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Article

Developed Method: Interactions and Their Quantum
Picture

Piotr Ogonowski

Kozminski University, Jagiellonska 57/59, Warsaw, 03-301, Poland; piotrogonowski@kozminski.edu.pl

Abstract: By developing the previously proposed method of combining continuum mechanics

with Einstein Field Equations, explicit equations of interactions operating in a physical system

were obtained. The explicit form of the electromagnetic four-potential was also derived, and the

Lagrangian and Hamiltonian densities describing the physical system containing all the fields. A

quantum picture of the system was also proposed, which, interestingly, allows for a simple transition

to a curvilinear description based on the metric tensor in curved spacetime.

Keywords: field theory; lagrangian mechanics; quantum mechanics; general relativity

1. Introduction

Over the past decades, great strides have been made in attempts to combine quantum description

of interactions with General Relativity [1]. There are currently many promising approaches to

connecting the quantum mechanics and General Relativity, including perhaps the most promising

ones: String Theory [2], [3], [4], Loop quantum gravity [5], [6], [7] and Noncommutative Spacetime

Theory [8], [9].

A lot of work has also been done to clear up some General Relativity challenges. An explanation

for the problem of dark energy [10] and dark matter [11] is still being sought, and efforts are still being

made to explain the origin of the cosmological constant [12], [13], [14].

The author also tries to bring his own contribution to the explanation of the above physics

challenges, based on a recently discovered method, described in [15]. As this article will show, this

method seems very promising and can help clarify at least some of the issues mentioned above.

According to conclusions from [15], the description of motion in curved spacetime and its

description in flat Minkowski spacetime with fields are equivalent, and the transformation between

curved spacetime and Minkowski spacetime is known. This allows for a significant simplification

of research, because the results obtained in flat Minkowski spacetime can be easily transformed into

curved spacetime.

In this article, the author will focus on developing the method proposed in [15]. In the first chapter,

the fields will be separated and the Lagrangian density for the system will be derived, allowing to

obtain the tensor described in [15]. These conclusions will be used later in the article to propose

quantum description of the system.

The author uses the Einstein summation convention, metric signature (+,−,−,−) and commonly

used notations. In order to facilitate the analysis of the article, the key conclusions from [15] are quoted

in the subsection below.

1.1. Short summary of the method

Denoting rest mass density in the system as ̺o and

̺ ≡ ̺oγ (1)

thanks to the proposed [15] amendment to the continuum mechanics, in flat Minkowski spacetime

occurs

∂αUα = −dγ

dt
→ ∂α ̺Uα = 0 (2)
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Stress-energy tensor Tαβ for a system in a given spacetime described by some metric tensor gαβ is

equal to

Tαβ = ̺ UαUβ −
(

c2̺ + Λρ

) (

gαβ − ξ hαβ
)

(3)

where
1

ξ
=

1

4
gµν hµν (4)

Λρ ≡ 1

4µo
F

αµ gµγ F
βγgαβ (5)

hαβ = 2
Fαδ gδγ F

βγ

√

Fαδ gδγ F
βγ gµβ Fαη gηξ F

µ
ξ

(6)

where Fαβ represents electromagnetic field tensor, and where the stress–energy tensor for

electromagnetic filed, denoted as Υ
αβ may be presented as follows

Υ
αβ ≡ Λρ

(

gαβ − ξ hαβ
)

= Λρgαβ − 1

µo
F

αδ gδγ F
βγ (7)

The pressure p in the system is equal to

p ≡ c2̺ + Λρ (8)

Denoting four-momentum density as ̺Uµ = ̺oγ Uµ one may notice that total four-force density f µ

acting in the system is

f µ ≡ ̺Aµ = ∂α̺UµUα (9)

Denoting rest charge density in the system as ρo and

ρ ≡ ρoγ (10)

electromagnetic four-current Jα is equal to

Jα ≡ ρ Uα = ρoγ Uα (11)

Total four-force density f α acting in the system calculated from ∂β Tαβ = 0 is the sum of electromagnetic

( f α
EM), gravitational ( f α

gr) and other ( f α
oth) four-force densities

f α =







































f α
EM ≡ −Λρ ∂βξ hαβ (electromagnetic)

+

f α
gr ≡ c2

(

gαβ − ξ hαβ
)

∂β̺ (gravitational)

+

f α
oth ≡ ̺c2

Λρ
f α
EM (other)

(12)

As was shown in [15], in curved spacetime (gαβ = hαβ) presented method reproduces Einstein Field

