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Abstract: The nematode Angiostrongylus cantonensis has been reported worldwide,
however, some basic questions remain unanswered about the presence of A. cantonensis
in Ecuador: 1) Was the invasion of A. cantonensis in Ecuador unique, or did it occur in
different waves? 2) Was this invasion as recent as historical records suggest? 3) Did this
invasion come from other regions of South America or elsewhere? To address these issues,
we assessed the genetic diversity of MT-CO1 gene sequences from isolates obtained in
eleven of Ecuador's 24 provinces. Our Bayesian inference phylogenetic tree recovered A.
cantonensis as a well-supported monophyletic group. All eleven sequences from Ecuador
were identical and identified as AC17a. The haplotype AC17a, found in Ecuador and the
USA, formed a cluster with AC17b (USA); AC13 (Thailand); and AC12a-b (Cambodia). It
is notable that all the samples, obtained in different geographic and climatic regions of
different Ecuadorian provinces, had no genetic difference between them. Despite the lack
of genetic information on A. cantonensis in Latin America, except in Brazil, our finding
differs from previous studies by its absence of genetic diversity in Ecuador. We concluded
that the invasion of A. cantonensis in Ecuador may have occurred: 1) as a one-time event,
2) recently, and 3) from Asia via the USA. Further research should include samples from
countries neighboring Ecuador to delve deeper into this.

P B O

Keywords: Invasive species; eosinophilic meningoencephalitis; cytochrome c oxidase subunit I

1. Introduction

The rat lungworm Angiostrongylus cantonensis (Chen, 1935) was first described in the
bronchi of the rodents Rattus rattus (Linnaeus, 1758) and Rattus norvegicus (Berkenhout,
1769) in Guangzhou (formerly Canton), China [1]. This nematode is the etiological agent
of neuroangiostrongyliasis which is the main cause of eosinophilic meningitis (EM) or
eosinophilic meningoencephalitis (EME) in humans, an infectious disease of the central
nervous system [2]. This disease is characterized primarily by an increase in the propor-
tion of eosinophils in peripheral blood and cerebrospinal fluid, among other symptoms
such as fever and severe headache [3,4].

The first documented human case of neuroangiostrongyliasis was in Taiwan in 1944,
although it took nearly two decades to establish a clear link between the parasite and the
disease (i.e., A. cantonensis as a causative agent of EME) [5]. Since the first report, several
outbreaks were reported globally as the parasite has spread from traditional endemic re-
gions of Southern China and Southeast Asia to the Pacific islands, Japan, Australia, Africa,
the Canary Islands, the Balearic Islands, and the Americas, including the USA, Caribbean
islands, and Brazil [2,4,6,7]. By 2008, more than 2,800 cases of human angiostrongyliasis
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had already been recorded in 30 countries [8]. The spread of parasites in different regions
poses a threat not only to people living in endemic areas but to a growing number of
travelers visiting these regions [9].

In 2008, A. cantonensis was reported for the first time in Ecuador parasitizing the giant
African land snail Achatina (Lissachatina) fulica Bowdich, 1822 and the rats R. rattus and R.
norvegicus [10,11]. Since then, outbreaks and isolated cases have been reported to the Min-
istry of Public Health of Ecuador (MSP) [12], with most clinical-epidemiological suspicion
and one necropsy-confirmed case [13]. The parasite is now considered endemic through-
out most of the country [10,14]. The invasive pest A. fulica is one of the main intermediate
hosts for A. cantonensis [15]. This mollusk lives in urban and rural areas and plays an im-
portant role in the spread of the parasite [16]. Humans may become infected by ingesting
food contaminated with third-stage larvae or by eating infected raw snails [2]. Thus, A.
fulica is an important transmitter of eosinophilic meningoencephalitis and ocular angi-
ostrongyliasis [17].

Different molecular biology methods have been employed to detect A. cantonensis
[18-23]. Furthermore, they have been applied to explore systematic and population ge-
netic aspects of Angiostrongylus taxa, since there is great variability within populations
[24-31]. The use of mitochondrial genes, such as cytochrome c¢ oxidase subunit I (MT-
CO1), as molecular markers for specific identification of the parasite has been efficient
[32-35]. The MT-CO1 gene has been used in studies on phylogeny, phylogeography, and
haplotype identification [36-39]. However, some basic questions remain unanswered
about the presence of A. cantonensis in Ecuador: 1) Was the invasion of A. cantonensis in
Ecuador a single event or did it occur in different waves? 2) Was this invasion as recent as
historical records suggest? 3) Did this invasion come from other regions of South America
or elsewhere?

