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Abstract: The global population is currently experiencing the impact of the SARS-CoV-2 corona-
virus, which has caused the Coronavirus Disease 2019 (COVID-19) pandemic. By our profound
comprehension of COVID-19, encompassing the involvement sequence of the respiratory tract,
gastrointestinal system, and cardiovascular apparatus, the multiorgan symptoms of this infectious
disease have been discerned. Metabolic-associated fatty liver disease (MAFLD) is a pervasive pub-
lic health concern, intricately linked with metabolic dysregulation and estimated to afflict
one-fourth of the global adult population. The burgeoning focus on the association between
COVID-19 and metabolic dysfunction-associated fatty liver disease (MAFLD) is justified by the
potential role of the latter as a risk factor for both SARS-CoV-2 infection and the subsequent
emergence of severe COVID-19 symptoms. Investigations have suggested that changes in both
innate and adaptive immune responses among metabolic dysfunction-associated fatty liver disease
(MAFLD) patients may play a role in determining the severity of COVID-19. The remarkable sim-
ilarities observed in the cytokine pathways implicated in both diseases imply the existence of
shared mechanisms governing the chronic inflammatory responses characterizing these conditions.
The effect of metabolic dysfunction-associated fatty liver disease (MAFLD) on the severity of
COVID-19 illness remains uncertain, as indicated by conflicting results in cohort investigations.
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1. Introduction

The global COVID-19 pandemic, initiated by the emergence of a novel virus that
was subsequently identified as SARS-CoV-2, came to the fore in March 2020, prompting a
profound and ongoing impact on global society [1]. As of April 2023, the global count of
confirmed COVID-19 cases has exceeded 750 million, with more than 6.8 million fatalities
[2]. Mortality rates from severe COVID-19 range from 21% to 30% [3], underscoring the
critical importance of exploring the link between this disease and other disorders. Iden-
tification of modifiable risk factors is essential to developing targeted prevention strate-
gies for this condition.

Current evidence points towards an association between severe COVID-19 out-
comes and factors such as older age [4-7], male gender [4,6,7], and multiple comorbidities
including hypertension [8,9], cardiovascular disease [7], obesity [4,5,10], and type 2 dia-
betes [7,11-14]

The prevalence of metabolic and vascular disorders in those who succumbed to
COVID-19 is considerable, accounting for up to 50% of fatalities. The interdependence of
COVID-19 and the metabolic and endocrine systems is increasingly evident, pointing
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towards a bidirectional relationship. Individuals with metabolic disorders such as obe-
sity, hypertension, diabetes, and nonalcoholic fatty liver disease are at an elevated risk of
severe COVID-19. Conversely, SARS-CoV-2 infection can trigger the onset of diabetes or
exacerbate existing metabolic disorders [14,15].

The risk of severe COVID-19 is increased in individuals with obesity due to several
underlying mechanisms, including heightened inflammation, hyper coagulopathy, and
mechanical obstruction [16]. Additionally, obesity and diabetes correlate with an ele-
vated risk of pulmonary fibrosis, chronic obstructive pulmonary disease, and reduced
respiratory function [17].

The probability of experiencing stroke and cardiovascular complications is aug-
mented in those with obesity, diabetes, and hypertension [18]. The overexpression of
prothrombotic factors such as coagulation factors (1L, VIL, VIIL, IX, XI, and XII), PAI-1, and
von Willebrand factor in patients contributes to an augmented coagulation response.
These risk factors, in conjunction with pre-existing factors, can lead to an increased like-
lihood of stroke or pulmonary embolism [19,20].

A state of chronic inflammation is a common feature in individuals with metabolic
dysfunction. The activation of proinflammatory cytokines, including TNFa, IL-6, and
IL-13, is increased in this cohort of patients. In patients with metabolic syndrome, these
cytokines are activated in adipose tissue, leading to the suppression of insulin signaling
[21].

As a consequence of increased cytokine activity, the production of leptin and PAI-1
is amplified, whereas adiponectin secretion is reduced, culminating in immune cell and
macrophage infiltration in tissues, including white adipose tissue, skeletal muscle, liver,
and pancreas [21]. Insulin resistance provokes the infiltration of predominantly M1
macrophages in adipose tissues [22].

In contrast to non-obese individuals, obese ones exhibit sustained IL-6 receptor ex-
pression, which contributes to the development of a chronic low-grade inflammatory
state known as meta-inflammation [23]. The impairment of insulin signaling exacerbates
the state of chronic inflammation through the activation of AP-1 and NF-kB, resulting in
a reduction of anti-inflammatory cytokines and an elevation of pro-inflammatory cyto-
kines (TNFa, IL-6, and IL-1B). The switch from an anti-inflammatory to a
pro-inflammatory status aggravates insulin resistance [24], leading to airway hyperreac-
tivity, augmenting the risk of respiratory failure and cardiopulmonary collapse in those
afflicted with diabetes and COVID-19 [22].

Metabolic-associated fatty liver disease (MAFLD) is a hepatic disorder characterized
by metabolic dysfunction and the presence of hepatic steatosis, diagnosed by histologic
or imaging evidence, in addition to at least one of the following: type 2 diabetes mellitus
(T2DM), overweight/obesity, or other metabolic disorders not related to alcohol use or
other comorbid liver diseases [25]. A new definition of MAFLD has been proposed by a
group of international experts, which may better describe the hepatic manifestation of
metabolic syndrome than the traditional definition of non-alcoholic fatty liver disease
(NAFLD) [26-28]. The global prevalence of MAFLD is currently estimated to be around
25%, making it the most frequent cause of chronic liver disease, liver cirrhosis, and even
hepatocellular carcinoma [25].

In contrast to the well-established cardiac, pulmonary, and gastrointestinal mani-
festations associated with SARS-CoV-2 infection, the clinical implications of liver in-
volvement have remained a topic of debate since the onset of the COVID-19 pandemic
[29-35].

This paper presents an overview of the current knowledge regarding the epidemi-
ology of COVID-19 patients who have been diagnosed with MAFLD, including a dis-
cussion of its underlying mechanisms and potential explanations for any observed in-
teractions between the two conditions.
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2. The role of MAFLD in the progression of COVID-19

Individuals with MAFLD demonstrate disrupted hepatic immune function [36,37].
Chronic inflammation in the presence of fatty liver disease is linked to the production of
cytokines and adipokines by hepatic macrophages [37].

Obesity, commonly linked with MAFLD, can induce the transformation of an-
ti-inflammatory M2 macrophages to pro-inflammatory M1 macrophages through the
process of polarization. This unique macrophage transition is mediated by the presence
of bile acids, resulting in enhanced lipid accumulation, as well as the development of
both local and systemic low-grade chronic inflammation [38].

Circulating levels of IL-6 are significantly elevated in individuals diagnosed
MAFLD [39]. The contribution of the inflammatory response to the severity of COVID-19
has been well-established in previous research [40,41], with clinical deterioration in cer-
tain infected patients linked to a virus-induced cytokine "storm" [42]. The presence of
MAFLD augments the cytokine storm induced by the virus through the release of a mul-
titude of pro-inflammatory cytokines, including IL-6 [39].

