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Abstract: This article analyzes 6 probability distributions from the Generalized Pareto family, with 3, 4 and 5 

parameters, with main purpose to identify other distributions from this family with applicability in flood 

frequency analysis compared to the distribution already used in the literature from this family such as 

Generalized Pareto Type II and Wakeby. This analysis is part of a larger and more complex research carried 

out in the Faculty of Hydrotechnics regarding the elaboration of a norm for flood frequency analysis using the 

linear moments method. In Romania, the standard method of parameter estimation is the method of ordinary 

moments, thus the transition from this method to the method of linear moments is desired. All the necessary 

elements for the distributions use are presented like, the probability density functions, the complementary 

cumulative distribution functions, the quantile functions, the exact and approximate relations for estimating 

parameters, for both methods of parameters estimation. All these elements are necessary for a proper transition 

between the two methods, especially since the use of the method of ordinary moments is done by choosing the 

skewness of the observed data depending on the origin of the maximum flows. A flood frequency analysis case 

study, using annual maximum and annual exceedance series, was carried out for the Prigor river, to 

numerically present the analyzed distributions. The performance of this distributions is evaluated using 

relative mean error, relative absolute error and linear moments diagram. 

Keywords: floods; frequency analysis; extreme value statistics; Pareto; Wakeby; estimation 

parameters; approximate form; method of ordinary moments; method of linear moments 

 

1. Introduction 

The frequency analysis of extreme events in hydrology is of particular importance, with the aim 

of determining the probability of occurrence of extreme events of a given magnitude. 

Flood frequency analysis is important because it determines the maximum flow with certain 

exceeding probabilities, they have a defining role in the design of dams [1] and in water management 

[2], and can have significant impacts on human lives, infrastructure, and the environment.  

Together with the distributions from the Gamma family and Generalized Extreme Values, the 

Generalized Pareto Type 2 distribution (PGII) represents one of the most used distributions in flood 

frequency analysis [3–5], especially in the analysis of partial series using the Annual Exceedance 

Series (AES) or Peak Over Thresholds (POT).  

Among the Generalized Pareto distributions analyzed in this article, the ones that received 

considerable attention in flood frequency analysis are the Generalized Pareto distribution Type II 

(PGII) using AES or POT [3–5], respectively the Generalized Pareto distribution Type III (PGIII) and 

the Wakeby (WK5) distribution [4,8,9], in the analysis with the Annual Maximum Series (AMS). The 

PGIII is also known in literature as the Log-Logistic distribution or Generalized Logistic distribution 

[4,6,7]. 

The PGII distribution has a broad use in the analysis of extreme events such as, precipitation 

frequency analysis [10–15], in low flow frequency analysis [16] and in flood frequency analysis 

[4,5,17–20].  
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Based on Rao and Hamed [4], respectively Hosking and Wallis [21] the Generalized Pareto 

distribution ‘’ is the logical choice for modeling flood magnitudes that exceed a fixed threshold when it is 

reasonable to assume that successive floods follow a Poisson process and have independent magnitudes’’. 

In the case of Wakeby distribution, it is a quantile distribution (a distribution expressible in 

inverse form) which in certain situations [4,9,22] turns into the Generalized Pareto Type II 

distribution. Its application, using the close form equations for the first four central moments, was 

realized for the first time by Anghel and Ilinca [22,23], both for the four and five parameters Wakeby 

distributions. 

Other distributions from the Generalized Pareto family have received little to none attention, 

such as the four parameters Generalized Pareto Type IV (PGIV4), the three parameters Generalized 

Pareto Type IV (PGIV3) and the Generalized Pareto Type I (PGI) also known as Pearson XI 

distribution. 

 Taking into account this, one of the objectives of the article consists in the analysis of the 

applicability of other distributions belonging to the same family of Generalized Pareto distribution 

in flood frequency analysis. For a comprehensive analysis, in this article all the distributions 

belonging to this family are comparatively analyzed. Although some of these distributions have been 

used in the frequency analysis of extreme events in hydrology, this article brings new elements for 

these distributions that help to better understand and apply them in hydrology and beyond. 

The research from this article is part of a larger and more complex research carried out in the 

Faculty of Hydrotechnics, to identify the distributions from different families of distributions, which 

have applicability in frequency analysis of extreme values, partial results presented in other materials 

[22–24]. 

In this article, the estimation methods of the parameters of these distributions are method of 

ordinary moments (MOM) and the method of linear moments (L-moments), for some of them being 

necessary to solve nonlinear systems of equations, which leads to some difficulties in using these 

distributions. Thus, for the ease of applications of these distributions, parameter approximation 

relations are presented, using polynomial, exponential or rational functions.  

