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Abstract: This article provides insight into flow measurement techniques in water injection wells in
oil production fields, with a particular focus on the initial phases of operation. Consequently, the
method created by Ramey in 1962, originally intended for estimating the temperature of the injection
fluid, has been adapted to calculate the flow rate. In this technique, the calculation This procedure
is based on the correlation between the thermal flux formed in the well. The discrepancy between
the temperatures of the injected liquid and the geothermal temperature of the reservoir is the main
source of the systematic errors in Ramey’s technique. To a lesser extent, but still significant, failure to
observe the injection time in a fluid variation also results in an error problem that needs the failure
to adhere to the scheduled injection time for a fluid alteration also yields a notable error dilemma
that needs to be fixed. The reduction of listed systematic errors is the product of the main part of this
article.

Keywords: Oil reservoir ; Thermal Profile ; Geothermal Profile ; Flow Rate Injection

1. Introduction

In the quest to increase or maintain oil production in mature fields, in which surge
production is no longer possible or economically unfeasible, were developed various
techniques for re-energizing reservoirs throughout the history of the industry, secondary
recovery calls. The measurement of the injected flow is crucial for the good performance
of any recovery method. Mainly in the adoption of multiple injection zones, in which
the simultaneous injection of fluid in several sections along the injection well. With that
information, it is possible to detect deviations from the projected flows, caused by failures
in the regulator’s flow mechanics, and even the existence of formation damage. In order to
overcome the aforementioned limitations, methods based on Distributed Sensors Tempera-
ture (DST) have been developing and taking space in the industry. are methods that use
optical fibers designed to reflect part of the light intensity that arrives at determined points
of the fiber. The reflected intensity is related to the physical characteristics around the
referred point, allowing the measurement of the temperature, in real-time, throughout the
production column. Based on the established thermal profile and applying the conservation
principles (energy, mass, and momentum), it is possible to estimate the injection flow. Thus,
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articles with themes of flow measurement derived from temperature profiles are presented
in [1], [2], [3], [4]. In [5], Hargoot assesses Ramey’s classic method for the calculation
of temperatures in injection and production wells. It is shown that Ramey’s method is
an excellent approximation, except for an early transient period in which the calculated
temperatures are significantly overestimated.

In 2015, a contract was agreed upon between the Federal University of Rio Grande do
Norte (UFRN) and Petróleo Brasileiro S.A. A research team of PETROBRAS is dedicated
to the analysis and assessment of a technique for gauging flow in wells injection based
on thermal profiles. The team made up of professors and graduate students, was divided
into two groups. The first group was responsible for raising in the literature the methods
developed and defining among them which ones would be worked on. The second group
designed and installed a physical prototype in order to verify the chosen methods. Because
of its simplicity and popularity in the scientific sphere, the method presented by Ramey
in 1962 was discussed in the research [6]. Originally developed for calculating the time
evolution of the temperature of the fluid along the pipeline, the method assumes that the
fluid inside the piping gains (or loses) thermal energy as it moves along the column of
production, and that this gain (or loss) is directly related to the thermal disturbance in
formation.

The method adopts the following simplifications: a) the well is in a natural thermal
state before the operation; b) the well is homogeneous and isotropic, with time-invariant
physical properties; c) all significant radial thermal transience is found in the formation; d)
the temporal variation of the internal energy of the fluid is negligible; e) the vertical heat
flux is a tiny fraction of the radial flux; f) the injection fluid is an agglomerated thermal
system; g) the formation has infinite extension.

Once the method was defined, it was developed and installed in the Petroleum
Measurement Laboratory (LAMP) from UFRN the prototype represented in Figure 1. It
consists of two zones of transport of approximately 08 meters in length, with 30 centimeters
of radius.

First Transport Zone

Second Transport Zone

Inlet 
Flow

Output 
Flow

Bypass 
Flow

. . . . . . . . . . .

.......

Figure 1. Prototype installed at UFRN
Two-inch (0.0508 cm) tubing was used. The pipe surroundings were filled with wet

sand. The numbers shown in the figure correspond to the position, in centimeters, from
the installation location of the temperature sensors. Given the reduced radius, the thermal
disturbance caused by the fluid flowing through the pipe reaches the edges of the prototype
in just over an hour, limiting its installation time representativeness. Since the Ramey
method was developed for the quasi-static regime, although the most recent adaptations
have anticipated better results, its application in the short operating time allowed by
the prototype results in a systematic error significant in the flow measurement (> 15%,
depending on the type of completion), demanding a review of the methodology aimed at
its use in the first moments of operation. In addition to the systematic error presented in
the previous paragraph, inherent to the mathematical method used, there are systematic
errors in the variables that constitute the methodology. Between the which stand out: a)
errors related to the generalization of the geothermal profile of the well and its adoption as
an initial condition for all measurement cycles; b) errors of physical properties, especially
those related to heat storage and transmission capabilities. In the following subsections,
the difficulties related to the sources of errors will be presented and cited. The focus will be
given to the intrinsic inaccuracies of Ramey’s methodology, a topic addressed in the paper.
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2. Mathematical model and general conditions

Given the difficulty in obtaining the initial thermal conditions, it is assumed that
all points of the well, including fluid and completion, are at geothermal temperature.
There is given the slowness of the thermal processes involved, such an approximation
tends not to present good results in the first moments of operation of a previously excited
well. It depends on the duration of the interval between operating cycles, the adoption
of geothermal temperature as an initial condition may incur significant systematic error
(> 5%) in the flow measurement, even after months of operation. Taking into account
that thermodynamic transfer processes usually take a while, not taking into account the
temporary state of heat transmission at completion is This indicates that the designed
solution does not initially function. In a well with a more complex setup, with multiple
levels, this incompatibility becomes more recognizable. For extended operations, the heat
flow at the end of the process will stabilize, validating the simplifications outlined in the
introduction.

The adoption of simplified boundary conditions for the transient function calculation
also brings with it a systematic error in the flow measurement. Boundary conditions: a)
constant temperature at the reservoir interface; b) constant flow at the internal interface
of the reservoir and c) constant fluid temperature and radiation boundary condition at
the interface of the reservoir, do not adequately represent the real conditions of the well
in the first moments of operation. The Hagoort functions are approximations of the
resulting curve of the boundary condition (a). The Hasan functions are approximations of
the curve resulting from condition (b). Condition (c), although not representing the real
condition in the first moments, features more flexibility, resulting in better reading. Ramey’s
transient function and the Line Source function, studied in this paper, are simplifications
of the boundary conditions (a) and (b), respectively. For the derivation of the Line Source
transient function, given the dimensions of the well and reservoir, it is assumed that the
injection and completion column set can be considered a line emitting constant heat flow in
the radial direction. As a result, the transient functions discussed show good results only
over long operating periods.

In the first moments of operation, the variation in the internal energy of the fluid
and its surroundings closer can be significant for greater accuracy in calculating the flow
measurement. For long periods of operation, the variation tends to be null and its effects
can be disregarded. The same reasoning also applies to vertical heat flow in the moments
around the transit time of the fluid, the intensity of the vertical thermal gradient, both in the
fluid as in its surroundings can be significant and must be addressed if one seeks a more
accurate flow measurement in the considered times. The times involved in heat transfer
between the pipeline and the injection fluid depend on the flow pattern. In laminar flow,
the energy given up by the pipe to the fluid propagates layer by layer of said flow pattern,
in a process slow process involving conduction and convection. A study dealing with the
transitory regime needs to address this issue. At the other extreme, in turbulent flow, in
addition to the heat transfer studied, heat transfer occurs by the chaotic movement of mass,
which enhances the propagation speed of energy throughout the fluid. In this case, the heat
propagation times inside the fluid can be neglected, to the thermal processes and the slow
times that occur in completion and formation. Therefore, it is understood that the methods
listed in this paper do not adequately represent the real conditions of an injection well in
its first moments of operation, resulting in errors and significant systematic costs in flow
measurement (> 15%), as will be seen in the other sections of this study. In addendum and
aiming at the application in the prototype installed at UFRN, it is necessary to review the
simplifications adopted in the development of the respective methods, in particular the
neglect of the transience of heat transfer on completion.