The liver is enriched with various innate immune cells, and the presence of liver
obesity alters its immune response toward increased inflammation [38]. The presence of
nonalcoholic steatohepatitis (NAS) is associated with a constant low-grade inflammatory
response involving cytokine recruitment, oxidative stress, mitochondrial dysfunction,
and endoplasmic reticulum dysfunction. Its presence in patients with COVID-19 may
exacerbate the virus-induced cytokine storm by releasing many inflammatory mediators
from the liver [43].

Several studies, of varying quality, have investigated the association between
non-alcoholic fatty liver disease and the risk of morbidity and mortality due to COVID-19
(Table 1). The majority of available studies on the association between NAFLD/MAFLD
and COVID-19 are retrospective and have limited sample sizes. Moreover, there is con-
siderable heterogeneity in the definitions of NAFLD [44] and its updated counterpart,
MAFLD, across the literature. Some studies have relied solely on surrogate markers for
hepatic steatosis and fibrosis, such as the hepatic steatosis index, NAFLD fibrosis score,
or Dallas steatosis index [45,46,55,56,47-54].

Meanwhile, imaging techniques such as ultrasound or computed tomography (CT)
are the primary tools used to identify the presence of fatty liver [48,57,66-71,58-65]. The
use of liver biopsy to confirm NAFLD is a rare occurrence in the literature [61]. Fur-
thermore, inconsistent definitions of severe COVID-19 progression have been employed
in various studies. It should be noted that the use of blood-based surrogate scores or
imaging techniques (ultrasound, CT) during hospitalization for COVID-19 to diagnose
NAFLD does not provide information about the presence of fatty liver before the emer-
gence of COVID-19. Control groups often have fewer patients with classic metabolic
factors, such as diabetes mellitus and obesity, compared to the corresponding NAFLD
groups [48,62,65]. As a result, this metabolic imbalance of study groups cannot be easily
addressed through multivariate analysis.
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Wasused | Contry | Study design, Outcomes Limitations

in me- of study | included pa-
References | ta-analysi tients (to-
s (total tal/NAFLD,

number) MAFLD)

[72-76](5) | China | Retrospective, Independent of other Matching of patients was
matched co- | confounding factors, the | not performed based on
horts, 110/55 presence of MAFLD the primary outcome

Zhou et al. among patients below variable.
’ 60 years of age is posi-
2020 [57] . . .
tively associated with
the development of
severe or critical
COVID-19.
[72-75,77] | China Retrospective | Younger patients with A minor sample size of
5) cohort study, MAFLD have a higher the older cohort of pa-
Zhou et al,, . .
327/93 risk for severe COVID tients
2020 [58] . .
progression or mortali-
ty.
[73,74,76] | China Retrospective | Co-occurring obesity in | Patients did not undergo
(3) cohort study, patients with MAFLD liver biopsy. Waist cir-
Zheng et al., 214/66 was found to increase cumference was not
2020 [59] the risk of severe illness measured in patients.
by over six times. Patients were only of
Asian ethnicity
[72,73,76] | China Retrospective | SARS-CoV-2 infection in | HSI was employed for the
©)] cohort study, | patients NAFLD is posi- | purpose of identifying the
280/66 tively associated with an | presence of NAFLD in the
elevated risk of liver absence of any known
Huang et al., . . .
2020 [45] injury developm?nt. liver pathologies.
However, no patient
with COVID-19 with
NAFLD developed se-
vere liver injury.
[72-77] China Retrospective Injury in patients with Small sample size, the
(6) cohort study, | COVID-19 was frequent | Asian cohort. Very dif-
Jietal., 2020 202/76 but mild in nature. ferent co-morbidities
[46] among groups, definition
of NAFLD only through
IHS.
[72-76] China Retrospective | More severe COVID-19 Small sample size, the
(5) cohort study, with higher FIB-4 or Asian ancestry of the
Targher et 310/94 NFS. cohort and the use of NFS
al., 2020 [47] without a histological
diagnosis of liver fibrosis.
No full paper
[72-76] China Retrospective | The presence of MAFLD | Diagnosing NAFLD only
Gaoetal, ®) case-control in nondiabetic patients | by CT and clinical criteria.
2021 [60] study, 130/65 was associated with a Same patients with Zhou

four-fold increased risk

et al. 2020 [57]
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of severe COVID-19.

[73,76] (2) USA Retrospective The presence of HS in Comorbidities were not
single-center | COVID-19 patients was | taken into account. Met-
Chen et al., cohort study, observed to correlate abolic status is not bal-
2021 [48] 342/178 with augmented disease | anced. Using the HSI and
severity and transamini- imaging to define HS.
tis.
[72,73,77] USA Retrospective NAFLD significantly Using both imaging
3) cohort associated with ICU studies and histopathol-
study,363/55 admission and with ogy for diagnosing LCD.
Hashemi et needing mechanical Patients with milder
al., 2020 [61] ventilation. courses of COVID-19,
potentially over-
estimating the effects of
SARS-CoV-2 on the liver
[72,73,76] USA Retrospective | Covid-19 hospitalization | The presence of unmeas-
(3) cohort study, is significantly associ- ured confounders and
Bramante et 6400/373 ated with the presence | residual bias may impact
al., 2020 [49] of NAFLD/NASH, and | the validity of the results.
this risk appears to be
attributable to obesity.
[73,75] (2) USA Multicenter NAFLD does not have No control cohort wth
Kim et al., Observational | any risk factors for se- | liver disease, NAFLD ICD
2021 [50] cohort study, vere progression or diagnosis.
867/456 mortality of COVID-19.
[771 (1) USA Cross-sectional | The likelihood of severe NAFLD was defined
Steiner et al., study, 396/213 | COVID-19 manifestation | through imaging. Lack of
2020 [62] was higher among pa- information about meta-
tients with NAFLD. bolic status, no full paper.
[75] (1) UK, Retrospective | Patients with AIH were | No clear NAFLD defini-
Marjot et al., USA cohort study, the same risk-averse tion. Comparing only
2021 [78] 932/362 outcomes as CLD causes AIH and CLD cohorts.
(including NAFLD).
[76] (1) UK Retrospective No increased mortality There were no specific
(origin) | cohortstudy, | of patients with NAFLD. | cohorts for NAFLD pa-
Marjot et al., but data 1345/322 tients. No words about
2021 [44] is mul- NAFLD definition.
tina-
tional
[73,75-77] UK Retrospective | The presence of NAFLD Study population was
4) cohort study, | was not associated with | small. Only visualization
Forlano et 193/61 worse outcomes in pa- methods were used.
al., 2020 [63] tients with COVID-19.
NAFLD patients were
younger on admission.
[75] (1) Mexico | Retrospective The MAFLD cohort Using a noninvasive
Vézquez-Me cohort study, di?played a higher fatal- method for defining
dina et al, 359/ NAFLD - ity rate, whereas the NAFLD and MAFLD.
2022 [51] 79, MAFLD - | NAFLD group did not
220. exhibit any marked
distinction.
Moctezu- [75] (1) Mexico | Retrospective NAFLD as per the DSI Definition NAFLD based
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ma-Velazque cohort study, was associated with on DSI, CT.
z et al.,, 2021 470/359 death and IMV need in
[64] hospitalized patients
with COVID-19.
[73,76](2) | Mexico | Retrospective, Prevalence of HS and Estimating liver fibrosis
Lopez-Mend cross sectional | significant liver fibrosis through non-invasive
ez ot al.. 2020 study,155/66 was high in COVID-19 models.
[ 52'] patients but was not
associated with clinical
outcomes.
[72,73,75- Israel Retrospective The risk of severe Differences in metabolic
77] case-control | COVID-19 is elevated in | status between groups,
Mahamid et (5) study, 71/22 patients with NAFLD, the small number of
al, 2021 [65] regardless of gender and | COVID-19 patients un-
’ irrespective of the pres- | derwent CT to diagnose
ence of metabolic syn- NAFLD
drome.
[77]1 (1) Qatar Retrospective | The presence of NAFLD | Using HSI index for di-
Mushtaq et cohort study, | isa predictor of mild or | agnosing. No full paper.
al, 2021 [53] 269/320 moderate liver injury,
’ but not for mortality or
COVID-19 severity.
[76] (1) Turkey | Retrospective NAFLD was an inde- Definition NAFLD based
Parlak et al., cohort study, pendent risk factor for | on CT. Missed data com-
2021 [66] 343/55 COVID-19 severity. paring NAFLD and
non-NAFLD cohorts
[75] (1) South Retrospective Patients with Using HIS, FLI and
Korea cohort study, pre-existing NAFLD claims-based NAFLD for
Yoo et al. 72244/54913 | have a higher likelihood | defining fat liver for the
2021 [5 4]' (HIS - 26 041, | severe COVID-19 illness. same patients.
FLI- 19 945,
claims-based -
8 927).
[75] (1) Croatia Prospective NAFLD is associated Abdominal ultrasound
cohort study, with higher COVID-19 was employed for the
Vrsaljko et 216/120 severity, more adverse diagnosis of NAFLD.
al., 2022 [67] outcomes, and more
frequent pulmonary
thrombosis.
N/A UK Mendelian The predisposition for These results were ob-
randomiza- severe COVID-19isnot | tained in an initial set of
Valenti et al., tion, 1460/526 | directly augmented by a cases without detailed
2020 [79] genetic propensity for characterization. No full
hepatic fat accumula- paper.
tion.
N/A UK Mendelian No evidence to support Potential data errors,
Liu etal, randomiza- a causal relationship limited patient character-
2022 [80] tion, N =2 586 between COVID-19 ization. Missing infor-
691 susceptibility/severity mation about NAFLD
and NAFLD. cohort. No full paper
Ro- N/A UK Prospective Patients with fatty liver | Small proportion of UKB