Only these two methods of estimating parameters are analyzed in this article, because MOM is 

the ‘’parent’’ method in Romania, and the L-moments method is the method that is intended to be 

used in the new regulations regarding the analysis of extreme phenomena in hydrology, being a 

much more stable and less sensitive to short lengths of data, as is the general case of hydrometry in 

Romania. 

All the mathematical elements necessary to use these distributions in the flood frequency 

analysis are presented. 

New elements are presented, such as: the first six raw and central moments for PGII, PGI; 

relations for estimating the parameters with L-moments for the PGIV4, PGIV3 and PGI distributions; 

new approximate parameter estimation relations for the PGII, PGI and PGIII distributions; the 

frequency factors for all analyzed distributions, both for MOM and L-moments; approximation 

relations of the frequency factors for the PGI, PGII and PGIII distributions.  

Thus, all these novelty elements for these distributions presented in Table 1 will help hydrology 

researchers to better understand and easily apply these distributions. 

Table 1. Novelty elements. 

New Elements Distribution 

Exact parameter estimation PGIV4, PGI 

Approximate estimation of parameters PGIII, PGII, PGI 

The frequency factor for MOM 
PGIV4, PGIV3, PGIII, PGII, PGI, 

WK5 

The frequency factor for L-moments 
PGIV4, PGIV3, PGIII, PGII, PGI, 

WK5 

Approximate estimation of the frequency factor PGIII, PGII 
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Raw and central moments* PGIV, PGIII, PGII 

*are presented in Supplementary file. 

The raw and central moments of the analyzed distributions were determined using the 

methodology presented in the Supplementary file, based on the probability density functions. It is 

for the first time that, for the Generalized Pareto distributions Type II and Type III, the raw and 

central moments up to order 6 are presented, important, along with the frequency factor, in 

establishing the confidence interval (for MOM) using the Kite approximation [4]. Also for the first 

time, the frequency factor of these distributions is presented based on the L-moments method, an 

important aspect in determining the confidence interval using the Chow approximation [4], the latter 

was used in hydrology only based on the estimation of parameters with MOM.  

In order to verify the performances of the proposed distributions, a flood frequency analysis is 

carried out, using the Annual Maximum Series (AMS) and the Annual Exceedance Series (AES) for 

the Prigor river, as a case study. All results are presented in comparison with the Pearson III 

distribution, which is the ‘’parent’’ distribution in flood frequency analysis in Romania [22]. The 

purpose of the article was to identify other distributions from this family with applicability in flood 

frequency analysis compared to the distributions already used in the literature from these families 

such as PGIII and PGII. The article does not exclude the applicability of other distributions from other 

families (Gamma, GEV, Beta) in flood frequency analysis, especially since these families were also 

analyzed within the research carried out in the Faculty of Hydrotechnics and presented in other 

materials [22–24]. 

Comparing the results and choosing the best distribution is based on the performance indicators: 

relative mean error (RME), relative absolute error (RAE) and L-skewness ( 3τ )-L-kurtosis ( 4τ ) 

diagram. 

The article is organized as follows. The description of the statistical distributions by presenting 

the density function, the complementary cumulative function and the quantile function, in Section 

2.1. The presentation of the relations for exact calculation and the approximate relations for 

determining the parameters of the distributions, in Section 2.2. Case studies by applying these 

distributions in flood frequency analysis for the Prigor river, in Section 3. Results, discussions and 

conclusions, in Sections 3, 4 and 5. 

2. Methods 

The frequency analysis consists in determining the flows with certain exceedance probabilities 

using AMS, respectively AES, with the Prigor river as a case study. 

The series of maximum annual flows consists in choosing the maximum value corresponding to 

each year. In many cases, the lower maximum values of the annual data series do not always 

represent "floods". Thus, the use of frequency analysis using AES is required, which allows secondary 

events, which exceed certain annual maximum values, to be considered as "floods". 

The AES was established by descending sorting of all independent maximum values and 

choosing the first "n" values corresponding to the "n" number of years of analysis [14,15]. 

Using this criterion, it is important to verify that two or more maximum flow values do not come 

from the same flood. The independence of flows was verified and established based on the Cunnane 

criteria, respectively USWRC 1976 [25]. 

The determination of the maximum flows was carried out in stages according to Figure 1. The 

verification of the character of outliers (Grubbs, Pilon, Quartile method), homogeneity and 

independence of flows, were carried out in the data curation phase. No outliers have been detected. 
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Figure 1. Methodological approach. 

The estimation of the parameters of the analyzed distributions was done with MOM and L-

moments. The MOM estimation has the disadvantage that for high-order moments and short data 

series in many cases it generates unrealistic values because the high-order moments require 

correction [4,5,26,27]. For skewness, the correction can be made using the Bobee relation [26] or, as is 

the practice in Romania [22,28–31], being established according to the origin of the maximum flows, 

by multiplying the coefficient of variation ( vC ) by a coefficient reflecting this origin. In many cases 

the choice is subjective and without rigor [22,32]. 

