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Abstract: The Chromogranin A (CgA)-derived peptide Catestatin (CST: hCgAss2s72) is highly conserved (>90%
in 90% species) in mammalian species. The highest-evolved primates show 58.8% similarity with the lowest-
evolved monotremes. CST was initially identified as a physiological brake in catecholamine secretion by
inhibiting nicotinic-cholinergic signaling. CST also inhibits desensitization of catecholamine secretion,
indicating that CST can act both as a cholinergic antagonist (short-term) and as a cholinergic agonist (long-
term). The long-term effect sustains catecholamine secretion during stressful situations. CST is now established
as a pleiotropic hormone: it affects the cardiovascular system by lowering blood pressure and cardiac
contractility, enhancing baroreflex sensitivity, increasing heart rate variability, and promoting angiogenesis;
and it increases insulin sensitivity by reducing inflammation, inhibiting hepatic glucose production,
attenuating endoplasmic reticulum stress, and inducing glycogen production. The present review will
highlight the important direct and indirect effects of CST, CST1.15 (aka cateslytin), D-CST1-15 (where L-amino
acids were changed to D-amino acids), and human variants of CST (Gly364Ser-CST and Pro370Leu-CST) on
microbial growth inhibition and their potential as therapy for antibiotic-resistant pathogenic microbes.

Keywords: Chromogranin A; catestatin; gut microbiome; antimicrobial peptide; and cell permeable
peptide

1. Introduction

Chromogranin A (CgA), the acidic and secretory proprotein [1-3], is proteolytically cleaved to
generate several biologically important peptides including Catestatin (CST: hCgAuss2s72) [4-12]. The
21 amino acid peptide CST was identified in 1997 as a physiologic brake in catecholamine secretion
that acts by non-competitive inhibition of nicotinic-cholinergic signaling [5,13-17]. Initial studies
were conducted in rat pheochromocytoma cells and primary cultures of bovine chromaffin cells with
bovine CST (bCgAsu3e4) [5]. In 1999, CST was shown to inhibit desensitization of catecholamine
secretion [18]. CST blocks nicotinic desensitization of catecholamine release, which might sustain
catecholamine release when there is increased sympathetic outflow, such as during stressful
situations. Thus, CST can act both as an antagonist to nicotinic-cholinergic transmission (short-term)
as well as a partial agonist to nicotinic-cholinergic receptor (long-term). Alanine substitution mutants
of bovine CST revealed crucial roles for Arg®!, Arg®? and Arg3® in inhibiting nicotine-induced
catecholamine secretion [19]. Further studies with bovine CST using serial single amino acid
truncations or single residue substitution by alanine identified the N-terminal 15 amino acids
(bCSTs44358) as crucial both for nicotine-induced catecholamine secretion and desensitization [14].

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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Subsequently, in 2003, the anti-adrenergic effects of CST were demonstrated in mice [20]. The
substantial (63%) PB-sheet structure of CST in a hydrophobic environment was revealed in circular
dichroism studies [19]. Electrophysiological studies on the interaction between CST and several
combinations of neuronal acetylcholine receptor (nAChR) subunits expressed in oocytes revealed
CST as a potent and reversible blocker of the nAChR, without significant discrimination among
different nAChR subtypes (a7, asPs, aspz, and oupz) tested [21]. The above studies were also shown by
the molecular modeling of nAChRs and their interaction with CST [22]. Amongst the three natural
variants of CST (Gly364Ser, Gly367Val, and Pro370Leu) in US population, Pro370Leu-CST showed
the highest potency of inhibiting catecholamine secretion and desensitizing catecholamine secretion,
followed by WT-CST and Gly364-Ser-CST [23-25].

The hypotensive effects of intravenous CST were first shown in rats in 1998 after activation of
the sympathetic outflow by electrical stimulation. CST effects were shown to be blocked by a
histamine Hi receptor antagonist but not by blockade of the a- and p-adrenergic receptors [26]. In
2010, hand vein studies in humans also revealed the hypotensive effects of CST [27]. In 2005, the anti-
hypertensive effects of CST were exhibited in a monogenetic model of rodent hypertension (CgA
knockout mice) with excess plasma catecholamines [28]. Besides excess catecholamines, reactive
oxygen species (ROS) were also implicated in the development of hypertension in CgA-KO mice [29].
The antihypertensive effects of CST were later determined in mice (polygenic model of hypertension)
and spontaneously hypertensive rats (polygenic model of hypertension) in 2012 and 2014,
respectively [30,31]. CST was also demonstrated to improve dampened baroreflex sensitivity [32] and
dysregulated heart rate variability in CgA-KO mice [33]. Central effects of CST on regulation of
arterial blood pressure include excitation of both the bulbospinal (glutamatergic) neurons in the
rostral ventrolateral medulla (RVLM) and GABAergic neurons in the caudal ventrolateral medulla
(CVLM). Loss and gain of function studies in CST knockout mice confirmed that CST is necessary
and sufficient to regulate blood pressure [34]. The effects of natural variants of CST on blood pressure
and autonomic nervous system have been described previously in a review article [35]. Several
studies in Langendorff perfused heart preparations implicate CST as a cardioprotective peptide
inhibiting both inotropy and lusitropy under basal and stimulated conditions [36-38]. CST was also
indicated to provide comparable cardioprotection in isolated heart by pre-conditioning [39] and post-
conditioning [40]. Plasma CST is diminished very early during development of hypertension [41],
and the processing of CgA to CST is decreased in hypertensive patients [42]. Plasma CST is also low
in black patients suffering from end-stage renal disease [43]. CST increases insulin sensitivity by
decreasing infiltration of macrophages in the liver and the consequent inflammation [44], inhibiting
hepatic glucose production [44], decreasing endoplasmic reticulum stress [45], and inducing
glycogen production [46]. Although it is known that neurotransmitters released from
parasympathetic (e.g., acetylcholine) and sympathetic nerve ending (e.g., norepinephrine) can bind
with the acetylcholine receptors [47-51] and adrenergic receptors [52-56], respectively present on
innate immune cells, the homeostatic regulation between these two systems is complex. CST, being
an intrinsic regulator of neuroendocrine secretory system, can have both direct and indirect effects
on the host-pathogen interactions. The goal of this review is to summarize the developing concept of
the effect of CST as an antimicrobial and cell penetrating peptide.

