0.93 0.50 0.86 0.86 0.56 0.77 

'e' 1.00 1.00 0.56 0.93 0.93 0.64 0.84 

'P' 1.00 1.00 0.56 0.93 0.93 0.64 0.84 

'H3' 1.00 1.00 0.56 0.93 0.93 0.64 0.84 

'H1' 1.00 1.00 0.56 0.93 0.93 0.64 0.84 

Table 8. Distances between objectives for case 12 (PP). 

 
'Q' 'L' 'T' 'Power' 'WATS' 'TTb' Average 

'Q' 0.00 0.07 0.64 0.28 0.28 0.43 0.28 

'L' 0.07 0.00 0.64 0.28 0.28 0.43 0.28 

'T' 0.64 0.64 0.00 0.56 0.56 0.28 0.45 

'Power' 0.28 0.28 0.56 0.00 0.07 0.36 0.26 

'WATS' 0.28 0.28 0.56 0.07 0.00 0.36 0.26 

'TTb' 0.43 0.43 0.28 0.36 0.36 0.00 0.31 
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Table 9. Best solutions for case 7 (LDPE). 

Weights 
Decision variables Objectives 

t(x) 
case N Tb1 Tb2 Tb3 L1_ L2_ H1_ H3_ P_ e_ Hf wf Q L T Power WATS TTb 

(0.25; 

0.25; 

0.25; 

0.25) 

61.2 54.2 165 164 175 268.0 170.0 21.7 22.0 34.8 3.1 0.8 3.5 5.5 0.493 189 2358 383 1.5 0.8 

61.2 77.4 165 164 175 267.9 170.0 21.7 22.0 35.0 3.0 0.8 3.5 5.3 0.487 189 2278 308 1.5 0.8 

61.3 63.5 165 160 160 170.8 170.0 22.0 26.0 25.0 3.0 0.8 3.4 5.8 0.517 190 2395 376 1.5 0.8 

59.2 54.1 164 161 160 222.1 170.0 22.0 22.0 35.0 3.0 0.5 3.5 5.7 0.503 190 2397 308 1.4 0.8 

61.5 40.0 165 160 167 170.3 170.0 22.0 26.0 25.0 3.0 0.8 3.4 6.4 0.527 192 2834 316 1.4 0.8 

(0.5; 

0.167; 

0.167; 

0.167) 

61.3 63.5 165 160 160 170.8 170.0 22.0 26.0 25.0 3.0 0.8 3.4 6.1 0.520 191 2583 340 1.4 0.8 

61.4 40.2 162 164 178 263.9 170.0 22.0 22.0 35.0 3.0 0.8 3.4 6.4 0.527 192 2834 316 1.4 0.8 

61.2 54.2 165 164 175 268.0 170.0 21.7 22.0 34.8 3.1 0.8 3.5 5.8 0.517 190 2395 376 1.5 0.9 

59.2 53.8 164 160 160 170.0 170.0 22.0 22.0 35.0 3.0 0.5 3.5 5.7 0.503 190 2397 308 1.4 0.9 

59.1 79.1 164 161 176 221.9 170.0 22.0 22.0 35.0 3.0 0.4 3.5 5.5 0.493 189 2331 328 1.5 0.9 
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Table 10. Best solutions for case 12 (PP). 1 

Weights 
Decision variables Objectives 

t(x) 
case N Tb1 Tb2 Tb3 L1 L2 H1 H3 P e L1_ L2_ H1_ H3_ P_ e_ Hf wf Q L T Power WATS TTb 

(0.20; 

0.20; 

0.20; 

0.20) 

98.1 100.0 227 202 205       179.1 203.2 21.7 23.2 35.0 3.0 0.8 2.9 18.6 0.344 212 7514 329 1.1 0.9 

46.3 98.9 230 202 200 170.0 191.0 22.0 23.7 26.0 3.0         13.2 0.171 209 2212 491 1.1 1.0 

46.8 99.0 201 202 202 173.6 187.8 22.0 23.7 26.1 3.0         13.1 0.189 208 2371 483 1.0 1.0 

41.2 99.5 204 202 200 171.8 170.0 22.0 23.6 30.3 3.0         15.2 0.180 207 2166 442 1.0 1.0 

94.1 99.4 230 210 201       400.0 298.1 22.0 23.3 34.9 3.0 0.8 2.4 17.5 0.179 209 1874 404 1.1 1.0 

(0.40; 

0.15; 

0.15; 

0.15) 

98.1 100.0 227 202 205       179.1 203.2 21.7 23.2 35.0 3.0 0.8 2.9 18.6 0.344 212 7514 329 1.1 0.9 

46.3 98.9 230 202 200 170.0 191.0 22.0 23.7 26.0 3.0         13.2 0.171 209 2212 491 1.1 1.0 

46.8 99.0 201 202 202 173.6 187.8 22.0 23.7 26.1 3.0         13.1 0.189 208 2371 483 1.0 1.0 

41.2 99.5 204 202 200 171.8 170.0 22.0 23.6 30.3 3.0         15.2 0.180 207 2166 442 1.0 1.0 

94.1 99.4 230 210 201       400.0 298.1 22.0 23.3 34.9 3.0 0.8 2.4 17.5 0.179 209 1874 404 1.1 1.0 

(0.60; 

0.10; 

0.10; 

0.10) 

98.1 100.0 227 202 205       179.1 203.2 21.7 23.2 35.0 3.0 0.8 2.9 18.6 0.344 212 7514 329 1.1 0.9 

56.6 100.0 200 202 200       193.6 205.0 22.0 22.2 34.0 3.0 0.8 2.3 24.6 0.374 207 1778 285 1.0 1.0 

97.1 99.8 200 200 200       194.9 194.9 21.8 22.5 34.8 3.0 0.8 2.9 23.1 0.360 207 1837 296 1.0 1.0 

83.3 97.6 201 206 200       293.2 210.6 19.4 22.6 34.6 3.0 0.9 2.4 18.6 0.220 207 2008 296 1.0 1.0 

94.1 99.4 230 210 201       400.0 298.1 22.0 23.3 34.9 3.0 0.8 2.4 17.5 0.179 209 1874 404 1.1 1.0 

 2 
 3 
 4 
 5 
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6 - Conclusions 

Artificial intelligence techniques, namely data mining, decision making and multi-

objective evolutionary algorithms, were applied to design Maillefer-barrier screws, con-

sidering simultaneously the influence of major process parameters and the processing of 

two polymers commonly used in industrial extrusion, LDPE and PP. The competing per-

formance of conventional screws was also taken simultaneously into consideration. 

The optimization methodology adopted was sensitive to the different thermophysi-

cal characteristics of the polymers. Barrier screws are advantageous for processing LDPE, 

except for low screw speeds, in which case the two types of screws can be used. For PP, 

the optimization methodology suggests the use of both type of screws for a wider range 

of operating conditions. While proposing the most adequate screw geometries, the meth-

odology adopted evidenced the correlations between the process parameters selected for 

the design, thus keeping the decision maker informed about the reasons for the selection. 

The methodology illustrated here should be directly applicable to other polymer pro-

cessing optimization problems. 
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