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It is demonstrated mathematically that the center of the Schwarzschild-Szekeres coordinate chart
is the source of the Schwarzschild gravitational field by using the definitions of the Kruskal-Szekeres
coordinates and their relationship to the Schwarzschild coordinate basis vectors over the coordinate
chart. It is proven that all observers that hypothetically reach the horizon are coincident with each
other at the horizon, regardless of where or when they began falling relative to each other. The
Lorentz factor and rapidity are defined in terms of Kruskal-Szekeres coordinates, demonstrating
the light-like nature of the worldlines at the event horizon. In the frame of falling observers, the
event horizon relativistically contracts to zero size as the horizon is approached. It is also proven
that all worldlines become null geodesics at the event horizon in Kruskal-Szekeres coordinates by
examining the Lorentz boosts in falling frames. The internal solution is describing a spherically
symmetric vacuum whose source is a shell that is infinitely far away in space and exists a finite
time in the past relative to an observer in the vacuum.
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I. INTRODUCTION

The Schwarzschild metric is the simplest non-trivial
solution to Einstein’s field equations. It is the met-
ric that describes every spherically symmetric vacuum
spacetime. The the external and internal forms of metric
can be expressed as (coordinates in the internal metric
are primed to distinguish them from the internal metric
coordinates):

dτ2 =
(
1− rs

r

)
dt2 − 1

1− rs
r

dr2 − r2dΩ2 (1)

dτ ′2 = −
(
1− u

r′

)
dt′2 +

1

1− u
r′
dr′2 − r′2dΩ′2 (2)

Equation 1 is the external metric with t being the timelike
coordinate and r being the spacelike coordinate. The
Schwarzschild radius of the metric is given by rs = 2GM
in units with c = 1. We use the prime notation for the
coordinates here to distinguish the external coordinates
from the internal coordinates. The external metric is
the metric for an eternally spherically-symmetric vacuum
centered in space. This metric is also used to describe the
vacuum outside a spherically symmetric object occupying
a finite amount of space with a finite mass (like a star or
planet). This metric as written in Equation 1 becomes
the Minkowski metric as r → ∞.

Equation 2 is the internal metric with t′ being the
spacelike coordinate and r′ being the timelike coordinate.
Instead of using rs in the internal metric, we use the vari-
able u for the internal metric in this paper. The reason

will become more apparent later on, but it is important
to note that rs is a length while u is a time. This metric
is currently believed to describe the interior of a Black
Hole. We can see in Equations 1 and 2 that as r → rs
or r′ → u, the basis vectors ∂t and ∂t′ go to zero while
the ∂r and ∂r′ go to infinity. This location is called the
’Event Horizon’ of the metric. The behaviour of the basis
vectors at this location seem to imply that there is a co-
ordinate singularity at this location since the spacetime
curvature is not infinite there.

In order to overcome the behaviour of the basis vec-
tors at this location, different coordinate systems have
been developed which do not have degenerate behaviour
at the Event Horizon. The most important of these co-
ordinate systems are the Kruskal-Szekeres coordinates,
which are the maximally extended coordinates for the
Schwarzschild metric. The coordinate definitions and
metric in Kruskal-Szekeres coordinates are given below
(derivation of the coordinate definitions and metric can
be found in reference [1] where v = T and u = X).

For the external metric:

T =

√(
r

rs
− 1

)
e

r
rs sinh

(
t

2rs

)

X =

√(
r

rs
− 1

)
e

r
rs cosh

(
t

2rs

) (3)
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And for the internal metric:

T =

√(
1− r

u

)
e

r
u cosh

(
t

2u

)
X =

√(
1− r

u

)
e

r
u sinh

(
t

2u

) (4)

With the full metric in Kruskal-Szekeres coordinates
given by:

dτ2 =
4R3

r
e−

r
R

(
dT 2 − dX2

)
− r2dΩ2 (5)

Where R represents either rs for the external metric or u
for the internal metric. Given the coordinate definitions,
we get the following relationship between the T and X
coordinates:

X2 − T 2 =
( r

R
− 1

)
e

r
u (6)

Finally, we plot the metric on the Kruskal-Szekeres coor-
dinate chart [2] in Figure 1:

FIG. 1. Kruskal-Szekeres Coordinate Chart

In this paper, we will be focusing on regions I and II in
this chart. Region I represents the external metric, and
region II represents the internal metric.