2. Homology and non-synonymous single nucleotide polymorphisms of CST in mammals

2.1. Homology of CST in mammals

Sequence alignment of CST in 53 mammalian species belonging to 8 orders revealed >80%
homology in 52 species except in Platypus (lowest in the mammalian phylogenetic tree) where the
homology with the Primates (highest in the mammalian phylogenetic tree) was >58% (Figure 1),
indicating that CST is highly conserved in mammals. The homology of individual amino acids is
summarized in Figure 2.
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Consensus:

Common Name Scientific Name Order CgA Domain
Human Homo sapiens Primates CgA352-372
Bonobo Pan paniscus Primates CgA354-374
Chimpanzee Pan troglodyles Primates CgA354-374
Western low-land gorilla Gorilla gorilla gorilla Primates CgA354-374
Sumatran orangutan Pongo abelii Primates CgA352-372
Silvery gibbon Hylobates moloch Primates CgA353-373
Black snub-nosed monkey |Rhinopithecus bieti Primates CgA348-368
Crab-eating macaque Macaca fascicularis Primates CgA353-373
Golden snub-nosed monkey |Rhinopithecus roxellana Primates CgA348-368
Green monkey Chlorocebus sabasus Primates CgA352-372
Night monkey Aotus nancymaae Primates CgA351-371
Old world monkey Colobus angolensis palliatus Primates CgA350-370
Olive baboon Papio anubis Primates CgA355-375
Pig-tailed macaque Macaca nemestrina Primates CgA353-373
Red colobus Piliocolobus tephrosceles Primates CgA353-373
Sooty mangabey Cercocebus atys Primates CgA354-374
Rhesus monkey Macaca mulatta Primates CgA350-370
Tufted capuchin Sapajus apella Primates CgA351-371
Black rat Raitus rattus Rodentia CgA360-380
Brown rat Rattus norvegicus Rodentia CgA366-386
Golden hamster Mesocricetus auratus Rodentia CgA335-355
Grasshopper mouse Onychomys torridus Rodentia CgA347-367
House mouse Mus musculus Rodentia CgA364-384
Multimammate mouse Mastomys coucha Rodentia CgA356-376
Ryuku mouse Mus carol Rodentia CgA359-379
Shrew mouse Mus pahari Rodentia CgA347-367
European rabbit Oryclolagus cuniculus Lagomorpha CgA342-362
Alpaca Vicugna pacos Artiodactyla CgA348-368
Arabian camel Camelus dromedarius Artiodactyla CgA347-367
Cattle Bos taurus Artodactyla CgA344-364
Goat Capra hircus Artiodactyla CgA338-358
Pig Sus scrofa Artiodactyla CgA343-363
Sheep Ovis aries Artiodactyla CgA347-367
Donkey Equus asinus Perissodactyla CgA343-363
Horse Equus caballus Perissodactyla CgA343-363
Southern white rhinoceros  |Ceratotherium simum Perissodactyla CgA347-367
California sea lion Zalophus californianus Carnivora CgA344-364
Cat Felis catus Carnivora CgA349-369
Cheetah Acinonyx jubatus Carnivora CgA348-368
Dog Canis lupus Carnivora CgA343-363
Giant panda Ailuropoda melanoleuca Carnivora CgA346-366
Grizzly bear Ursus arctos horribilis Carnivora CgA347-367
Harbor seal Phoca vitulina Carnivora CgA348-368
Leopard Panthera pardus Carnivora CgA348-368
Mongooses Suricata suricatta Carnivora CgA350-370
Monk seal Neomonachus schauinslandi Carnivora CgA344-364
Northern fur seal Callorhinus ursinus Carnivora CgA343-363
Walrus Odobenus rosmarus divergens Carnivora CgA340-360
Weddell seal Leptonychotes weddellii Carnivora CgA347-367
Dolphin Lipotes vexillifer Cetacea CgA339-359
Killer whale Orcinus orca Cetacea CgA340-360
Sperm whale Physeter catodon Cetacea CgA355-375
Platypus Ornithorhynchus anatinua Monotremata CgA370-390
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Figure 1. Homology of CST sequence in 53 mammalian species belonging to 8 orders. CST sequences

