

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Bio-Insecticidal Potential of Tangerine Peel Oil Against Greenhouse Whitefly: A Green Biopesticide Candidate

Nancy A. Flores-Mediavilla ¹, Julia K. Prado-Beltrán ², Rosario del C. Espín-Valladares ¹, Hortensia María Rodríguez-Cabrera ³ and José Manuel País-Chanfrau ^{1*}

¹ Carrera de Agroindustria, FICAYA, Universidad Técnica del Norte (UTN), Ave. 17 de Julio 5-21 & José María de Córdova, Ibarra 100115, Ecuador; nafloresm@utn.edu.ec (N.A.F.-M.); rcespin@utn.edu.ec (R.d.C.E.-V.).

² Carrera de Agropecuaria, FICAYA, Universidad Técnica del Norte (UTN), Ave. 17 de Julio 5-21 & José María de Córdova, Ibarra 100115, Ecuador; jkprado@utn.edu.ec (J.K.P.-B.)

³ School of Chemical Sciences and Engineering, Yachay Tech University, Hacienda San José s/n y Proyecto Yachay, Urcuqui 100119, Ecuador; hmrodriguez@yachaytech.edu.ec (H.M.R.-C.)

* Correspondence: jmpais@utn.edu.ec

Abstract: The excessive use of synthetic insecticides in modern agriculture has led to the contamination of the environment and the development of insect resistance. In this study, we evaluated the potential of tangerine (*Citrus reticulata* L.) peel essential oil (EO) as a natural insecticide against greenhouse whitefly (*Trialeurodes vaporariorum* W. (Homoptera: Aleyrodidae)), a common pest in greenhouse production. Petroleum ether (PET) and n-hexane (HEX) were used as solvents to extract essential oil (EO) from tangerine peels. The yield of EO was 1.59 % and 2.00 % (m/m) for PET and HEX, respectively. The insecticidal activity of EO was evaluated by measuring the mortality rate (MR) of greenhouse whiteflies at different time intervals. The results showed that PET and HEX extracts of tangerine EO effectively controlled the greenhouse whitefly. With both solvents, it was observed that with doses of 12.5% (v/v), similar results were achieved as with the positive control (corresponding to the commercial insecticide imidacloprid). Additionally, the FTIR analysis found that the EO contained d-limonene, which may be the source of its insecticidal properties. Therefore, tangerine peel essential oil is an excellent natural insecticide candidate for controlling greenhouse whiteflies effectively and sustainably.

Keywords: *Citrus reticulata* L. peels; essential oils; solvent extraction; petroleum ether; n-hexane; natural bio-pesticide; *Trialeurodes vaporariorum* W. (Homoptera: Aleyrodidae)

1. Introduction

Modern agriculture was sustained using chemicals for much of the 20th century [1,2]. Their uses increase yields and thus guarantee the growing demand for agricultural products that a constantly growing world population demands [3]. At a global level, this revolution led to the fact that, for the first time, food production worldwide could satisfy demand [4,5]. However, some researchers noted that the extensive and often abusive use of chemicals also caused some inconveniences for agroecosystems [2,6]. These problems are evident in the case of chemical insecticides, which, by controlling insect pests that affect crops, often have adverse effects on pollinating insects that guarantee the robustness and vitality of ecosystems [7–9]. Chemical biocides (like bactericides, fungicides, and nematicides) have also had similar effects, affecting the beneficial endophytic microflora for crops [10,11].

These long-term practices have resulted in the erosion of arable land [12,13] and the loss of the necessary balance between the crops' health and the soil's microflora [14]. They have also led to the appearance of resistance genes that allow different pests to survive and develop. Such is the case with chemical insecticides. There are reports of the emergence of resistance genes among numerous insect species that have acquired various

resistance genes to multiple types of chemical insecticides, forcing farmers to use higher doses of these chemicals and worsening the problem [15,16].

Strategies have been devised to mitigate the impact of the extensive use of chemical fertilisers and pesticides, such as integrated pest management, where chemicals are used, and other control strategies, such as biologicals and other natural products [17,18]. Among the latter are the so-called "natural" pesticides, products commonly obtained from plants [19–21]. Additionally, if the sources of these botanical pesticides are low-value agricultural or agro-industrial residues, this would aid in reducing the issues associated with excessive chemical use and these wastes and residues. Additionally, the latter would lessen the expense of treating these residues and positively impact environmental contamination [22].

Numerous studies have demonstrated the bactericidal, fungicidal, antioxidant, and insecticidal activity of essential oil extracts from citrus peel [23–27]. These qualities make it suitable for aromatherapy and homoeopathic treatments for various pathologies [28–33]. Additionally, in agriculture, when growing flowers, fruits, and vegetables, as well as when transporting and storing agricultural products, pest damage is prevented.

On the other hand, some natural substances present in fruits and plant tissues have evolved to become repellents for insects and other pests [19,20]. Such is the case with some terpenes, such as d-limonene [34–38]. This monoterpenes has demonstrated its biocidal and insecticidal effects against various pests [35,36]. D-limonene is found in the peels of many citrus fruits [39]. The beneficial effects of d-limonene on human and animal health have also been reported [40,41].

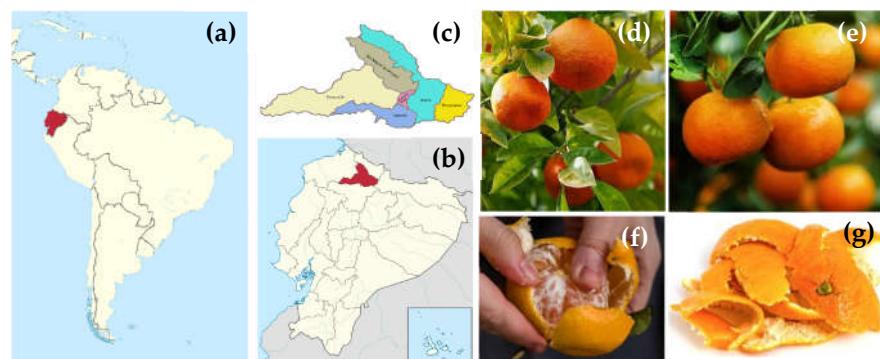
The tangerine (*Citrus reticulata* L.) is a citrus fruit highly appreciated by consumers for its pleasant flavour and as a source of vitamins and minerals [42,43]. In Ecuador, in the Pimampiro canton, Imbabura province, there are relatively large mandarin plantations, highly appreciated for their quality. According to recent estimates, several hundred hectares are planted in the canton to provide enough of this popular fruit. It is even estimated that nearly 20-30% of them are wasted at the peak of the mandarin harvest, as it occurs elsewhere [44]. The overproduction of some foods, such as tangerines, brings unpleasant effects on health and the environment, especially in the areas surrounding municipal landfills. Therefore, finding some alternatives to recover these crop wastes is necessary [45–47]. In the case of mandarin, it might be convenient to find economically feasible ways to use the tangerine peel to produce essential oils with high contents of bioactive substances such as d-limonene [48].