To tackle these questions, we assessed the genetic diversity of MT-CO1 gene se-
quences from isolates obtained in eleven of Ecuador's 24 provinces. Thus, we were able to
verify how many lineages could be found in different regions of Ecuador and whether
there was enough time for the lineages to diversify. We also established the phylogenetic
and phylogeographic relationships of these isolates, comparing them with other se-
quences from South America and the rest of the world. Consequently, we could retrace
the possible origin of the lineages found in Ecuador.

2. Materials and Methods

Parasites and experimental infection

Third-stage larvae (Ls) were obtained from A. fulica, collected in eleven provinces of
Ecuador (Figure 1) using the catch-per-unit-effort method for 30 minutes in each locality
[15]. The Lswere used to experimentally infect 12-week-old adult female Wistar strain R.
norvegicus rats (200 = 2 g body mass). The rats were supplied by the Instituto de Investi-
gacién en Salud Publica (INSPI) vivarium, with their corresponding health and genetic
quality certificates. The cycle was maintained in the National Reference Center for Para-
sitology. An average of 150 L3 (counted in a Neubauer chamber) were orally adminis-
tered to each rat using a pipette. Infected rats were separated into cages (two specimens
per cage) and identified according to the locality (province) where the infected gastro-
pods were collected. Rats were kept under controlled conditions of temperature (21-24
°C) and humidity (60%), alternating 12-hour light/dark cycle, and received food and wa-
ter at pH 7.0. All procedures were performed following the guidelines for the mainte-
nance and use of laboratory animals, following the specific legislation covering animals
used for scientific purposes Directive 2010/63/EU as amended by European Union (EU)
Regulation 2019/1010 [40].

Thirty-five days after administration of the larvae, rats were euthanized using CO:
and the thoracic cavity (heart, pulmonary arteries, and lungs) was examined for parasitic
nematodes (juvenile or adult), according to protocols previously established at INSPI
[10] Specific taxonomic characteristics as caudal bursa and the spicule length were used
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to identify the nematodes [41,42]. Approximately 30-40 adult A. cantonensis specimens,
from two rats infected representing each province, were stored in a sterile labeled 50 mL
Falcon tube with 70% ethanol in an ultra freezer at -80 °C.

Molecular phylogenetic and phylogeographic analyses

To conduct phylogenetic and phylogeographic studies, we used DNA sequences
obtained from adult parasites, as previously reported [38,43,44]. Genomic DNA samples
were isolated from adult parasites recovered from the rats representing each province.
Before DNA isolation, the nematodes were partitioned into tiny pieces with a scalpel
and suspended in saline (0.9% NaCl). We used the QlAamp DNA Mini Kit (QIAGEN,
Netherlands) for DNA isolation according to the manufacturer's protocol. Each isolated
DNA sample was identified according to its origin and stored at -80 °C until further am-
plification by PCR technique. Genomic DNA concentration was measured directly in a
NanoDrop 2000 spectrophotometer (Thermo Scientific, USA).

DNA isolated from approximately 30 adult parasites was subjected to PCR to am-
plify the mitochondrially encoded cytochrome c oxidase I (MT-COL1) gene [37]. PCR re-
actions were performed in a 25 pL total volume containing 12.5 pL of GoTaq Colorless
Master Mix (Promega, USA: 2x DNA polymerase, 400uM dATP, 400uM dGTP, 400uM
dCTP, 400uM dTTP, and 3mM MgCl2, pH 8.5); 1.5 puL of 10 pM each MT-CO1 gene pri-
mer (Invitrogen, Thermo Fisher Scientific, USA); 5.5 uL of distilled water; and 4 pL of
genomic DNA. We also used a positive control consisting of an adult parasite DNA ob-
tained from a wild-type rat (R. rattus) and a negative control with ultrapure water. The
primers used were:

col-F (5'TAAAGAAAGAAAGAACATAATGAAAATGS)

col-R B TTTTTTTTTTGGCATTCCTGAGGAGGTY')