were aligned using the MUSCLE method provided by SnapGene software from the following
mammalian species: human (Homo sapiens: NM_001275), bonobo (Pan paniscus: XP_008956465.1),
chimpanzee (Pan troglodytes: PNI97600.1), western low-land gorilla (Gorilla gorilla gorilla:
XM_019009788.2), Sumatran orangutan (Pongo abelii: XM_002825045.3), silvery gibbon (Hylobates
moloch: XP_031990963.1), black snub-nosed monkey (Rhinopithecus bieti: XM_017857899.1), crab-eating
macaque (Macaca fascicularis: XP_045252830.1), golden snub-nosed monkey (Rhinopithecus roxellana:
XM_010384506.1), green monkey (Chlorocebus sabaeus: XM_007987644.2), night monkey (Aotus
nancymaae: XM_012455409.1), old world monkey (Colobus angolensis palliates: XM_011949380.1), olive
baboon (Papio Anubis: XM_031667888.1), pig-tailed macaque (Macaca nemestrina: XM_011717182.1),

red colobus (Piliocolobus

tephrosceles:

XM_023205512.3),

Sooty mangabey (Cercocebus atys:

XM_012083744.1), rhesus monkey (Macaca mulatta: NM_001278450.1), tufted capuchin (Sapajus apella:
XM_032287580.1), black rat (Rattus rattus: XM_032908276.1), brown rat (Rattus mnorvegicus:
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XM_032908276.1), golden hamster (Mesocricetus auratus: XM_005068386.4), grasshopper mouse
(Onychomys torridus: XM_036206345.1), house mouse (Mus musculus: NM_007693.2), multimammate
mouse (Mastomys coucha: XM_031357132.1), Ryuku mouse (Mus caroli: XM_021179357.1), Shrew
mouse (Mus pahari: XM_021202342.2), European rabbit (Oryctolagus cuniculus: XM_051826432.1),
alpaca (Vicugna pacos: XP_031534667.1), Arabian camel (Camelus dromedarius: XM_031454226.1), cattle
(Bos taurus: NM_181005.2), goat (Capra hircus: XM_018066172.1), pig (Sus scrofa: NP_001157477.2),
sheep (Owis aries: XP_004018008.3), donkey (Equus asinus: XP_014687627.1), horse (Equus caballus:
NP_001075283.2), southern white rhinoceros (Ceratotherium simum: XP_004434274.1), California sea
lion (Zalophus californianus: XP_027424506.2), cat (Felis catus: XP_023111743.1), cheetah (Acinonyx
jubatus: XP_026922275.1), dog (Canis lupus: XP_038528993.1), giant panda (Ailuropoda melanoleuca:
XP_019660005.1), grizzly bear (Ursus arctos horribilis: XP_048075839.1), harbor seal (Phoca vitulina:
XP_032261715.1), leopard (Panthera pardus: XP_019317643.2), mongooses (Suricata suricatta:
XP_029807749.1), monk seal (Neomonachus schauinslandi: XP_021535325.1), Northern fur seal
(Callorhinus ursinus: XP_025726236.1), walrus (Odobenus rosmarus divergens: XP_004394547.1),
weddell-seal (Leptonychotes weddellii: XP_030873380.1), dolphin (Lipotes vexillifer: XP_007454783.1),
killer whale (Orcinus orca: XP_004262400.1), sperm whale (Physeter catodon: XP_023986851.1), and
platypus (Ornithorhynchus anatinua: XP_039767777.1). Yellow shows an amino acid match between
species.

R S M K ke S F
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h352 h353 h354 h355 h356 h357 h358

73% >04% 100% >90% 100% >92% 100%

R A R A Y G F

8 - 10 11 12 13 14
h359 h360 h361 h362 h363 h364 h365

>02% >86% >96% >86% 100% >66% 100%

R G P G P Q L

15 16 17 18 19 20 21
h366 h367 h368 h369 h370 h371 h372

>94% >83% >98% 100% >58% >94% >96%
Consensus sequence Amino Acid number Homology
Fig. 2

Figure 2. Homology of the individual amino acid in catestatin sequence in 53 mammalian species
belonging to 7 orders.

2.2. Single nucleotide polymorphisms (SNPs) in the CST domain of mammals

Four non-synonymous SNPs have been identified in CST domain of CgA: Gly364Ser (US, Indian,
and Japanese populations) [24,57,58], Gly367Val (only in Indian populations) [57], Pro370Leu (US
and Indian populations) [24], and Arg374GIn (US populations only) [24]. Pro370Leu-CST has the
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highest potency of inhibiting catecholamine secretion and desensitizing catecholamine secretion,
followed by WT-CST and Gly364-Ser-CST [24]. The Gly364Ser variant was demonstrated to cause
profound changes in parasympathetic and sympathetic activity including a ~2.4-fold increase in
cardiac parasympathetic index and a ~26% decrease in cardiac sympathetic index in comparison to
wild-type individuals [59]. This variant protects men from developing cardiovascular diseases
compared to women [59].

