
Article

Not peer-reviewed version

Utilizing Semi-structured Complex

Numbers to Develop the First Division

by Zero Calculator

Peter Jean Paul

*

 and Shanaz Wahid

Posted Date: 3 April 2023

doi: 10.20944/preprints202304.0007.v1

Keywords: Semi-structured complex numbers; Division by zero; computer science; Calculator; Exception

handling

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1898400

Article

Utilizing Semi-Structured Complex Numbers to
Develop the First Division by Zero Calculator

Peter Jean-Paul 1,* and Shanaz Wahid 2

1 International School Saint Lucia, Gros Islet, Saint Lucia
2 Mathematics & Statistics, Faculty of Science and Technology, University of the West Indies, St. Augustine,

Trinidad and Tobago

* Correspondence: peter.jnpaulnz@gmail.com

Abstract:Semi-structured complex numbers ℍ was a number set developed to enable division by zero in

ordinary algebraic equations. Its utility has been shown in mathematics and engineering. However, very little

has been done to show its usefulness in computer science. Consequently, the aim of this paper was to show the

utility of semi-structured complex numbers in computer science by developing a division by zero calculator.

First two computer programs were written, one for a standard (STD) calculator and the other for a division by

zero (DBZ) calculator. The programs were fed 20000 randomly generated arithmetic equations of varying

lengths and the space and time complexity associated with processing these equations were measured and

compared to determine the efficiency of each calculator. In the process, three major contributions were made:

(1) A representation for semi-structured complex numbers that enables it to be easily used by a computer was

developed; (2) It was demonstrated that the DBZ calculator outperforms the STD calculator in terms of

efficiency; and, (3) It was shown that the number set ℍ reduced the amount of error handling required to run

a computer program. These results provide a firm foundation to advance the number set ℍ as a useful tool in

computer science.

Keywords: semi-structured complex numbers; division by zero; computer science; calculator;

exception handling

1. Introduction

1.1. Semi-structured complex numbers: a recent development in division by zero

Recently there has been a range of research involving division by zero. Table 13, Appendix 1,

shows sample of such research conducted from 2018 to 2022 on “division by zero” including using

division by zero to explain cancer development. The problem of division by zero can simply be stated

as: What is where “a” is any complex number. There have been several solutions to the problem

the most recent being the invention of the semi-structured complex number set ℍ [1]. The first

attempt at creating this number set was riddled with issues [1], however, a second paper [2] was

written to reformulate and strengthen the theory of semi-structured complex numbers and in the

process produced several profound results. Table 1 shows the major results developed in paper [2].

Table 1. Major results from paper [2].

Result 1

Semi-structured complex number set can be defined as follows:

A semi-structured complex number is a three-dimensional number of the general

form ℎ = 𝑥 + 𝑦𝑖 + 𝑧𝑝; that is, a linear combination of real (1), imaginary (𝑖) and

unstructured (𝑝) units whose coefficients 𝑥, 𝑦, 𝑧 are real numbers.

The number ℎ is called semi-structured complex because it contains a structured

complex part (𝑥 + 𝑦𝑖) and an unstructured part (𝑧𝑝).

Result 2 The unstructured number 𝑝 was redefined as:

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202304.0007.v1
http://creativecommons.org/licenses/by/4.0/

 2

𝑝 = √2 × 𝑐𝑜𝑠 𝜋2 𝑛 − 𝜋4𝑓 (1) (1)

where 𝑓 (𝑐) is a composite function such that 𝑓(𝑐) = 1 − 𝑐.

Integer powers of 𝑝 yield the following cyclic results: 𝑝 = 10 𝑝 = −1 𝑝 = −𝑝 𝑝 = 1 𝑝 = 10 𝑝 = −1 𝑝 = −𝑝 ⋯

Result 3

𝑝 does not belong to the set of complex numbers ℂ (that is, 𝑝 ∉ ℂ), but belongs to a higher

order number set ℍ called the set of semi-structured complex numbers such that the set

of complex numbers is a subset of ℍ (that is, ℂ ⊂ ℍ).

Result 4

The field of semi-structured complex numbers was defined, and proof was given that this

field obeys the field axioms. This implies (1) the number set can easily be used in

everyday algebraic expressions and can be used to solve algebraic problems, (2) the

number set can be used to form more complicated structures such as vector spaces and

hence solve more complex problems that may involve “division by zero”.

Result 5

Semi-structured complex number set ℍ does not form an ordered field. For the objects in

a field to have an order, operations such as greater than or less than can be applied to

these objects. This is because in an ordered field the square of any non-zero number

is greater than 0; this is not the case with semi-structured complex numbers.

Result 6

Semi-structured complex numbers can be represented by points in a 3-dimensional

Euclidean 𝑥𝑦𝑧-space. The 𝑥𝑦𝑧-space consist of three perpendicular axes: the real 𝑥-axis,

the imaginary 𝑦-axis, and the unstructured 𝑧-axis. These axes form three perpendicular

planes: the real-imaginary 𝑥𝑦-plane, the real-unstructured 𝑥𝑧-plane, and the imaginary-

unstructured 𝑦𝑧-plane.

Result 7

The unit 𝑝 was used to find a viable solution to the logarithm of zero. The logarithm of

zero was found to be: log 0 = −𝑝 𝜋2 + 2𝑘𝜋 (2)

where k is some integer value.

Result 8

The new definition of 𝑝 provided an unambiguous understanding that = 𝑛 simply

represents 90° clockwise rotation of the vector 𝑛𝑝 from the positive unstructured z-axis

to 𝑛 on the positive real x-axis along the real-unstructured 𝑥𝑧-plane. Note that 𝑛 is any

real number.

Result 9

Semi-structured complex numbers has both a 3D and 4D representation in the form: ℎ = 𝑥 + 𝑦𝑖 + 𝑧𝑝 (3D form) ℎ = 𝐴 + 𝐵𝑖 + 𝐶𝑝 + 𝐷𝑖𝑝 (4D form)
Where: 𝑥, 𝑦, 𝑧, 𝐴, 𝐵, 𝐶, 𝐷 are real numbered scalars and 𝑖, 𝑝 are semi-structured basis

units.