II. THE SYMMETRIES OF THE
SCHWARZSCHILD METRIC

Historically, when the Schwarzschild metric was de-
rived, it was derived under the assumptions of a static
spherically-symmetric vacuum. Birkhoff’s theorem later
showed that the static assumption is not necessary and
that the Schwarzschild metric is the description for all
spherically-symmetric vacua in General Relativity. This
makes sense because while the assumption of a static met-
ric applies to the external solution, it is well-known that
the internal solution is not static due to the fact that r
becomes the timelike coordinate and t becomes the space-
like coordinate in the internal metric.

The assumption of a static condition in the case of
the Schwarzschild metric turns out to be the assumption

that the metric is symmetric under hyperbolic rotation.
We can see this in Figure 1, where in both the external
and internal cases, the t coordinate is a hyperbolic an-
gle. Since the metric coefficients are independent of t,
this means that performing a hyperbolic rotation of the
spacetime does not change the physics just as doing a
spherical rotation of the spacetime does not change the
physics.
Regions I and II of Figure 1 represent 1+1 dimensions

of the external and internal metric. Therefore, for ex-
ample, region I represents a radial line at fixed angles ϕ
and θ in space at all times. So all worldlines in region
I represent particles on the same radial line at different
times. We can extend Figure 1 to 2+1 dimensions by
adding a Y coordinate perpendicular to both X and T
to equation 6 as follows:

X2 + Y 2 − T 2 =
( r

R
− 1

)
e

r
u (7)

We can do this because of the spherical symmetry of the
metric if we assert that X = Y = T = 0 is the center of
the source of the metric. Next, let us compare equation
7 to the equation for a hyperboloid of revolution given
below:

x2

a2
+

y2

b2
− z2

c2
= ±1 (8)

These equations are equivalent if we set x = X, y = Y ,
z = T , and a2 = b2 = c2 =

(
r
R − 1

)
e

r
u . We can see that(

r
R − 1

)
e

r
u > 0 for the external metric and

(
r
R − 1

)
e

r
u <

0 for the internal metric. We can plot both cases for fixed
r (r > R for the external case, r < R for the internal case)
to see what surfaces of constant r look like in both the
external and internal solutions:

FIG. 2. 2D Surfaces of Constant r for Internal and External
Metrics

Note that in the external case shown in Figure 2, the t
coordinates are radial lines emanating out of the center
of the diagram on the outside of the light cone repre-
senting the event horizon (dashed lines). This is clear
by imagining you revolve region I in Figure 1 around the
T axis (the T axis is represented by the vertical dotted
line). All r surfaces in the external metric lie outside of
the event horizon light cone depicted. Likewise, for the
internal case, the t coordinates are radial lines emanating
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out of the center of the diagram on the inside of the event
horizon light cone and all r surfaces of the internal metric
lie inside the event horizon light cone. This can also be
visualized by revolving region II in Figure 1 around the
T axis.

If we assume the surfaces in Figure 2 are depicting the
case where θ = π

2 , then the two Killing vectors of the
spacetime are ∂ϕ and ∂t. The partialϕ Killing vector
tells us that if we rotate the surface along with all the
worldline points on it in the ϕ direction (revolve all the
points on the surface around the T axis by some amount),
there is no change to the physics. This is true for both
surfaces.

The ∂t Killing vector tells us that if we hyperbolically
rotate the surface along with all the worldline points on
it, the physics also remains unchanged. For the external
case, this hyperbolic rotation is essentially 1-dimensional
in that you can only hyperbolically rotate the external
surface in the ’vertical’ (T ) direction (looking at region
I of Figure 1, this means you move all the points up
or down along their respective hyperbolas). But in the
internal case, we can see that the surface can be hyper-
bolically rotated in 2 dimensions either along the X or Y
directions, or in a direction whose vector is some linear
combination of theX and Y directions. Again, looking at
Figure 1, the hyperbolic rotation would mean you move
all the points left or right along their respective hyperbo-
las. But since the axis of rotation is T , this means that
we have two degrees of freedom for hyperbolic rotation
in the internal case.