3. Catestatin and innate immunity

The first indication for the role of CST in innate immunity came from a study in rats where
intravenous administration of CST was shown to reduce pressor responses by electrical stimulation
[26]. The hypotensive effect of CST was revealed to be mediated at least in part by profuse histamine
release (by ~21-fold) and action at the Hi receptor [26]. The in vivo studies were later confirmed in
peritoneal and pleural mast cells where CST caused dose-dependent release of histamine utilizing
signaling pathways established for wasp venom peptide mastoparan and other amphiphilic cationic
neuropeptides (the peptidergic pathway) [60]. This pathway is in sharp contrast to the nicotinic-
cholinergic pathway used by CST to induce catecholamine secretion from chromaffin cells [5].
Subsequent studies uncover the following: (i) release of immunoreactive CST-containing peptides
from human stimulated polymorphonuclear neutrophils [61]; (ii) detection of CST in mouse
peritoneal macrophages by Western blots [39]; (iii) detection of CST in human monocytes and
monocyte-derived macrophages by Western blots [62]; (iv) blockade of lipopolysaccharide (LPS)-
induced increase in expression of tumor necrosis factor alpha (TNF-a) [62]; (v) decreased expression
of proinflammatory cytokines by CST in plasma and heart [39]; (vi) inhibition of infiltration of
macrophages in obese liver [44]; (vii) degranulation of primary mast cells from human peripheral
blood [63] and (viii) low plasma CST in fatal COVID-19 patients [64]. These findings implicate CST
as an immunomodulatory peptide. Since, receptor-ligand interactions are an essential driver of host-
immune response [65], it is important to examine if CST can bind with a receptor on immune cells
and regulate their polarization and function in host defense.

4. Antibacterial effects of CST

4.1. Inhibition of bacterial growth by CST

Metz-Boutigue’s group was the first to demonstrate the antibacterial activity of CST. Her group
used bCSTsu-358 (coining the term cateslytin to describe this antibacterial effect) to reveal inhibition of
growth of the Gram-positive and Gram-negative bacteria [61]. The minimal inhibitory concentrations
(MICs) of CST (bCgAsu-ss, hCgAsszs7, Gly364Ser-CST and Pro370Leu-CST) for Gram-positive
bacteria (Micrococcus luteus, Bacillus megaterium, Group A Streptococcus, S. aureus ATCC 25923, S.
aureus ATCC 49775, S. aureus S1 MRSA, S. aureus S1 MSSA, and S. aureus DmprF) range from 0.8 uM
to >100 uM (Figure 3) [61,66]. The minimal concentration with 100% inhibition (MICio0) for Gram-
positive bacteria range from 2 uM to >100 uM of 2 uM. The MIC of CST was higher (8 uM to 50 uM)
for Gram-negative bacteria (Escherichia coli D22, E. coli 029, and Pseudomonas aeruginosa) compared to
Gram-positive bacteria (Figure 3). Likewise, the MICioo of CST was higher (15 uM to 150 uM) for
Gram-negative bacteria compared to Gram-positive bacteria (Figure 3). The higher MIC and MICioo
values of CST for Gram-negative bacteria are consistent with the presence of extra outer membrane
containing LPS [67,68]. Besides the extra-thick cell membrane, Gram-negative bacteria release
exotoxins like tetanus [69,70] and cholera toxins [71] that make worse prognosis.

doi:10.20944/preprints202304.0016.v1
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WT-CST WT-CST WT-CST WT-CST G3645-CST G364S-CST P370L-CST P370L-CST
Bacterial species bCOAs 4058  bCOAwszss  hCOAssza72 hCgAgsz 372 hCgAssp-a72 hCgAssp-a72 hCgAss 372 hCgAss-a72
MIC (uM) MIC1o0 (UM) MIC (uM) MIC 00 (M) MIC (uM) MIC00 (HM) MIC (uM) MIC 00 (UM)
Gram-positive bacteria
Micrococcus luteus HE 2 2 ) ! & & 10
Bacillus megaterium 0.8 2
Group A
Streptococcus 75 75 30 30-50
5"’-‘"2’%’8?;’;2%”'9”3 0 >100 >100 >100 >100
Staphylococcus aureus
ATCC 49775 £ (2
Staphylococcus aureus
S1 (MRSA) s 130
Staphylococcus aureus
$1 (MSSA) 43 30
Staphylococcus aureus
AmprE 20 30 5-10 10 5 [
Gram-negative bacteria
Escherichia coli D22 8 15 15 150 10 40 20 100
Escherichia colf 029 30 30 20 20-30 10 510
Pseudomonas aeruginosa 50 50
Fig. 3

Figure 3. Effects of wild-type (WT)-CST and natural human variants of CST (Gly364Ser and
Pro370Leu) on the growth of Gram-positive and Gram-negative bacteria showing minimal inhibitory
concentration (MIC) and lethal concentration (MICio0) of CST.

4.2. Interaction of CST with the bacterial wall

While Gram-positive bacteria contain only the cytoplasmic membrane that surrounds the cell,
Gram-negative bacteria contain an additional LPS-containing thick outer membrane [67,68].
Furthermore, the peptidoglycan layer on the outer side of the cytoplasmic membrane is much thicker
in Gram-positive bacteria compared to Gram-negative bacteria [72,73]. In addition, the LPS in Gram-
positive bacteria are lipoteichoic acids that are embedded in the cytoplasmic membrane [74]. In
contrast, in Gram-negative bacteria, the LPS forms the major lipid component of the outer leaflet of
the outer membrane [74]. Although the membranes in both groups possess phosphate groups and
are negatively charged, the Gram-negative bacteria in general have a higher content of the
zwitterionic phospholipid is phosphatidylethanolamine than Gram-positive bacteria [74-77]. The
predominant anionic lipids in bacterial membranes are phosphatidylglycerol and cardiolipin [78-80].
Metz-Boutigue’s group has shown that cateslytin (bCgAsusss) is unstructured in solution but is
converted to an antiparallel B-structure and forms aggregates at the surface of negatively charged
bacterial membranes [81]. As for catecholamine secretion [14], arginine residues were found to be
crucial for binding to negatively charged lipids [81,82]. They proposed that the phase boundary
defects caused by zones of different rigidity and thickness lead to permeability induction and peptide
crossing through the bacterial membrane [81]. That CST penetrates through the bacterial wall was
shown by measuring the optical density of the released p-galactosidase from ML-35p [66]. Electron
microscopical studies of E. coli ML-35p confirmed that CST rapidly disrupts the E. coli membrane
with visible membrane blebbing compared to untreated cells within 10 minutes [66].