Results 1 to Result 9 in Table 1 provide some significant foundational results for semi-structured

complex numbers. Nevertheless, it is necessary to go beyond just the foundational setting and look

at how this new number set can be applied in a practical setting particularly in the area computer

science where real world problems are constantly being modelled and solved using mathematical

tools.

1.2. Potential importance of Semi-structured complex numbers to computer science

Computers are generally run on computer programs (software). On a fundamental level these

computer programs consist largely of arithmetic and logic operations. In writing and running a

computer program, errors can occur. These errors are often called “exceptions”.

An exception is an event, which occurs during the execution of a program, that disrupts the

normal flow of the program's instructions [3]. There are several types of program exceptions one of

the most fundamental being a Run-time exception. Examples of this type of exception include a user

entering invalid input into a program or a program attempting to divide by zero [4].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 3

If a program has several statements and an exception happens midway through its execution,

the statements after the exception do not execute, and the program crashes. To prevent this,

exceptions are usually handled in a process called “Exception Handling”. In exception handling

specialised computer program instructions are used to tell the computer program what to do if an

exception occurs. An example of such instructions is the popular “try-catch blocks” (or some

variation of this) used in many programming languages. This is shown in Figure 1.

Figure 1. “try-catch” Blocks.

The "Try block” is a computer instruction that detects the exception (or error) during program

execution and the “Catch block” tells the computer program what to do to deal with (or handle) the

exception or error. Although exception handling is common practice in computer programs, they do

have several disadvantages. These are given in Table 2.

Table 2. Disadvantages of exception handling.

Disadvantage Explanation

1. Exceptions can add

overhead in terms of

runtime decreasing a

program�s performance

Exceptions add minute amounts of time to a program�s run time and

can cause the program to run slowly if it occurs frequently enough.

The key rule of thumb is that exceptions should occur once every

10,000 calls to a computer program [5].

2. Too much exception

handling can cause an

inability to focus on what

matters

As the amount of exception handling increase, it�s harder to know

which exceptions are more important than others. This could lead to

missing a major issue or dismissing an exception that requires

immediate attention [5].

3. Exception handling

makes code harder to read

Inserting exception in the middle of coding makes the code

cumbersome and difficult to read especially when there are 100s of

lines of code.

Since most computer programs use real and or complex number arithmetic in their operations,

“division by zero” can caused Run-time exceptions. Considering the disadvantages listed in Table

2, it would be ideal to reduce run-time exceptions caused by “division by zero”. This can easily be

done if semi-structured complex numbers are used in computer programming.

However, proving the utility of such numbers in computer programming requires comparing

the performance of a computer program when semi-structured numbers are implemented in that

program verses when exception handling is used instead. Very little has been done to show such a

comparison.

1.3. Semi-structured complex numbers and a division by zero calculator

One of the simplest programs that can be written to show the utility of semi-structured complex

numbers is an arithmetic calculator program.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 4

In the standard arithmetic calculator, users can enter valid arithmetic equations and the

calculator produces a result. Equations are generally entered in what is called “infix notation”. Infix

notation operators such as +,÷,×, − lies between a pair of operands (numbers or letters). An example

of infix notation is 2 + 3.

The calculator converts the infix notation into postfix notation. In postfix notation the operator

is followed by every pair of operands. For example, 2 + 3 in postfix notation becomes 2 3 +. The

calculator then evaluates the postfix expression. Table 3 provides three further examples of infix and

postfix expressions.

Table 3. infix and associated postfix expressions.

Infix Expression Postfix Expression𝐴 + 𝐵 × 𝐶 + 𝐷 𝐴𝐵𝐶 × +𝐷 + (𝐴 + 𝐵) × 𝐶 𝐴𝐵 + 𝐶 × 𝐴 + 𝐵 + 𝐶 + 𝐷 𝐴𝐵 + 𝐶 + 𝐷 +

Infix expressions are readable and solvable by humans who can easily distinguish the order of

operators and use the parenthesis to solve parts of equations before others. Computer calculators

have difficulty efficiently evaluating infix expressions (being unable to differentiate between

parenthesis and operators). Therefore, infix expressions are generally converted to postfix form and

then evaluated by the calculator.

Arithmetic equations entered by the user can easily contain division by zero. In standard

arithmetic calculators whenever division by zero occurs the program halts and some exception

handling occurs. It would be instructive to write a standard arithmetic calculator that can perform

division by zero operations to determine how well the program would perform under thousands of

random calculations including calculations involving division by zero. Such a calculator would need

to be made to execute arithmetic operations on semi-structured complex numbers. However, very

little has been done to pursue such an endeavour.

1.4. Measuring the performance of a division by zero calculator

When creating a computer program, it is important to measure the performance of the computer

program against some standard or benchmark. In such cases performance metrices and a well-known

benchmark are needed.

In general, the performance of a computer program is measured in terms of its efficiency.

Algorithm efficiency relates to how many resources a computer needs to expend to process an

algorithm. When creating an algorithm, it is important to make it as streamlined as possible, so it

does not strain the software or device that runs it. If an algorithm is not efficient, it is not considered

fit for its purpose. Two main measures of algorithm efficiency are space complexity and time

complexity. Space complexity measures how much memory is used to process the input and output

of the algorithm as well as the algorithm itself [6]. On the other hand, the time complexity measures

how long it takes to process the algorithm [7].

Space complexity is the measurement of total space required by an algorithm to execute properly.

For example, the input memory space complexity can simply be a measure of the size of the file (in

bytes or kilobytes) containing the input data for the program. Likewise, the output space complexity

can be a measure of the size of the file (in bytes of kilobytes) containing the output data for the

program. The amount of memory required to run a program can be measured in many ways. The

best algorithm should have a low level of space complexity. The less space required, the faster it

executes.

Most computer languages generally have functions (special computer instructions) to measure

time complexity for a computer program. For example, in Python (one of the most popular computer

languages used today) functions such as time.start() and time.stop() are placed before and after a

computer program respectively and are used to measure the start and stop times for a computer

program. Subtracting the values produced by these functions gives the runtime of the computer

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 5

program. When comparing two algorithms to solve the same problem, the algorithm with the smaller

time complexity is considered the better of the two algorithms. To show that the division by zero

calculator is useful it must outperform a standard arithmetic calculator in terms of efficiency (that is,

in terms of the space and time complexity).