We can extend this to 3 spatial dimensions by adding
a Z2 term to equation 9 as follows:

X2 + Y 2 + Z2 − T 2 =
( r

R
− 1

)
e

r
u (9)

This cannot be visualized as it requires four dimensions
to do so, but we can just imagine that each circle around
the T axis shown on the surfaces in Figure 2 represents
the surface of a sphere in 3D.

So with the Kruskal-Szekeres coordinates, we can call
the t Killing vector ∂t,T since it involves hyperbolic rota-
tion exclusively in the T direction. We can even imagine
it as having a radial-type structure as shown in Figure
3 below, where the vectors are the same in all directions
and at all times:

FIG. 3. Radial Killing/Basis Vectors on a Surface of Constant
r

For the internal metric, we essentially have t Killing
vectors in each of the 3 spatial Kruskal-Szekeres direc-
tions called ∂t,X , ∂t,Y , and ∂t,Z . These form a Cartesian
basis for the 3D space of the internal solution at a given
time (r is the timelike coordinate in the internal solu-
tion):

FIG. 4. Cartesian Killing/Basis Vectors on a Surface of Con-
stant r

So for the 2 sheets on the left side of Figure 2, the ∂t,X
and ∂t,Y coordinates can be interpreted as the hyperbolas
on the surface running perpendicular to each other in the
X and Y directions (in this paper, we are only concerned
with the upper hyperboloid on the left side of Figure 2,
but the X and Y oriented hyperbolas are more easily
seen as the mutually perpendicular hyperbolas on the low
hyperboloid. The upper sheet has the same hyperboloids,
but it is more difficult to see them in the figure). Again,
Figure 2 is only depicting 2 spatial dimensions, but the
spherical symmetry tells us that there is a 3rd spatial
dimension Z that behaves identically to the X and Y
dimensions.

It is important to recall here that the t coordinate and
therefore the ∂t basis/Killing vectors are spacelike in the
internal metric and r is the timelike coordinate. There-
fore, since the Cartesian basis of the spatial part of the
internal metric depicted in Figure 4 are also Killing vec-
tors, we see that at a given time, the space of the in-
ternal metric is homogeneous and isotropic. Thus, the
hyperbolic rotation symmetry of the Schwarzschild met-
ric results in a static solution for the external metric and
homogeneous space at fixed time for the internal solution.

III. APPROACHING THE EVENT HORIZON
IN KRUSKAL-SZEKERES COORDINATES

Given the circular and hyperbolic rotational symme-
tries of the Schwarzschild metric, we can now examine
the worldlines for particles in circular orbit as well as in
radial freefall from a presentist perspective. To define the
meaning of a ’presentist perspective’, consider Figure 5
below:
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FIG. 5. Worldline of a Particle for One Revolution of Circular
Orbit

In this figure, we see the sheet for the external solu-
tion at some fixed r. Drawn on the sheet is the worldline
of a particle in inertial circular orbit around the source
of the metric for one revolution of the orbit. Time in-
creases vertically as shown in the figure. On the left side,
the worldline starts at the center (t = 0) and spirals up
the surface counter-clockwise until in returns to the same
angular position at which it started at some later time t.

On the left side, we have the same worldline, but hy-
perbolically rotated down so that the end point is at t = 0
and the starting point is at some t < 0. Because of the
hyperbolic symmetry, these two worldlines are identical
because they are on the same surface with the only dif-
ference being that they have been hyperbolically rotated
relative to each other. This is equivalent to saying that
since the external metric is static, it doesn’t matter what
time t at which you choose to start (or end) the world-
line, as long as (in this case) the δt and δϕ are the same
in both cases.

But on the right side of Figure 5, instead of interpret-
ing the figure as saying that the worldline runs from some
t < 0 to t = 0, we can look at it as the present point
always remaining at t = 0 and ϕ = ϕ0 while the sur-
face rotates about the vertical axis and hyperbolically
rotates downward as time goes on. So we need to imag-
ine a dynamic picture where we fix a pen to the t = 0,
ϕ = ϕ0 point on the surface and then circularly and hy-
perbolically rotate the surface such that the past world-
line grows out of the point in the −t direction as time
passes. Since the end of the worldline, which always rep-
resents the present is always at the t = 0 coordinate, this
is what is meant by the presentist perspective. In this
perspective the present worldline point is always at t = 0
and the past worldline points are hyperbolically rotated
downward to increasing −t coordinates as time passes.
This is still equivalent to drawing the line as described
for the left side of the figure, where the past worldline
points have fixed t coordinates and as time passes, new
worldline points are fixed to increasing t coordinates.