Equations with an accuracy of 4πG
c4 constant and with cosmological constant Λ dependent on invariant

of electromagnetic field tensor Fαγ

Λ = − πG

c4µo
F

αµ hµγ F
βγhαβ = −4πG

c4
Λρ (13)

where hαβ appears to be metric tensor of the spacetime in which all motion occurs along geodesics and

where Λρ describes vacuum energy density.
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2. Separation of fields and Lagrangian density

Since for the considered method the transition to curved spacetime is known (based on

electromagnetic field tensor), the rest of the article will focus on the calculations in the Minkowski

spacetime with presence of fields, where ηαβ represents Minkowski metric tensor. The first step will be

separation of interactions described in the section 1.1.

Referring to definitions from section 1.1 one may define following four-potential Aµ

A
µ ≡ −

Λρ

p

̺o

ρo
Uµ (14)

Next, based on it, one may define following four-force density f α
A as

f α
A ≡ Jβ

(

∂α
A

β − ∂β
A

α
)

=
Λρ

p

(

f α − ̺

p

dp

dτ
Uα +

̺c2

p
∂α p

)

(15)

where Jβ is electromagnetic four-current and where Minkowski metric property was utilized

UβUβ = c2 → Uβ∂αUβ =
1

2
∂α
(

UβUβ
)

= 0 (16)

Let f α
A be equal to electromagnetic four-force density f α

EM with respect to some unknown f α
∆

f α
A = f α

EM + f α
∆

(17)

Next, one may calculate, that

̺Uβ

(

∂β ̺c2

p
Uα − ∂α ̺c2

p
Uβ

)

=
̺c2

Λρ
f α
A +

1

p

(

̺UαUβ − ̺c2ηαβ
)

∂β̺c2 = (18)

what, thanks to definitions (3) and (12) after easy transformations, may be rewritten as

= f α
oth +

̺c2

Λρ
f α
∆
+

(

1

p

[

Tαβ − ̺c2 ηαβ
]

+ ηαβ − ξ hαβ

)

∂β̺c2 = (19)

= f α
oth + f α

gr +
̺c2

Λρ
f α
∆
+

1

p

(

Tαβ − ̺c2 ηαβ
)

∂β̺c2 (20)

Thanks to definition of p in (8) following equality occurs

Jβ

(

∂α
A

β − ∂β
A

α
)

+ ̺Uβ

(

∂β ̺c2

p
Uα − ∂α ̺c2

p
Uβ

)

= ̺Uβ

(

∂βUα − ∂αUβ
)

= f α (21)

thus

f α
EM + f α

oth + f α
gr +

p

Λρ
f α
∆
+

1

p

(

Tαβ − ̺c2 ηαβ
)

∂β̺c2 = f α (22)

Simplifying

f α
∆
=
(

Tαβ − ̺c2 ηαβ
)

∂β
Λρ

p
(23)

One may now extend the conclusions from [15] by adopting the following hypothesis

(

Tαβ − ̺c2 ηαβ
)

∂β
Λρ

p
= 0 (24)

what yields, that Aµ is some gauge of electromagnetic four-potential. It will be shown later in the

article that this leads to the correct solutions.
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Using a simplified notation
dln (p)

dτ
= Uµ∂µ ln (p) = Uµ

∂µ p

p
(25)

after expanding and calculating forces, one now obtains the following picture of the forces acting in

the system

f
µ
gr = ̺

(

d ln (p)

dτ
Uµ − c2∂µ ln (p)

)

(26)

f
µ
EM =

Λρ

p

(

f µ − f
µ
gr

)

(27)

f
µ
oth =

̺c2

p

(

f µ − f
µ
gr

)

(28)

From a simple qualitative analysis of the behavior of the above forces, it can be concluded that they

behave as it is presently observed:

• the gravitational force will dominate at high energy density gradients, and, interestingly, at

significant changes in pressure,
• the electromagnetic force is related to the charges and depends on their density and the

electromagnetic four potential,
• the last force has a chance to dominate only at high energy density but its small gradient, in the

presence of a strong electromagnetic field, which probably occurs on a micro-scale.