Finally, the northern Andean zone of Ecuador (formed by the provinces of Pichincha, Imbabura, and Carchi), whose economies depend on agriculture, has recently extended the crops protected in greenhouses in recent years [49,50]. As a result, meaningful and very profitable productions, such as the cultivation of flowers, have spread throughout this region [49]. Ecuadorian Andean flowers from this region enjoy a well-earned prestige for their beauty and quality, as evidenced by demanding customers from North America, Europe, and Asia [49,51,52]. One pest affecting these crops is the greenhouse whitefly (*Trialeurodes vaporariorum* W. (Homoptera: Aleyrodidae)), which must be adequately controlled [53,54].

Chemical insecticides like neonicotinoids and organophosphorus are frequently used to control this pest. For the control of greenhouse whiteflies, imidacloprid is among the most widely used and efficient neonicotinoid insecticides.

However, organophosphorus and neonicotinoid insecticides in closed environments, such as greenhouses, have been associated with occupational diseases in greenhouse workers exposed to them [55,56] and damage from pollinating insects such as bees [57].

Studies among the children of the regular employees of the flower greenhouses in the highlands of Ecuador's Andean region found that their anxiety and school tardiness were related to their mothers' exposure to low doses of organophosphate insecticides over an extended period when the pesticides were used in greenhouses [58–63].


This work aims to test the effect of the essential oil from tangerine peels, used at various doses, on the greenhouse whitefly on a laboratory scale and thus prove the potential

of using tangerine peel EO as a suitable candidate to be a natural and ecological bioinsecticide.

2. Materials and Methods

2.1. Location and origin of the tangerine fruits used.

The tangerine fruits (*Citrus reticulata* L. var. clementine) used in this work come from the Pimampiro Canton, located in the extreme east of the Imbabura province in northern Ecuador (Figure 1a, 1b, and 1c). The harvested fruits were in their optimal state of maturity when the fruit peel was easily separated from the rest of the fruit (Figures 1d, 1e, 1f, and 1g).

Figure 1. (a) Location of the Republic of Ecuador in South America. (b) Location of the province of Imbabura, in the northern part of Ecuador. (c) Canton Pimampiro is located in the extreme east of the Imbabura province. (d) and (e) Tangerine fruits (*Citrus reticulata* L.) in their optimal state of harvest. (f) Easy manual removal of the tangerine peel. (g) Tangerine peels.

Before separating the peels, the tangerine fruits were washed with tap water to remove dust that might have adhered during transportation. After removing the peels (Figure 1g), they were cut into small 5-10 mm pieces to facilitate the essential oil extraction.

2.2. Solvent extraction at laboratory scale

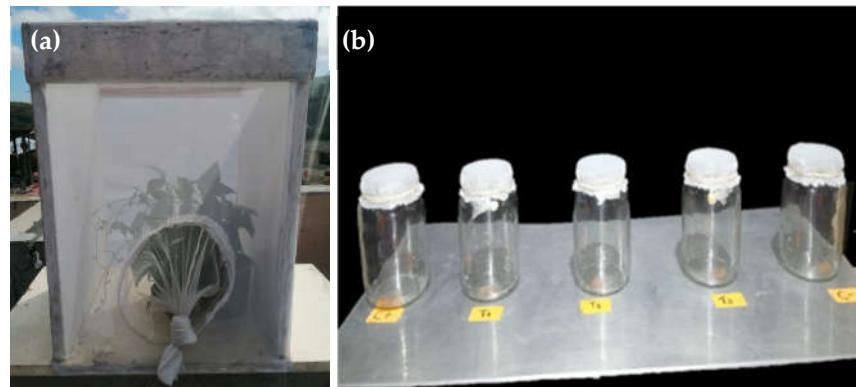

The extracts were obtained in a 250 ml Soxhlet apparatus, where 50 g of tangerine peel was added, and petroleum ether or n-hexane was used as the solvent, similar to that reported elsewhere [64]. Approximately 4 hours after the start of the extraction, it was considered finished. Next, the extract obtained was removed from the solvent in a vacuum rotary evaporator until it was observed that no traces of solvent condensed. This last process did not exceed, in any case, an hour and a half (Figure 2).

Figure 2. Experimental set for the extraction with solvents of the essential oil of the tangerine peel (*Citrus reticulata* L.). (a) 250 mL Soxhlet apparatus. (b) vacuum rotary evaporator for the removal of the solvents used.

2.3. Determination of the rate of mortality of the greenhouse whitefly

To determine the rate of mortality that the different treatments could exert on the greenhouse whitefly, an entomological box (30 x 30 x 48 cm) was built with one side covered by a white mosquito net cloth, where the experiments were carried out on the different treatments and their controls (Figure 3a).

Figure 3. Devices for culturing larvae and carrying out experiments to determine the dose-effect relationship of the different treatments. (a) Entomological box to cultivate greenhouse whitefly larvae; (b) The creation of an experimental block with the greenhouse whitefly larvae, made up of the controls (negative and positive) and the three treatments with EOEs (T1 - 12.5 %, T2 - 25.0 %, and T3 - 33.3 % (v/v)).

After 5-10 days, the population of greenhouse whitefly larvae was sufficient to carry out each of the blocks of experiments, which were carried out in 250 mL glass jars, whose metal lid was replaced by a piece of mosquito netting tightly fastened to prevent the exit or entry of insects. In each jar, ten flies were placed, which, having been collected from the entomological box, had similar physiological ages, as shown elsewhere [65].

Before, the moistened sterile cotton was placed with a total volume of 177.8 μ L, according to the treatments under study and their controls (Figure 3b).