1.5. Major Contributions of this research

Given the potential importance of semi-structured complex numbers in computer science, the

aim of this paper was:

To demonstrate the utility of semi-structured complex numbers in computer science by

developing a division by zero calculator.

In the process of achieving the stated aim, the following major contributions are made in this

paper:

1. A representation for semi-structured complex numbers that enables it to be easily used in

arithmetic operations by a computer program was developed. The semi-structured complex

numbers 𝒙 + 𝒚𝒊 + 𝒛𝒑 is represented by the 3-tuple (or ordered triple) given by (𝒙, 𝒚, 𝒛).

2. It was demonstrated that the division by zero calculator outperforms the standard calculator in

terms of efficiency (that is space and time complexity).

3. It was shown that the number set ℍ reduced the amount of error handling required to run a

computer program.

The rest of this paper is devoted to providing a detailed explanation of how the major

contributions outlined were arrived at.

2. Method

2.1. Representing semi-structured complex numbers for use in a computer program

The first step was to represent a typical semi-structured complex number in a simple form that

can be used in a computer program. In this case, the computer program would be an arithmetic

calculator. The typical semi-structured complex number has the form: 𝒙 + 𝒚𝒊 + 𝒛𝒑 (3)

Here 𝒙, 𝒚, 𝒛 are real numbers. The numbers 𝒙, 𝒚, 𝒛 are the important aspects of the semi-

structured complex numbers. For the calculator created in this paper, the semi-structured complex

number can simply be represented as a triple written as 𝒙, 𝒚, 𝒛. Hence: 𝒙 + 𝒚𝒊 + 𝒛𝒑 = 𝒙, 𝒚, 𝒛 (4)

The format shown in Equation (4) is called semi-structured complex triple format. More

examples of this format are given in Table 4.

Table 4. Examples of representation of semi-structured complex numbers.

Semi-structured complex numberTriple format

5 + 6𝑖 − 4𝑝 5, 6, −4 𝑖 + 𝑝 0, 1, 1
1

2
− 8𝑖 1

2
, −8, 0

The advantage of this format is that it is unambiguous in terms of meaning and very little space

is required to store a semi-structured complex number.

2.2. Develop a semi-structured complex numbers equation generator

With the representation of semi-structured complex numbers given in Equation (4) it is now

simple to generate arithmetic equations that can be used to evaluate the efficiency of a calculator.

Hence, an equation generator was developed to create equations to be evaluated by both a standard

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 6

and a division by zero calculator. The equations produced are random but valid infix equations

consisting of operators (+,÷,×, −) and semi-structured complex number operands that have the form 𝑥, 𝑦, 𝑧. Collectively, these operators and operands are called tokens. The rules for generating a random

arithmetic equation are simple:

i. Generate a random odd number greater than or equal to three. The random odd number

indicates the number of tokens (arithmetic operators and operands) that the equation would

have. The number of tokens must be a minimum of three tokens, that is, an operand followed

by an operator followed by another operand. Every valid equation greater than three tokens in

length will have an odd number of tokens.

ii. Every equation must start and end with an operand.

iii. Operators were always in even positions within the infix expression and operands always in

odd positions.

iv. For the sake of simplicity brackets were not produced in the infix expressions, instead the

precedence of operators indicated the order in which operators were to be evaluated.

With these rules, the algorithm for the semi-structured complex numbers equation generator is

given in Table 5. From Table 5 the variables, (minimum operand value, maximum operand value) in

line 1 of the algorithm represented the range of numbers used in the semi-structured complex triple 𝑥, 𝑦, 𝑧. Each component of the triple will have an integer value that falls within the range (minimum

operand value, maximum operand value). This gives the user control of the values in the semi-

structured complex number triples. Additionally, equation length (L) represented the length of the

equation to be generated. This number must always be odd.

Table 5. Algorithm for semi-structured complex numbers equation generator.

1
User Input: minimum operand value, maximum operand value, equation length L (number of

tokens)

2 If the equation length is less than 3 then set it to 3

3 If the equation length (L) is even, then add one to it. (That is, set equation length to L+1)

4 Create an empty string “Equation” to hold the equation

5

6 For T = 1 to Equation Length do the following:

7
 If T is even then randomly pick an operator from (+,÷,×, −) and add it to the equation

string

8 Else

9
 𝑥 = Randomly pick integer from range (minimum operand value, maximum operand

value)

10
 𝑦 = Randomly pick integer from range (minimum operand value, maximum operand

value)

11
 𝑧 = Randomly pick integer from range (minimum operand value, maximum operand

value)

12 Add 𝑥, 𝑦, 𝑧 to the Equation string

13Return Equation_string

Examples of the sort of equations generated by the algorithm shown in Table 5 are given in Table

6.

Table 6. Examples of equation generated by algorithm in Table 5.

Equation Length L Equations in Triple format 3 5, 6, −4 + 2,3,5 5 0, 1, 1 ÷ 4,1,7 ÷ −1, −3,0 7
12 , −8, 0 + 0, 1, 1 ÷ 0,0,7 × −1, −3,0

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 7

All the equations shown in Table 6 are valid infix expressions containing semi-structured

complex number operands. These equations are evaluated according to the normal rules of semi-

structured complex number arithmetic given in paper [2].

2.3. Developing common algorithms for calculator programs

Both the division by zero calculator and the standard calculator share the same basic algorithms

and only differ in the way they handle the division by zero operation. These algorithms are discussed

here in turn.

2.3.1. The Postfix Convertor

Once the algorithm for the equation generator was created the next step was to create an infix to

postfix evaluator. The algorithm for the infix to postfix evaluator is given in Table 14 in Appendix 2.

From Table 14 the variable “Operator stack” is a stack used to store the operands as the algorithm

runs. A stack can be thought of as a container where operators and operands can be placed (pushed)

on top of each other. Only the token on top of the stack can be removed (or popped) first. Users of a

stack can also see (or peek) the token at the top of the stack without removing the top token.

2.3.2. The Postfix Evaluator

Once the equation generated has been converted from infix to postfix format, the postfix

expression must be evaluated. The general postfix evaluator is given in Table 15 in Appendix 2. The

primary part of the postfix evaluator is the “Arithmetic Machine” which performs the actual

arithmetic on the operand given to the postfix evaluator.