Now let us consider particles in radial freefall as seen
on the Kruskal-Szekeres coordinate chart. Figure 6 shows
the worldlines for two different particles falling toward
the event horizon. They both start at time t = 0 but one
starts the fall from some radius r1 and the other from
some greater radius r2 > r)1.

FIG. 6. Worldlines of Two Particles in Radial Freefall

If we were to extend the worldlines to r = 0, we are
given the impression that the particles never meet at any
point in the spacetime where r > 0 since the worldlines
never intersect each other. But let us look more closely
at the event horizon, represented by the dashed T = X
line on the diagram. That line is a null geodesic in the
spacetime meaning the proper distance s between any
two points on the line is zero. Furthermore, the coor-
dinate position for all points on that line is the same
(r = rs). Therefore, the points where the two worldlines
intersect the horizon are at the same coordinate position
separated by zero proper distance. By definition, this
means that the two particles are coincident at the hori-
zon. This tells us that no matter how far apart any two
particles are when they start to fall, they will meet each
other at the event horizon.
This becomes more obvious if we construct the world-

lines in the presentist perspective. In Figure 7, we see
the worldlines for each particle drawn at two different
’present’ moments. The solid worldlines represent the
the particle that started falling closer to the source and
the dashed worldlines represent that particle that started
falling from farther away.

FIG. 7. Worldlines of Two Particles in Radial Freefall - Pre-
sentist Perspective

Since, in this construction, the present time coordinate
of the particles is always at the t = 0 (X axis) line, both
particles fall along the t = 0 line. The past worldlines
grow longer over time as the past worldline points are
hyperbolically rotated downward during the fall. We can

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 May 2023                   doi:10.20944/preprints202303.0512.v4

https://doi.org/10.20944/preprints202303.0512.v4


5

see therefore that they will both reach the horizon at the
T = X = 0 point on the coordinate chart, and from the
perspective of the infinite observer, they will reach that
point simultaneously. We know this because for each
interval ∆t, the change in radius for each particle will
go down the closer the particle is to the horizon (the
amount of proper time elapsed in that period for each
particle will also go down the closer the particle is to the
horizon) and an infinite amount of ∆t is needed for all
particles to reach T = X = 0. Therefore, all particles
will become asymptotically closer to the particles closer
to the horizon than them and the distance will shrink to
zero as ∆t → ∞.

Not only will the particles get closer together as they
approach the horizon, but their geodesics will become
null there (as can be seen from the solid T = −X line
in Figure 7). We can prove this mathematically by first
taking the differentials of T and X in equations 3:

dX =
∂X

∂r
dr +

∂X

∂t
dt

dT =
∂T

∂r
dr +

∂T

∂t
dt

(10)

Calculating the partial derivatives and rearranging we
get (we will set rs = 1 for this example to simplify the
equations):

dX

dt
=

rer

2
√
(r − 1)er

[
dr

dt
cosh

(
t

2

)
+

(
1− 1

r

)
sinh

(
t

2

)]
dT

dt
=

rer

2
√
(r − 1)er

[
dr

dt
sinh

(
t

2

)
+

(
1− 1

r

)
cosh

(
t

2

)]
(11)

Next, we want to calculate the slope dX
dT of the world-

line at t = 0 as the observer falls along the t = 0 line.
Thus, t = 0 in equations 11 meaning sinh

(
t
2

)
= 0 and

cosh
(
t
2

)
= 1. So the present slope of the worldline when

we hyperbolically rotate the space to keep the present
point at t = 0 is given by (we will now denote the
Schwarzschild radius as rs instead of setting it to 1):(

dX

dT

)
t=0

=

(
dX

dt

dt

dT

)
t=0

=

(
dr

dt

)(
1− rs

r

)−1

(12)

Reference [3] gives us an expression for dr
dt for a freefalling

observer that starts falling from rest at r0 as:

dr

dt
= −

(
1− rs

r

)√
rs
r − rs

r0

1− rs
r0

(13)

Note that the absolute value of the radial speed of light
in Schwarzschild coordinates is given by:

vc =
(
1− rs

r

)
(14)