2.1. Solution with double thermal profile

The flow measurement problem in injection wells of water and no phase change is
governed by the equation:
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ṁ =
2πr1U(R, z, t)

c(z, t)
[T(R, z, t)− Tf (z, t)]/

∂Tf (z, t)
∂z

− π(r1)
2ρ(z, t)

∂Tf (z, t)
∂t

/
∂Tf (z, t)

∂z
(1)

∂Tf (z, t)
∂z

∼=
2πr1U(R, z, t)
c(z, t)ṁ(z, t)

[T(R, z, t)− Tf (z, t)]− π(r1)
2ρ(z, t)

ṁ(z, t)
∂Tf (z, t)

∂t
(2)

Assuming a constant mass flow along the pipe and considering that the properties fluid,
completion, and formation physics are isotropic, homogeneous, and invariant in time,
Equation (2) can be rewritten as

∂Tf (z, t)
∂z

∼=
2πr1U(R, z, t)

cṁ
[T(R, z, t)− Tf (z, t)]− π(r1)

2ρ(z, t)
ṁ

∂Tf (z, t)
∂t

(3)

Integrating Equation (3) from z1 to z2, we have

ṁ ∼=
2πr1

c

∫ z2
z1

U(R, z, t)(T(R, z, t)− Tf (z, t))dz

Tf (z2, t)− Tf (z1, t)
− π(r1)

2ρ(z, t)

∫ z2
z1
[∂Tf (z, t)/∂t]dz

Tf (z2, t)− Tf (z1, t)
(4)

Assuming Ū(R, z, t) to be the average value of U(R, z, t) in the interval [z1, z2], it is worth
approximation

ṁ ∼=
2πr1Ū(R, z, t)

c

∫ z2
z1
(T(R, z, t)− Tf (z, t))dz

Tf (z2, t)− Tf (z1, t)
− π(r1)

2ρ(z, t)

∫ z2
z1
[∂Tf (z, t)/∂t]dz

Tf (z2, t)− Tf (z1, t)
(5)

where the value of Ū(R, z, t) is given by

1
Ū(r, t)

∼= [
1

h(r1)
+ r1(

ftub(t)
ktub

+
fcomb(t)
r2hcomb

+
frev(t)
krev

+
fcim(t)
kcim

) +
f (t)
k f or

] (6)

The functions ftub(t), fcomb(t), frev(t), fcim(t) and f (t) of Equation (6) are transient functions
related to the heat propagation in the piping, in the annulus, in the coating, in the cementing
and in the formation, respectively, until the position of the second sensor distributed in R,
in the same templates of the transient function discussed in Ramey’s paper [6].

For t big enough, that is, for a t >> t
′
, where t

′
is such that R = r5e f (t

′
), all significant

transience for the calculation of the overall heat transfer coefficient is restricted to the
transience of heat propagation in the formation beyond the radial position R, we have

1
Ū(R)

∼= [
1

h(ṁ)
+ r1(

ln( r2
r1
)

ktub
+

1
r2hcomb

+
ln( r4

r3
)

krev
+

ln( r5
r4
)

kcim
+

ln( R
r5
)

k f or
)] (7)

In this way, given the knowledge of the thermal properties of the path between the
center of the piping to the installation position of the second distributed temperature sensor,
equations (5) and (7) make it possible to calculate the flow that is being carried by the
pipeline, and therefore consequently, the injection rates calculation. As can be seen in
equations (5) and (7), the flow calculation depends on the coefficient global heat transfer
rate, Ū, which, in turn, depends on the convection coefficient in the inner surface of the
pipe, h(ṁ), which is a non-linear function of the intended flow estimate. In these terms,
the resolution of the aforementioned equations for ṁ˙ depends on the knowledge of an
additional independent relation between h and ṁ˙. For this, the Gnielinski equation will be
used, resulting in a system of nonlinear equations. The flow calculation, ṁ˙, depends on
the resolution of the composite nonlinear system by the following equations:
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Pr =
µc
k f

(8)

Re =
ρvmed(2r1)

µ
(9)

f = [0.79ln(Re)− 1.64]−2 (10)

h =
( f /8)(Re− 1000)Pr

1 + 12.7( f /8)0.5(Pr
2/3 − 1)

k f

2r1
(11)

1
Ū
∼= [

1
h
+

r1

ktub
ln(

r2

r1
) +

r1

r2hcomb
+

r1

krev
ln(

r4

r3
) +

r1

kcim
ln(

r5

r4
) +

r1

k f or
ln(

R
r5
)]−1 (12)

ṁ ∼=
2πr1Ū

c

∫ z2
z1
(T(R, z, t)− Tf (z, t))dz

Tf (z2, t)− Tf (z1, t)
− π(r1)

2ρ

∫ z2
z1
[∂Tf (z, t)/∂t]dz

Tf (z2, t)− Tf (z1, t)
(13)

where Pr is the Prandtl number, Re is the Reynolds number, f is the friction factor, h is
the coefficient of convection given by the Gnielinski equation, Ū is the overall heat transfer
coefficient average in the interval [z1, z2] and ṁ˙ is the mass flow.

Start

Pe

h = 1000

d = 0.001

U

m

Re

.

f

h’

(h - h’)/h < d

Yes

End

h = h’

No

Figure 2. Algorithm for solving the system of equations.
The system of equations (8) to (13) can be solved by employing the algorithm detailed

in Figure 2, among other approaches that have been explored in the literature. The selection
of the placement of the second distributed thermal sensor has a direct correlation to the
response time of the presented method for accurate measurement. The proximity to the first
sensor leads to quicker thermal convergence and a lesser reliance on the initial conditions.
However, the installation of the second sensor should be in accordance with your sensitivity.
Otherwise, there is a risk of not, the potential to sense the thermal gradient between the
sensors will be lost, making the use of the approach unfeasible.

2.2. Quasi-static solution (Ramey method)

Given the impossibility of installing a second distributed sensor, for technical reasons
or financial, one can consider using the thermal disturbance limit in the reservoir for the
flow calculation, in which the temperature T(R, z, t) will correspond to the geothermal
temperature, Tg(z). In this approach, the value of the overall heat transfer coefficient will
depend on the operating time, according to equation (6), and the values of the transient
functions determination will become the main challenge for flow calculation. In addition,
the proposed solution by Ramey focuses on long periods of operation, from which the
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second installment of equation (5) can be neglected, as well as the heat transfer transience
in completion. Given these conditions, the mass flow, ṁ , can be calculated by

ṁ ∼=
2πR1Ū

c

∫ z2
z1
(Tg(z)− Tf )dz

Tf (z2)− Tf (z1)
(14)

In this way, the remaining significant time dependence for the flow calculation lies in
the formation-related transient function, f (t), the last term of Equation (6) your value can
be calculated using the Hasan approximations [9]. In this approach, the system of nonlinear
equations that will enable the flow calculation will consist of the following equations:

Pr =
µc
k f

(15)

Re =
ρvmed(2r1)

µ
(16)

f = [0.79ln(Re)− 1.64]−2 (17)

h =
( f /8)(Re− 1000)Pr

1 + 12.7( f /8)0.5(Pr
2/3 − 1)

k f

2r1
(18)

1
Ū
∼= [

1
h
+

r1

ktub
ln(

r2

r1
) +

r1

r2hcomb
+

r1

krev
ln(

r4

r3
) +

r1

kcim
ln(

r5

r4
) +

r1

k f or
ln(

R
r5
)]−1 (19)

ṁ ∼=
2πR1Ū

c

∫ z2
z1
(Tg(z)− Tf )dz

Tf (z2)− Tf (z1)
(20)

The resulting system can also be solved by the algorithm presented in Figure 2. The thermal
convergence time for a quality measurement strongly depends on the initial conditions of
completion and formation. For wells with no operating history, the methodology shows, in
general, good results after one week of operation [6]. For wells with a history of operation
and shutdown for maintenance, good results may appear only months after the beginning
of the new cycle of operation.