2.4. Developing an Arithmetic Machine for a standard and a division by zero calculator

Two “Arithmetic Machines” were developed for this research. The first was an arithmetic

machine for the standard calculator “Arithmetic Machine STD” and the second was an arithmetic

machine for the division by zero calculator “Arithmetic Machine DBZ”.

A standard arithmetic calculator has only 4 basic operations addition, subtraction, multiplication,

and division. Modern calculators will show an error message when division by zero is performed. In

which case the user of the calculator must reset the calculator before the calculator can be used to

perform another arithmetic operation.

In the standard calculator developed for this paper when the calculator faces a division by zero

operation it will output an error and the calculator will use a try-catch statement to deal with the

division by zero error. The try catch statement will show an error message and reset the calculator

for the next equation to be processed. This operation is part of the “Arithmetic Machine STD” given

in Table 7 for the standard calculator. The “Arithmetic Machine STD” given in Table 7 takes two

semi-structured complex numbers 𝑥, 𝑦, 𝑧 and 𝑎, 𝑏, 𝑐 and performs one of the simple arithmetic

operations on these numbers.

Table 7. Arithmetic Machine STD for a standard semi-structured complex number calculator.

1 User input: 𝑥, 𝑦, 𝑧 and 𝑎, 𝑏, 𝑐 and an operation
2 If operation is plus “ + ”

3 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = (𝑥 + 𝑎), (𝑦 + 𝑏), (𝑧 + 𝑐)
4 If operation is minus “ − ”

5 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = (𝑥 − 𝑎), (𝑦 − 𝑏), (𝑧 − 𝑐)
6 If operation is division “ ÷ ”

7 Try (𝒂, 𝒃, 𝒄 = 𝟎, 𝟎, 𝟎)

8 Catch (go to line 15 and return message: “Cannot divide by zero”)

9 𝑅 = (× × ×)
10 𝑛𝑒𝑤_𝑎, 𝑛𝑒𝑤_𝑏, 𝑛𝑒𝑤_𝑐 = (𝑅𝑎, −𝑅𝑏, −𝑅𝑐)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 8

11 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = Multiply (x, y, z and new_a, new_b, new_c)
12 If operation is multiplication “ × ”
13 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = Multiply (x, y, z and a, b, c)
14
15 Return 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍

In the algorithm shown in Table 7, the try catch statement for division by zero is given in lines 7

to line 8. If the second operand is not zero, then the try catch statement is not executed and the

algorithm continues to line 9. The algorithm also has a “Multiply” function in line 11 and line 13. This

function is given in Table 16 in Appendix 2. This “Multiply” function multiplies two semi-structed

complex numbers according to the normal rules of multiplication for semi-structured complex

numbers given in paper [2].

The “Arithmetic Machine DBZ” algorithm for the division by zero calculator was similar to the

algorithm shown in Table 7. However, the “Arithmetic Machine DBZ" handles division by zero

differently as shown in Table 8.

Table 8. “Arithmetic Machine DBZ” for a division by zero calculator.

1 User input: 𝑥, 𝑦, 𝑧 and 𝑎, 𝑏, 𝑐 and operation

2 If operation is plus “ + ”

3 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = (𝑥 + 𝑎), (𝑦 + 𝑏), (𝑧 + 𝑐)
4 If operation is minus “ − ”

5 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = (𝑥 − 𝑎), (𝑦 − 𝑏), (𝑧 − 𝑐)
6 If operation is division “ ÷ ”

7 If (𝒂, 𝒃, 𝒄 = 𝟎, 𝟎, 𝟎) then 𝒂, 𝒃, 𝒄 = 𝟎, 𝟎, 𝟏

8 𝑅 = (× × ×)
9 𝑛𝑒𝑤_𝑎, 𝑛𝑒𝑤_𝑏, 𝑛𝑒𝑤_𝑐 = (𝑅𝑎, −𝑅𝑏, −𝑅𝑐)
10 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = Multiply (x, y, z and a, b, c)
11 If operation is multiplication “ × ”

12 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍 = Multiply (x, y, z and a, b, c)
13
14 Return 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍

In the algorithm shown in Table 8, if the second operand is zero, then the algorithm simply

changes the second operand (line 7) to the unstructured unit value 𝑝 (represented as the triple 0,0,1

in semi-structured complex number format shown in Equation (4)) where 𝑝 = . The algorithm then

goes on to use the “Multiply” function in line 10. This function is given in Table 16 in Appendix 2.

The final general algorithm for both the standard calculator and the division by zero calculator

is given in Table 9.

Table 9. General Calculator algorithm.

1
User input: Equation string generated from Equation generator shown in Table 5, Type of Arithmetic

Machine: 1 for “Arithmetic Machine STD” and 2 for “Arithmetic Machine DBZ”

2
Convert Equation string to Postfix Equation string using Infix to Postfix Algorithm shown in

Table 14.

3
Evaluate Postfix Equation string using the Postfix Evaluator Algorithm shown in Table 15 and

store in Result string.

4

5 Return Result string

All the algorithms discussed thus far was developed and executed on an online Python platform

[8]. The speed of the platform was largely dependent on the speed of the servers on which the

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 9

platform was ran. Since both calculators was ran from this platform, it provided a uniform starting

point to evaluate their efficiency.

2.5. Simulation procedure to compare standard and division by zero calculator

To determine the efficiency of the standard calculator and the division by zero calculator, the

space and time complexity of both calculators were compared. The measures for space and time

complexity are given in Table 10.

Table 10. Space and time complexity measures of efficiency.

Efficiency Aspect Measure

Space Complexity • Amount of memory (measured in bytes) needed to run the calculator

 • Amount of memory (measured in bytes) needed to output the data

Time complexity • Average amount of time (in microseconds) needed to run the calculator

To begin, the space complexity for the standard calculator was first examined. This was done by

examining the processing and output memory involved in running the standard calculator. The

standard calculator was put through 20 simulations.

For the first simulation, 1000 equations were randomly generated (equation generator is given

in Table 5) with each equation having a length (L) of 5 tokens. The 5 tokens consisted of 2 operators

chosen at random from the group ×,÷, +, − and Three operands in the form (𝒙, 𝒚, 𝒛) with each

component of the operand being integers generated within the range −𝟏 to 𝟏. The range was kept

small to increase the probability that there was division by zero operations within the set of 1000

equations.