Each experimental treatment, as well as the positive or negative controls, was carried out in triplicate.

The essential oil extracts (EOEs) obtained using petroleum ether (PET) and n-hexane (HEX), from which all the solvent was removed, were used in three treatments. Additionally, two controls were used, one negative, where the volumes used of essential oil were

replaced by deionised water, and another positive, where the commercial insecticide (Cigaral 35 SC®, a chemical insecticide based on a concentrated suspension of imidacloprid ($C_9H_{10}ClN_5O_2$, CAS Number: 138261-41-3) at 350 g·L⁻¹) was used at a dilution of 1/1000. The procedure was as follows ~5-7 g of commercial sterile sanitary cotton was taken, and the total volume was poured onto the cotton, ensuring it was uniformly dispersed over the surface (Table 1).

Table 1. Different treatments were used in each experimental block.

Treatment	The volume of AC (μL) ¹	Characteristic of AC
Positive control (C ⁺)	0.178	$C_9H_{10}ClN_5O_2$
T1 - 12.50 % (v/v)	22.2	EOEs ² w/PET or HEX
T2 - 25.00 % (v/v)	44.4	EOEs w/PET or HEX
T3 - 33.33 % (v/v)	59.3	EOEs w/PET or HEX
Negative control (C)	none	Water

¹ AC: active component; ² EOEs: essential oil extracts.

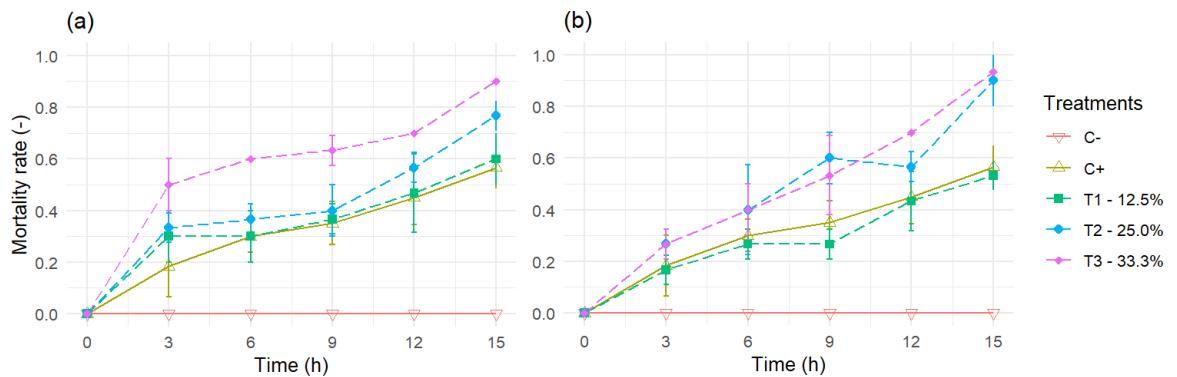
Once the experiment started, the dying flies were counted every three hours. The mortality rate was calculated as follows:

$$MR = \frac{\text{number of dead larvae}}{\text{number of total larvae}} \quad (1)$$

2.4. Statistical analysis and comparison between treatments

The statistical comparison of the mortality rate, for each of the treatments and its controls, both between treatments and for each time that elapsed, was carried out using the open-access statistical R-package, version 4.0.5 (2021-03-31).

2.5. FTIR Analysis of EOEs from tangerine peels

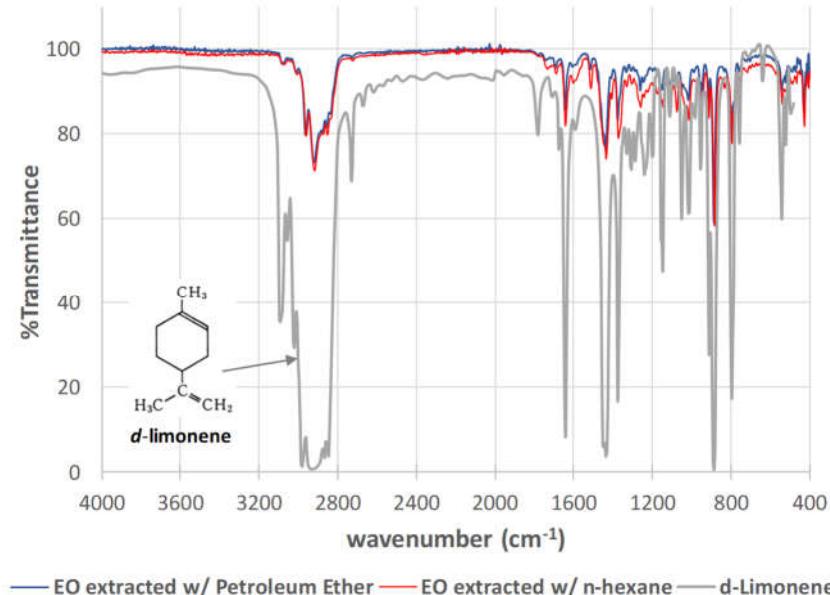

EOEs from tangerine peels obtained using solvent extraction were analysed by IR spectrometry using an Agilent Cary 630 FTIR (Agilent Technologies Inc., Santa Clara, CA, USA) in a wavenumber range between 400 and 4000 cm⁻¹ over 32 scans with a resolution of 4 cm⁻¹. Moreover, a single rebound diamond crystal was sampled using an ATR sampling technique.

3. Results

3.1. Mortality rate experiments

The results of the experiments on the mortality rate of greenhouse whiteflies using tangerine oil extracts and petroleum ether (PET) and n-hexane (HEX) solvents were very similar (Figure 4).

However, the mortality rate values (n = 180) did not follow a normal distribution, according to the Shapiro-Wills test performed.


Figure 4. Mortality rate (MR, Eq. 1) of greenhouse whitefly larvae placed in contact with the controls (positive and negative) and the three treatments used (T1 - 12.5%, T2 - 25.0%, and T3 - 33.3% (v/v)) of extracts of essential oils (EOEs), obtained from tangerine peels, using (a) petroleum ether (PET); (b) n-hexane (HEX).

Additionally, the presence of both the essential oil components of the tangerine peel and imidacloprid, the active ingredient in the commercial insecticide, must have had a lethal effect on the greenhouse whitefly during the experiment's duration, as evidenced by the fact that all treatments plus the positive control (C+) produced significantly different and higher values than the negative control.