Substituting equations 13 and 14 into 12 we get:(
dX

dT

)
t=0

=

(
dr
dt

)
vc

= −

√
rs
r − rs

r0

1− rs
r0

(15)

Regardless of where the observer begins falling, dX
dT = −1

when it reaches the horizon (r = rs), which confirms
what was depicted in Figure 7. If the particle starts
falling from rest at infinity (r0 = ∞), this simplifies to:(

dX

dT

)
t=0,r0=∞

= −
√

rs
r

(16)

Equations 15 and 16 tell us that the slope of the worldline
at the start of the fall is zero, which is correct since a
worldline starting from rest at t = 0 will be tangent to
the hyperbola at t = 0, which is a vertical line on the
Kruskal-Szekeres chart.
So we have an apparent contradiction between the

worldlines in Figure 6 and equation 15. Equation 15 im-
plies that if we always hyperbolically rotate the worldline
such that the slope dX

dT at the point we are interested in
is at t = 0 differs from the slope if we do not perform
the hyperbolic rotation. The end result is that when we
do the hyperbolic rotations all the way to the horizon,
the worldline becomes null whereas if we do not hyper-
bolically rotate, dX

dT of the worldline at the horizon is
something between -1 and 1 depending on our choice of
start time.
This discrepancy is resolved by the fact that on the

t = 0 line, the r and t basis vectors are aligned with the
X and T basis vectors. So the physical interpretation of
dX
dT in Figure 6 is not clear as the horizon is approached
because the r and t basis vectors rotate relative to the
X and T basis along the worldline (the T and X co-
ordinates represent different mixtures of space and time
as one moves along the worldline). When the worldlines
reach the horizon in Figure 6, the t and r basis vectors
become collinear, such that no absolute physical meaning
can be given to dX

dT there.
But since the X and T basis vectors are always aligned

with the r and t basis vectors in the presentist construc-
tion, dX

dT always has a clear physical interpretation, and

in particular, dX
dT in this construction always represents

the fraction of the speed of light at which the freefalling
particle is moving.
We can see the problem at the horizon for the world-

lines in Figure 6 by again dividing the equations in 11,

factoring out
(
1− rs

r

)
and cosh

(
t

2rs

)
from the numer-

ator and denominator, and substituting equation 13 for
dr
dt :

dX

dT
=

−
√

rs
r − rs

r0

1− rs
r0

+ tanh
(

t
2rs

)
−
√

rs
r − rs

r0

1− rs
r0

tanh
(

t
2rs

)
+ 1

(17)

If we plug r = rs and t = ∞ into equation 17, represent-
ing where the freefalling worldline reaches the horizon in
Figure 6, we get:(

dX

dT

)
t=∞

=
−1 + 1

−1 + 1
=

0

0
(18)
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We see that unlike equation 15, where the derivative is
well-defined at the horizon at t = 0, for the worldlines in
Figure 6, the derivative at the horizon is undefined (the
derivative for a null geodesic is also undefined there).
Note that if you take the limit of dX

dT as the worldline
approaches the horizon you can get a finite value. Ref-
erence [4] gives us t(r) near the horizon for an observer
falling from rest at infinity as:

t ∼ −rs log

(
r

rs
− 1

)
(19)

So let us examine equation 17 with r0 = ∞ and substitute
equation 19 in for t. We will also add a constant offset
tc to the time so that t → t+ tc and set rs = 1 to get:

lim
r→1

(
dX

dT

)
= lim

r→1

−
√

1
r + tanh

(
− log (r−1)+tc

2

)
−
√

1
r tanh

(
− log (r−1)+tc

2

)
+ 1

=
−4 + etc

4 + etc

(20)

So we see in equation 20, the limit depends on tc which
can be thought of as a constant shift in time for the
worldline. But since the metric is static, this shift does
not change the physics of the radial fall. Therefore, for a
given worldline, you can force dX

dT of the worldline as it
approaches the horizon to take any value between −1 and
1 by choosing some arbitrary value for the constant tc.
The presentist construction comes from the case where
we let tc vary over the worldline, such that we change
the time offset as the radius of the particle changes. For
the presentist construction in this case, we would set tc =
rs log

(
r
rs − 1

)
(which is a continuous hyperbolic rotation

of the line as the particle falls), which removes the time
dependence of the derivative.