4.3. CST as a potential therapy for bacterial diseases

The antimicrobial peptides (AMPs) derived from CgA display antimicrobial activities by lytic
effects at micromolar range against Gram-positive bacteria, filamentous fungi, and yeasts.
Interestingly, Catestatin-derived peptides can kill superbugs and more particularly S. aureus [83].
Considering the actions of CST on E. coli, it could be useful as a therapeutic target for the Gram-
negative bacteria cause many serious infections, including Cholera [84], E. coli infection [85], Plague
[86], Campylobacter [87], Legionnaire’s disease [88], Salmonella [89], Klebsiella [90], Pseudomonas
[91], Tularemia [92], and Typhoid fever [93] and microbes associated with drug resistance [94-97],
CST might be used as a therapeutic target for the above diseases.
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5. Antifungal and antiyeast effects of CST

5.1. Inhibition of growth of fungus and yeast by CST

Fungal infections are common on the surface of skin, nails, or mucous membranes (superficial
or mucocutaneous), underneath skin (subcutaneous), or in the lungs, brain, or heart (deep infection).
Deep fungal infections include Histoplasmosis [98,99], Coccidioidomycosis (Valley fever) [100,101],
Blastomycosis [102,103], Aspergillosis [104,105], Candidal urinary tract infection [106,107], invasive
candidiasis [108,109], Pneumocystis pneumonia [110,111], Mucormycosis [112,113], and
Cryptococcosis [114,115]. It is becoming increasingly evident that resistance to antifungal therapy is
on the rise [116,117], which calls for the development alternative therapy for these infections. Host-
defense peptides are emerging as new promising candidates to counteract antifungal resistance [118].
To this end, Metz-Boutigue’s group tested the effects of CST on the growth of fungus and yeasts.
They found MIC values of CST or its human variants ranging from 0.2 pM to 75 uM against a host of
fungal species (Neurospora crassa, Aspergillus fumigatus, A. niger, Nectria haematococca, Fusarium
culmorum, F. oxysporum, Trichophyton mentagrophytes, and T. rubrum) [61,66] (Figure 3). The MICioo
values of CST or its human variants against the above fungal species ranged from 0.8 pM to 100 uM
[61,66] (Figure 4). CST and its human variants also displayed similar inhibitory effects on the growth
of yeasts with MIC ranged from 1.2 uM to >240 uM (Figure 4) [61,66]. The MICi0 of CST and its
variants against the above yeasts ranged from 6 uM to 75 uM [61,66] (Figure 5). Similar to the effects
of retro-inverso (RI)-CST on catecholamine secretion [30], D-CST (L-amino acids were replaced by D-
amino acids) exhibited comparable inhibitory effects on the growth of yeast compared to L-CST with
MIC ranged from 2 uM to 9.6 uM [119]. D-CST was also uncovered to be resistant to proteolytic
digestion [83,119,120]. Like L-CST, D-CST can also be used to develop therapies for drug-resistant
microbial infection [121].

Phylum :"ﬁ:'r WT-CST Wr-CsT WT-CST G8B4S-CST G364S-CST P370L-CST P370L-CST
Fungal spscies CE&-; “  bCoAsuass  hCOAwaz  hCOAwmsnm hCoAsz 372 hCgAszz 72 hCaAzsz.37 hCoAs 372
i MIC (uM)  MICs0 (M) MIC (M) MICigo (M) MIC (uM) MIC g (L) MIC (M) MICg0 (UM}
Ascomycota
Neurospora crassa 12 32 20 50 = 5 3 10
Aspergillus fumigatus 10 80 20-80 30 10-20 80 10-20 100
Aspergillus niger 20 30 20 30 10 20
Nectria haematococca 02 08
Fusarium culmorum 2 8
Fusarium oxysporum 6 10
Trichophyton mentagrophytes 4 20
Trichophyton rubrum 75 75 20 22l
Fig. 4

Figure 4. Effects of WT-CST and natural human variants of CST (Gly364Ser and Pro370Leu) on the
growth of fungal species showing MIC and MICiw of CST.