On the other hand, when the treatments were compared among themselves and with C+ for each of the extracts obtained with PET and HEX, employing a Wilcoxon non-parametric paired rank sum test, it was found that there were no significant differences ($p < 0.05$) between treatments T1 to T3 and between these and C+, for EOE obtained with HEX. In contrast, for the EOE obtained from PET, differences were observed between T3 and T1, T2, and C+, but not between T1, T2, and C+ among themselves ($p < 0.05$).

3.2. FTIR-characterisation of EOE from tangerine peels

The IR spectroscopy analyses of the final samples of the EOE of tangerine peels obtained by extraction with PET and HEX show remarkable similarities (Figure 5).

Figure 5. FTIR spectra of the essential oil extracts of tangerine peels extracted with petroleum ether (blue line) and n-hexane (red line) and their contrast with the FTIR spectrum of *d*-Limonene.

The peaks shown in the FTIR spectra represent the main interactions between the atoms present mainly in d-limonene. Thus, for example, the broad peak between 3100 and 2800 cm^{-1} represents the asymmetric stretching of the C-H bond in the methyl (-CH₃) and methylene (-CH₂-) groups. The broad peak between 1600 and 1620 cm^{-1} defines the stretching of the C=C bond in the cyclohexene ring. Peaks at approximately 1450 cm^{-1} describe the doublet stretching of the C-H bond in the methylene groups. Whilst peaks at around 1160 cm^{-1} and 990 cm^{-1} represent the C-C bond in the methylene and methyl groups and the cyclohexene ring present in the molecule, respectively.

4. Discussion

The challenges of the near future are enormous; on the one hand, to continue satisfying the growing demand for food of the world population, and on the other hand, to maintain sufficient balance to stop the environmental deterioration that chemical products can exert on ecosystems.

Some studies report the larvicidal and insecticidal activity of some citrus essential oil extracts. Thus, for example, its larvicidal activity has been registered against *Bactrocera tryoni* [66], *Aedes aegypti* [67], and *Culex pipiens* [68].

However, there are few reports on using EOE from *Citrus reticulata* L. peels to control greenhouse whiteflies. Only the use of lemon (*Citrus aurantifolia* H.) peels EOE is reported, with observations of insecticidal activity at all stages of the life cycle of the species of *Triaeurodes vaporariorum* W. (egg, nymph, and adult stages) [69].

On the other hand, other aromatic plant extracts with monoterpenes, such as d-limonene, have been reported for their insecticidal activity. In this way, for example, the repellent and anti-oviposition activities of five aqueous plant extracts (*Foeniculum vulgare* (seed), *Achillea millefolium* L. (leaves), *Cuminum cyminum* L. (seed), *Thymus vulgaris* L. (leaves and flowers), and *Citrus sinensis* L. (peel)) on adult greenhouse whiteflies are suggested. In all cases, the presence of monoterpenes in the EOE is indicated. In this study, however, the lowest repellent and oviposition effects were observed in *C. sinensis* peels, which could suggest that water is not a suitable extraction solvent to extract the active principles [70].

Although the exact mechanism by which d-limonene kills greenhouse whitefly larvae is not entirely known [71], it involves several different modes of action, which could favour its long-term use in the pest control of insects in greenhouses without promoting the appearance of resistance in them.

The extraction of essential oils and d-limonene from citrus peels has been done with different yields using different methods and techniques. Hydro-distillation by stripping with steam [72], the use of the Soxhlet apparatus and organic solvents such as petroleum ether, n-hexane, and ethyl alcohol [64,73], the use of supercritical fluid of CO₂ [74], as well as extractions assisted by microwaves [75] and ultrasound [76].

The yields obtained in this work (1.6 and 2.0 % (m/m) for PET and HEX, respectively) are close to those reported by other authors, who write that d-limonene yields of 3 and 5 % (m/m) were obtained using PET and HEX as solvents [64].

Interestingly, some authors report better extraction yields for d-limonene, using ethyl alcohol as an extraction solvent, whose polarity is greater than that of n-hexane and petroleum ether [64,73]. For example, in one of the studies, a d-limonene yield of 78% was achieved using ethyl alcohol as a solvent, a significantly higher yield than that obtained with the previous non-polar solvents [64].

The difference that has been observed with ethanolic extraction is that the colour of the ethanolic extract is dark brown instead of the typical yellow hue of the n-hexane extract, which could indicate that together with terpenes, such as d-limonene, other components are being extracted with the ethanol, such as pectin, which is also abundant in the tangerine peel (results not shown).

Finally, the FTIR spectra of the essential oil extracts of tangerine peel obtained here suggest the presence of d-limonene in the majority. This result agrees with other similar

studies, where for the EOE from *C. reticulata* peels, it was obtained that there was 88.9% [77], whilst another study points to d-limonene, α -farnesene, and β -elemene as the fundamental components of EOE [78].

5. Conclusions

The tangerine peel, a by-product of the tangerine agro-industry, is an excellent example of the valorisation of agricultural waste [45,79,80]. Obtaining an essential oil from the peel through extraction with organic solvents and its subsequent removal by distillation provides a product of natural origin that has very low phytotoxicity in potatoes (*Solanum tuberosum*) (results not shown), which allows one to obtain from it a candidate for a botanical, natural, and environmentally friendly insecticide [35,81].

Despite its relatively lower availability than traditional chemical insecticides [82], a natural bio-insecticide based on extracting essential oil from the tangerine peel and used in closed environments such as greenhouse crops could provide more benefits for controlling some insect pests in long-term agricultural practices. Additionally, it could improve the health and working conditions of hundreds of Ecuadorian women workers currently employed there.