Now, one may recall the classical Lagrangian density [16] for electromagnetism and explain why,

in the light of the conclusions from [15] and above, it does not allow to create a symmetric stress-energy

tensor [17]. The classical value of the Lagrangian density for electromagnetic field, written with the

notation (4), (14) used here, is

−LEMclassic = Λρ +A
µ Jµ (29)

which, in the light of the conclusions from this chapter, is equal to

−LEMclassic = Λρ −
Λρ

p

̺o

ρo
Uµ Uµρoγ = Λρ −

Λρ̺c2

p
=

Λ
2
ρ

p
(30)

As it is seen, above Lagrangian density is not invariant under gradient over four-position and Aµ and

Jµ are dependent, what is not taken into account in classical calculation

Aα

AµAµ
=

Jα

Aµ Jµ
(31)

Above yields

∂ ln

(

1√
AµAµ

)

∂Aα
= − Jα

Aµ Jµ
=

p

̺c2

Jα

Λρ
(32)

One may decompose

ln

(

1
√

AµAµ

)

= ln

(

p ρo

Λρ̺oc

)

= ln (p)− ln
(

Λρ

)

− ln

(

̺oc

ρo

)

(33)

and since
̺oc
ρo

are constants, one may simplify (32) to

∂ ln (p)

∂Aα
−

∂ ln
(

Λρ

)

∂Aα
=

p

̺c2

Jα

Λρ
=

Jα

̺c2
+

Jα

Λρ
(34)
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It is now appropriate to propose a solution to the Lagrangian density problem, allowing the

stress-energy tensor under consideration to be derived, noting that in (34) occurs

∂ ln
(

Λρ

)

∂Aα
= − Jα

Λρ
(35)

which leads to the conclusion that Λρ acts as the Lagrangian density of the system

∂Λρ

∂Aα
= ∂ν

(

∂Λρ

∂(∂νAα)

)

= −Jα (36)

thus stress-energy tensor for the system is equal to

Tαβ =
1

µo
F

αγ∂β
Aγ − Λρηαβ (37)

In fact, the proof of correctness of the electromagnetic field tensor (noted as Υ
αβ) allows to see this

solution

f
β
EM = ∂αΥ

αβ = Jγ
F

β
γ − 1

µo
F

αγ∂αF
β
γ (38)

what yields following property of electromagnetic field tensor

F
αγ∂α∂γA

β = F
αγ∂β∂αAγ (39)

Using the above substitution, one may note

∂αΥ
αβ = ∂α

1

µo
F

αγ∂γA
β − ∂α

1

µo
F

αγ∂β
Aγ =

1

µo
F

αγ∂β∂αAγ − Jγ∂γA
β − ∂α

1

µo
F

αγ∂β
Aγ (40)

Thus the invariance of Λρ with respect to Aα and ∂νAα is both a condition on the correctness of the

electromagnetic stress-energy tensor and on Λρ in the role of Lagrangian density

0 =
∂Λρ

∂(∂αAγ)
∂β(∂αAγ) +

∂Λρ

∂Aγ
∂β
Aγ =

1

µ
F

αγ∂β∂αAγ − Jγ∂β
Aγ = ∂α

1

µ
F

αγ∂β
Aγ (41)

what yields for (40) that

∂αΥ
αβ = Jγ∂β

Aγ − Jγ∂γA
β = f

β
EM (42)

Equations (3), (7) and (37) yield

1

µo
F

αγ∂γA
β = ̺ UαUβ − c2̺

Λρ
Υ

αβ (43)

what yields second representation of the stress-energy tensor

Tαβ =
p

̺c2
· 1

µo
F

αγ∂γA
β −

Λρ

c2
UαUβ (44)

After four-divergence, it gives additional expression for relation between forces and gives useful clues

about the behavior of the system when transitioning to the description in curved spacetime.

3. Hamiltonian density and quantum picture

Since
∂Λρ

∂(∂Aβ/∂xα)
=

1

µo
F

αβ →
∂Λρ

∂(∂Aβ/∂x0)
=

1

µo
F

0β (45)
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thus noting Hamiltonian density in terms of the Lagrangian density [18], one gets

H =

(

∂Λρ

∂(∂Aβ/∂x0)

)

∂Aβ

∂x0
− Λρ =

1

µo
F

0β
∂Aβ

∂t
− Λρ (46)

where conjugate momentum field Π
β is

Π
β ≡ 1

µo
F

0β (47)

As it is seen, above Hamiltonian density agrees with the classical Hamiltonian density for

electromagnetic field [18] except negative sign and except that this Hamiltonian density was currently

only considered for sourceless regions and only to consider the system with electromagnetic field.

According to the result above, this Hamiltonian density is always correct and describes the entire

physical system, taking into account all known interactions. Above therefore significantly simplifies

quantum field theory equations [19], [20], [21].