Modifications have been made to the original thermal cycling protocol by Vitta et
al. [37] to standardize the technique in the INSPI laboratory and obtain the desired am-
plicons of approximately 450 base pairs (bp) as follows: 94 °C for 5 minutes; followed by
30 cycles of 94 °C for 1 minute, 48 °C for 30 seconds, and 72 °C for 60 seconds; with a
final extension at 72°C for 5 minutes. PCR was performed in a C1000 Touch thermal cy-
cler (Bio-Rad Laboratories, Inc., USA).

We verified PCR products after 1.2% agarose (Promega, USA) gel electrophoresis in
0.04 M Tris-acetate running buffer, 1Mm ethylenediamine tetraacetic acid, pH 8.0 (Invi-
trogen, Thermo Fisher Scientific, USA). We added 10 pul of Syber® 1x (10000 x) dye (Invi-
trogen, Thermo Fisher Scientific, USA) to the agarose gel. Blue/Orange Loading Dye, 6x
(Promega, USA) was used as loading buffer. TrackIt 100bp DNA Ladder (0.1 ug/uL),
with 100 to 1,000 bp range (Invitrogen, Thermo Fisher Scientific, USA), was used as mo-
lecular weight marker. Electrophoresis was performed at 80 V for 55 min using a Power-
Pac HC power supply (Bio-Rad, USA). PCR products were visualized using the Chemi-
Doc XRS imaging system (Bio-Rad, USA).

Amplicons purification; cycle-sequencing of both strands via the Sanger method,
using the abovementioned PCR primers; and product precipitation, formamide resus-
pension, and analysis using the 3130 DNA Analyzer (Applied Biosystems, USA) were
performed at the biochemistry department of the Universidad de las Américas (Ecuador).

The resulting chromatograms were edited with the software platform Geneious
R7.0 (Biomatters Australia) [45]. Sense and anti-sense sequences of each amplified and
sequenced sample were assembled into contigs. The resulting consensus sequences cor-
responding to 11 Ecuadorian provinces were deposited in the GenBank (Table 1).

To construct our MT-CO1 dataset, we used A. cantonensis sequences found in Gen-
Bank that overlapped with ours (Table S1). As outgroups, we added one sequence of
Angiostrongylus mackerrasae Bhaibulaya, 1968 (MN793157) and three sequences of Angi-
ostrongylus malaysiensis Bhaibulaya and Cross, 1971 (KT947979, KU532150, KU532153),
all from GenBank (Table S1). Sequences in the dataset were aligned by multiple align-
ment using MUSCLE [46] under default parameters, within the Geneious package. Final
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manual trimming of non-overlapping regions of the alignment was done using the Mes-
quite 3.70 software package [47].

Two different matrices were used in this study. In the first matrix, used for phylo-
genetic inferences, we excluded all duplicated sequences, keeping only one copy of each
haplotype of A. cantonensis and the outgroup. In the second matrix, used for phylogeo-
graphic analyses, we included all A. cantonensis sequences and excluded the outgroup.
To find the optimal partition clustering arrangements and corresponding log(ml) values
in both matrices, we conducted Bayesian clustering of linked molecular data analyses
using BAPS 6.0 [48,49].

Bayesian inference (BI) phylogenetic analyses were conducted using MrBayes 3.2.6
[50], on XSEDE within the CIPRES Science Gateway [51]. We used independent
GTR+I+G models for each codon position, with unlinking of base frequencies and pa-
rameters. Sampling was performed by MCMC, for 10,000,000 generations, with four sim-
ultaneous chains, in two runs. Node supports were given by Bayesian posterior proba-
bilities (BPP) of trees sampled every 100 generations, after removal of the first 25%
‘burn-in” generations. We assessed sampling adequacy using the program Tracer 1.7.1
[52] to calculate the effective sample sizes (ESSs) of parameters. We considered robust
values above 200 effectively independent samples.