The average number of operations per equations was found using the equation , where L is

the length of the equation (number of tokens). This value was recorded as the variable “No. of

operations per equation”.

In the process of generating the equations the number of equations with division by zero was

calculated and recorded as the variable “No. of Equations with division by zero operations”. This was

calculated by parsing each equation to determine if it had the subsequence “/ 0,0,0”. If the

subsequence existed, then the equation was recorded as having a division by zero operation.

Additionally, the number of division by zero operations that exist across all 1000 equations was

calculated and recorded in the variable “Total no. of division by zero operations”. The “No. of operations

per equation”, “No. of Equations with division by zero operations” and “Total no. of division by zero

operations” represent the characteristics of the equations that was processed by the standard

calculator.

The 1000 equations were fed into the standard calculator algorithm (shown in Table 9 with the

user input for type of “Arithmetic machine” set to 1), and the total memory used to process all the

equations was calculated and recorded. This was done using the Python functions tracemalloc.start()

and tracemalloc.stop(). The result was recorded in the variable “Total Processing Memory”. The total

number of equations successfully calculated (that is equations that did not throw any exception

errors) was recorded in the variable “No. of equations successfully computed”.

The average processing memory per operation was calculated then recorded. This was done

using the following formula given in Equation (5). This value was recorded as “Average Processing

Memory Per operation”. 𝐓𝐨𝐭𝐚𝐥 𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐢𝐧𝐠 𝐌𝐞𝐦𝐨𝐫𝐲𝐍𝐨. 𝐨𝐟 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬 𝐩𝐞𝐫 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 × 𝐍𝐨. 𝐨𝐟 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝐬 𝐬𝐮𝐜𝐜𝐞𝐬𝐬𝐟𝐮𝐥𝐥𝐲 𝐜𝐨𝐦𝐩𝐥𝐞𝐭𝐞𝐝 (5)

In cases where an equation had division by zero in the standard calculator, the calculator did

not compute a result but threw an exception and an error message was displayed and recorded as

output.

After calculating the result of each equation, the output of the results of all 1000 equations were

recorded in a text file. The total output memory (the size of the text file in bytes) was then recorded.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 10

Once the space complexity of the standard calculator was examined the time complexity for the

calculator was also examined. The total time taken to process all 1000 equations for the first

simulation was calculated using the Python functions time.start() and time.stop(). The function

time.start() was placed at the beginning of the standard calculator function to start measuring

processing time and time.stop() was placed at the end of the standard calculator function to end the

measurement. The time taken to process one equation was given by Equation (6). 𝐭𝐢𝐦𝐞 𝐭𝐚𝐤𝐞𝐧 = 𝐭𝐢𝐦𝐞. 𝐬𝐭𝐚𝐫𝐭() − 𝐭𝐢𝐦𝐞. 𝐬𝐭𝐨𝐩() (6)

The total time taken to process all 1000 equations was recorded as “Total Processing Time”. The

number of operations successfully computed by the standard calculator per unit time was calculated

using Equation (7). 𝐍𝐨. 𝐨𝐟 𝐨𝐩𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬 𝐩𝐞𝐫 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧 × 𝐍𝐨. 𝐨𝐟 𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧𝐬 𝐬𝐮𝐜𝐜𝐞𝐬𝐬𝐟𝐮𝐥𝐥𝐲 𝐜𝐨𝐦𝐩𝐮𝐭𝐞𝐝𝐓𝐨𝐭𝐚𝐥 𝐏𝐫𝐨𝐜𝐞𝐬𝐬𝐢𝐧𝐠 𝐓𝐢𝐦𝐞 (7)

The result was recorded as “No. of operations per unit time”.

Once the space and time complexity for the standard calculator for the first simulation was

determined, the process of calculating the characteristics of the equations, the space complexity and

the time complexity of the standard calculator was repeated for 19 more simulations. For each

simulation the length (L) of the equations was increased by 10 tokens from the previous simulation.

The results were then tabulated.

The entire process of calculating the characteristics of the equations, the space and time

complexity for 20 simulations of 1000 equations was repeated for the division by zero calculator. The

results were then tabulated.

After the results were tabulated for the standard calculator and the division by zero calculator,

three graphs were drawn. The first graph was a graph of “Average processing Memory per operation vs.

Number of division by zero operations”. This graph was meant to determine how processing memory

was affected by the presence of division by zero operation.

The second graph was a graph of “Total Output memory vs. Number of equations with division by

zero”. This graph was meant to determine how the two calculators handle division by zero affected

the amount of memory needed to output the results.

Finally, a graph of “Number of operations per unit time vs. Total number of operations” was plotted.

The first two graphs provide a deeper look at the space complexity of the two calculators, whilst the

final graph provides a closer look at the time complexity of the calculators.

3. Results

Tables 11 and 12 shows the results of the simulations conducted on both the standard calculator

and the division by zero calculator respectively. From Tables 11 and 12 as the length of the equations

increased the number of operations per equation, number of equations with division by zero, and

total number of divisions by zero operations also increased. This implies that the complexity of the

equations increased with each successive set of simulations. The space and time complexity columns

indicated how well each type of calculator handled the increase in equation complexity.

In terms of space complexity, the total processing memory required to process the 1000

equations per calculator was slightly less with the standard calculator and more with the division by

zero calculator. This is probability due to the standard calculator having less to process than the

division by zero calculator. Recall that the standard calculator could not process division by zero

calculations or division by zero equations. This is clearly seen in the final column of Table 11. Here

the standard calculator only processed between 563 to 975 equations out of the 1000 equations given

to it across the 20 simulations.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 11

Table 11. Efficiency measures of space and time complexity for the standard calculator.