Introducing ερ as energy density of electromagnetic field

ερ ≡ 1

2µ

(

E2

c2
+ B2

)

(48)

where E and B are for the electric and magnetic fields, respectively, by transforming (46) and using

(44), Hamiltonian density may also be noted as follows

H =
p

̺c2

1

µo
F

0γ∂γA
0 − Λργ2 = ̺c2

(

γ2 −
ερ

Λρ

)

− ερ (49)

Lagrangian, according to (8), should be considered as description of thermodynamical process related

to first law of thermodynamics

L =
∫

p dV − mc2γ (50)

where V is for considered volume d3x. The above seems to be a missing link between the first

law of thermodynamics and the principle of minimum action. Since
∫

p dV is path-dependent

Pressure–Volume Work [22], thus it should be actually related to action. Denoting Pβ as

four-momentum, one may therefore notice, that from property

P
βUβ = mc2 → FβUβ = 0 → mc2 dγ

dt
=

1

γ
~F

d~r

dt
(51)

one also obtains

mc2γ =
∫

d~P

dt
d~r =

∫

d~P

dV

d~r

dt
dV (52)

what yields

L =
∫

p dV −
∫

d~P

dV
~u dV (53)

Since the forces acting in the system are known (26) and all of them meet the above condition ( f µUµ =

0), this can help in the analysis of the contribution of individual forces to thermodynamic processes.

One may now summarize the above and propose a method for quantizing the system.

At first, it should be noted, that the above reasoning changes the interpretation of what the

relativistic principle of least action means. As described above, there is no inertial system in which no

fields act, and in the absence of fields, the Lagrangian and the Hamiltonian should vanish. Since the

metric tensor (6) for description in curved spacetime depends on the electromagnetic field tensor, it
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must also be assumed that the absence of the electromagnetic field means actually the disappearance

of spacetime and the absence of any action.

Introducing generalized, canonical four-momentum Hµ as four-gradient on Hamilton principal

function S, where relation with wave four-vector Kµ occurs

Hµ ≡ −∂µS ≡ h̄Kµ (54)

and where Kµ does not depend on four-position, one may also conclude from (21) that it should be in

form of

Hµ = P
µ − Vµ (55)

where Vµ represents generalized four-potential (sum of all four-potentials containing all considered

interactions acting on the test body). Four-momentum Pµ may be now considered as just other gauge

of this four-potential acting on the body

∂α
P

µ = ∂αVµ (56)

where equation (21) represents the above for a system analyzed as a continuum (densities instead of

point-like particles).

Now, since the metric, as shown earlier, depends on the distribution of the field, one may require,

that

VµXµ ≡ mc2τ (57)

and propose action as follows

− S ≡ HµXµ = P
µXµ − VµXµ (58)

what yields Lagrangian independent on four-position in form of

− L =
1

γ
FµXµ (59)

and also

Hµ Hµ − m2c2 = 2mXµFµ − VµVµ (60)

Using the above definitions, the action, the Hamiltonian and Lagrangian vanish for an inertial system

(when Pµ = Vµ). To relate the Lagrangian to the generalized field, it is enough to assume the following

− γL = XµFµ =
VµVµ

2m
(61)

and by introducing quantum wave function Ψ in form of

Ψ ≡ ei
HµXµ

h̄ (62)

from (60) one obtains Klein-Gordon equation

(

�+
m2c2

h̄2

)

Ψ = 0 (63)

which allows for further analysis of the system in the quantum approach, eliminating the problem of

negative energy appearing in solutions [23].

The above representation allows the analysis of the system in the quantum approach, classical

approach based on (26) and the introduction of a field-dependent metric in (6) for curved spacetime,

which connects previously divergent descriptions of physical systems.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 April 2023                   doi:10.20944/preprints202304.0011.v1

https://doi.org/10.20944/preprints202304.0011.v1


8 of 9

4. Conclusions and Discussion

As shown above, the proposed method of physical systems analysis seems to be a promising area

of research.

It seems that it allows to combine previously divergent methods of curvilinear description with

the quantum description, allows to derive an explicit form of forces and simplifies further research on

the quantum picture of individual fields, significantly simplifying the equations of the quantum field

theory.

Further analysis using the variational method should also allow for an explicit derivation of the

generalized potential Vµ, which may lead to further discoveries regarding both the description of

quantum fields and elementary particles associated with them, and the possibility of experimental

verification of the obtained solutions.

5. Statements

Data sharing is not applicable to this article, as no datasets were generated or analyzed during

the current study.

The author did not receive support from any organization for the submitted work.

The author has no relevant financial or non-financial interests to disclose.
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