Author Contributions: Conceptualisation, J.M.P.-C.; methodology, J.K.P.-B. and J.M.P.-C.; software, J.M.P.-C.; validation, N.A.F.-M., J.K.P.-B. and R.d.C.E.-V.; formal analysis, N.A.F.-M., H.M.R.-C. and J.M.P.-C.; investigation, N.A.F.-M., J.K.P.-B. and J.M.P.-C.; resources, N.A.F.-M., H.M.R.-C. and R.d.C.E.-V.; data curation, N.A.F.-M., H.M.R.-C. and J.M.P.-C.; writing—original draft preparation, N.A.F.-M. and J.M.P.-C.; writing—review and editing, J.M.P.-C.; visualisation, N.A.F.-M., H.M.R.-C. and J.M.P.-C.; supervision, J.M.P.-C.; project administration, N.A.F.-M. and R.d.C.E.-V.; funding acquisition, N.A.F.-M., J.M.P.-C. and R.d.C.E.-V. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgements: The authors of the work wish to express their gratitude to the Dean, Dr Marcelo Cevallos, of the FICAYA Faculty and our esteemed Rector, Dr Miguel Naranjo Toro, for the support given to this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nayak, P.; Solanki, H. PESTICIDES AND INDIAN AGRICULTURE- A REVIEW. *International Journal of Research - GRANTHAALAYAH* **2021**, 9, doi:10.29121/granthaalayah.v9.i5.2021.3930.
2. Davydov, R.; Sokolov, M.; Hogland, W.; Glinushkin, A.; Markaryan, A. The Application of Pesticides and Mineral Fertilisers in Agriculture. In Proceedings of the MATEC Web of Conferences; 2018; Vol. 245.
3. Lanz, B.; Dietz, S.; Swanson, T. The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. *Ecological Economics* **2018**, 144, doi:10.1016/j.ecolecon.2017.07.018.
4. McLennan, E.; Dari, B.; Jha, G.; Sihi, D.; Kankarla, V. Regenerative Agriculture and Integrative Permaculture for Sustainable and Technology Driven Global Food Production and Security. *Agron J* **2021**, 113, doi:10.1002/agj2.20814.
5. Carvalho, F.P. Agriculture, Pesticides, Food Security and Food Safety. *Environ Sci Policy* **2006**, 9.
6. Arora, S.; Sahni, D. Pesticides Effect on Soil Microbial Ecology and Enzyme Activity- An Overview. *Journal of Applied and Natural Science* **2016**, 8, doi:10.31018/jans.v8i2.929.
7. Sharma, N.; Singhvi, R. Effects of Chemical Fertilizers and Pesticides on Human Health and Environment: A Review. *International Journal of Agriculture, Environment and Biotechnology* **2017**, 10, doi:10.5958/2230-732x.2017.00083.3.
8. Margni, M.; Rossier, D.; Crettaz, P.; Jolliet, O. Life Cycle Impact Assessment of Pesticides on Human Health and Ecosystems. *Agric Ecosyst Environ* **2002**, 93, doi:10.1016/S0167-8809(01)00336-X.

9. Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. *Front Public Health* 2016, 4.
10. Reshma, J.; Vinaya, C.; Linu, M. Agricultural Applications of Endophytic Microflora. In *Seed Endophytes: Biology and Biotechnology*; 2019.
11. Gunasekhar, V.; Pooja, G.S.; Thippeswamy, T. Effect of Endophytic Bacteria on the Rhizosphere Microflora of Mulberry (*Morus Alba L.*) Inoculated with Root Rot Pathogen *Rhizoctonia Bataticola* (Taub.) Butler. *Indian Journal of Sericulture* 2014, 53.
12. Sabatier, P.; Poulenard, J.; Fangeta, B.; Reyss, J.L.; Develle, A.L.; Wilhelm, B.; Ployon, E.; Pignol, C.; Naffrechoux, E.; Dorioz, J.M.; et al. Long-Term Relationships among Pesticide Applications, Mobility, and Soil Erosion in a Vineyard Watershed. *Proc Natl Acad Sci U S A* 2014, 111, doi:10.1073/pnas.1411512111.
13. Boardman, J. Soil Erosion in Britain: Updating the Record. *Agriculture (Switzerland)* 2013, 3, doi:10.3390/agriculture3030418.
14. Anderson, J.P.E.; Armstrong, R.A.; Smith, S.N. Methods to Evaluate Pesticide Damage to the Biomass of the Soil Microflora. *Soil Biol Biochem* 1981, 13, doi:10.1016/0038-0717(81)90011-0.
15. Riaz, M.A.; Chandor-Proust, A.; Dauphin-Villemant, C.; Poupartin, R.; Jones, C.M.; Strode, C.; Régent-Kloeckner, M.; David, J.P.; Reynaud, S. Molecular Mechanisms Associated with Increased Tolerance to the Neonicotinoid Insecticide Imidacloprid in the Dengue Vector *Aedes Aegypti*. *Aquatic Toxicology* 2013, 126, doi:10.1016/j.aquatox.2012.09.010.
16. Karatolos, N.; Denholm, I.; Williamson, M.; Nauen, R.; Gorman, K. Incidence and Characterisation of Resistance to Neonicotinoid Insecticides and Pymetrozine in the Greenhouse Whitefly, *Trialeurodes Vaporariorum* Westwood (Hemiptera: Aleyrodidae). *Pest Manag Sci* 2010, 66, doi:10.1002/ps.2014.
17. Conboy, N.J.A.; McDaniel, T.; George, D.; Ormerod, A.; Edwards, M.; Donohoe, P.; Gatehouse, AMR; Tosh, C.R. Volatile Organic Compounds as Insect Repellents and Plant Elicitors: An Integrated Pest Management (IPM) Strategy for Glasshouse Whitefly (*Trialeurodes Vaporariorum*). *J Chem Ecol* 2020, 46, doi:10.1007/s10886-020-01229-8.
18. *Trends in Integrated Insect Pest Management*; 2019;
19. Oguh, C.E.; Okpaka, C.O.; Ubani, C.S.; Okekaiji, U.; PS, J.; Amadi, EU View of Natural Pesticides (Biopesticides) and Uses in Pest Management- A Critical Review. *Asian Journal of Biotechnology and Genetic Engineering* 2019, 2.
20. Smith, C.J.; Perfetti, T.A. A Comparison of the Persistence, Toxicity, and Exposure to High-Volume Natural Plant-Derived and Synthetic Pesticides. *Toxicology Research and Application* 2020, 4, doi:10.1177/2397847320940561.
21. Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. *Agriculture* 2022, Vol. 12, Page 600 2022, 12, 600, doi:10.3390/AGRICULTURE12050600.
22. Sindhu, R.; Binod, P.; Pandey, A.; Gnansounou, E. Agroresidue-Based Biorefineries. In *Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment, and Economics*; R. Praveen Kumar, Edgard Gnansounou, Raman, J.K., Gurunathan Baskar, Eds.; Academic Press: London, UK, 2020 ISBN 9780128189962.
23. Shahzad, K.; Nawaz, S.; Ahmad, R.; Akram, N.; Iqbal, Z. Evaluation of Antbacterial, Antifungal and Antioxidant Activity of Essentail Oil of *Citrus Reticulata* Fruit (Tangerine Fruit Peel). *Pharmacologyonline* 2009, 3.
24. Sreepian, A.; Sreepian, P.M.; Chanthong, C.; Mingkhwancheep, T.; Prathit, P. Antibacterial Activity of Essential Oil Extracted from *Citrus Hystrix* (Kaffir Lime) Peels: An in Vitro Study. *Trop Biomed* 2019, 36.
25. Kholaf, G.M.; Gomaa, E.G.; Ziena, H.M. Antimicrobial Activity of Some Egyptian Citrus Peels Extracts. *Alexandria Science Exchange Journal* 2017, 38, doi:10.21608/asejaiqjsae.2017.4771.
26. Kamal, G.M.; Ashraf, M.Y.; Hussain, A.I.; Shahzadi, A.; Chughtai, M.I. Antioxidant Potential of Peel Essential Oils of Three Pakistani Citrus Species: *Citrus Reticulata*, *Citrus Sinensis* and *Citrus Paradisi*. *Pak J Bot* 2013, 45.
27. Mahmoud, E. Essential Oils of Citrus Fruit Peels Antioxidant, Antibacterial and Additive Value as Food Preservative. *Journal of Food and Dairy Sciences* 2017, 8, doi:10.21608/jfds.2017.37135.
28. Nair S, A.; SR, RK; Nair, A.S.; Baby, S. Citrus Peels Prevent Cancer. *Phytomedicine* 2018, 50, doi:10.1016/j.phymed.2017.08.011.