Characteristics of Equations Space Complexity Time Complexity

Simulation No.Length of Equation

No.

operation

per

Equation

No. of

Equations

with

DBZ

operations

Total Number

of DBZ

operations

Total Processing Memory

(bytes)

Average

Processing

Memory Per

operation

Total

Output

memory

(bytes)

Total Processing Time

(microseconds)

No. of

operations

per unit

time

No. of Equations

successfully

computed

1 5 2 25 25 1628120 834.9333 2525 0.0352 55381 975

2 25 12 36 36 1626846 140.6333 3636 0.0355 326020 964

3 45 22 77 82 1761893 86.7671 7777 0.0570 356403 923

4 65 32 86 94 1874391 64.0861 8686 0.0749 390718 914

5 85 42 134 142 1989516 54.6991 13534 0.0997 364648 866

6 105 52 140 160 2130354 47.6376 14140 0.1186 377036 860

7 125 62 176 209 2256727 44.1733 17776 0.1373 372032 824

8 145 72 189 214 2388216 40.8997 19089 0.1592 366720 811

9 165 82 215 262 2549207 39.6024 21715 0.1811 355371 785

10 185 92 237 277 2775593 39.5406 23937 0.2074 338426 763

11 205 102 276 331 3042633 41.2013 27876 0.2134 346129 724

12 225 112 280 340 3211334 39.8231 28280 0.2333 345714 720

13 245 122 311 388 3563448 42.3927 31411 0.2550 329594 689

14 265 132 314 394 3791536 41.8714 31714 0.2653 341300 686

15 285 142 327 414 4055796 42.4397 33027 0.2831 337551 673

16 305 152 335 449 4393587 43.4664 33835 0.3026 333986 665

17 325 162 363 484 4569098 44.2768 36663 0.3134 329304 637

18 345 172 357 492 4996036 45.1737 36057 0.3330 332131 643

19 365 182 419 556 5405671 51.1213 42319 0.3533 299259 581

20 385 192 437 597 5936380 54.9177 44137 0.3819 283015 563

P
re

p
rin

ts
 (w

w
w

.p
re

p
rin

ts
.o

rg
) | N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
 | P

o
s
te

d
: 3

 A
p

ril 2
0
2
3

 d
o

i:1
0
.2

0
9

4
4

/p
re

p
rin

ts
2
0
2
3
0
4

.0
0
0

7
.v

1

https://doi.org/10.20944/preprints202304.0007.v1

 12

Table 12. Efficiency measures of space and time complexity for the “Division by Zero” calculator.

Characteristics of Equations Space Complexity Time Complexity

Simulation No.Length of Equation

No.

operation

per

Equation

No. of

Equations

with

DBZ

operations

Total

Number of

DBZ

operations

Total Processing Memory

(bytes)

Average

Processing

Memory Per

operation

Total

Output

memory

(bytes)

Total Processing Time

(microseconds)

No. of

operations per

unit time

No. of

Equations

successfully

computed

1 5 2 25 25 1627153 813.5765 2200 0.0373 53637 1000

2 25 12 36 36 1626846 135.5705 3168 0.0386 311235 1000

3 45 22 77 82 1761893 80.0860 6776 0.0611 360259 1000

4 65 32 86 94 1874391 58.5747 7568 0.0801 399454 1000

5 85 42 134 142 1989516 47.3694 11792 0.1057 397431 1000

6 105 52 140 160 2130354 40.9683 12320 0.1260 412817 1000

7 125 62 176 209 2256727 36.3988 15488 0.1461 424433 1000

8 145 72 189 214 2388216 33.1697 16632 0.1696 424473 1000

9 165 82 215 262 2549263 31.0886 18920 0.1941 422468 1000

10 185 92 237 277 2775649 30.1701 20856 0.2212 415823 1000

11 205 102 276 331 3042633 29.8297 24288 0.2349 434266 1000

12 225 112 280 340 3211334 28.6726 24640 0.2497 448538 1000

13 245 122 311 388 3563504 29.2090 27368 0.2824 432047 1000

14 265 132 314 394 3791536 28.7238 27632 0.2938 449330 1000

15 285 142 327 414 4055796 28.5619 28776 0.3126 454326 1000

16 305 152 335 449 4394035 28.9081 29480 0.3368 451359 1000

17 325 162 363 484 4569322 28.2057 31944 0.3491 464055 1000

18 345 172 357 492 4996316 29.0483 31416 0.3748 458878 1000

19 365 182 419 556 5406175 29.7043 36872 0.4053 449033 1000

20 385 192 437 597 5936828 30.9210 38456 0.4387 437607 1000

P
re

p
rin

ts
 (w

w
w

.p
re

p
rin

ts
.o

rg
) | N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
 | P

o
s
te

d
: 3

 A
p

ril 2
0
2
3

 d
o

i:1
0
.2

0
9

4
4

/p
re

p
rin

ts
2
0
2
3
0
4

.0
0
0

7
.v

1

https://doi.org/10.20944/preprints202304.0007.v1

 13

However, when the graph of “Average processing memory per operation vs. Total number of divisions

by zero operation” it was clear that the average memory per operation was lower with the division by

zero calculator. This implies that there were more successful operations per unit of memory with

the division by zero calculator than with the standard calculator as the number of operations

(specifically division by zero operations) increases. This is clearly seen in Figure 2.

Figure 2. Comparing “average processing memory” for both the standard calculator and the division

by zero calculator.

Additionally, from Tables 11 and 12 when the total memory output was considered it was clear

that the division by zero calculator required less memory to output its results as the complexity of

the equations increased (and the number of division by zero operations). This is very likely because

every time the standard calculator encountered a division by zero operation it would output an error

message (which required more output space than printing a simple numerical answer). Figure 3

illustrates this point more clearly.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 14

Figure 3. Total output memory vs. Number of Equations with Division by Zero.

When “Total output memory vs. Number of Equations with Division by Zero” is plotted for both the

division by zero and standard calculator it was clear that the division by zero calculator outperformed

the standard calculator requiring significantly less memory to output its results as the number of

division by zero operations increases. Therefore overall, in terms of space complexity, the division by

zero calculator outperformed the standard calculator.

Turning attention to time complexity, from Tables 11 and 12 when the Total Processing Time is

considered, the standard calculator showed a smaller time spent processing the equations.

Nevertheless, the lower processing time for the standard calculator can be attributed to the fact thar

the standard calculator successfully processed less equations than the division by zero calculator.

The difference in time complexity between the two calculators is more clearly seen in Figure 4,

when the “Number of operations per unit time against the Total Number of operations” is compared for

both calculators.