ca-Fernande

cohort study

disease were at in-

participants. Restriction
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z et al., 2021 (UK Biobank), | creased risk of infection | for blood biomarkers of
[81] 1043/327 and hospitalization for liver disease.
COVID-19
N/A Sweden Matched co- Patients with CLD had a There is no comparison
hort study higher risk of hospitali- for NAFLD cohort. Not
using the ES- zation for COVID-19, every CLD was con-
Simon et al., PRESSO, but did not have an firmed though biopsy.
2021 [68] 182 147/42320- | increased risk of severe The cohort lacked de-
LCD, COVID-19. tailed data regarding
6350-NAFLD body mass index or
smoking.
N/A South Retrospective An augmented risk of Using FLI score for de-
Korea cohort study, severe COVID-19 com- termining NAFLD. Da-
3112 - FLI plications was observed | taset did not directly con-
Chang et al., score in pat.ient:j; with high .firm NAFLD through
2022 [55] fatty 11Yer index (FLI), b19psy or ultrasound. The
reflective of NAFLD. time gap between body
measurements in health
screening and COVID-19
infection
N/A Japan Retrospective The manifestation of No determination
cohort study, fatty liver on plain CT NAFLD/MAFLD. Using
Okuhama et 222/ 89 — fatty scan at the time of ad- CT scan for screening fat
al., 2022 [69] liver mission may constitute a liver disease.
risk factor for severe
COVID-19.
N/A French | Retrospective Patients with NAFLD Using NFS for determin-
. cohort study, | disease and liver fibrosis ing NAFLD. Missing
Tripon et al., . . .
2022 [56] 719/ 311 are at hl‘gher risk of some important parame-
progressing to severe ters.
COVID-19.
N/A Mexico | Retrospective In contrast to the pres- Liver steatosis was diag-
cohort study, ence of MAFLD, the nosed by CT scan, and
Cam- . . . . . .
, 432/176 occurrence of fibrosisis | fibrosis by non-invasive
pos-Murguia correlated with a scores.
et al.,, 2021 . .
[70] heightened risk of se-
vere COVID-19 and
mortality.
N/A Iran Retrospective Fatty liver is signifi- There was no access to
cohort study, cantly more prevalent each patient's past medi-
575/218 among COVID-19 cal history, so the term
. against non-COVID-19 | “fatty liver patients” was
Ziaee et al., . .
patients, they develop | used. The lack of diagno-
2021 [71] . .
more severe disease and | sis data for control group
tend to be hospitalized patients
for more extended pe-
riods.

HS — Hepatic steatosis; MAFLD — Metabolic-associated fatty liver disease; NAFLD — Non-alcoholic
fatty liver disease; CLD — Chronic liver disease; HSI — Hepatic steatosis index; CT — Computer to-
mography; NFS — Non-alcoholic fatty liver disease fibrosis score ;ICD — International classification
of diseases; AIH — Autoimmune hepatitis; FLI — Fatty liver index; DSI — Dallas steatosis index;
ESPRESSO - Epidemiology strengthened by histopathology reports in Sweden.
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Whilst the majority of extant studies conclude that MAFLD/NAFLD is associated
with an augmented susceptibility to contracting COVID-19, as well as an increased
probability of requiring admission to intensive care, its influence on the development of
critical COVID-19 or mortality remains unclear.

At present, the available data indicate that the presence of NAFLD alone may not be
a significant risk factor for severe COVID-19 progression or mortality. Notably, studies of
registries comprised of large liver collectives with diverse etiologies tend to suggest that
NAFLD may not have a distinct role in this regard.

Our review also encompasses meta-analyses that investigate the interplay between
COVID-19 and MAFLD/NAFLD (Table 2).

Table 2. Characteristics of meta-analysis that have investigated the interaction between MAFLD

and COVID-19.