WT-L-CST WT-L-CST WT-D-CST WT-L-CST WT-CST WT-CST G3645-CST P370L-CST

Yeast species bCOAssss  bCOALase bCgAss 358 bCgAwuas  hCOAsar2  hCgAaszan hCgAscz.57; hCgAssz 372
MIC (M) MIC 100 (M) MIC (uM) MIC (M) MIC (UM)  MICiop (MM)  MICian (M) MIC 00 (M)
e o 0
Candida albicans 1.2 8
Candida albicans *S" 79 55 30 >240
Candida albicans “R" 9.6 9.6 50 >240
Candida tropicalis 1.8 10
Candida tropicalis 'S” 9.8 8.1 50 >240
Candida tropicalis ‘R” 20 20 20 >240
Carndida glabrata 8 30
Candida glabrafa “5” 38.2 13.4
Candida glabrata "R” 61.4 15.0 >100 =240
Candida neoformars 14 & 100 =240
Fig. 5

Figure 5. Effects of WT-CST and natural human variants of CST (Gly364Ser and Pro370Leu) on the
growth of yeast species showing MIC and MICio0 of CST.
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5.2. Mechanisms underlying the antifungal and antiyeast activities of CST

Metz-Boutigue’s group used confocal laser microscopy to analyze the interaction of the synthetic
rhodamine-labeled cateslytin (bCgAswusssr) with fungal (A. fumigatus) and yeast (C. albicans)
membranes [61]. Rhodaminated cateslytin (1 pM) was detected in the inner compartment after 2 min
of incubation, implicating rapid and efficient penetration through the cell wall [61]. Using time-lapse
videomicroscopy of fungal growth, they have shown that rhodaminated cateslytin blocked the
growth and development of nascent fungus [61]. Penetration of rhodaminated cateslytin takes place
at both ends of the small fungi (three cells and expressing a slow growth rate) as compared to larger
fungi with a higher growth rate where penetration takes place at one end [61]. Sequence homology
of the well-known cell-permeable peptide penetratin with CST representing 7 mammalian orders
(Primates, Rodentia, Artiodactyla, Perissodactyla, Carnivora, Cetacea and Monotremata) revealed
63.64% to 75% similarity, which should qualify CST as a cell-permeable peptide (Figure 6).

Common Name Scientific Name Order Sequence Identity Similarity
Penetratin RQI KIWFAQNRR
Consensus mammalian CST RSMKLSFRAR 40% 70%
Human Homo sapiens Primates MKLSFRAR 37.5% 75%
House mouse Mus musculus Rodentia RSMKLSFRTR 40% 70%
Cattle Bos taurus Artiodactyla RSMRLSFRAR 30% 70%
Pig Sus scrofa Artiodactyla RSMKLSFR 37.5% 75%
Horse Equus caballus Perissodactyla R S M KL S FR AR 40% 70%
Walrus Qdobanus rosmarus divergens  Carnivora RSMKLSFRAR 40% 70%
Killer whale Oreinus orca Cetacea RAMKLSFRAR 40% 70%
Platypus Ornithorhynchus anatinua Monotremata RSMKLSFKTHEK 2727% 63.64%
Identical: Black; Similar: Blue; Not Similar: Red

Fig. 6

Figure 6. Homology between cell permeable peptide penetratin and CST in 7 mammalian orders.
6. CST regulation of gut microbiota

6.1. Microbiomes in colonic mucosa versus feces

Recent studies have identified a larger role of gut microbiota in gut-immune homeostasis and in
intestinal pathology. The human intestinal microbiota is dominated by five phyla: Bacillota (aka
Firmicutes), Bacteroidota, Actinomycetota (aka Actinobacteria)) Pseudomonadota (aka
Proteobacteri), and Verrucomicrobiota [122]. In contrast, the intestinal microbiota of mice is
dominated by four phyla: Bacillota, Bacteroidota, Deferribacterota, and Pseudomonadota [123],
where the phylum Deferribacterota is in high abundance and the phyla Actinomycetota and
Verrucomicrobiota are in low abundance compared to humans. In human adults, more than 80% of
the species belong to just two phyla: Gram-negative Bacteriodota and Gram-positive Bacillota (aka
Firmicutes). In mouse colonic mucosa samples, 19 phyla were identified [124]. The high-abundant
(=21%) phyla included Bacillota, Bacteroidota, Deferribacterota, and Pseudomonadota [124] (Figure
7). The low-abundant (<1%) phyla included the following: Actinomycetota (aka Actinobacteria),
Parcubacteria (aka OD1), Saccharibacteria (aka TM7), Omnitrophota (aka OP3), Acidobacteriota,
Armatimonadota, Chlamydiae, Chlorobiota, Cyanobacteria, Fibrobacterota, Mycoplasmatota (aka
Tenericutes), Lentisphaerota, Planctomycetota, Spirochaetes, and Verrucomicrobiota) [124] (Figure
7). Although CST failed to alter bacterial populations in the four high-abundant phyla, it altered
colonic mucosa-associated bacterial community composition at lower taxonomic levels. Thus, CST
showed a positive association with Orders including Bacteroidales, Clostridiales, and YS2; Families
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including Chitinophagaceae, Clostridiaceae, Coriobacteriaceae, Pseudomonadaceae, Rikenellaceae,
and Ruminococcaceae; and Genera Bifidobacterium and Stenotrophomonas [124]. Fecal samples
identified 10 phyla including the high-abundant (>1%) Bacillota, Bacteroidota, Pseudomonadota, and
Deferribacterota and low-abundant (<1%) Actinomycetota, Cyanobacteria, Fibrobacterota,
Saccharibacteria, Mycoplasmotota and Verrucomicrobiota [124]. The relative abundance of
Bacteroidota was observed to increase significantly after CST treatment. In contrast, CST was learned
to cause a marked decrease in Bacillota population. Like mucosal samples, fecal samples disclosed
positive associations with the Class Alpharoteobacteria; Orders including Bacteroidales, RF32, and
YS2; and genera Prevotella, Bacteroides, Ovatus, Parabacteroidesdistarosis, Parabacteroides, and Dorea
(Figure 7). Bacteroides and Parabacteroides species, representing ~25% of the colonic microbiota,
transform simple and complex sugars into volatile short-chain fatty acids (SCFAs) such as acetate,
butyrate, and propionate [125-127], which are absorbed in colon as a nutrient [128-130]. Besides
colonic nutrients, SCFAs are well established for their roles in accelerating gut transit time via release
of serotonin [131-134]. SCFAs also release glucagon-like peptide 1 (GLP1) from the enteroendocrine
L-cells [135-138] and improve insulin sensitivity [139-141]. Bacteroides thetaiotaomicron produces
significant amounts of glycosylhydrolases, which prevent obesity [142]. Other Bacteroides species are
also reported to prevent obesity and increase insulin sensitivity [143-146]. Furthermore, Bacteroides
fragilis produces zwitterionic polysaccharide, which activates CD4* T cells to produce interleukin 10
(IL-10). IL-10 plays crucial roles in preventing abscess formation and other unchecked inflammatory
responses [142,147,148]. Negative association of CST was reported for the Class Clostrida, Families
Bacteroidaceae and Ruminococcaceae, and Genera Adlercreutzia and Allobaculum [124]. Interestingly,
the functional correlation between different CST mutants across species and their respective
microbiota remains elusive. It is important to decipher the effect of different CST mutant on microbial
diversity between species.