29. Khumukcham, N.; Ajungla, T.; Singh, C.B. GCMS BASED METABOLIC PROFILING OF ESSENTIAL OIL OF CITRUS MACROPTERA MONTRUZ. LEAVES AND PEEL, ASSESSMENT OF IN VITROANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITY. *Int J Pharm Pharm Sci* **2017**, *9*, doi:10.22159/ijpps.2017v9i9.19593.

30. El Sawi, S.A.; Ibrahim, M.E.; El-Rokiek, K.G.; El-Din, S.A.S. Allelopathic Potential of Essential Oils Isolated from Peels of Three Citrus Species. *Annals of Agricultural Sciences* **2019**, *64*, doi:10.1016/j.aoas.2019.04.003.

31. Aripin, D.; Julaeha, E.; Dardjan, M.; Cahyanto, A. Chemical Composition of Citrus Spp. and Oral Antimicrobial Effect of Citrus Spp. Peels Essential Oils against Streptococcus Mutans. *Padjadjaran Journal of Dentistry* **2015**, *27*, doi:10.24198/pjd.vol27no1.26751.

32. Liu, N.; Li, X.; Zhao, P.; Zhang, X.; Qiao, O.; Huang, L.; Guo, L.; Gao, W. A Review of Chemical Constituents and Health-Promoting Effects of Citrus Peels. *Food Chem* **2021**, *365*.

33. Karoui, I.J.; Wannes, W.A.; Marzouk, B. Refined Corn Oil Aromatization by Citrus Aurantium Peel Essential Oil. *Ind Crops Prod* **2010**, *32*.

34. Göltepe, N. Protective Effect of D-Limonene Derived from Orange Peel Essential Oil against Yersinia Ruckeri in Rainbow Trout. *Aquac Rep* **2020**, *18*, doi:10.1016/j.aqrep.2020.100417.

35. de Brito, W.A.; Siquieroli, A.C.S.; Andaló, V.; Duarte, J.G.; de Sousa, R.M.F.; Felisbino, J.K.R.P.; da Silva, G.C. Botanical Insecticide Formulation with Neem Oil and D-Limonene for Coffee Borer Control. *Pesqui Agropecu Bras* **2021**, *56*, doi:10.1590/S1678-3921.pab2021.v56.02000.

36. Karr, L.L. Toxic Properties of D-Limonene in Insects and the Earthworm Eisenia Fetida. *Iowa State University* **2014**, *13*.

37. Tripathi, A.K.; Prajapati, V.; Khanuja, S.P.S.; Kumar, S. Effect of D-Limonene on Three Stored-Product Beetles. *J Econ Entomol* **2003**, *96*, doi:10.1093/jee/96.3.990.

38. Feng, J.; Wang, R.; Chen, Z.; Zhang, S.; Yuan, S.; Cao, H.; Jafari, S.M.; Yang, W. Formulation Optimization of D-Limonene-Loaded Nanoemulsions as a Natural and Efficient Biopesticide. *Colloids Surf A Physicochem Eng Asp* **2020**, *596*, doi:10.1016/j.colsurfa.2020.124746.

39. John, I.; Muthukumar, K.; Arunagiri, A. A Review on the Potential of Citrus Waste for D-Limonene, Pectin, and Bioethanol Production. *Int J Green Energy* **2017**, *14*.

40. Sun, J. D-Limonene: Safety and Clinical Applications. *Alternative Medicine Review* **2007**, *12*.

41. Anandakumar, P.; Kamaraj, S.; Vanitha, M.K. D-Limonene: A Multifunctional Compound with Potent Therapeutic Effects. *J Food Biochem* **2021**, *45*.

42. Bährle-Rapp, M. Citrus Reticulata. In *Springer Lexikon Kosmetik und Körperpflege*; 2007.

43. Khan, I.; Shah, Z.A.; Saeed, M.; Shah, H.U. Physicochemical Analysis of Citrus Sinensis, Citrus Reticulata and Citrus Paradisi. *Journal of the Chemical Society of Pakistan* **2010**, *32*.

44. Caicedo Jiménez, D.I. Evaluación de Pérdidas Poscosecha En Mandarina (Citrus Reticulata), En El Cantón Patate. Bachelor Degree in Engineering Science, Universidad Central del Ecuador: Quito, 2021.

45. Panwar, D.; Panesar, PS; Chopra, H.K. Recent Trends on the Valorization Strategies for the Management of Citrus By-Products. *Food Reviews International* **2021**, *37*.