2.3. Analytical solution to proposed Method

The flow calculation depends on knowing the value of the coefficient overall heat
transfer, which in turn depends on the convection coefficient, fluid temperature, geothermal
temperature, and internal interface temperature of the piping. Consider the following
dimensionless fluid and interface temperatures pipe inner:

θ f (z, t) =
Tf (z, t)− Tg(z)

Tg(z)
(21)

θ1(z, t) =
T(r1, z, t)− Tg(z)

Tg(z)
(22)

Since the convective heat flux at the inner interface of the pipe must be equal to the
heat flux at the same interface due to the use of the global heat coefficient, there is

U(z, t) = h
Tf (z, t)− T(r1, z, t)

Tf (z, t)− Tg(z)
(23)

and consequently:

U(z, t) = h− θ1(z, t)
θ f (z, t)

h (24)
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To obtain an estimate for the dimensionless fluid and interface temperatures inside
the pipeline, consider completing the presentation in Figure 3. Consider also that thermal
gradients in the vertical and angular directions can be neglected, both in the injection fluid,
as well as in completion and formation. The first is due to its small value if compared with
the radial gradients, mainly in the quasi-static regime. The second is due to the assumed
angular symmetry.

In this context, thermal energy flows only in the radial direction (r), from the well to
the reservoir, when the fluid temperature inside the pipeline is higher than the reservoir
temperature, and from the reservoir to the well, otherwise.

Consider the control volumes (CV) generated by the revolution of the represented
rectangles in Figure 3 around the center of the pipe, at r = 0. The first CV, represented
by a red rectangle in the left part of the figure, inside the injection column, corresponds
to a cylinder of radius r1 and height ∆z. It presents convective heat flux (Qh) and mass
(ṁ). The second CV, dotted green rectangle in the right part of the figure, inside of the
formation, at position (r, z), corresponds to a rectangular ring of internal radius r − ∆r

2 ,
radius external r + ∆r

2 and height ∆z. Shows only heat flow by conduction (Qk) in the
direction radial, due to the neglect of heat flow in the vertical direction. The application
of the principles of conservation of energy and mass in the CV of the interior fluid, as
represented in Figure 3, as well as the application of the energy conservation principle to
the internal control volumes at each layer of completion and formation, will result in the
system of partial differential equations presented in Table 1.

CIMENTATION

TUBING

FORMATION

Figure 3. Control volumes and conservation of energy.
The resulting system solution, whose resolution is detailed in Appendix A [10], will

be given by

θ f (w, τ) =
1

Tg(w)
[−awL−1

s→τ(
1− e−g(s)w

sg(s)
) + bwθ f 0L

−1
s→τ(

eg(s)

s
)] (25)

or

Tf (w, τ) = Tg(w)[−awL−1
s→τ(

1− e−g(s)w

sg(s)
) + (Tf 0 − Tg0)θ f 0L

−1
s→τ(

eg(s)

s
)] (26)

where τ is the dimensionless time, w is the dimensionless vertical coordinate, θ f 0 is
the temperature dimensionless fluid at w = 0, aw is the geothermal gradient related to the
dimensionless coordinate w and bw is the linear coefficient of the dimensionless geothermal
temperature. The values of τ , w, aw and bw are respectively given by:

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2023                   doi:10.20944/preprints202303.0511.v1

https://doi.org/10.20944/preprints202303.0511.v1


8 of 30

Table 1. System of differential equations - Simplified completion.

Description Equation

Fo
rm

at
io

n
(r

3
≤

r
≤

∞
)

General Equation ∂2T(r,z,t)
∂r2 + 1

r
∂T(r,z,t)

∂r = 1
α3

∂T(r,z,t)
∂t , α3 = k3

ρ3c3
Initial Condition T(r, z, 0) = Tg(z)
Boundary Condition (∞) lim

r→∞
T(r, z, t) = Tg(z)

Boundary Condition (r3) a) k2
∂T(r−3 ,z,t)

∂r = k3
∂T(r+3 ,z,t)

∂r
b) T(r−3 , z, t) = T(r+3 , z, t)

C
im

en
ta

ti
on

(r
2
≤

r
≤

r 3
) General Equation ∂2T(r,z,t)

∂r2 + 1
r

∂T(r,z,t)
∂r = 1

α2

∂T(r,z,t)
∂t , α2 = k2

ρ2c2
Initial Condition T(r, z, 0) = Tg(z)

Boundary Condition (r3) a) k2
∂T(r−3 ,z,t)

∂r = k3
∂T(r+3 ,z,t)

∂r
b) T(r−3 , z, t) = T(r+3 , z, t)

Boundary Condition (r2) a) k1
∂T(r−2 ,z,t)

∂r = k2
∂T(r+2 ,z,t)

∂r
b) T(r−2 , z, t) = T(r+2 , z, t)

Tu
bi

ng
(r

1
≤

r
≤

r 2
) General Equation ∂2T(r,z,t)

∂r2 + 1
r

∂T(r,z,t)
∂r = 1

α1

∂T(r,z,t)
∂t , α1 = k1

ρ1c1
Initial Condition T(r, z, 0) = Tg(z)

Boundary Condition (r2) a) k1
∂T(r−2 ,z,t)

∂r = k2
∂T(r+2 ,z,t)

∂r
b) T(r−2 , z, t) = T(r+2 , z, t)

Boundary Condition (r1) a) −r+1
∂T(r+1 ,z,t)

∂r = β1[Tf (z, t)− T(r−1 , z, t)], β1 = r1h
k1

b) T(r−1 , z, t) = T(r+1 , z, t)

Fl
ui

d
(0
≤

r
≤

r 1
) General Equation

∂Tf (z,t)
∂t + vmed

∂Tf (z,t)
∂z = 2h

r1ρ0c0
[T(r1, z, t)− Tf (z, t)]

Initial Condition Tf (z, 0) = Tg(z)
Boundary Condition (z0) Tf (0, t) = Tf 0

Boundary Condition (r1) a) −r+1
∂T(r+1 ,z,t)

∂r = β1[Tf (z, t)− T(r−1 , z, t)], β1 = r1h
k1

b) T(r−1 , z, t) = T(r+1 , z, t)

τ =
k1

ρ1c1r2
1

t (27)

w =
k1

vmedρ1c1r2
1

z (28)

aw =
vmedρ1c1r2

1
k1

az (29)

bw = Tg(0) (30)

The function g(s) in equation (25) aims to simplify the notation. It is given by

g(s) = 2α1β1[1− θ
′
1(s)] + s (31)
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where the function θ
′
1(s) does not depend on the radial coordinate. It is related to the

temperature dimensionless θ1(w, τ), in r1, by

θ1(w, τ) = L−1
s→τ(θ

′
1(s)θ f (w, s)) (32)

As a consequence:

θ1(w, τ) =
1

Tg(w)
[−awL−1

s→τ(θ
′
1(s)

1− e−g(s)w

sg(s)
) + bwθ f 0(w, s)L−1

s→τ(θ
′
1(s)

e−g(s)w

sg(s)
)]

(33)

where

θ
′
1(w, s) = c

′
11 I0(
√

S)− c
′
12K0(

√
S) (34)

The functions I0(
√

S) and K0(
√

S) of equation (34) are known in the literature as
functions modified Bessel models of the first and second types, respectively, both of zero
order. To the variables c

′
11 and c

′
12 are functions in the Laplace domain, independent of the

radial coordinate, r, and linked to the piping, considered the means 1 in the completion
under study. The values are the result of solving the linear system in the functions domain
Laplace using boundary conditions.