So the etc terms reflect the non-physical time depen-
dence of the slope of the worldline in Kruskal-Szekeres
coordinates. We therefore see that if we remove the non-
physical time dependence by simply setting etc = 0, the
limit of the derivative is -1, indicating that the worldlines
become light-like as they approach the horizon.

For completion, we will look at the proper time inter-
val dτ

dX for the presentist construction. The proper time
interval at the horizon for the particle from equation 1
falling from rest at inifinity is given by:

dτ

dt
=

√(
1− rs

r

)
− 1

1− rs
r

(
dr

dt

)2

=

√(
1− rs

r

)
−
(
1− rs

r

) rs
r

=
(
1− rs

r

)
(21)

Combining equations 21, dX
dt from equations 11, and

equation 13 for the t = 0 case we get:(
dτ

dX

)
t=0

= −2e
−r
2rs

√
1− rs

r
(22)

We see that the proper time interval goes to 0 at r = rs,
indicating the geodesic becomes null there. It is notable
again that if we do this for the t = ∞ case and take
the limit (similar to equation 20), we can get any value
by choosing a constant time offset, but the derivative is
undefined at r = rs.
Finally, we can see that the particle will come to rest

at the T = T = 0 point by solving the dX equation from
11 with t = 0 (and setting the Schwarzschild radius to rs
instead of 1) for dr

dX :(
dr

dX

)
t=0

=
2rse

−r
2rs

r

√
r

rs
− 1 (23)

Which goes to zero when r = rs. Again, if we did this
for t = ∞, the derivative would be undefined at r = rs.
We can therefore conclude that all worldlines do in fact

become null at the horizon and the particles come to rest
there. What this implies is that the particle becomes
massless (because the geodesic is null) and has zero mo-
mentum (because the null geodesic lies on the T = −X
line which is at fixed r = rs). This makes sense if we
consider the fact that the Schwarzschild metric is a vac-
uum solution. Therefore, there is no mass or energy any-
where on the Kruskal-Szekeres coordinate chart because
the stress-energy tensor is zero everywhere. So what this
implies is that at this location, all the mass/energy of
the particles there is in the gravitational field itself. The
T = X = 0 point is the source of the gravitational field
and any particles that hypothetically reach this point add
all of their energy to the field and no longer exist as par-
ticles in the Universe. In a follow-up work, it will be
shown that in the actual Universe, it is not possible to
reach the horizon under any condition.
We can think of the presentist perspective as observing

the spacetime from the frame of the freefalling observer
where the surrounding spacetime is continuously Lorentz
boosted during the fall. Given equation 15, we can define
the Kruskal-Szekeres Lorentz factor as

γ =
1√

1−
(
dX
dT

)2
t=0

(24)

And the rapidity ω in Kruskal-Szekeres coordinates is
given by:

ω = tanh−1

((
dX

dT

)
t=0

)
(25)

Finally, we can combine these to get the Lorentz factor
as a function of rapidity:

γ =
1√

1− tanh2 (ω)
(26)

The Kruskal-Szekeres coordinate axes in Figure 1 repre-
sent the spacetime in the frame of an observer at rest in
the spacetime. Falling along the line t = 0 is more sen-
sible if we show the T and X axes Lorentz boosted rela-
tive to the rest frame, such that we see both the frame of
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the rest observers as well as the frame of the freefalling
observer on the same chart at different times. Figure
8 shows three snapshots of these frames for a particle
falling from infinity beginning at t = 0 with the faller’s
radius labelled in each snapshot.

FIG. 8. Lorentz Boosted Frames During Freefall

In this figure, we can see that the basis vectors of the
boosted frames are rotated relative to the rest frame (the
X ′ and T ′ axes represent the boosted frames). Therefore,
in this representation, we still remain on the t = 0 line
during the fall, but since the X ′ axis is rotating down due
to the Lorentz boosts, t (and T ) is effectively increasing,
as was the case in Figure 6. The boost representation
very nicely depicts the fact that the falling particle ap-
proaches the speed of light as it falls to the horizon as
well as showing how the spacetime ends at the horizon
itself.