Refferences | Number of Results Advantages Limitations
studies/ in-
cluded pa-
tients
Hegyi et 9 studies A 2.6-fold increased risk | The study was exe- | Study involves only nine articles
al.,, 2021 (8202 cases) of severe COVID-19 is cuted with meticu- Most of the articles were pub-
[72] associated with MAFLD, lous attention to lished in Asian countries
while NAFLD is linked | methodological rigor. | Data came mostly from retro-
to a five-fold greater spective studies;
susceptibility; however, In-hospital mortality was not
there was no discernable analyzed;
difference in hospital High risk of bias in included
mortality between articles.
COVID-19 patients with
MAFLD or NAFLD.
Singh et al., 14 studies In patients with The study's findings The study involved only six
2021 [73] (1851 cases) | COVID-19 infection, the were adjusted for articles;
presence of NAFLD several possible con- | There was a lack of a robust and
increased the risk of founding factors to | consistent definition of NAFLD
severe disease and ICU provide a more ac- in selected articles;
admission; however, curate assessment of Major covariates, such as age,
there was no discernable | the relationship be- sex, race, and co-morbidities,
difference in mortality tween the variables | were adjusted in selected stud-
between COVID-19 of interest. ies.
patients with or without There was a restricted scope for
NAFLD. a robust subgroup analysis due
to a fewer number of included
studies.
Taoetal,, 7 studies The presence of MAFLD | The study's robust- Insufficient representation of
2021 [77] (2141 cases) was linked to an ele- ness was further studies, notably those from
vated risk of severe substantiated by a China, limited the robustness of
COVID-19(odds ratios: sensitivity analysis, the meta-analysis.
1.80, 95% CI: 1.53-2.13, which validated the | The majority of studies included
P<0.00001), but not to an | initial findings. The in this analysis were
increased likelihood of inclusion of studies cross-sectional, which may
death due to COVID-19 from both Chinese compromise their reliability as
infection. and foreign countries | compared to more robust cohort
bolstered the gener- studies.
alizability of the re- | The etiology of the variation in
sults and improved | the pooled prevalence could not
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the external validity be determined.
of the study.
Pan et al,, 6 studies The study demonstrated The heterogeneity The included studies were lim-
2020 [74] (1,293 cases) that MAFLD is inde- observed in the ited in number and conducted
pendently associated studies was reasona- exclusively within China.
with an elevated risk of bly acceptable, There were only six studies
severe COVID-19 and a | thereby ensuring the | included in the final analysis;
higher prevalence of reliability of the out- | Only one study had a subgroup
COVID-19 in individu- comes. analysis;
als with MAFLD com- The studies included in the
pared to the general analysis were mainly
population. cross-sectional and case-control
studies, which are generally
regarded as less robust than
prospective cohort studies.
Wang et 18 studies The presence of NAFLD The overall odds There is no statement regarding
al., 2022 (22,056 cases) | was found to be inde- ratio was derived by protocol and registration
[75] pendently associated considering the ef- Authors used free-text only in
with severe COVID-19, fects sizes adjusted their search strategy without
particularly in younger for risk factors, including the MeSH approach;
patients compared to mainly age, sex, Detailed flow diagram that
older ones. smoking, obesity, would illustrate the study selec-
diabetes, and hyper- tion process, sample size, PI-
tension. A sensitivity COS, follow-up period, and
analysis was con- citations of the included studies
ducted (it showed no was not provided.
significant impact on | The authors did not report the
the overall results). odds ratio (OR) in a clear and
specific manner.
There is no corresponding
analysis of the risk of bias;
No full paper.
Lietal., 3 ge- The available evidence | Mendelian Random- | The findings of the study cannot
2022 [82] nome-wide | does not suggest a direct | ization analysis pro- | be generalized to evaluate the
association | cause-and-effect associ- | vides a possibility to | relationship between the sever-
study (8267 ation between NAFLD examine the causal ity of NAFLD and the risk of
cases) and the severity of relationship between | severe COVID-19, as the analy-
COVID-19. The correla- | NAFLD and severe | sis only considered the presence
tion between NAFLD COVID-19; Using of liver fat as the exposure var-
and COVID-19 reported COVID-19 ge- iable.
in prior studies is likely | nome-wide associa- One of the selected research
explained by the inter- | tion study summary studies utilized
relatedness of NAFLD statistics. one-sample-based MR analysis,
and obesity. The impact which may be susceptible to
of comorbid factors bias [79];
associated with NAFLD The present findings may be
on severe COVID-19 is subject to limitations arising
largely attributed to from the small size of the sam-
body mass index, waist ple population, as well as po-
circumference, and hip tential confounding clinical
circumference, based on covariates that remain unidenti-
evidence of causality. fied.
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These results somewhat contra-

dict the observational studies of

the same authors in other stud-
ies [7,83];

Hayat et
al., 2022
[76]

16 studies
(11484 cases)

The occurrence of
COVID-19 was found to
be 0.29 among individ-
uals with MAFLD. A
heightened likelihood of
COVID-19 severity and
higher ICU admission
rate were observed
among patients with
MAFLD. The correlation
between MAFLD and
COVID-19 mortality did
not achieve statistical
significance.

This study represents
a novel contribution
to the field, as it is the
first to comprehen-
sively investigate
COVID-19-related
mortality in a large
and diverse cohort of
MAFLD patients.
Additionally, the
study uniquely ex-
amines both the
prevalence of
MAFLD and the
associated COVID-19

The respective studies included
in this meta-analysis did not
include a robust and consistent
definition of the severity of
COVID-19.

Some included studies do not
account for confounding factors
such as age, race, gender and
certain other co-morbidities.
There were multiple comorbidi-
ties in the study population,
making it difficult to dissect the
contribution of each comorbid-
ity to COVID-19 outcomes.;
Fewer studies were included in

outcomes in a broad the subgroup analysis of the
effect of MAFLD on the
COVID-19 ICU entrance and

mortality rate making it difficult

and extensive
MAFLD population.

to analyze the publication bias

(fewer than ten articles).

In numerous studies, patients with NAFLD were found to have a four-fold higher
risk of developing severe COVID-19 compared to the control group [60,84,85]. The me-
ta-analysis by Hegyi et al., 2021 - one of the first to address this issue - assessed whether
NAFLD is associated with a more severe course of COVID-19, intensive care unit admis-
sion, and mortality [72]. The results of the meta-analysis confirm that NAFLD increases
the likelihood of developing severe COVID-19 by 2.6 times compared to the control
group. Furthermore, analyzing groups with and without NAFLD revealed a five-fold
increase in the risk of developing severe COVID-19.

Another independent meta-analysis by Singh et al., 2021 provides similar results
[73]. This systematic review aimed to evaluate the clinical outcomes of patients with
confirmed COVID-19 and existing NAFLD. Patients with these comorbidities had an in-
creased risk of intensive care unit hospitalization; however, no difference in mortality
was observed between patients with COVID-19 with or without underlying NAFLD.

The results of other systematic reviews [74,75,77] highlight similar findings to those
of the previous reviews [72,73]. The meta-analysis by Wang et al., 2022 [75] showed that
the presence of NAFLD was significantly independently associated with a more severe
course of COVID-19 among younger patients aged <60 years but not among older indi-
viduals >60 years.

The position of the European Association for the Study of the Liver (EASL) regard-
ing the issue of comorbidity between NAFLD and COVID-19 is indicative: patients with
NAFLD have an increased overall risk of developing severe COVID-19, which may be
associated with the presence of other high-risk comorbidities [86], This is consistent with
the results of previous meta-analyses [72-75,77].

Other studies exist that argue the opposite perspective. Li et al., 2022 conducted a
large-scale two-sample Mendelian randomization analysis (TSMR) [82]. Mendelian ran-
domization uses genetic variations as a natural experiment to investigate causal rela-
tionships between potentially modifiable risk factors and health outcomes in observa-
tional data. A genome-wide meta-analysis was also conducted to identify single nucleo-


https://doi.org/10.20944/preprints202304.0042.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 April 2023 d0i:10.20944/preprints202304.0042.v1

tide polymorphisms associated with NAFLD and investigate the impact of 20 major as-
sociated factors with NAFLD on severe COVID-19.

This study examined the causal relationships between NAFLD, serum alanine
aminotransferase, degree of steatosis, NAFLD activity score or fibrosis stage, and severe
COVID-19. The results of this study did not find any evidence that NAFLD is a risk factor
for severe COVID-19 and suggested that the link between NAFLD and COVID-19 is ex-
plained by the presence of obesity in this patient cohort.