Thus, in addition to Equation (24), the overall heat coefficient can be rewritten as:

U(z, t) = h−
−awL−1

s→τ(θ
′
1(w, s) 1−e−g(s)w

sg(s) ) + bwθ f 0(w, s)L−1
s→τ(θ

′
1(w, s) e−g(s)w

sg(s) )

−awL−1
s→τ(

1−e−g(s)w

sg(s) ) + bwθ f 0(w, s)L−1
s→τ(

e−g(s)w

sg(s) )
(35)

The inverse Laplace transforms of Equation (35) can be calculated numerically using the
Gaver-Stehfest algorithm [11]. The equation (26) diverges for dimensionless times less than
the transit time of the fluid in the pipe (τ < w). In this sense, the solution in question is
only recommended for times superiors.

2.4. Considerations about the transient function

Consider the uncompleted well shown in Figure 4. The transient function for the
calculation of heat propagation in the formation was defined by Ramey as [6]:

f (t) =
2πk1[T(r1, z, t)− Tg(z)]∆z

∆Q(r1, z, t)
(36)

or, considering the dimensionless representations:

f (t) = −θ(1, w, τ)/
∂θ(1, w, τ)

∂x
(37)

where ∆Q is the heat flux in r1 and x is the dimensionless radius, given by x = r
r1

.
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Figure 4. Transient functions.
In these terms, transient functions for boundary conditions such as temperature

constant in r1 and constant flux in r1 are given, respectively, by:

f (τ) = 1/L−1
s→τ(

K1(
√

s)√
sK0(
√

s)
) (38)

f (τ) = L−1
s→τ(

K0(
√

s)
s
√

sK1(
√

s)
) (39)

The transient function for the fluid with constant temperature and boundary condition
of radiation in r1 can be expressed by

f (τ) = L−1
s→τ(

1
s

K0(
√

s)

K0(
√

s) +
√

s
β1

K1(
√

s)
)/L−1

s→τ(
1√

s
K0(
√

s)

K0(
√

s) +
√

s
β1

K1(
√

s)
) (40)

The transient function for the analytical solution proposed in this paper, which consid-
ers the variation of fluid temperature and the application of the radiation condition on r1,
is given by

f (τ) =
−awL−1

s→τ(χ(S)
1−e−g(s)w

sg(s) ) + bwθ f 0(w, s)L−1
s→τ(χ(S)

1−e−g(s)w

s )

−awL−1
s→τ(ϕ(S) 1−e−g(s)w

sg(s) ) + bwθ f 0(w, s)L−1
s→τ(ϕ(S) 1−e−g(s)w

s )
(41)

with

χ(S) =
K0(
√

s)

K0(
√

s) +
√

s
β1

K1(
√

s)
(42)

ϕ(S) =

√
sK1(
√

s)

K0(
√

s) +
√

s
β1

K1(
√

s)
(43)

Appendix B in [10] brings the deduction of the listed equations, that is, the resolution
of the system of differential equations for the referenced boundary conditions. For the
initial condition of well, the geothermal temperature was considered. Figure 4 presents
the graphs of the discussed equations. The f _temp._constant curve corresponds to the
constant temperature in r1. The f _Hagoort curve, to the Hagoort approximation [5]. The
f _ f lux curve, to the transfer function for the boundary condition of constant heat flux
in r1. The f _Hasan curve, to Hasan approximation [9]. The f _rad_temp_beta5 curve,
to the solution assuming constant temperature in the fluid injection and applying the
radiation boundary condition on r1, assuming β1 = 5. The curve f _constant f lux_LS,
to the line source approach to heat flux. Finally, the f _Ramey curve corresponds to the
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Ramey approximation [6] for long operating times. In order to facilitate the reading of the
horizontal axis of the graph in Figure 4, Table 2 presents the from-to-scale dimensionless
logarithm of time-to-time in system units international. The following values were used to
calculate dimensionless time: k1 = 2.42 W

m.K , ρ1 = 2100 kg
m3 , c1 = 1500 J

kg.K and r1 = 0.0254m.

Figure 5. Transient functions - Dependence on problem conditions.
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Transient functions - Dependence on problem conditions.

In addition, Figure 5 exemplifies the dependence of the transient function resulting
from the solution analysis of the properties and conditions of the problem being solved. to
generate the graphs, the values presented in Table 3 were used.

Taking the transient function for the constant temperature ( f _temp) in r1 as a function
of reference, the higher the flow velocity, graphs (a) and (b) of Figure 5, the more resultant
transient function approaches the reference function behavior o . Another point to be
observed is the non-convergence of the solution for times lower than the transit of the fluid
inside the pipeline, marked with an asterisk (∗) at the base of the referred graphics. In
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Table 2. Mapping Log10(τ) to dimensional time.

Log10(τ) Dimensional time
-2 t=8.4 seconds
-1 t=84.0 seconds
0 t=14.0 minutes
1 t=2.3 hours
2 t=1.0 days
3 t=9.7 days

Table 3. Data used in the simulation without completion.

Variable Value Description

Fl
ui

d

k0 0.636 W/m.K Thermal conductivity of water
Cp0 4.184 J/kg.K Specific heat capacity of water
ρ0 1.000 kg/m3 Specific mass of water
µ0 0.0006 N.s/m2 Absolute viscosity

T f 0 80 ºC Inlet fluid temperature

Fo
rm

at
io

n k1 2.42 W/m.K Thermal conductivity of the reservoir
Cp1 1.500 J/kg.K Specific thermal capacity of the reservoir
ρ1 2.100 kg/m3 Specific mass of the reservoir

GradGeo 0.02 ºC/m Geothermal gradient in dimension "z"
TSuperf 10 ºC Surface temperature

the case of the gradient, graphs (c) and (d) of Figure 5, its impact on the function depends
on depth (z), but in general, for a heating operation, simulated in referred graphs, the
higher its value, the more the resulting transient function moves away from the of the
reference function. Regarding surface temperature (TSuper f ), graphs (e) and (f) of Figure
5, as with the gradient, its impact depends on depth, but its intensity has little influence on
the evolution of the curve.
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Figure 6. Real evolution of temperature with depth.

3. Computer Simulation

The analytical solution proposed in [10] addresses flow measurement in the first
moments of operating an injection well. The analysis of its effectiveness depends on the
available data on the evolution of the fluid temperature, the thermal history of the well,
and the history of thermal formation. In this context, this section presents a computational
model developed to simulate the evolution of temperature throughout the well, from the
injection, inside the pipeline, up to the limits of the formation.
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3.1. Description of the problem to be simulated

Given an injection well as represented in Figure 7, the computational simulation must
answer the following question: how will the temperature change in the fluid injection,
completion, and formation, initially in natural conditions, that is, in consonance with
the thermal profile of the region, given the injection of a fluid at a temperature different.
Thus, considering that thermal conduction in the reservoir is the temporally predominant
phenomenon in the inference of flow in injection wells, in this paper the effects will not
be simulated mechanics and thermodynamics in the annulus, implying a more accurate
completion simulation. simplified but still representative. To do so, consider the following
statements to be true: a) the geothermal gradient is constant and independent of the radial
(r), angular (θ) coordinates and vertical (z); b) there is angular symmetry and, as a conse-
quence, there is no thermal gradient in said coordinate; c) under natural conditions, that
is, before the start of the good operation, the temperature of the fluid, of completion and
formation correspond to geothermal temperature; d) thermal conductivity, thermal convec-
tion, heat capacity, and specific volume are constant in the temperature range considered
in the simulation. Due to the radial propagation of energy, cylindrical coordinates (r, θ, z)
are used. In addition, already assuming the existence of radial symmetry, the angular
coordinate, θ, is neglected.