An intraspecific phylogeographic network was inferred using the program
PopART, version 1.7 [53] with the median-joining network method [54]. Using DnaSP
6.12.03 [55], we organized the sequences into groups according to their geographic local-
ities (countries). We also calculated, using DnaSP, the genetic diversity by the numbers
of haplotypes (H), polymorphic sites (S), haplotype diversity (Hd), and nucleotide diver-
sity (rt). We finally used DnaSP for neutrality tests Tajima’s D [56] and Fu’s Fs [57].

3. Results

Along with our 11 MT-CO1 gene sequences of A. cantonensis from Ecuador, we added
105 sequences of A. cantonensis from GenBank and four sequences of outgroups. The full
dataset had 120 sequences of Angiostrongylus ranging from 255 to 1617 bp in length (Table
S1). The haplotypes were named AC1-17, following the names for haplotypes previously
adopted [36,39,58], adding letters to variants. All 11 sequences from Ecuador were identical
and identified as AC17a. The sequences from Ecuador were also identical to five se-
quences from New Orleans, Louisiana, USA (USA-LA), retrieved from GenBank.

3.1. Molecular phylogenetic analyses

After multiple sequence alignment, trimming, and removal of all duplicates in the
first matrix, for phylogenetic inferences, the matrix resulted in 29 taxa and 255 sites. Of
these, 201 were constant characters and 41 were variable parsimony-informative charac-
ters. Angiostrongylus cantonensis was represented by 25 sequences while the outgroup by
four. According to the population structure recovered using BAPS, Angiostrongylus spec-
imens were distributed in five clusters in the 29 sequences matrix.

After 25% burn-in removal, the BI mean estimated marginal likelihood was -
751.4969 and the median was -751.1709. The ESS values were well above 200 for all pa-
rameters. The Bl phylogenetic tree (Figure 2) recovered A. cantonensis as a well-sup-
ported monophyletic group (BPP = 1.00). Within A. cantonensis, the sequence AC17a,
from Ecuador and USA-LA was in a polytomy with AC17b (USA-LA); AC5a (Brazil, Ja-
pan, French Polynesia, and Hawaii, USA); AC5b (Japan); AC13 (Thailand); and a moder-
ately supported clade (BPP = 0.70), formed by sequences AC8a (Brazil) and AC8b (Aus-
tralia, Balearics, Canaries, Taiwan, and USA-LA). This polytomy was moderately sup-
ported (BPP = 0.78) and formed another polytomy with sequences AC12a and AC12b
from Cambodia. This more inclusive polytomy was strongly supported (BPP = 0.98) and
coincided with Cluster 3.
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3.2. Phylogeographic analyses

The second matrix, for phylogeographic analyses, included only sequences of A.
cantonensis. This dataset included 11 sequences from Ecuador and 105 sequences from
GenBank, excluding the outgroup, totaling 116 taxa and 255 sites, after multiple se-
quence alignment and trimming. The total number of sites excluding sites with gaps or
missing data was 254. The number of haplotypes was H = 25, the number of polymor-
phic sites S = 36, the haplotype diversity Hd = 0.895, the nucleotide diversity 7 =0.02546,
Fu's Fs =-2.380, and Tajima’s D = -0.42728 (P > 0.10).

According to the population structure recovered using BAPS, A. cantonensis speci-
mens were distributed in seven clusters in the 116 sequences matrix. We indicated the
clusters in the intraspecific phylogeographic network (Figure 3). The haplotype AC17a,
from Ecuador and USA-LA, formed a cluster with AC17b (USA-LA); AC13 (Thailand);
and AC12a-b (Cambodia). This haplogroup was labeled Cluster 5 in the network.

3.3. Figures, Tables, and Schemes
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Figure 1. Map of Ecuador showing the study area highlighting the sampled provinces.
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Figure 2. Bayesian inference (BI) phylogenetic relationships of A. cantonensis specimens and out-
groups unique MT-COI1 gene sequences (255 bp). The values at the nodes are BPPs (> 0.50). The
scale bar is the number of substitutions per site. Sequence names are colored based on the clusters
recovered in the BAPS cluster analysis (bottom right). Sequences are named AC1-17, following the
names for haplotypes previously adopted [36,39,58], adding letters to variants, followed by the lo-
calities (countries) where they are found. Clusters 1-5 were recovered in the BAPS cluster analysis
for the 29 sequences matrix.
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Figure 3. Median-joining haplotype network of A. cantonensis (25 haplotypes) based on 116 partial
MT-CO1 gene sequences (255 bp). The size of the circles represents the frequency of haplotypes. The
colors of the circles represent the localities (countries) of occurrence of each haplotype. Black circles
are median vectors. Sequences are named AC1-17, following the names for haplotypes previously
adopted [36,39,58], adding letters to variants. Clusters 1-7 were recovered in the BAPS cluster anal-
ysis for the 116 sequences matrix.
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Table 1. Identification and GenBank accession numbers of sequences obtained in this study, fol-
lowed by their respective sampling localities.