The study only included works that investigated a cohort of patients of European
descent. In the analysis of the results of multiple logistic regression, which evaluated the
relationship between eight risk factors (age, male gender, T2D, NAFLD, CVD, liver cir-
rhosis, and systolic BP) and severe COVID-19, NAFLD was not associated with severe
COVID-19 (OR, 1.57; P = 0.09). However, this result may be limited by the small sample
size, as well as other unknown clinical variables.

Additionally, when investigating the causal relationships between multiple risk
factors and COVID-19, obesity indices (BMI, waist circumference, and hip circumference)
were the only causal associated risk factors for severe COVID-19, whereas T2D, CVD,
SAT, and NAFLD were not. These results contradict the observational studies by the
same authors [7,83]. However, they explain this result by the low proportion of variance
in severe COVID-19 explained by these factors in this population.

This study shows that not only NAFLD, but also CD2, cardiovascular diseases, and
other risk factors are not the causes of severe COVID-19. The only factors that were found
to be associated with severe COVID-19 were BMI, waist, and hip circumference. These
conclusions differ somewhat from previous studies [72-75,77] and require further dis-
cussion in detail.

In summarizing the results of conducted meta-analyses, it can be assumed that the
presence of MAFLD/NAFLD increases the risk of severe COVID-19 progression and
raises the chances of patients being admitted to intensive care units. However, it does not
affect mortality [72-77]. The absence of genetic causal connections between the presence
of NAFLD and its impact on severe COVID-19 outcomes does not allow for a direct link
to be established [82]. This may occur indirectly through the presence of accompanying
factors that are a component of metabolic syndrome. Nevertheless, MAFLD is a multi-
system disorder and, unlike NAFLD, includes other metabolic disorders such as type 2
diabetes mellitus (T2DM), overweight/obesity, or other metabolic disturbances not re-
lated to alcohol consumption or other accompanying liver diseases [25]. We consider that
the available data and limitations of previous studies should be taken into account as this
topic requires further investigation.

3. The Hepatic Implications of COVID-19

The current evidence suggests that aberrations in liver enzymes are frequently ob-
served in individuals with COVID-19 [87]. Liver injury associated with COVID-19 is de-
fined as any damage that occurs to the liver during the COVID-19 disease and its man-
agement, regardless of a prior history of liver disease. This injury can be mediated
through multiple potential pathomechanisms, such as direct cytotoxicity resulting from
active viral replication of SARS-CoV-2 in the liver [88,89], immune-mediated liver injury
due to systemic inflammatory response syndrome (SIRS) induced by COVID-19 [90],
hypoxic changes due to respiratory failure, vascular alterations associated with coag-
ulopathy [91], endotheliitis or cardiac stasis due to right heart failure [92], drug-induced
liver injury [93,94], and exacerbation of underlying liver diseases.

Despite the lack of certainty regarding the precise consequences of COVID-19 on
hepatic physiology, it is worth noting that aberrations in liver biochemistry are com-
monly observed in individuals with COVID-19. In the early stages of the disease, liver
biochemistry abnormalities are primarily characterized by mild to moderate elevations of
ALT and/or AST [95-97], intermittent increases in serum bilirubin levels [95,98-103], and
decreased serum albumin levels [98-100,102,104-108], with an infrequent elevation of
markers of bile duct damage, such as ALP, GGT, and TBIL (Table 3).
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Table 3. Biochemical liver abnormalities in patients affected by COVID-19.

Study Region Sample | Elevated | Elevated | Elevated | Elevated | Elevated | Elevated | Reduced
size (n) ALT AST ALP GGT TBIL LDH Albumin
Guan et al., Nationwide, | 722-757 158/741 168/757 N/A N/A 76/722 2771675 N/A
2020 [95] China (21.3%) | (22.2%) (10.5%) (41,0%)
Xu et al., 2020 Hubei, 430-581 95/504 82/460 N/A N/A 60/430 171/383 260/581
[98] Zhejiang, (19%) (18%) (14%) (45%) (45%)
Anhui,
Shandong,
Jiangsu,
China
Yang et al., 200 44 (22 74 (37 N/A N/A N/A 74/189 144
2020 [99] Hubei %) %) (38.5 %) (72%)
Province,
China
Cai et al., 2020 Shenzhen, 417 54 76 101 68 99 N/A N/A
[109] China (12.9%) | (18.2%) | (24.2%) | (16.3%) | (23.7%)
Richardson et | New York, 5700 2176 3263 N/A N/A N/A N/A N/A
al., 2020 [110] America (39.0%) | (58.4%)
Wang et al., Fujian 199 22 47 N/A N/A 34 65 26
2020 [100] Province, (11.1%) | (23.6%) (17.%1) (32.7%) (13.1%)
China
Hu et al., 2020 Hunan 213 33 27 N/A N/A 44 27 N/A
[101] Province, (15.5%) | (12.7%) (20.7%) (12.7%)
China
Xiong et al., Wubhan, 116 23 (19.8) | 46 (39.7) N/A N/A N/A 69 N/A
2020 [111] China (59.5%)
Yang et al., Wenzhou, 149 18 27 N/A N/A 4 45 9 (6.04%)
2020 [102] China (12.08%) | (18.12%) (2.68%) | (30.20%)
Yu et al., 2020 1443-1445 | 298/1445 | 303/1445 N/A N/A N/A 1110/1444 | 723/1443
[104] Wubhan, (20.6%) | (21.0%) (76.9%) (50.1%)
China
Shen et al., 325 53 54 N/A N/A N/A 125 N/A
2020 [103] Shanghai, (16.3%) | (16.6%) (38.5%)
China
Zhang et al., Wuhan, 267 49 76 N/A N/A N/A N/A N/A
2021 [5] China (18.4%) | (28.5%)
Xu et al., 2021 Shanghai, 1003 295 176 26 134 40 N/A 307
[105] China (29.4%) | (17.5%) (2.6%) (13.4%) (4.0%) (30.6%)
Ding et al., Wubhan, 2073 501 545 165 443 71 N/A N/A
2021 [112] China (24.2%) | (26.3%) (8.0%) (21.4%) (3.4%)
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Fu et al., 2021 Wuhan, 482 96 98 N/A N/A 23 N/A 199
[106] China (19.9%) (20.3%) (4.8%) (41.3%)
Lv etal., 2021 Wuhan, 2912 662 221 135 536 52 N/A 2086
[107] China (22.7%) (7.5%) (4.6%) (18.4%) (1.8%) (71.6%)
Benedé-Ubieto Madrid, 799 204 446 186 270 N/A 400 N/A
etal., 2021 Spain (25.73%) | (49.17%) | (24.21%) | (34.62%) (55.84%)
[113]
Weber et al., Munich, 217 59 91 22 80 10 N/A 71
2021 [108] Germany (27.2%) (41.9%) (10.1%) | (36.9%) (4.6%) (32.7%)
Liuetal, 2021 | Changsha, 209 20 24 N/A N/A 179 30 N/A
[114] China. (9,6%) (11,5%) (85,6%) (14,4%)
Lu et al., 2022 Sichuan, 70 32 22 12 32 32 40/69 N/A
[115] China (45.7%) (31.4%) (17.1%) | (45.7%) | (45.7%) (58,0%)
Krishnan et 3830 2698 1637 611 N/A 221 N/A N/A
al., 2022 [116] Baltimore, (70.4%) (44.4%) (16.1%) (5.9%)
MD, United
States

The preceding data indicates that the primary target of hepatic injury is hepatocytes.
In severe COVID-19 cases, both aspartate aminotransferase (AST) and alanine ami-
notransferase (ALT) show significant elevation, accompanied by a mild increase in bili-
rubin levels [88]. A recent meta-analysis reported an overall prevalence of 20%-22.5% and
14.6%-20.1% for AST and ALT, respectively [117,118], beyond the reference range, with
slightly elevated total bilirubin levels observed in 35% of cases [117]. Although initially
believed to be rare [119], subsequent systematic reviews demonstrated that elevated lev-
els of cholestatic liver enzymes, including alkaline phosphatase (ALP) and gam-
ma-glutamyltransferase (GGT), were present in 6.1% and 21.1% of COVID-19 patients,
respectively [117,118].