Figure 8 illustrates the boundary conditions that are adopted in the simulation. the
interfaces represented by adiabatic surfaces are surfaces where there is no exchange of
thermal energy, presenting zero temperature gradient. The fluid temperature at the inlet of
the injection well is assumed constant throughout the simulation period.
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Figure 7. Simplified completion.
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Figure 8. Boundary conditions.
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3.2. Numerical method to encode

Due to its wide use in the scientific community, a different method was used finite as
a numerical tool in the elaboration of the simulator code. In this method, the central idea is
the replacement of differential equations with algebraic equations, changing the derived by
difference approximations, and applying the resulting equations to each of the simulation
control volumes. As a result, we have an algebraic equation for each CV, composing a
system of linear equations [13]. Approximations of the derivatives can be deduced from
the Taylor series, disregarding the highest-order terms. Given that heat and mass transfer
methods worked, as well as the energy variation, involves only the first order derivative,
in this paper the approximation expressed by equation (44) is adopted. In it, the smaller
the value assuming for ∆x, the better the approximation.

dg(x)
dx

∼=
g(x + ∆x)− g(x)

∆x
(44)

The application of the finite difference method in transient problems, that is, involving
the temporal evolution of the system, allows the use of two approaches: explicit and
implicit. In the explicit approach, the values of the variables of the current iteration, which
represents the progress in the time, are estimated from the variables values of the previous
iteration, resulting in a punctual and progressive update. In the implicit approach, all
values of variables in the current iteration compose a system of linear equations, resulting
in the simultaneous calculation of all values. The explicit approach is easier to implement.
However, the time increment of the new iteration, ∆t, must meet the stability criterion of
the method. The implicit approach does not present such limitation [13].

3.3. Subdivision of the problem into control volumes

Figure 9 presents the spatial subdivisions of the problem domain and the coordinates
of the points where the temperatures will be calculated. Also shown in the figure are the
dimensions of the adopted completion, specifically: length of the well, L, the internal radius
of the pipe, r1, outside radius of the pipe, r2, outside radius of the cement, r3, and radius of
the formation, r4. Revolving each rectangle in Figure 9 around the center of the pipe results
in a rectangular ring, as shown, whose faces define the control volume, in which equations
of the numerical method will be applied. The resolution of the principles conservation
equations in each control volume will imply the resolution of the original problem.

Figure 9. Subdivision of the domain and definition of measurement points.

3.4. Discretization of temperature and other properties

Figures 10 and 11 present the discretization logic that is adopted in the simulation. At
discretization of the problem domain (Figure 10), the focus is the point where the tempera-
ture is calculated at the center of each rectangle. In the discretization of properties (Figure

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2023                   doi:10.20944/preprints202303.0511.v1

https://doi.org/10.20944/preprints202303.0511.v1


15 of 30

11), the focus is on the entire rectangle, so the calculation for updating the temperature of a
point depends on the properties of adjacent rectangles.

Figure 10. Discretization of temperature.

Figure 11. Discretization of properties.

3.5. Coding of areas, volumes, and properties

Figure 12 shows the coding adopted in the creation of the simulation script. You dotted
rectangles highlighted in the drawings of the figure correspond to a longitudinal section
of the control volume related to the point (m, n). In that figure, the codes Se=upper left,
Sd=upper right, Ie=lower left, and Id=lower right are related areas or sub-volumes, accord-
ing to self-description. The codes Left=Left top, Ei=bottom left, Ds=top right, Di=bottom
right, Cs=top center, Ci=lower center, Ce=left center and Cd=right center correspond to
related areas of the control volume. Thus, as an example of the use of the code, the heat
flux in time (t − ∆t), in the upper left interface area of the control volume at (m, n), is
represented by ˙Q̇t−∆t

Se . In turn, the energy contained in the upper left region of the same
control volume, at the same instant of time is expressed by

E(m, n)t−∆t
Se = (Vρc)SeT(m, n)t−∆t (45)

where V represents the volume of the subdivision under analysis.

3.6. Formulation of Mathematical Equation

The subdivision of the problem domain into smaller parts called in this paper control
volume, and on these, the application of conservation principles, results in two approaches
to resolution, namely:

∆E = ∆t[∑ Q̇t−∆t
Se + ∑(ṁc)iTt−∆t

i + Ėt−∆t
ger ] (46)
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Figure 12. Areas, volumes, and their codes.

(a) External interfaces (b) Internal interfaces

∆E = ∆t[∑ Q̇t
Se + ∑(ṁc)iTt

i + Ėt
ger] (47)

The equation (46) corresponds to the explicit method, as already discussed. Equation
(47) says respect to the implicit method. In both equations, ∆t is the iteration time increment,
Q̇ is the rate of thermal energy exchanged with the surroundings, ṁcT is the rate of energy
received or provided by the CV as a result of the mass flow. The variables ˙Eger and ∆E are,
respectively, the internal rate of energy generation and the change in the control volume
energy. The indices superscripts (t and t− ∆t) represent the instant of time of the analysis
of the referenced variables. The subscript i corresponds to the control volume surfaces. In
addition, all physical properties are calculated under the thermal conditions of the iteration
above, in ( t− ∆t ), as well as the inexistence of an energy-generating source inside the
control volume ( Ėger = 0).

The change in energy, ∆E, can be expressed by

∆E = (Vρc)j(Tt − Tt−∆t) (48)

where the subscript j corresponds to each of the subdivisions of the control volume under
analysis. Such a subdivision is necessary to address control volumes that have properties
different physics inside. Substituting equation (48) in equations (46) and (47), we have:

(Vρc)j(Tt − Tt−∆t) = ∆t[∑ Q̇t−∆t
i + ∑(ṁc)iTt−∆t

i ] (49)

(Vρc)j(Tt − Tt−∆t) = ∆t[∑ Q̇t
i + ∑(ṁc)iTt

i ] (50)

Because it is simpler to code, the explicit method is represented by the equation (49).
That equation can be rewritten as

Tt = Tt−∆t +
∑ Q̇t−∆t

i + ∑(ṁc)iTt−∆t
i

∑(Vρc)j
∆t (51)

which defines the temperature update rule that is adopted.
Table 4 brings all equation models that are used in the calculation of cash flow thermal

energy. As a consequence, due to the method convergence criterion, in which all coefficients
of equation (51) must be positive [13], the time maximum integration is given by
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∆t ≤ ∑(Vρc)i

∑(Q̇coe f )i + ∑(Ṁcoe f )i
(52)

where ∑(Vρc)i corresponds to the total control volume capacitance , while ∑(Q̇coe f )i

and ∑(Ṁcoe f )i are the sums of all temperature coefficients T(m, n) involved in the heat
transfer and mass transfer calculations, respectively.

Table 4. Thermal fluxes - Equations.