There is also a sense of length contraction in the falling
frame. The dX term of the metric really should be dR
as described in section II since it represents a change in
the radial position of a particle. This means the Lorentz
boost the falling frame experiences when it falls is radial
in all directions, with the origin of the frame at the hori-
zon (it is the radial basis vector that rotates in Figure 8).
The planar surfaces perpendicular to a Cartesian coordi-
nate axis in the Minkowski metric become spherical sur-
faces centered on the metric source in the Schwarzschild
metric. This radial contraction is necessary for all inertial
observers to see the spacetime as spherically symmetric.
If the length contraction was dependant on the direction
of the radial fall, then inertial observers would disagree
on the spherical symmetry of the metric. We can see the
length contraction effect in Kruskal-Szekeres coordinates
by looking at the X distance from the horizon to some
radius r along a line of constant T for two different cases
where the observers started falling from a different radius
in each case such that when when we look at the frame
of each observer at some time after they started falling,
the Lorentz factor and rapidity have different values for
each case.

FIG. 9. Length Contraction in the Falling Frame

In the above figure, the particle started falling from
closer to the horizon on the left picture relative to the
particle on the right picture. Therefore, the particle on
the right has a higher velocity relative to the rest frame
at this time than the particle on the left at the same
time (by ’same time’, we mean we are seeing both frames
after a certain amount of time has elapsed in the infinite
observer’s frame). Therefore, the particle on the right
has a larger Lorentz factor and rapidity then the particle
on the left at that moment. By comparing the dark lines
in each picture, which represent the distance from the
horizon to some r (the same r in both cases) measured
in X ′ at constant T ′ in each frame, we clearly see that
this distance is shorter for the particle on the right with
a distance of roughly 1.4 units of X ′ compared to the
particle on the left, which sees a distance of roughly 2.9
units of X ′.
We can formalize the difference in lengths in the two

frames given the length contraction equation r = r0
γ . The

ratio of the lengths of the lines on the left (rL) and right
(rR) sides of Figure 9 will be a ratio of Lorentz factors.
We can see from the figure, that ωL = −0.5 and ωR =
−1.5. Using equation 26, we can solve for the ratio of the
lengths in the falling frames as:

rL
rR

=
γR
γL

=

√
1− tanh2 (−0.5)

1− tanh2 (−1.5)
≈ 2.09 (27)

Which is in agreement with what we see in Figure 9. Note
that we would get the same result regardless of which
point on the r hyperbola we draw the line to, as long
as we use the same point in all frames being compared
and draw the lines along a line of simultaneity in each
frame. As the rapidity increases further, we can see that
this line will tend toward a null geodesic as the horizon is
approached indicating that the spacetime contracts fully
to the horizon in the falling frame, which is consistent
with the argument that the falling frame becomes light-
like at the horizon.
Given the length contraction observed, the observer

should also see the Schwarzschild radius contract in the
falling frame. Applying the length contraction equation
to the Schwarzschild radius gives:

r′s =
rs
γ

(28)
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Where r′s is the Schwarzschuild radius in the frame of the
falling observer. The mass of the source is related to its

Schwarzschild radius in the falling frame by M =
r′sc

2

2G ,
which means the mass of the source also decreases in the
falling frame as a result of the length contraction. If we
assume the mass of the source is within the Schwarzschild
radius, the density of the source is given by

ρ =
M

V

=
3c2r′s
8πGr′s

3

=
3c2

8πGr2s
γ2

(29)

So in the falling frame, γ goes to infinity as the horizon
is approached meaning that r′s and therefore the mass of
the source goes to zero in that frame. But as equation
29 shows, the density of the source goes to infinity. This
tells us that in a frame positioned away from the horizon,
the source has some finite mass and radius, but to an ob-
server approaching the horizon, the source shrinks to a
point of zero mass and infinite density. This is in line
with the earlier discussion about the particle losing its
mass when it reaches the horizon and shows that due to
the length contraction, there is no space beyond the event
horizon indicating that the event horizon is the end point
of gravitational collapse. At the horizon, the falling frame
will see the entire Universe radially length contracted to
the horizon as well due to length contraction. This is
reflected in the rest frame by the fact that all hyperbo-
las intersect with the horizon when t = T = X = ∞,
which is the horizon itself. In a followup work, it will be
demonstrated that reaching the horizon in is not possible
in the actual Universe.