Figure 4. Comparing Number of operations per unit time against the Total Number of operations for

both the standard calculator and the division by zero calculator.

Clearly from Figure 4, the division by zero calculator was able to process more successful

operations per unit time than the standard calculator (this considering that the division by zero

calculator was able to successfully process division by zero operations). Therefore, in terms of time

complexity the division by zero outperformed the standard calculator.

From the overall results it was also clearly seen that removing the try catch statements to handle

division by zero exceptions improved the efficiency of a calculator program. Hence the division by

zero calculator outperformed the standard calculator in terms of space and time complexity and thus

was considered more efficient than the standard calculator.

4. Discussion

The development of semi-structured complex numbers to resolve division by zero has already

proven itself to be useful and a few papers has already been written about the topic. The division by

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 15

zero calculator developed in this paper is the first of its kind. In this paper it was shown that a division

by zero calculator can perform more efficiently than a standard calculator.

Division by zero calculator can be used in science and engineering where singularities that arise

in the modelling of real-world problems needs to be solved. Division by zero calculator can also be

used to calculate the inverse of singular matrices as well as any other topic where division by zero

may appear.

More research and rigorous testing can be done to determine how the division by zero calculator

can be improved upon. For example, the division by zero calculator developed here only considered

4 basic arithmetic operations (+,÷,×, −). However, a more advanced version of the division by zero

calculator that considers exponentials, logarithms, trigonometric and hyperbolic operations can be

developed. The mathematic operations for these advanced functions have already been developed in

other papers on the topic of semi-structured complex numbers. Additionally, calculators capable of

graphing division by zero outcomes should also be considered.

5. Conclusion

In this research a division by zero calculator was created and its operational efficiency was tested

and compared to the efficiency of a standard calculator. The efficiency of the calculator was measured

in terms of space and time complexity.

In the process of determining the efficiency of the calculator four major contributions were made:

(1) A representation for semi-structured complex numbers that enables it to be easily used in

arithmetic operations by a computer program was developed. The semi-structured complex numbers 𝒙 + 𝒚𝒊 + 𝒛𝒑 is represented by the 3-tuple (or ordered triple) given by (𝒙, 𝒚, 𝒛) . (2) It was

demonstrated that the division by zero calculator outperforms the standard calculator in terms of

efficiency (that is space and time complexity); and (3) It was shown that the number set ℍ reduced

the amount of error handling required to run a computer program.

The division by zero calculator can be used anywhere that division by zero needs to be

calculated. The development of the division by zero calculator provides a firm foundation to advance

the number set ℍ as a useful mathematical tool in computer science.

Appendix

Appendix 1: Research conducted from 2018 to 2022 involving division by zero

Table 13. Research conducted on division by zero from 2018 to 2022.

Research Research Aim

[9–11] Explores the application of division by zero in calculus and differentiation

[12]
Uses classical logic and Boolean algebra to show the problem of division by zero can be

solved using today�s mathematics

[13] Develops an analogue to Pappus Chain theorem with Division by Zero

[14]

This paper proposes that the quantum computation being performed by the cancer cell

at its most fundamental level is the division by zero. This is the reason for the insane

multiplication of cancer cells at its most fundamental scale.

[15] Explores evidence to suggest zero does divide zero

[16]
Considered using division by zero to compare incomparable abstract objects taken from

two distinct algebraic spaces

[17] Show recent attempts to divide by zero

[18]
Generalize a problem involving four circles and a triangle and consider some limiting

cases of the problem by division by zero.

[19] Paper considers computing probabilities from zero divided by itself

[20,21] Considers how division by zero is taught on an elementary level

[22] Develops a method to avoid division by zero in Newton�s Method

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 16

Research Research Aim

[23]
This work attempts to solve division by zero using a new form of optimization called

Different-level quadratic minimization (DLQM)

Appendix 2: Algorithms for both division by zero and standard calculator

Table 14. Algorithm for semi-structured complex numbers equation infix to postfix convertor.

1 Create an empty stack called “Operator stack” for keeping operators.

2 Create an empty list for output.

3 Convert the input infix string to a list.

4 Scan the token list from left to right.

5 If the token is an operand, append it to the end of the output list.

6 If the token is a left parenthesis, push it on the “Operator stack”.

7
 If the token is a right parenthesis, pop the “Operator stack” until the corresponding left

parenthesis is removed. Append each operator to the end of the output list.

8

 If the token is an operator, (+,÷,×, −), push it on the “Operator stack”. However, first

remove any operators already on the “Operator stack” that have higher or equal precedence and

append them to the output list.

9
When the input expression has been completely processed, check the “Operator stack”. Any

operators still on the stack can be removed and appended to the end of the output list.

Table 15. Algorithm for semi-structured complex numbers equation postfix evaluator.

1
User Input: Type of Arithmetic Machine: 1 for “Arithmetic Machine STD” and 2 for “Arithmetic

Machine DBZ”

2 Create an empty stack called “Operand stack”.

3 Convert the string to a list by using the string method split.

4 Scan the token list from left to right.

5
• If the token is an operand, convert it from a string to an integer and push the value

onto the “Operand stack”.

6

• If the token is an operator, *, /, +, or -, it will need two operands. Pop the “Operand

stack” twice. The first pop is the second operand, and the second pop is the first

operand. Perform the arithmetic operation using Arithmetic Machine chosen by the

user in the user input. Push the result back on the “Operand stack”.

7
When the input expression has been completely processed, the result is on the stack. Pop the

“Operand stack” and return the value.

Table 16. Multiply function for semi-structured complex number calculators.