Fluxs Equation

Q̇cond (kAn/∆z)[T(m + 1, n)T(m, n)]
Q̇cond (kAn/∆z)[T(m− 1, n)T(m, n)]
Q̇cond (kAn/∆r)[T(m, n + 1)T(m, n)]
Q̇cond (kAn/∆r)[T(m, n− 1)T(m, n)]
Q̇conv (hAn)[T(m, n + 1)T(m, n)]
Q̇conv (hAn/∆z)[T(m, n− 1)T(m, n)]
Ṁin (ṁ)cjT(m− 1, n)
Ṁout −(ṁ)cjT(m− 1, n)

By examining equation (52), it is evident that the maximum time increment (∆t) is
directly correlated with the ratio of the total heat capacity of the control volume to the total
transfer capacity. The energy that can be extracted from the volume of the control cannot
exceed the energy already existing in the volume. In mathematical terms:

[∑(Q̇coe f )i + ∑(Ṁcoe f )i]∆t ≤ ∑(Vρc)i (53)

3.7. Boundary conditions
3.7.1. Definitions

Consider that the control volumes interfaces can be classified according to the bound-
ary condition to which it is submitted, that is:

1) constant temperature, 2) adiabatic, 3) convection/conduction, 4) radiation/conduction,
and 5) conduction/conduction.

The type interfaces constant temperature and adiabatic are self-explanatory. The other
interfaces, type A/B, refer to interfaces on which two methods of data transfer occur
simultaneously heat in its adjacent surroundings: method A on the A side and method B
on the B side.

3.7.2. Constant temperature

The distribution of the CVs and the temperature measurement points were carried out
in such a way so that there will always be temperature measurement points at the interfaces
where they will be applied to the boundary conditions. Therefore, for constant temperature
type interfaces, the insertion of the boundary condition in the code will be given by the
constancy of the temperature value over the course of iterations. In other words:

T(m, n)t+∆t = T(m, n)t = constant (54)

for all temperature measurement points, (m, n), contained in said interfaces.

3.7.3. Adiabatic boundary

Boundary conditions of the adiabatic boundary type are conditions in which there is
no heat transfer across the considered CV interface. Its insertion in the code will be done
by the neglect of heat flow (by convection, conduction, radiation, or mass flow) by said
interface, that is:
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Q̇(m, n)t+∆t
i = Q̇(m, n)t

i = 0 (55)

for all VC(m, n) sub-interfaces contained in the boundary interface, represented in the
equation (55) by the letter i.

3.7.4. Convection / conduction

The convection/conduction boundary condition, known in the literature as the radia-
tion boundary, is a condition of continuity of thermal flux. In this type, the heat that enters
(or leaves) by convection in one of the interfaces of the CV must leave (or enter) by conduc-
tion in the opposite adjacent surroundings of the same interface. For the problem under
study, such a condition occurs at the inner and outer interfaces of the pipe and the inner
interface of the casing. The insertion of this condition in the code occurs when applying
the energy balance on control volumes that have this type of interface. In calculating the
balance sheet, it should be adopted the convection heat transfer equation instead of the
conduction equation. This is because the convection calculation is related to the interface
temperature, already available due to the type of subdivision (mesh) and temperature
discretization, opposing to the conduction calculation, which depends on the temperature
gradient, which in turn, is due to discretization will always be an approximation. Using the
conduction equation would result in the addition of an approximation that can be avoided.
Figure 13 presents examples of control volumes with this type of interface. In the example
in question, the convection heat transfer equation is applied at the interfaces Ds (top right)
and Di (bottom right), from the CV internal to the fluid, and at the Cs interfaces (center
top) and Ci (bottom center), from the internal CV to the pipe.

3.7.5. Conduction/ conduction

Conducting/conducting type interface relies on calculating the gradient on both sides
from the interface. Consequently, as discussed in the previous subsection, it will always be
an approximation.

Figure 13. Control volumes with convection/conduction type interfaces.

(a) CV internal to the fluid (b) CV internal to the pipe

Consider the approach presented in Figure 14. Although the CV internally encom-
passes boundary sub-interfaces, none of its sub-interfaces are. That is, the properties
thermodynamics of the inner region of the CV, immediately adjacent to its sub-interfaces,
are the same properties as the immediately adjacent region outside the CV. This approach
does not give access to the interface between the two media, despite facilitating the calcula-
tion of heat fluxes, it does not allow the application of the boundary condition punctually.
However, in cases where the vertical flow represents a minor percentage of the radial flow,
to the point of power is neglected, the result of using this approach will differ little from
the result of using a more rigorous approach.
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Figure 14. Conduction/conduction type interface - approach 1.
Now consider the approach depicted in Figure 15. In this, the adjacent CVs (m, n− 1)

and (m, n + 1) are expanded in the direction of the CV(m, n). From the boundary condition
and disregarding the coordinate m for purposes of simplifying the nomenclature, we have:

Figure 15. Conduction/conduction type interface - approach 2.

k(n− 1)
∂T−(n)

∂r
− k(n + 1)

∂T+(n)
∂r

= 0 (56)

∂T−(n)
∂r

+
∂T+(n)

∂r
= 2

∂T̄(n)
∂r

(57)

where

∂T−(r)
∂r

= lim
∆r→0

∂T(r− ∆r)
∂r

(58)

∂T+(r)
∂r

= lim
∆r→0

∂T(r + ∆r)
∂r

(59)

∂T̄(n)
∂r

∼=
1
2
[
T(n)− T(n− 1)

∆r(n− 1)
+

T(n + 1)− T(n)
∆r(n)

] (60)

with ∂T̄(n)
∂r being the average temperature gradient in (m, n).

From equations (56) and (57), we have:

∂T−(n)
∂r

=
2k(n)

k(n− 1) + k(n)
∂T̄(n)

∂r
(61)

and consequently:
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Q̇−(n) = Q̇+(n) ∼= −2An
k(n− 1)k(n)

k(n− 1) + k(n)
∂T̄(n)

∂r
(62)

which is the heat flux to be considered at the expanded boundary interface CVs. When
applying the energy balance, the direction and flow direction must be observed of heat. The
equation (62) represents the heat flow in the radial direction, in the direction of increasing
the ray. For flow in the opposite direction, the equation must be negative.

Considering the unavailability of real data on the thermal evolution in the fluid, in the
completion and in the formation of injection wells, mainly in the first moments of operation,
the evaluation of the proposals developed and presented in this paper depends on the
results obtained through simulation. To this end, this section discussed the application of
the method of finite differences in the problem at hand. The following were developed and
presented topics:

a) subdivision of the problem into control volumes; b) discretization of radial (r) and
longitudinal (z) coordinates; c) discretization of temperature and properties; d) codification
of the areas and volumes aiming at the simulation; e) mathematical equation for updating
the temperature; f) convergence criterion for the time increment; g) methodology for the
application of boundary conditions.

4. Obtained Results

The first part brings a contextualization of the developed theory, the difficulties in
obtaining the data for validation, and the workaround adopted. The second part shows the
evolution flow measurement time for an uncompleted well. The third part deals with the
measurement in a well with simplified completion, with piping and cementing.

4.1. Simulation without completion
4.1.1. Description

In this first analysis, the data generated in the simulation of a well without completion,
according to the schematic drawing in Figure 16. Such a configuration represents well the
prototype installed at UFRN. Although the prototype features piping, its high conductivity
temperature means that its presence does not cause a perceptible difference in the evolution
of the fluid temperature, as will be seen throughout this section.

Adiabatic Interface/Surface

Inlet temperature (const.)

T
u

b
_

R
a

d
iu

s

Tub_Radius

Figure 16. Well not completed - Detailing the problem.
The well shown in Figure 16 cannot be used as a real-use model. Although, the

processing of the evolution of the temperature of the fluid for this configuration will allow
an evaluation of the contribution of transient functions in flow measurement, given that
these functions were deduced from a similar well schematic. Furthermore, considering
that water injection wells operate for months, sometimes years, thermal conduction in the
formation is the predominant thermal process in flow measurement. In this condition,
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already from the two first weeks of operation, any thermal transience at completion, which
may influence the flow inference becomes negligible [6]. In this way, an uncompleted
simulation provides clues and trends for the behavior of the flow you want to measure.