WT WT+Sal WT+CST CST-KO+Sal CST-KO+CST WT+FMT-CST-KO CST-KOQ+FMT-WT
Mucosal samples Fecal samples Fecal samples Fecal samples Fecal samples Fecal samples Fecal samples
Bacillota (aka : i | o
Firmioutes) Bacillota Bacillota | Bacillota Baciliota || Bacillota Bacillota
Major Bacteroidota Bacteroidota Bacteroidota 11 Bacteroidota Bacteroidota 1 Bacteroidota 1 Bacteroidota |
Phyla
(>1%) Deferribacterota Deferribacterota Deferribacterota Deferribacterota Deferribacterota Deferribacterota Deferribacterota
Pseudomonadota .
(aka Proteobacteria) Pseudomonadota Pseudomonadota | Pseudomonadota Pseudomonadota 1 Pseudomonadota Pseudomonadota
Actinomycetota (aka 5 . 7 ; - ” .
: Actinomycetota Actinomycetota Actinomycetota Actinomycetota Actinomycetota © Actinomycetota
Actinobacteria)
factboc i ake Parcubacteria Parcubacteria | Parcubacteria Parcubacteria Parcubacteria 1 Parcubacteria
Sar;:;n?;:;ﬁ;na Saccharibacteria Saccharibacteria Saccharibacteria Saccharibacteria
Minor Campylobacterota Campylobacterota Camp ota Camp: Campylobacterota Campylobacterota
EE?:,I/E) Cyanobacteria Cyanobacteria Cyanobacteria Cyanobacteria Cyanobacteria Cyanobacteria Cyanobacteria
o
Desulfobacterota Desulfobacterota © Desulfobacterota Desulfobacterota Desulfc Dest ota

Fibrobacterota

Mycoplasmatota
(aka Tenericutes)

Verrucomicrobiota

Fibrobacterota
Mycoplasmatota

Verrucomicrobiota

Verrucomicrobiota

Verrucomicrobiota |

Fibrobacterota

Mycoplasmatota

Verrucomicrobiota 11

Fibrobacterota
Mycoplasmatota

Verrucomicrobiota |

Fibrobacterota
Mycoplasmatota

Verrucomicrobiota

Fig. 7

Figure 7. Abundance of bacterial species in mucosal and fecal samples in WT and CST-KO mice in
presence or absence of CST as well as after fecal microbial transplant. Green arrows indicate CST
effects; red arrows indicate FMT effects.

6.2. Microbiomes in CST knockout (CST-KO) mice and inflammation

CST knockout (CST-KO) mice were generated in 2018 and are: insulin-resistant on a normal
chow diet [44], hyperadrenergic [39], hypertensive [39], and with a leaky gut [149]. The microbiome
in CST-KO mice was unearthed to be quite different in composition than its WT littermates [149].
Microbial richness, assessed by the number of amplicon sequence variants (ASVs) and ACE
(abundance-based Coverage Estimator) index revealed a significant decrease in CST-KO compared
to WT mice [150]. The most prominent observation was the higher ratio of Bacillota to Bacteroidota,
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which was opposite to the decreased ratio observed in WT mice intrarectally infused with CST [124]
(Figure 7). The ratio of Bacilotta to Bacteroidota plays crucial roles in regulation of obesity and
metabolic syndrome [151,152]. Thus, the ratio of Bacilotta to Bacteroidota in adults increases as BMI
increased [153]. Considering these reports, it remains to be seen if this change in microbiota can
promote host defense against enteric pathogens like Salmonella. Furthermore, Verrucomicrobiota
population was very low in CST-KO mice, which indicates low levels of Akkermansia species. Since
Akkermansia muciniphila modulates obesity by regulating metabolism and energy homeostasis to
improve insulin sensitivity and glucose homeostasis [154], low Verrucomicrobiota population
contributes to the insulin resistance reported for CST-KO mice [44].