In the study by Bernal-Monterde et al., 2020, which investigated the relationship
between COVID-19 and liver injury, an initial increase in transaminases followed by
cholestasis was reported. This result may reflect cholestasis at the hepatocellu-
lar/canalicular level, induced by systemic inflammation, or more severe involvement of
the bile ducts in the late stage of the disease [120].

Factors contributing to liver injury and elevated levels of liver enzymes in
COVID-19 include immune-mediated inflammatory response, drug-induced liver injury,
hepatic congestion, and extrahepatic release of transaminases [121], or direct hepatocyte
injury [122].

It has been shown that patients with liver cirrhosis and, to a lesser extent, with
transplanted liver, infected with SARS-CoV-2, had an increased risk of mortality [61,123].
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This is also supported by the meta-analysis by Wang et al., 2022 [124], the results of
which indicated that liver cirrhosis is an independent predictor of mortality from
COVID-19. These findings are also consistent with the EASL (European Association for
the Study of the Liver) document on the latest updates in the treatment of chronic liver
diseases [86].

It should also be noted that a liver biopsy study in a group of 48 deceased patients
with COVID-19 revealed a large thrombosis of the lumen of vessels at the portal and si-
nusoidal levels, accompanied by significant pericyte activation and portal fibrosis [125].
Another liver biopsy study of deceased patients with COVID-19 showed moderate mi-
crovascular steatosis and moderate lobular and portal inflammatory activity, indicating
that the damage may have been a consequence of SARS-CoV-2 infection [126].

In situ hybridization analysis detected SARS-CoV-2 virions in samples from the
lumen of vessels and endothelial cells of the portal vein in patients with COVID-19 [125].
In addition, electron microscopy analyses of liver samples from two deceased patients
with elevated liver enzymes after COVID-19 infection revealed intact viral particles in the
cytoplasm of hepatocytes [88].

Several drugs are clinically employed to combat COVID-19, including antiviral
agents such as remdesivir [127], lopinavir/ritonavir and interferons [128,129], antibiotics
such as macrolides, antimalarial/antirheumatic drugs such as hydroxychloroquine, im-
munomodulatory drugs like corticosteroids and tocilizumab, and anti-fever medications
such as acetaminophen [130]. However, many of these drugs have been associated with
hepatotoxicity [131,132]. The use of lopinavir and ritonavir is independently linked with
elevated levels of ALT/AST in COVID-19 patients [133]. The co-occurrence of underlying
metabolic abnormalities and MAFLD can contribute to drug-induced liver injury (DILI)
[46]. Conversely, MAFLD may also exacerbate the hepatotoxicity of drugs like aceta-
minophen, leading to the progression of MAFLD to non-alcoholic steatohepatitis (NASH)
and even cirrhosis [131]. Corticosteroids, which are recommended for the treatment of
severe COVID-19, have also been associated with steatosis [132]. The use of drugs with
high hepatotoxicity may therefore contribute to the progression of MAFLD.

The liver is the main organ of metabolism and detoxification in the human body,
and even moderate loss of its function can reduce the therapeutic efficacy of antiviral
drugs that are metabolized in it. Therefore, it is extremely important to better understand
the causes of liver damage associated with COVID-19.

4. Liver susceptibility to SARS-CoV-2 infection

The members of the Coronaviridae family, including SARS-CoV-2, SARS-CoV, and
MERS-CoV, are enveloped viruses with single-stranded RNA of approximately 30 Kb in
size, and the angiotensin-converting enzyme 2 (ACE2) receptor is the primary attach-
ment site for SARS-CoV-2 on the cell surface [134].

After attachment, the viral S protein interacts with transmembrane serine protease 2
(TMPRSS2) and enters the cell by endocytosis, and the viral genome is released from the
endosome. From the two viral polyproteins (ppla and pplab), 16 non-structural proteins
(from nspl to nspl6) are formed, which serve as building blocks for the virus replica-
tion-transcription complex (RTC). The full viral genome replicates in vesicles containing
the RTC. Simultaneously, in the Golgi complex, a set of specific subgenomic mRNA is
generated for the production of the nucleocapsid and viral envelope of SARS-CoV, which
will ensure the subsequent release of mature virions [134].

The widespread expression of the primary entry receptor for the virus, ACE2, may
explain how SARS-CoV-2 causes damage to many organs and systems, including the in-
testine, heart, kidneys, pancreas, liver, muscular and nervous systems [135].

In a healthy liver, the biliary epithelium appears to have the highest expression of
ACE2 receptors. Studies conducted using liver-derived and induced pluripotent stem cell
(iPSC)-derived organoids suggest that cholangiocytes are highly susceptible to both entry
and replication of SARS-CoV-2 [136,137]. Despite this, the observed pattern of liver ab-
normality associated with SARS-CoV-2 infection does not align with cholestatic liver in-
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jury (Table 3). Hepatocytes, in contrast, express low levels of ACE2, which suggests a
potentially lower risk of SARS-CoV-2 entry. However, in vivo, electron microscopy
findings indicate the presence of intracellular virus particles within the hepatocyte, ac-
companied by mitochondrial swelling and structural damage. This strongly suggests
direct cytopathy of SARS-CoV-2 in hepatocytes [138,139].

In the context of chronic liver disease and NAFLD, there is a significant increase in
the expression of ACE2 receptors [140-142]. However, other studies have investigated
the impact of MAFLD on the expression of ACE2 receptors and TMPRSS2 in the liver and
found no association between MAFLD and changes in the expression of these genes
[143,144].

The use of ACE inhibitors stimulates an increase in the expression of ACE2 recep-
tors. Treatment of liver disease and metabolic syndrome with ACE inhibitors may pro-
mote increased susceptibility to SARS-CoV-2 and increased severity of COVID-19.
However, the results of the study by Cai et al., 2020 [109] showed that in hypertensive
patients receiving ACE inhibitors/angiotensin receptor blockers (ARBs), there was no
increase in the frequency of COVID-19 progression to a severe form compared to patients
taking other antihypertensive drugs.