If the horizon is the endpoint of gravitational collapse,
then the question then remains, what is region II of Fig-
ure 1 describing. We know that the Schwarzschild solu-
tion describes all spherically symmetric vacua. In region
I, the t coordinate is spacelike while the r coordinate is
timelike. We see that at the the horizon, the spatial t co-
ordinate density is infinite and the coordinate lines sepa-
rate as one moves from the horizon to r = 0. As discussed
in section II, the space of the metric at a given time is
homogeneous and isotropic. It was also demonstrated in
the case of the external solution that the source of the
metric is at T = X = 0. It stands to reason then that the
source of the internal solution is also at that point. So
the internal solution describes a spherically symmetric
vacuum surrounded by a horizon which, from the per-
spective of an observer at some r between the horizon
and r = 0, surrounds the vacuum infinitely far away in
space and at some finite time in the past. And from the
perspective of that observer, this horizon, which looks
like a surrounding sphere, is a time where space is in-
finitely dense. A spacetime fitting this description would
be any empty space in the Universe whose surrounding
mass is spherically symmetric. Voids in the cosmic web

would be an example of such a spacetime, and the hori-
zon of the metric in this case would be the Big Bang,
which is an event at some finite time in the past that
surrounds all points in the Universe which has an infinite
density. And an observer in the present Universe can
never reach the Big Bang, no matter how far they travel
through space, which is in alignment with the fact that
the surface, from the perspective of a present observer,
is infinitely far away from them in space. So we might
think of the expanding Universe as baking bread where
the air pockets that expand as the bread bakes give the
bread a web-like structure over time, where the bread it-
self would be analogous to the cosmic filaments of matter
in the Universe. A full cosmological analysis of the inter-
nal solution will be completed in a followup work which
will also discuss all four regions of the Kruskal-Szekeres
coordinate chart as well as the curvature singularity at
r = 0.

IV. CONCLUSIONS

An analysis of the Schwarzschild metric described with
Kruskal-Szekeres coordinates has revealed the following:

• A surface of constant r in the external region is de-
scribed by a one-sheeted hyperboloid of revolution
and a surface of constant r in the internal region is
described by a two-sheeted hyperboloid of revolu-
tion.

• Examining the spacelike Killing ∂t vectors in the in-
ternal solution in Kruskal-Szekeres coordinates re-
veals that space in the internal metric at a given
time is homogeneous and isotropic.

• The Schwarzschild metric is symmetric under
spherical rotation as well as hyperbolic rotation.
The hyperbolic rotation symmetry is what makes
the external solution static and the internal solu-
tion homogeneous and isotropic at a given time.

• The hyperbolic symmetry allows us to create a ’pre-
sentist perspective’ of the external solution where
the present point on the worldline is always at t = 0
and past worldline points get hyperbolically rotated
to increasingly negative t values as time passes.

• Applying the ’presentist perspective’ to particles
in freefall demonstrates that all particles falling to-
ward the horizon will be coincident at the horizon
no matter where or when they begin falling relative
to each other.

• It was proven that all worldlines approaching the
event horizon become null as predicted by the pre-
sentist construction. This is because the r and t
basis vectors are aligned with the X and T basis
vectors when t = 0 such that dX

dT always has a clear
physical meaning there, with the slope representing
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the fraction of the speed of light at which the par-
ticle is falling. This proves that the Schwarzschild
radius does not represent a coordinate singularity,
but is in fact the end point of gravitational collapse
and the T = X = 0 point on the Kruskal-Szekeres
coordinate chart is the source of the gravitational
field.

• In the frame of freefalling observers, the horizon
becomes length contracted the closer the observer
gets to the horizon, until it is infinitely contracted
as they approach the horizon such that there is no
space to fall into beyond the horizon. The source of
the metric is therefore at the horizon, not at r = 0.

• The internal and external regions of the metric are
separate spacetimes separated by an asymptote at
the horizon.

• The internal solution describes a spherically sym-
metric vacuum surrounded by an infinitely dense
shell that is infinitely far away in space and exists
at a finite time in the past.

• The internal solution is interpreted as any spher-
ically symmetric vacuum in the Universe sur-
rounded by mass, such as the cosmic voids between
the cosmic filaments. Under this interpretation, the
event horizon of the internal solution would be the
Big Bang of the Universe

• Further rigorous investigation into the cosmological
nature of the internal solution will be completed in
a followup work.
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