6.3. Alteration of diversity and composition of the microbiota in the CST-KO after supplementation with
CST.

Decreased ASVs and ACE indices in CST-KO mice were restored after supplementation with
CST for 15 days [150]. Like richness scores, supplementation of CST-KO mice with CST increased
the diversity index as assessed by Shanon’s H and inverted Simpson’s index [150]. At the phylum
level, CST was testified to decrease Bacillota phylum and increase Bacteroidota, Patescibacteria,
Desulfobacterota, and Proteobacteria in both CST-KO and WT mice [150]. Low bacteria levels in
Verrucomicrobiota phylum in CST-KO mice were markedly increased in CST-supplemented CST-
KO mice. CST was also described to decrease abundance of Staphylococcus and Turicibacter in both
WT and CST-KO mice. In contrast, CST increased Alistipes, Akkermansia, and Roseburia genera only in
CST-KO mice [150]. A. muciniphila, a mucin-degrading bacterium, is a member of Verrucomicrobiota,
which use mucin as a carbon, nitrogen, and energy source [155,156]. Murine studies show a causative
role for A. muciniphila in lowering body fat mass, improving glucose homeostasis, decreasing adipose
tissue inflammation, and increasing gut integrity [157-159]. Human studies show a negative
correlation between A. muciniphila abundance and being overweight, being obese, having untreated
type 2 diabetes mellitus, and having hypertension [160-166].

6.4. Restoration of microbial dysbiosis in CST-KO mice after fecal microbial transplant (FMT) from WT
donor mice

FMT, first tested in 1958 to modify the human microbiome and consequently ameliorate
fulminant pseudomembranous enterocolitis [167], has become established as an effective therapeutic
modality in the treatment of antibiotic-refractory recurrent Clostridium difficile colitis with a success
rate of up to 95% [168-172] . Subsequently, FMT was tested for the treatment of constipation, irritable
bowel syndrome, and inflammatory bowel disease [173-177]. As discussed above, CST-KO mice are
associated with an altered gut microbiota composition and richness. WT mice that received FMT from
the CST-KO mice were shown to encompass a reduction of Clostridia and Akkermansia [178], which
are linked to metabolic disorders and insulin resistance [179,180]. Furthermore, WTMT-CST-KO mijce
exhibit a marked increase in the Proteobacteria population, which are associated with active
inflammatory bowel disease (IBD) states [181,182]. Of note, CST-KO mice are insulin-resistant on
normal chow diet [44]. In contrast, CST-KO that received FMT from the WT mice (CST-KOFMT-WT)
showed an increase in richness, a notable reduction of Staphylococcus, and an increase in the butyrate-
producing Intestinimonas [178] (Figure 7). I. butyriciproducens produces butyrate from not only sugars
but also lysine and even glycated lysine [183]. Butyrate, taken up directly by colonocytes, serves as a
direct source of energy and directly contributes to a healthy gut. In addition, butyrate as a signaling
molecule affects many factors such as satiety, secretion of hormones, and glucose metabolism [184—
186]. Of note, reduced levels of butyrate are strongly associated with IBD and metabolic disorders
[187,188]. Further, butyrate has shown promise in restoring gut barrier integrity [189] and
modulating regulatory T cell function by inhibiting histone deacetylase [190-192] though the former
role is understudied. Butyrate modulation of certain serine proteases [193,194] would be a promising
therapeutic target in future studies.
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7. Conclusions

Alignment of CST sequences from 53 mammalian species belonging to eight orders revealed that
CST sequence is highly conserved (>90% in 90% species) in mammals: Five (23.8%) amino acids (M3,
L5, F7, F14, and G?8) are 100% conserved; nine (42.8%) amino acids (S?, K4, 56, R8, R19, R15, P17, Q20 and
L21) are 90-96% conserved; and three (14.28%) amino acids (A9, Al1, and G16), are >80% conserved.
The least conserved sequences are G13 (>66%) and P19 (>58%), where human variants of CST were
reported for G13 (G13S) and P19 (P19L), indicating that natural selection pressures still exist on those
two amino acids [195-198]. Existing literature (expression of CST in innate immune cells, inhibition
of macrophage infiltration in tissues, decreased expression of pro-inflammatory cytokines by CST,
and low plasma CST in fatal COVID-19 patients) implicate CST as an immunomodulatory peptide.
Prominent effects of CST in low micromolar range on inhibition of growth of Gram-positive and
Gram-negative bacteria, fungi, and yeast establish CST as an antimicrobial peptide. Penetration of
CST (pI 12.03-12.48) in bacteria, fungus, yeast, and neutrophils, coupled with 70-75% homology with
cell penetrating peptide Penetratin (pI 12.62) rightfully qualify CST as a member of the cell permeable
peptide. Increased ratio of Bacilotta to Bacteroidota, together with low levels of Verrucomicrobiota
(e.g., Akkermansia spp) in CST-KO mice, not only explains insulin resistance in CST-KO mice but also
implicates that CST is necessary for the maintenance of insulin sensitivity. Decreased ratio of Bacilotta
to Bacteroidota coupled with increased abundance of Verrucomicrobiota after supplementation of
CST-KO mice with CST confirm that CST is necessary and sufficient to increase insulin sensitivity by
modulating gut microbiota. Decreased population of Akkermansia and increased population of
Proteobacteria in WTFMT-GSTKO coupled with increased population of butyrate producing Intestimonas
in CST-KOPMT-WT further substantiates regulation of obesity and insulin resistance by CST [44] via
regulation of gut microbial population [150,178].
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