5. Imbalance of intestinal microbiota

The composition of the intestinal microbiota (IM) is characterized by the presence of
numerous species belonging to four predominant bacterial phyla, namely Firmicutes,
Actinobacteria, Bacteroidetes, and Gammaproteobacteria. The IM is known to play a
pivotal role in the development of NAFLD by exerting a negative effect on tight junction
protein expression. As a consequence, increased intestinal permeability occurs, allowing
for the translocation of bacterial endotoxins from the intestinal lumen into the systemic
circulation [145]. The presence of endotoxins creates an inflammatory milieu by inducing
the expression of pro-inflammatory cytokines, hepatic toll-like receptor 4 (TLR4), and
plasma plasminogen activator inhibitor 1. This inflammatory response contributes to the
development of insulin resistance (IR) and hepatic lipid accumulation. Furthermore, the
fermentation of non-digestible carbohydrates by intestinal microbiota leads to the pro-
duction of bioavailable substrates that enhance the synthesis of fatty acids (FA) and mit-
igate fasting-induced adipocyte factors within intestinal cells. This process inhibits the
activity of lipoprotein lipase, which drives the accumulation of triglycerides (TG) in ad-
ipose tissue [145].

The gut microbiota and its metabolites, particularly those possessing immunomod-
ulatory properties, are capable of exerting an influence on the manifestations of
COVID-19. Specifically, dysbiosis of the gut microbiota within this context could exac-
erbate inflammation and various symptoms via its capacity to modulate ACE2 expres-
sion in enterocytes and alter the secretion of immunomodulatory compounds, including
tryptophan, short-chain fatty acids (SCFAs), and secondary bile acids. Such dysbiosis
may also contribute to the development of cytokine storms, which may result in the
manifestation of more severe symptoms. Furthermore, in the long term, dysbiosis may be
associated with the persistence of COVID-19 symptoms and inflammation, which is re-
ferred to as post-acute COVID-19 syndrome (PACS) [146].

The intestinal microbiota participates in diverse metabolic transformations of bile
acids, which, in turn, modulate the immune response and promote either pro- or an-
ti-inflammatory effects [147]. Likewise, research has demonstrated the ability of second-
ary bile acids to suppress NF-kB signaling pathways, impede the development of
IL-17-expressing helper T cells, and facilitate differentiation of regulatory T cells [148].
Concerning COVID-19, a significant correlation was observed between secondary bile
acids and the progression of respiratory failure and patient survival [149].

Patients with COVID-19 exhibited a decrease in anti-inflammatory bacteria, such as
Eubacterium ventriosum, Faecalibacterium prausnitzii, Roseburia, and Lachnospiraceae,
while opportunistic pathogens, including Clostridium hathewayi, Actinomyces viscosus,
and Bacteroides nordii, demonstrated an increase [150]. Similarly, an increased abun-
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dance of opportunistic pathogens, including Streptococcus, Rothia, Veillonella, and Ac-
tinomyces, and a decreased abundance of beneficial symbionts was observed in patients
afflicted with COVID-19 [151].

An additional study, featuring a larger cohort, revealed that several gut commen-
sals, including Faecalibacterium prausnitzii, Eubacterium rectale, and several bifidobac-
terial species, that possess established immunomodulatory potential, were depleted in
COVID-19 patients [152].

Numerous investigations have documented the noteworthy impact of alterations in
gut microbiota and their associated metabolites, such as lipopolysaccharides (LPS), In-
dole-3-acetic acid (IAA), Peptidoglycan, short-chain fatty acids (SCFA), Bile acid metab-
olites, Endotoxins, and several others, on the advancement of NAFLD [147,153,162,154—
161].

Our findings revealed that there were common dysregulated bacterial species be-
tween the two diseases examined, namely Bacteroides, Eubacterium, Faecalibacterium,
Coprococcus, Streptococcus, Enterobacteriaceae, Lactobacillus, and Bifidobacterium.
These dysregulated intestinal microbiotas may increase inflammatory factors through
their metabolites (Table 4).

Table 4. Shared alterations in microbiota, metabolites, and inflammatory factors in COVID-19 and

MAFLD.
MAFLD COVID-19
Gut metabo- Gut microbiome changes Overlap Gut microbiome changes Gut metabo-
lites and in- lites and in-
flammatory flammatory
factors factors
TEndotoxins JAlistipes tAcidaminoc | tBacteroides, | |Roseburia, | TEnterobacter |SCFA
[153,154]: JAnaerosporoba occus |Bifidobacteri | |Lachnospir iaceae [169,170]:
activating the cter 1 Akkermansi um aceae TEnterococcus leffector T
TLR4; JCoprobacter a JEubacterium | |Bacteroidet | tActinomyces cells;
1TNF-a, IL-1B, JHaemophilus 1 Allisonella , es tClostridium | |IL-17, IFN-y,
IL-6 and IL-12; |Moryella tAnaerococc | |Faecalibacter |Blautia [166] and/or IL-10.
hepatocyte }Oscillobacter us ium wexlerae, tLipopolysacc
injury; |Pseudobutyrivi | 1Bradyrhizo | [166]-COVID- [166] tRothia harides
oxidative brio bium 19 1Veillonella [155,171]:
stress; JSubdoligramul tDorea [162]-MAFLD |Dorea [151] Activating of
hepatocyte um TEggerthella JRuminococ TLR4;
apoptosis. JMethanobrevib | tEscherichia | |Coprococcus us Blautia spp TL-6,IL-1f3,
tLipopolysacch acter 1Flavonifract [150]- [150] tCampylobac serum LBP
arides [155]: 1Oscillospira or incertae COVID-19 ter TNF-a, chem-
Activating of | |Phascolarctobac sedis [162]- JRuminococ | tCorynebacte okines;
TLR4; terium tParabactero MAFLD cus bromii rium |1Bile acid
11L-6,1IL-13, [162] ides [167] 1Enterococcac metabolites
serum LBP 1Peptoniphil | 1Streptococcu eae [147,149,156—
TNF-a, chem- | |Rhuminococcac us s 1Pseudomona 158,171]
okines; eae tPorphyrom [151]- s inhibit NF-Kb
11Bile acid |Rikenellaceae onas COVID-19 1Staphylococc 11L-6,IL-8,
metabolites[147 |Prevotella tRobinsonell [165]- us IL-12,IL-1B,
,156-158]: |Prevotellaceae a MAFLD [167] TNF-a, IL-1B,
11L-6,IL-8, |Clostridiaceae | tRuminococc IFN-y;
IL-12,IL-1p, |Clostridium us 1Enterobacter 1Klebsiella L IL-10;
TNF-a, IL-1f3, [163] 1Shigella iaceae [168] progression of
IFN-y; [162] [166]- respiratory
| IL-10. COVID-19 failure [149].
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tBacterial
DNAs [159]:
activating the
TLRY;
activating of
NF-«xB/MAPK;
macrophages,
NK cells, B
cells, dendritic
cells;
tIL-12 and
TNF-a.
tPeptidoglycan
[160]:
activating of
NF-xB/MAPK,
NOD1, NOD2;
tpro-inflamma
tory cytokines.
lIndole-3-aceti
cacid (IAA)
[161]:
1TNF-a,
MCP-1Ta
IL-1B.

tProteobacte [163]-
ria MAFLD
TEnterobacte
ria |Lactobacillus
[164] [167]-
COVID-19
tSubdoligran [162]-
ulum MAFLD
tBlautia sp
1Firmicutes
TRoseburia
1Oscillibacte
r
[165]
tFusobacteri
a
[163]

LBP - Lipopolysaccharide-binding protein; NF-kB — nuclear factor-kappa B; MAPK - mito-
gen-activated protein kinase; NOD1 — Nucleotide Binding Oligomerization Domain Containing 1;
NOD?2 - Nucleotide Binding Oligomerization Domain Containing 2; SCFA — short-chain fatty ac-
ids;

Intestinal dysbiosis can elicit inflammation in both the intestine and liver, which can
be attributed to the translocation of endotoxins and bacteria, resulting in rise in intestinal
permeability. This occurrence results in an escalated risk of both local and systemic
low-grade inflammation and a reduced anti-inflammatory capacity within the intestine,
thus amplifying the severity of COVID-19 and further exacerbating the progression of
MAFLD.