Identification GenBank accession number Province
LSA-01 MW391020 Esmeraldas
LSA-02 MW390970 Santa Elena
LSA-03 MW390971 El Oro_
LSA-04 MW390972 Guayas
LSA-05 MW390967 Zamora
LSA-06 MW390974 Pastaza_
LSA-07 MW390969 Orellana
LSA-08 MW390973 Manabi
LSA-09 MW390968 Napo
LSA-10 MW390966 Los Rios
LSA-11 MW390965 Sucumbios

4. Discussion

The introduction of non-native mollusks, such as A. fulica, plays an important role
in the transmission of A. cantonensis [59]. Since the mid-20th century, A. fulica has been
introduced into the tropics and subtropics and has since been considered the most harm-
ful snail pest in these regions [16]. In Brazil, these mollusks were possibly introduced
more than once, on different occasions [60]. The first account is from the mid-1970s in
the state of Minas Gerais [61]. The second, better documented, and probably the major
introduction was in the late 1980s in the state of Parana from specimens brought from
Indonesia for commercial purposes (snail farming) that were unsuccessful [62]. The gi-
ant African snail is currently widespread in all 26 Brazilian states and the Federal Dis-
trict [63,64].

According to data from an Ecuadorian government organization, these snails were
brought into the country in the mid-1990s. As in Brazil, this was for commercial pur-
poses. Snail farms were built in some valleys of the Ecuadorian highlands, which offered
an ideal temperature between 17 °C and 25 °C [65]. However, their breeding did not pro-
vide the expected economic returns, inevitably, most of the farms were abandoned and
the snails were released into the environment. The result was a widespread infestation
of urban and rural areas in almost all provinces of the country [11]. Achatina fulica was
probably the vector that introduced A. canfonensis to the country, as was the case in Bra-
zil [66] and China [67].

As for the definitive hosts, it is presumed that R. rattus arrived in Ecuador between
the 16" and 17t centuries with the ships of the Spanish conquistadors [68]. Rattus
norvegicus probably originated in China and spread to Europe, reaching North America
through shipping during the second half of the 18 century. Both species are now widely
distributed in urban areas around the planet [69].

In 2008, the snail A. fulica (intermediate host) and the rat R. rattus (definitive host)
were found naturally infected by A. cantonensis in Ecuador [10,70]. The existence of inter-
mediate and definitive hosts in almost the entire Ecuador has contributed to the endemic
nature of angiostrongyliasis distribution, making the control of this disease even more
complex [10]. Both intermediate (A. fulica) and definitive (R. rattus) hosts are non-native
species to Ecuador and are considered among the 100 most important invasive species in
the world, according to the World Conservation Union [71]. Invasive species in an eco-
system can affect biotic alter interactions, impacting the economy, the environment, or
public and animal health [72,73]. Moreover, the practice of eating raw snails by elder
Ecuadorians increases the risk of A. cantonensis infection [11].
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Earlier studies using the MT-CO1 to distinguish A. cantonensis isolates have shown
different geographical isolates in determinate regions [36,38,39,58]. Tokiwa et al. [39]
reported seven different haplotypes (AC1 to AC7): five were found in Japan (AC1, AC2,
AC3, AC5, and AC7), two in mainland China (AC2 and AC6) and only one in Taiwan
(AC1). In Brazil, analyses from 15 geographic isolates determined the presence of three
different MT-COL1 haplotypes (AC5, AC8, and AC9). Most of the sample sequences were
ACS5 or ACS8, whereas AC9 was a new haplotype [36]. Rodpai et al. [58] identified differ-
ent A. cantonensis haplotypes in Cambodia, Myanmar, Thailand, and Hawaii, USA. Two
of them (AC2 and AC5) had been previously reported. The AC2 haplotype, previously
reported in China and Japan, was found in Myanmar. The AC5 haplotype, previously
reported in Brazil and Japan, was found in Hawaii. Additionally, four new haplotypes
(AC10-AC13) were reported in Southeast Asia [58].