4.1.2. Simulation Data

The table 5 brings the variables and values used in the simulation of this topic. The
rest variables used in the simulation are functions of the presented values.

Table 5. Two layer completion - Data used in the simulation.

Variable Value Description

G
en

er
al

da
ta

dt0 0.25 s Time step
dz0 0.1 m Space step in the direction (longitudinal) z

tsimu 6 h Simulation time
p_samples_z 0,1 m Sampling period in the direction z
p_samples_t 15 s Time sampling period

TAmb 35 ◦C Room temperature
TgeoType 1 Geothermal temperature type (0=constant; 1=linear)

ThermalSource 0 0=Adiabatic Boundary; 1=Thermal source equal to Tgeo

G
eo

m
et

ri
cs

L0 10 m Longitudinal length of the well to be simulated
Tub_Radius 0.0254 m [r1] pipe inner radius

Reserve_Radius 1 m [r4] External radius of the reservoir
DIV0 1 Number of radial divisions of the region 0
DIV1 3 Number of radial divisions of the region 1
DIV2 10 Number of radial divisions of the region 2
DIV3 30 Number of radial divisions of the region 3

4.1.3. General results

Figure 17 shows the temporal evolution of the fluid temperature along the pipeline.
It is evident that the momentum of altering the curve slows down with the progression

of Operation duration. In particular, the curve for 02 hours differs little from the curve for
06 hours. Considering the length of the pipeline at 10 meters and 120 minutes of operation,
It is estimated that the pipe outlet temperature will be lower than the inlet temperature by
approximately 1oC. With the implementation of sensors with a resolution of The gradient is
the same as the one hundredth of a degree Celsius used in the prototype is the same as with
the sensors installed in the LAMP. It is possible to detect the pipeline, and the approach
shown in [10] can be applied. However, for the physical implementation of the prototype,
it is advisable to utilize a greater delta. A relationship between the temperature of the inlet
fluid and the external temperature.

Figure 18 presents the temporal evolution of the radial temperature at a depth of 5.0
meters. As can be seen in the graph, after 06 hours have elapsed, the thermal disturbance
was restricted approximately to a distance of 50 centimeters from the center of the pipe,
validating the external radius of the reservoir used in the simulation (01 meter). Given the
simulation time considered (06 hours), the use of a small value for the outer radius of the
reservoir (Reserv_Radius) would result in overheating/undercooling of the well, saturating
the simulation and making the generated data not representative of a real situation. Thus,
for the prototype installed in the LAMP, which has an external radius of approximately 30
centimeters, it is recommended to adopt 02 hours as the maximum operating time. After
this time, the prototype will overheat and the generated data will no longer be valid.
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Fl
ui

d

k0 0.636 W/(m.K) Thermal conductivity of water
Cp0 4.184 J/(kg.K) Specific heat capacity of water
ro0 1.000 kg/m3 Specific mass of water
mi0 0.0006 N.s/m2 Absolute viscosity
f0_ 0.0003 m3/s Volume flow

TF_IN 20 ◦C Inlet fluid temperature

Tu
b

k1 14 W/(m.K) Thermal conductivity of the reservoir
Cp1 502 J/(kg.K) Specific thermal capacity of the reservoir
ro1 8.000 kg/m3 Specific mass of the reservoir

Tub_Thickness 0.635 cm pipe thickness
C

im
en

t k2 0.9 W/(m.K) Thermal conductivity of the reservoir
Cp2 900 J/(kg.K) Specific thermal capacity of the reservoir
ro2 2.400 kg/m3 Specific mass of the reservoir

Cim_Thickness 5.08 cm Cimentation thickness

Fo
rm

at
io

n k3 2.42 W/(m.K) Thermal conductivity of the reservoir
Cp3 1.500 J/(kg.K) Specific thermal capacity of the reservoir
ro3 2.100 kg/m3 Specific mass of the reservoir

GradGeo 0.365 ◦C/m Geothermal gradient in the dimension z
TSuperf TAmb Surface temperature
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Figure 17. Uncompleted well - Longitudinal temperature evolution.
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Figure 18. Uncompleted well - Radial temperature evolution.

4.1.4. Inferred flow

The graph in Figure 19 presents the flow measurement evolution for the methods
and functions presented in [10]. As can be seen, all methods tend to converge to the
reference flow (0.3×103[m3/s]). Still, methods derived from the assumption of constant
temperature show better results (Q_Temp, Q_RAD_TC1 and Q_Hagoort). This higher
accuracy of constant temperature methods is a consequence of the short transit time of
the fluid in the pipe (01 [min]), since the entry to the mediation point (9 [m]), causing the
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temperature of the fluid at the point of measurement has little temporal variation already
in the first minutes of operation.
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Figure 19. Uncompleted well - Measurement at 9 meters.
The two best results (Q_RAD_TCandQ_Analtic) differ little, with the proposed an-

alytical method a significantly better result. This little difference is a consequence of the
low transit time, as will be observed later on, in [10] In addition, the fluid transit time
o was subtracted from the operating time in the calculation of the flow in the classical
methods, moving in the direction of the assumptions of the referred methodologies, that is,
the time for applying the method was counted from the arrival of the coldest fluid at the
measurement point.

The graph in Figure 20 shows the evolution of the error in the flow measurement. As
expected, the transient function choice will imply a systematic error of greater or lesser
intensity. It is observed that the application of the analytical method results in a systematic
error significantly lowest for the entire simulated operating time.
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Figure 20. Uncompleted well - Evolution of measurement error.

4.2. Simulation with completion
4.2.1. Description

In this simulation, the representation of the well detailed in Figure 21 will be adopted.
the completion in question is composed of piping and cementing. This configuration is
widely used in real wells. As in the previous simulation, adiabatic boundaries were used at
the edges of the simulated well, enabling easy detection of saturation.

4.2.2. Simulation Data

Following the same way from the previous simulation, the other variables used are
functions of the presented values.
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Figure 21. Two layer completion - Problem detail.

4.2.3. General Results

The graph in Figure 22 shows the temporal evolution of the fluid temperature along
the piping. As in the previous simulation, it is noticed that the dynamics of changing the
curve lose speed with advancing time, but with less intensity, resulting in temperatures
higher at the end of each measurement time. As observed in the previous simulation,
the fluid temperature curve for 02 hours of operation differs little from the curve for 06
hours. The graph in Figure 23 shows the temporal evolution of radial temperature at depth
5.0 meters, half the length of the pipe. After 06 hours have elapsed, the disturbance was
restricted to a distance of 50 centimeters from the center of the pipe, which demonstrates
the non-saturation of the simulation for the considered time.
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Figure 22. Completion with two layers - Longitudinal temperature evolution.

Figure 23. Completion with two layers - Radial temperature evolution (z=5m).

5. Results with error propagation and discussions

This section analyzes the systematic error propagation of the input variables in the
discharge calculation. The error propagation rate is understood as the linear relationship
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between the systematic error of the measurement of the variable of interest (eg: flow)
and the systematic error of the measurement of the input variables (eg: viscosity, thermal
conductivity ), considering the absence of errors in the other variables. Consider the
variables and values shown in Table 4. In the first simulation, a well length (L0) of 10
meters was used, resulting in a transit time of approximately 1 minute. In this simulation, a
well length of 110 meters was used, increasing the transit time to approximately 11 minutes.
As will be seen further on, a longer transit time has considerable implications for the quality
of the measured flow.

Figure 24, shows the evolution of fluid temperature along the well. Taking the mea-
surement position at 100 meters, the temperature gradient for the simulated times is close
to the geothermal gradient, which was disregarded in the development of the methodology,
as it resulted in an insignificant vertical heat flux compared to the radial flux. In this way,
rapid convergence of the analytical solution proposed by this paper is expected.