Thus, it can be assumed that the intestinal microbiota plays an important role in the
progression of MAFLD as well as the severity and mortality of COVID-19 [166,172,173].

6. Bile acid receptors FXR and TGF5 as a linking factor of the immunopathogenesis of
COVID-19 and MAFLD

The Farnesoid-X-receptors (FXR) and the G protein bile acid-activated receptor
(GPBAR)-1, also referred to as Takeda G-protein-coupled receptor 5 (TGR5), are the two
most extensively characterized receptors belonging to the BAR (Bile Acids Activated
Receptors) family [174]. Additionally, cells of the innate immune system, including
monocytes/macrophages, dendritic cells (DCs), natural killer (NK), and NKT cells, ex-
hibit high expression levels of both receptors [175-177].

The activation of both receptors occurs at relatively low concentrations of bile acids
[147]. Cholic acid (CA) and chenodeoxycholic acid (CDCA) are synthesized in the human
liver from cholesterol breakdown. After conjugation with glycine or taurine, they are
transported through the bile duct into the intestine, where they undergo modifications by
the intestinal microbiota to generate secondary bile acids, including deoxycholic acid
(DCA) and lithocholic acid (LCA). These modifications are part of a series of complex
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reactions, and the resulting bile acid profile can differ between individuals based on their
diet and gut microbiota composition [178-180].

The activation of BARs in macrophages, dendritic cells, and natural killer T cells
leads to numerous regulatory functions, which together induce an immunologically tol-
erant response in the intestine and liver (Figure 1). This response is vital for maintaining
tolerance to the constant inflow of dietary antigens and xenobiotics produced by the in-
testinal microbiota.

Lymphocytes

An impact of bile acids on
TGRS and FXR receptors:
Decreasing inflammatory
( { osteopontin, { NKTT,
NKT— TNKT10, TIL-10,
LIL17; TILC3 polarization,

Dendritic cells

An impact of bile acids on
TGR5 and FXR receptors:
Decreasing inflammatory
( LINF-Y, IL-6, IL-8, IL- 12,
TNF-a, CCR2 and NLRP-3/
Caspase-1/11-1B pathway

An impact of bile acids on
TGRS and FXR receptors:
Decreasing inflammatory
(41L-6,1L-12, TNF-a and
115

| Maturation and

l differentiation of Th17, and TIL-10) differentiation
1 differentiation Treg) T Polarization to M2
_ Phenotype J L )

Figure 1. Functional role of Takeda G-protein-coupled receptor 5 (TGR5) and Farnesoid-X-receptor
(FXR) in cells of immunity. The Figure was created using BioRender.

Negative regulation of the NF-kB pathway by the Farnesoid-X-receptor (FXR) is
achieved through SHP-dependent and independent mechanisms, leading to coun-
ter-regulatory activity on monocytes/macrophages, DCs, and NKT cells [147]. The acti-
vation of FXR is reported to decrease the differentiation and activation of intestinal DCs
by down-regulating TNF-a expression, which reduces the severity of colitis in two sep-
arate mouse model studies. The activation of FXR has been demonstrated to hinder the
differentiation of CD14+ monocytes into mature DCs [181,182].

TGRS, similar to FXR, has counter-regulatory effects on the immune response. Ac-
tivation of TGRS leads to the transition of colonic macrophages from a pro-inflammatory
M1 phenotype to an anti-inflammatory M2 phenotype [178]. The expression of IFN-vy,
IL-1B, IL-6, and TNF-a is suppressed by TGR5, whereas IL-10 expression is induced
[183].

While NKT cells express both FXR and TGR5, the investigation of activating TGR5 in
these cells has been limited to the liver. The activation of TGR5 has been demonstrated to
mitigate the inflammation by counteracting the polarization of NKT cells towards NKT1,
a pro-inflammatory subgroup, and biasing towards NKT10, a regulatory subset of NKT
cells that secretes the anti-inflammatory cytokine IL-10 [184].

Stutz et al. 2022 [149] have concluded in their study that elevated concentrations of
fecal secondary bile acids are associated with improved outcomes in patients with


https://doi.org/10.20944/preprints202304.0042.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 April 2023 d0i:10.20944/preprints202304.0042.v1

COVID-19. This result is explained by the immunosuppressive activity of CD4+ regula-
tory T-cells (Treg). Their numbers are increased through the influence of deconjugated
bile acids on them. Additionally, their action on dendritic cells (DCs) has been found to
decrease their immunostimulatory properties [185].

The findings suggest that in adult NAFLD patients, dysregulated bile acid (BA)
metabolism is associated with an increased risk of hepatic injury [72]. A different inves-
tigation has reported that gut microbiota (GM)-mediated deconjugation of bile acids
(BAs) stimulates the activation of the farnesoid X receptor (FXR) signaling pathway in the
intestine, leading to reduced expression of the cholesterol 7 alpha-hydroxylase (CYP7A1)
enzyme and inhibition of the FXR-small heterodimer partner (SHP) pathway. These
events culminate in the acceleration of lipid synthesis and subsequent development of
liver disease[186].

All of these data suggest that dysregulated immune response, resulting from altered
regulation by bile acids due to changes in gut microbiota composition, leads to increased
inflammation in the pathogenesis of both COVID-19 and MAFLD. In the pathogenesis of
fatty liver disease, bile acids play an even more significant role due to their additional
impact on lipid and glucose metabolism [187].

6. Conclusions and perspectives

Although both MAFLD and COVID-19 have spread in a pandemic manner, their
progression differs substantially. While infectious diseases typically induce short-term
illnesses, MAFLD represents a chronic pandemic. Notably, the molecular mechanisms of
inflammation are similar, with MAFLD being characterized by persistent low-grade in-
flammation and COVID-19 by an acute inflammatory state. Recent studies have enabled
a greater understanding of the interaction between these conditions and the potential
consequences of their comorbidity. However, the opinion on the interaction of these two
pathologies remains ambiguous. On the one hand, a plethora of studies demonstrate the
impact of MAFLD on the progression of COVID-19. MAFLD worsens the COVID-19
course by disrupting innate immune response, altering the gut microbiota, changing
metabolic profile, and decreasing liver function. COVID-19 aggravates liver damage
through direct virus-damaging effects, blood rheology disruption, tissue hypoxia, and
drug-induced injury during viral infection treatment (Figure 2). Limitations in studies,
the lack of genetic evidence, and studies showing the absence of an impact of MAFLD on
the progression of COVID-19 prevent definitive conclusions. Additionally, the diver-
gence in definitions between MAFLD and NAFLD reduces the precision of the ultimate
estimation of their effect on the progression of COVID-19. We should take into account
these limitations when planning further research, as this topic will continue to remain
relevant in the future.
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Figure 2. Pathogenetic ways of interaction between COVID 19 and MAFLD. The Figure was
created using BioRender.
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