Such studies have shown that A. cantonensis in Asia has greater genetic diversity
[38,39,58], indicating that this parasite has been circulating in these regions for a long
time. Conversely, the sequence diversity of A. cantonensis is low in several regions out-
side Asia [74]. Otherwise, there is little or no genetic information on the parasite in other
regions of the planet, such as the Americas, except in Brazil [36].

In the present study, all sequences of the isolates from Ecuador were identical, the
haplotype AC17a. In our phylogenetic analyses, this haplotype was nested into a poly-
tomy with other sequences from different parts of the world. Remarkably, all samples
were obtained from provinces of Ecuador in different geographic and climatic regions,
and yet they did not show any genetic divergence between them.

The findings reported here represent a novelty in the study of the genetic diversity
of A. cantonensis isolates. Although there is a lack of information on the genetic diversity
of this parasite in other Latin American countries, except for Brazil, our results are dif-
ferent from previous studies due to the complete absence of genetic diversity of A. can-
tonensis in Ecuador. Even admitting that the low number of nucleotide base pairs ob-
tained could make the sequence homogeneous in the isolates from Ecuador, this same
region of the MT-CO1 gene showed variations in the other haplotypes compared.

The fact that only one haplotype was found in 11 different Ecuadorian provinces, is
revealing. It strongly advocates a single introduction event. Furthermore, this result sug-
gests that A. cantonensis has been recently introduced in the country, as there was no
time for new haplotypes to differentiate from the original. This may justify the non-exist-
ence of genetic diversity among different circulating isolates.

Interestingly, the sequences from Ecuador shared a recent common ancestor with
two Brazilian haplotypes (AC5 and ACS8) [75]. However, it is unlikely that this could
indicate a historical connection between the strains from both countries. The AC5 haplo-
types found in Brazil from Pirituba (state of Sdo Paulo), Queimados, and Niteroi (state of
Rio de Janeiro) correspond to a haplotype found in Japan, Hawaii, and French Polynesia
[58,74,76], suggesting that the arrival of the parasite in Rio de Janeiro or Sao Paulo may
have occurred from the Asian continent [36]. This hypothesis is also considered for the
ACB8a haplotype, closely related to AC8b, found in Australia, the Balearics, the Canaries,
Taiwan, and the United States of America (USA). This shows the possible spread of A.
cantonensis, with the giant African land snail, as a vector, from the arrival localities in
Brazil to the Southeast, Northeast, and North Brazilian regions [36].

The sequences obtained here also grouped with AC13 and AC17 haplotypes from
Thailand and the USA, respectively. The haplotypes AC10, AC11, and AC13, from Thai-
land, and AC12, from Cambodia, were described by Rodpai et al. [58] in phylogenetic
studies using different DNA regions of A. cantonensis and A. malaysiensis. The haplo-
types AC17, from the USA, were reported in a study to identify A. cantonensis and
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References

determine the association between ecological characteristics and factors related to defini-
tive hosts (R. rattus, R. norvegicus, Sigmodon hispidus, and Oryzomys palustris) associated
with transmission risk of angiostrongyliasis in New Orleans [77]. The haplotypes AC12,
AC13, and AC17 formed a cluster in the haplotype cluster analysis, suggesting that A.
cantonensis may have arrived in Ecuador from Asia via the USA.

5. Conclusions

Our results suggest that the invasion of A. cantonensis in Ecuador occurred as a single
event, since only one haplotype was present in all 11 provinces studied, encompassing
different ecoregions of Ecuador. Moreover, this invasion took place very recently, as we
found no variation from the initial haplotype. It is unlikely that A. cantonensis reached
Ecuador from Brazil. It is conceivable that the lineage found in Ecuador came from Asia
via the USA. Future studies should sample countries neighboring Ecuador to infer migra-
tory routes into this country in more detail.
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