5.1. Simulation data and error propagation

As shown in table 5, on-page 21 and 22, brings the variables and values used in this
topic. Following the same approach as in the previous simulation, the other variables used
are functions of the presented values.
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Figure 24. Uncompleted well - Longitudinal temperature evolution.
Figure 25 shows the evolution of the measured flow for all the methodologies studied.

The flow measured by the analytical method has fast convergence. It occurs shortly after
the transit time. The other methods require more time, but all converge to the reference
value.
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Figure 25. Uncompleted well - Measurement at 100 meters.
The graphics in Figures 26 and 27, on pages 26 and 27, respectively, show the relation-

ship between the systematic error of the input variables and the consequent systematic
error of the calculated flow.
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Figure 26. Error propagation in flow calculation - General data.
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Figure 27. Error propagation in flow calculation - Physical properties.
Figure 26(a) shows graphs of systematic errors resulting from the application of

each methodology considered in this paper. The values presented are percentages of the
reference flow. Thus, for example, considering an operating time of 1 hour, the use of Hasan
& Kabir approximations for the transient function results in a systematic error around 7%
in the flow measurement, while the application of the analytical method results in an error
close to 0%.

Figures 26(b) and 26(c) show the impact on the flow measurement given the errors in
position and time, respectively. Errors of less than 2 meters do not have a significant impact
on flow measurement. In contrast, errors of a few minutes in measuring time result in a
considerable error in measurement. For example, after one hour of operation, a delay of 5
minutes results in an error of around 3%. For long times (days or weeks), errors of minutes
and even hours will not impact the quality of the measurement.

Figures 26(d), 26(e) and 26(f), respectively: errors in measuring the fluid temperature,
errors in the surface temperature and errors in the measurement of the geothermal gradient,
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demonstrate the great impact of the error of these variables on the quality of the measured
value of the flow. A systematic error of 1oC in measuring the fluid temperature results in
an error of approximately 10% in the flow rate value. And, as can be seen in the graph,
even for long times, given the convergence speed of the curves, the flow percentage error
persists around the referred value. The same reasoning applies to surface temperature
(TSiperf ) and geothermal gradient (GradGeo) curves.

The graphs in Figure 27 show the error propagation in the measurements of thermal
properties in the fluid and the formation. The graph curves in Figure 27(a) show the
systematic errors that impact thermal conductivity and fluid viscosity on flow measurement.
For two hours of operation, a 5% error in the thermal conductivity of the fluid results in
an error of approximately 0.04%, corresponding to an error propagation rate of 4

500 , which
does not represent a significant contribution to the error overview of flow measurement.
The graph curves in Figures 27(b) and 27(c) complete the analysis of the fluid’s other
properties (mass density and thermal capacity). In both graphs, it can be seen that the error
propagation does not decrease with time and its intensity occurs at a rate of approximately
1
1 .

Figures 27(d), 27(e) and 27(f) show the contribution of errors of the thermal properties
of the formation. As with the mass density and heat capacity of the fluid, the contribution of
the formation thermal conductivity error does not decrease with operating time. It presents
a propagation rate of approximately 3

4 , that is, a 20% error in the conductivity results in a
15% error in the flow value. For an operating time of two hours, the mass density and heat
capacity error propagation rates of the formation are approximate 1

4 .
In Table 6 summarizes the approximate error propagation rates for the functions and

variables shown in Figures 26 and 27. Although, in general, this relationship is not strictly
linear, it indicates in which variables the efforts to reduce the error should be invested. Such
an approach does not aim at the general calculation of error propagation. In the column

Table 6. Approximate rate of error propagation - 2 hours of operation.

Variable Error propagation rate

M
ea

su
re

m
en

tm
et

ho
d Ramey 15%

Hasan 7%
Hagoort 8%
Temperature Constant 8%
Temperature Constant e radiation 7%
Flow Constant 7%
Line Source 10%
Analitic 0%

G
en

er
al t [min] -0.2 % / min

z [m] 0.35 % / m
T [ºC] -9.5 % / ºC
TSuperf [ºC] 9.5 % / ºC

Fl
ui

d

k0[%] 0.03
ro0[%] -1.2 / -0.8
Cp0[%] -1.3 / -0.85
mi0[%] -0.04 / -0.03

Fo
rm

at
io

n k1[%] 0.7
ro1[%] 0.235 / 0.22
Cp1[%] 0.235 / 0.22
GradGeo [%] 0.31

Propagation rate of error, from Table 6, the presented values correspond to the angular
coefficient of a linear approximation of the data of Figures 26 and 27. In double value lines,
two linear approximations are used: one for negative values (first value) and another for
positive values (second value). Thus, for example, considering an operating time equal
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to 2 hours, a systematic error of -2% in the thermal capacity of the formation implies a
systematic error of approximately −0.47%(= −2 ∗ 0.235%) in the flow measurement. If the
systematic error for the same variable is +3%, the systematic error in the flow measurement
will be approximately +0.66%(= +3×0.22%).

From Table 6, it can be seen that the choice of method to be used results in a systematic
error arising from the methodology itself. This error depends on the operating time of the
well, tending to insignificant values after weeks of operation. On another front, different
from what happens with the other input variables, the error propagation rates related to
the mass density (ρ0) and the thermal capacity (Cp0) of the fluid, as well as the thermal
conductivity of the formation (k1), do not decrease with the operation time, although, as
can be seen in the graphs, it moves towards convergence at a limit value.

Finally, as observed in Table 6 and already discussed, the variables related to temper-
ature have a strong impact on the flow measurement error. A minor systematic mistake
in the gauging of fluid or geothermal temperature produces a major mistake in the flow
measurement.

6. Conclusions

This article aimed to reduce the systematic error in measuring flow in injection wells
of water, based on the thermal profiles in the injection fluid and in the formation. sought
minimize the systematic error inherent to Ramey’s methodology and quantify, in the mea-
surement calculation of the flow, the implications provoked by the systematic errors of the
variables that compose the mathematical model. Initially, the main physical and mathe-
matical concepts are needed to understand the problem and the proposed solutions, as
well as the equation fundamental for the flow calculation based on thermal profiles. It was
observed that the equation fundamental contains a portion dependent on the temporal
variation of the temperature of the fluid. This portion is disregarded in Ramey’s method-
ology. Next, the main sources of systematic error in the methodology of Ramey, when
applied to flow measurement in the first moments of operation of a well water injector. It
was noted that the methodology brings with it an inherent systematic error, a product of
the adopted simplifications. The errors in the measurement of the thermal profiles, in the
approximation of the condition baseline, and the collection and generalization of thermal
properties also showed a strong impact on flow measurement accuracy. Given the context,
three solutions to the problem of calculating the flow rate. The first requires the installation
of a second distributed thermal sensor, which may present fast convergence, good accuracy,
and little dependence on initial conditions. The second, which is the solution proposed by
Ramey in his 1962 article, has little precision in the first moments of good operation and is
strongly dependent on the initial conditions. The third solution, the contribution of this
paper, called the analytical solution, is based on the resolution of the system of differential
equations that govern the propagation of heat at completion and in training. It is strongly
dependent on initial conditions and requires a lot of effort. computationally superior to the
first two solutions.

The error propagation analysis showed that the errors in the input variables, in
particular those related to temperatures and thermal capacities, may have an impact as
great or greater than the inaccuracies in the methodology, which makes the subject a
study still in development. The following studies and actions that can be developed are
mentioned in future work: a) complete the adjustments in the LAMP prototype, carry
out the test cycles, and verify the conformity of the formulations presented in this paper;
b) equate and solve the system of differential equations for standard completion (piping,
annular, coating, and cementation); c) model and develop the computational code also
considering the effects of convection combined (natural convection and radiation) in the
annulus; d) research and develop techniques to minimize dependence on initial conditions.
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