46. Punvichai, T.; Pioch, D. Co-Valorization of Agro-Industry by-Products: Effect of Citrus Oil on the Quality of Soap Derived from Palm Fatty Acid Distillate and Spent Bleaching Clay. *Letters in Applied NanoBioScience* **2019**, *8*, doi:10.33263/lianbs83.571575.

47. Sahraoui, N.; Vian, M.A.; El Maataoui, M.; Boutekedjiret, C.; Chemat, F. Valorization of Citrus By-Products Using Microwave Steam Distillation (MSD). *Innovative Food Science and Emerging Technologies* **2011**, *12*, doi:10.1016/j.ifset.2011.02.002.

48. Mandal, S.; Mandal, M. Tangerine (Citrus Reticulata L. Var.) Oils. *Essential Oils in Food Preservation, Flavor and Safety* **2016**, *803–811*, doi:10.1016/B978-0-12-416641-7.00091-2.

49. Knapp, G. Mountain Agriculture for Global Markets: The Case of Greenhouse Floriculture in Ecuador. In *Mountains: Physical, Human-Environmental, and Sociocultural Dynamics*; 2019.

50. Nazeeh, N.; Suárez-López, J.R. Summary Data of Home Proximity to the Nearest Greenhouse (Floricultural) Crops and Areas of Greenhouse Crops around Various Distances from Homes in Agricultural Settings in Ecuador. *Data Brief* **2020**, *31*, doi:10.1016/j.dib.2020.105980.

51. Yagual, A.; Lovato, S.; Mite, M. Importancia de La Exportación de Flores Sobre Total Exportaciones FOB No Tradicionales En Ecuador 2012-2016 Importance of the Export of Flowers on Total Non-Traditional FOB Exports in Ecuador 2012-2016. *Revista Espacio* **2018**, *39*.

52. Yulan Negrete, H.; Garcia Regalado, J.; Medina Zambrano, D.; Limones Salazar, A. Analysis of Rose Exports to the U.S. and Their Impact on Ecuadorian GDP Period 2015-2019. *Universidad Ciencia y Tecnología* **2021**, *25*, doi:10.47460/uct.v25i111.518.

53. Rincon, D.F.; Vasquez, D.F.; Rivera-Trujillo, H.F.; Beltrán, C.; Borrero-Echeverry, F. Economic Injury Levels for the Potato Yellow Vein Disease and Its Vector, *Trialeurodes Vaporariorum* (Hemiptera: Aleyrodidae), Affecting Potato Crops in the Andes. *Crop Protection* **2019**, *119*, doi:10.1016/j.cropro.2019.01.002.

54. SCOTTA, R.R.; SÁNCHEZ, D.A.E.; ARREGUI, M.C. DETERMINACIÓN DE LAS PÉRDIDAS CAUSADAS POR LA MOSCA BLANCA DE LOS INVERNADEROS (*Trialeurodes Vaporariorum*) EN CULTIVOS DE TOMATE BAJO INVERNADERO. *FAVE Sección Ciencias Agrarias* **2015**, *13*, doi:10.14409/fa.v13i1/2.4962.

55. Zhang, H.; Zhang, R.; Zeng, X.; Wang, X.; Wang, D.; Jia, H.; Xu, W.; Gao, Y. Exposure to Neonicotinoid Insecticides and Their Characteristic Metabolites: Association with Human Liver Cancer. *Environ Res* **2022**, *208*, doi:10.1016/j.envres.2022.112703.

56. Zhao, Y.; Zhu, Z.; Xiao, Q.; Li, Z.; Jia, X.; Hu, W.; Liu, K.; Lu, S. Urinary Neonicotinoid Insecticides in Children from South China: Concentrations, Profiles and Influencing Factors. *Chemosphere* **2022**, *291*, doi:10.1016/j.chemosphere.2021.132937.

57. Godfray, H.C.J.; Blacquière, T.; Field, L.M.; Hails, R.S.; Petrokofsky, G.; Potts, S.G.; Raine, N.E.; Vanbergen, A.J.; McLean, A.R. A Restatement of the Natural Science Evidence Base Concerning Neonicotinoid Insecticides and Insect Pollinators. *Proceedings of the Royal Society B: Biological Sciences* **2014**, *281*.

58. González-Andrade, F.; López-Pulles, R.; Estévez, E. Acute Pesticide Poisoning in Ecuador: A Short Epidemiological Report. *J Public Health (Bangkok)* **2010**, *18*, doi:10.1007/s10389-010-0333-y.

59. Breilh, J.; Pagliccia, N.; Yassi, A. Chronic Pesticide Poisoning from Persistent Low-Dose Exposures in Ecuadorean Floriculture Workers: Toward Validating a Low-Cost Test Battery. *Int J Occup Environ Health* **2012**, *18*, doi:10.1179/1077352512Z.0000000002.

60. Skomal, A.E.; Zhang, J.; Yang, K.; Yen, J.; Tu, X.; Suarez-Torres, J.; Lopez-Paredes, D.; Calafat, A.M.; Ospina, M.; Martinez, D.; et al. Concurrent Urinary Organophosphate Metabolites and Acetylcholinesterase Activity in Ecuadorian Adolescents. *Environ Res* **2022**, *207*, doi:10.1016/j.envres.2021.112163.

61. Friedman, E.; Hazlehurst, M.F.; Loftus, C.; Karr, C.; McDonald, K.N.; Suarez-Lopez, J.R. Residential Proximity to Greenhouse Agriculture and Neurobehavioral Performance in Ecuadorian Children. *Int J Hyg Environ Health* **2020**, *223*, doi:10.1016/j.ijheh.2019.08.009.

62. Grandjean, P.; Harari, R.; Barr, D.B.; Debes, F. Pesticide Exposure and Stunting as Independent Predictors of Neurobehavioral Deficits in Ecuadorian School Children. *Pediatrics* **2006**, *117*, doi:10.1542/peds.2005-1781.

63. Phillips, S.; Suarez-Torres, J.; Checkoway, H.; Lopez-Paredes, D.; Gahagan, S.; Suarez-Lopez, J.R. Acetylcholinesterase Activity and Thyroid Hormone Levels in Ecuadorian Adolescents Living in Agricultural Settings Where Organophosphate Pesticides Are Used. *Int J Hyg Environ Health* **2021**, *233*, doi:10.1016/j.ijheh.2021.113691.