1 User input: 𝑥, 𝑦, 𝑧 and 𝑎, 𝑏, 𝑐

2 Calculate (𝐴 = 𝑥𝑎 – 𝑦𝑏 – 𝑧𝑝) and (𝐵 = 𝑥𝑏 + 𝑦𝑎)

3 Calculate (𝐶 = 𝑥𝑐 + 𝑧𝑎) and (𝐷 = 𝑦𝑐 + 𝑧𝑏)

4 If 𝐴 = 0 and 𝐵 = 0 then 𝐹 = 𝜋

5 Else If 𝐴 = 0 and 𝐵 ! = 0 then 𝐹 =
6 Else 𝐹 = 𝑡𝑎𝑛 (𝐵/𝐴)
7
8 If 𝐶 = 0 and 𝐷 = 0 then 𝐺 = 𝜋
9 Else If 𝐶 = 0 and 𝐷 ! = 0 then 𝐺 =
10 Else 𝐺 = 𝑡𝑎𝑛 (𝐷/𝐶)
11
12 𝑛𝑒𝑤_𝑋 = 𝐴 + 𝐵 × cos(𝐹 − 𝐺)
13 𝑛𝑒𝑤_𝑌 = 𝐴 + 𝐵 × sin(𝐹 − 𝐺)

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 17

14 𝑛𝑒𝑤_𝑍 = 𝐶 + 𝐷
15
16 Return 𝑛𝑒𝑤_𝑋, 𝑛𝑒𝑤_𝑌, 𝑛𝑒𝑤_𝑍

The multiplication function shown in Table 16 takes two semi-structured complex numbers and

produces a four-dimensional number shown in lines 2 and 3 (as discussed in Result 9 of Table 1).

Nevertheless, this number needs to be converted into a three-dimensional form as a matter of

consistency of output from the calculator (since addition and subtraction results in three dimensional

results). This is done in lines 4 to lines 14 in Table 16. The conversion shown in lines 4 to lines 14 in

Table 16 is based on the theory of semi-structured complex numbers.

References

1. P. Jean Paul and S. Wahid, "Unstructured and Semi-structured Complex Numbers: A Solution to Division

by Zero.," Pure and Applied Mathematics Journal, , vol. 10, no. 2, p. 49-61, 2021.

2. P. Jean Paul and S. Wahid, "Reformulating and Strengthening the theory of Semi-strucutred Complex

Numbers," International Journal of Applied Physics and Mathematics, 2022.

3. Oracle, "The Java™ Tutorials," Oracle, 2022. [Online]. Available:

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html#:~:text=Definition%3A%20An

%20exception%20is%20an,flow%20of%20the%20program's%20instructions.. [Accessed 31 01 2023].

4. A. S. Gillis, "Exception handling," TechTarget, June 2022. [Online]. Available:

https://www.techtarget.com/searchsoftwarequality/definition/error-

handling#:~:text=Exception%20handling%20is%20the%20process,normal%20operation%20of%20a%20pr

ogram.. [Accessed 31 January 2023].

5. H. Idan, "The Top 5 Disadvantages of Not Implementing an Exception Inbox Zero Policy," OverOps, 02

August 2017. [Online]. Available: https://www.overops.com/blog/the-top-5-disadvantages-of-not-

implementing-an-exception-inbox-zero-policy/. [Accessed 31 January 2023].

6. M. Ahmad, "What is space complexity of an algorithm and how it is measured?," 2023. [Online]. Available:

https://www.educative.io/answers/what-is-space-complexity-of-an-algorithm-and-how-it-is-measured.

[Accessed 01 04 2023].

7. S. Upadhyay, "Time and Space Complexity in Data Structure: Complete Guide," Simplilearn, 2023. [Online].

Available: https://www.simplilearn.com/tutorials/data-structure-tutorial/time-and-space-

complexity#what_is_space_complexity. [Accessed 1 April 2023].

8. S. Pinelas and S. Saitoh, "Division by Zero Calculus and Differential Equations," in Differential and Difference

Equations with Applications: ICDDEA, Amadora, Portugal, 2018.

9. S. Saitoh, "Introduction to the division by zero calculus," in Scientific Research Publishing, Inc, USA, 2021.

10. H. Okumura, "The arbelos in Wasan geometry: Atsumi�s problem with division by zero calculus," Sangaku

Journal of Mathematics, vol. 5, pp. 32-38, 2021.

11. I. Barukčić, "Classical logic and the division by zero," International Journal of Mathematics Trends and

Technology IJMTT, vol. 65, no. 7, pp. 31-73, 2019.

12. H. Okumura, "An Analogue to Pappus Chain theorem with Division by Zero," In Forum Geom, vol. 18, pp.

409-412, 2018.

13. M. P. Lobo, "Cancer: Division by Zero," Open Journal of Mathematics and Physics, vol. 2, no. 73, p. 5, 2020.

14. M. P. Lobo, "Does zero divide zero," Open Journal of Mathematics and Physics, vol. 2, no. 69, p. 3, 2020.

15. J. Czajko, "On unconventional division by zero," World Scientific News, vol. 99, pp. 133-147, 2018.

16. H. Okumura, "Is It Really Impossible To Divide By Zero," J Appl Math, vol. 27, no. 2, pp. 191-198, 2018.

17. H. Okumura, "A four circle problem and division by zero," Sangaku Journal of Mathematics, vol. 4, pp. 1-8,

2020.

18. W. Mwangi, "Definite Probabilities from Division of Zero by Itself Perspective," Asian Journal of Probability

and Statistics, vol. 6, no. 2, pp. 1-26, 2020.

19. J. Dimmel and E. Pandiscio, "When it�s on zero, the lines become parallel: Preservice elementary teachers�

diagrammatic encounters with division by zero," The Journal of Mathematical Behavior, vol. 58, pp. 1-27, 2020.

20. F. Karakus and B. Aydin, "Elementary Mathematics Teachers� specialized Content Knowledge Related To

Division By Zero," Malaysian Online Journal of Educational Sciences, vol. 7, no. 2, pp. 25-40, 2019.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

 18

21. I. Abdulrahman, "A Method to Avoid the Division-by-Zero or Near-Zero in Newton-Raphson Method,"

Feburary 2022. [Online]. Available:

https://www.researchgate.net/publication/358857049_A_Method_to_Avoid_the_Division-by-

Zero_or_Near-Zero_in_Newton-Raphson_Method. [Accessed 28 April 2022].

22. Y. Zhang, Y. Ling, M. Yang and M. Mao, "Exemplar Different-Level Quadratic Minimization," in The 2018

5th International Conference on Systems and Informatics, 2018.

23. Y. Zhou and S. T. Skidmore, "A reassessment of ANOVA reporting practices: A review of three APA

journals," Journal of Methods and Measurement in the Social Sciences, vol. 8, no. 1, pp. 3-19, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 April 2023 doi:10.20944/preprints202304.0007.v1

https://doi.org/10.20944/preprints202304.0007.v1