64. Park, S.M.; Ko, K.Y.; Kim, I.H. Optimization of D-Limonene Extraction from Tangerine Peel in Various Solvents by Using Soxhlet Extractor. *Korean Chemical Engineering Research* **2015**, *53*, doi:10.9713/kcer.2015.53.6.717.

65. Angeles-Martínez, O.; García-Mateos, Ma.R.; Rodríguez-Pérez, E.; Sánchez-Alvarez, E.; Soto-Hernández, M. Toxicity of Plant Extracts for Control of *Trialeurodes Vaporariorum* W. (Homoptera: Aleyrodidae) in Laboratory and Greenhouse Tomatoes. *The Journal of Agriculture of the University of Puerto Rico* **2021**, *95*, doi:10.46429/jaupr.v95i3-4.2570.

66. Muthuthantri, S.; Clarke, A.R.; Hayes, R.A.; Kevin, J. Effect of Citrus Peel Chemicals on *Bactrocera Tryoni* Larval Survival. *Acta Hortic* **2015**, *1105*, doi:10.17660/ActaHortic.2015.1105.50.

67. Bailão, E.F.L.C.; Pereira, D.G.; Romano, C.A.; Paz, A.T. de S.; Silva, T.M. e.; Paula, J.R. de; Gomes, C.M.; Borges, L.L. Larvicidal Effect of the Citrus *Limettoides* Peel Essential Oil on *Aedes Aegypti*. *South African Journal of Botany* **2022**, *144*, doi:10.1016/j.sajb.2021.09.013.

68. Azmy, R.M.; El Gohary, E.G.E.; Salem, D.A.M.; Mahmoud, D.M.; Salama, M.S.; Abdou, M.A. Evaluation of the Larvicidal Activity of Nanoemulsion from Citrus *Aurantifolia* (Christm) Swingle Peel on *Culex Pipiens* l. (Diptera: Culicidae) and the Induced Morphological Aberrations. *Egypt J Aquat Biol Fish* **2021**, *25*, doi:10.21608/ejabf.2021.176475.

69. Delkhoon, S.; Fahim, M.; Hosseinzadeh, J.; Panahi, O. Effect of Lemon Essential Oil on the Developmental Stages of *Trialeurodes Vaporariorum* West (Homoptera: Aleyrodidae). *Archives of Phytopathology and Plant Protection* **2013**, *46*, doi:10.1080/03235408.2012.749690.

70. Dehghani, M.; Ahmadi, K. Anti-Oviposition and Repellence Activities of Essential Oils and Aqueous Extracts from Five Aromatic Plants against Greenhouse Whitefly *Trialeurodes Vaporariorum* Westwood (Homoptera: Aleyrodidae). *Bulgarian Journal of Agricultural Science* **2013**, *19*.

71. Ibáñez, M.D.; Sanchez-Ballester, N.M.; Blázquez, M.A. Encapsulated Limonene: A Pleasant Lemon-like Aroma with Promising Application in the Agri-Food Industry. A Review. *Molecules* **2020**, *25*.

72. K, R.; S, S.; Bhaskar S A, V.; S M, V.; Sesha, Mr.N. Extraction of Essential Oil D-Limonene from Sweet Orange Peels by Simple Distillation. *IOSR Journal of Applied Chemistry* **2016**, *09*, doi:10.9790/5736-0909021617.

73. Mirdha, K.; Routray, C. Extraction and Characterization of D-Limonene Oil from Orange Peels Using Different Solvents. *Mukt Shabd Journal* **2020**.

74. Filho, CA; Silva, C.M.; Quadri, M.B.; Macedo, E.A. Tracer Diffusion Coefficients of Citral and D-Limonene in Supercritical Carbon Dioxide. *Fluid Phase Equilib* **2003**, *204*, doi:10.1016/S0378-3812(02)00175-9.

75. Auta, M.; Musa, U.; Tsado, D.G.; Faruq, A.A.; Isah, A.G.; Raji, S.; Nwanisobi, C. Optimization of Citrus Peels D-Limonene Extraction Using Solvent-Free Microwave Green Technology. *Chem Eng Commun* **2018**, *205*, doi:10.1080/00986445.2017.1419206.

76. Khandare, R.D.; Tomke, P.D.; Rathod, V.K. Kinetic Modeling and Process Intensification of Ultrasound-Assisted Extraction of d-Limonene Using Citrus Industry Waste. *Chemical Engineering and Processing - Process Intensification* **2021**, *159*, doi:10.1016/j.cep.2020.108181.

77. Drobys, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of Citrus Volatiles in Host Recognition, Germination and Growth of *Penicillium Digitatum* and *Penicillium italicum*. *Postharvest Biol Technol* **2008**, *49*, doi:10.1016/j.postharvbio.2008.01.016.

78. Dong, Z.B.; Shao, W.Y.; Liang, Y.R. Isolation and Characterization of Essential Oil Extracted from Tangerine Peel. *Asian Journal of Chemistry* **2014**, *26*, doi:10.14233/ajchem.2014.16277.

79. Sharma, P.; Vishvakarma, R.; Gautam, K.; Vimal, A.; Kumar Gaur, V.; Farooqui, A.; Varjani, S.; Younis, K. Valorization of Citrus Peel Waste for the Sustainable Production of Value-Added Products. *Bioresour Technol* **2022**, *351*.

80. Satari, B.; Karimi, K. Citrus Processing Wastes: Environmental Impacts, Recent Advances, and Future Perspectives in Total Valorization. *Resour Conserv Recycl* **2018**, *129*.

81. Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Bakshi, M.; Abhilash, P.C.; Fraceto, L.F. Use of Botanical Insecticides for Sustainable Agriculture: Future Perspectives. *Ecol Indic* **2019**, *105*, doi:10.1016/j.ecolind.2018.04.038.

82. Ahmed, N.; Alam, M.; Saeed, M.; Ullah, H.; Iqbal, T.; Awadh Al-Mutairi, K.; Shahjeer, K.; Ullah, R.; Ahmed, S.; Abd Aleem Hassan Ahmed, N.; et al. Botanical Insecticides Are a Non-Toxic Alternative to Conventional Pesticides in the Control of Insects and Pests. In *Global Decline of Insects*; 2022.