The L-moments method is a more stable and robust method, having the advantage that it is less 

sensitive to short data lengths, compared to other parameter estimation methods such as Method of 

Ordinary Moments, Method of Maximum Likelihood Estimation or the Method of Least Squares 

[3,22,33]. 

Considering that in many cases to estimate the parameters of the analyzed distributions, it is 

necessary to solve some systems of non-linear equations, approximate relations for estimating the 

parameters were determined in the case of distributions where skewness and L-skewness depend on 

a single parameter. Also, for a simplified and fast calculation taking into account the fact that the 

inverse function can be expressed with the frequency factor for both MOM [4,23,34] and L moments 

[23], the approximation relations of the factor of frequency (and the coefficients of these relations) for 

the most frequent exceeding probabilities in the analysis of maximum flows. The estimation errors of 

both the parameters and the frequency factors are between 10-3-10-4. 
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The quantile results are compared with those of the Pearson III distribution, which is the 

‘’parent’’ distribution in Romania in the analysis of extreme events in hydrology, especially in the 

flood frequency analysis [22,28,29]. 

2.1. Probability Distributions 

In Table 2 are presented the probability density function, ( )f x ; the complementary cumulative 

distribution function, ( )F x , and quantile function, ( )x p , for analyzed distributions [4–6,14–17]. 

All ( )F x  and ( )x p  of the analysed distributions were determined using the methodology 

presented in the Supplementary file, using only ( )f x  

Table 2. The analyzed probability distributions. 

Distr. ( )f x  ( )F x  ( )x p  

PGIV4 

11 11

1x x

λ

α αγ γ
λ

β β

α β

− −
−  

   − − ⋅ ⋅ +        
 

⋅
 

1

1x

λ

αγ

β

−
 
 − +    
 

 1
1 1
p

α

λ

γ β
 
 + ⋅ −  
 

 

PGIV3 

11 11

1x x

λ

α α

λ
β β

α β

− −
−  

    ⋅ ⋅ +        
 

⋅
 

1

1 1x

λ

α

β

−
 
  − +    
 

 1
1 1
p

α

λ

β
 
 ⋅ −  
 

 

PGIII 

21

1x x
α α

γ γ
α

β β

β

−−     − −
 ⋅ ⋅ +          

1

1 x
α

γ

β

−
  −
 +     

 

1

1 1
p

α

γ β
 

+ ⋅ − 
 

 

PGII ( )

1 1
1 1 x

αα
γ

β β

−
 

⋅ − ⋅ − 
 

 ( )

1

1 x
αα

γ
β

 
− ⋅ − 

 
 ( )1 pαβ

γ
α

+ ⋅ −  

PGI 

1
x

α
α γ

β β

− −
 −

⋅  
 

 
x

α
γ

β

−
 −
 
 

 
1

p αγ β
−

+ ⋅  

WK5 No closed form No closed form ( ) ( )1 1p pβ δα γ
ξ

β δ
−+ ⋅ − − ⋅ −  

2.2. Parameter Estimation  

The parameters estimation of the analyzed statistical distributions is presented for MOM and L-

moments, some of the most used methods in hydrology for parameter estimation [3–5,7,22].  

2.2.1. Generalized Pareto Type IV (PGIV4) 

The equations needed to estimate the parameters with MOM have the following expressions: 

( ) ( )
( )

β α α λ α
µ γ

λ λ

⋅ ⋅ Γ ⋅ Γ −
= +

⋅ Γ
 (1)

( )
( ) ( )

( ) ( )
( )

2 22
2 1

2 1 2
α λ αβ

σ α λ α
λ λ λ λ

 Γ + ⋅Γ −
 = ⋅ Γ ⋅ + ⋅Γ − ⋅ −
 ⋅Γ ⋅Γ 

 (2)

Because they are too long, the relations for estimating skewness and kurtosis are presented in 

Appendix F. 

The equations needed to estimate the parameters with L-moments have the following 

expressions: 
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( ) ( )
( )1

1
L

λ α α
γ β

λ

Γ − ⋅ Γ +
= + ⋅

Γ
 (3)

( ) ( )
( )

( ) ( )
( )2

1 2 1
2

L
λ α α λ α α

β
λ λ

 Γ − ⋅ Γ + Γ ⋅ − ⋅ Γ +
= ⋅ −  Γ Γ ⋅ 

 (4)

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )3

1 2 1 3 1
3 2

2 3
L

λ α α λ α α λ α α
β

λ λ λ

 Γ − ⋅ Γ + Γ ⋅ − ⋅ Γ + Γ ⋅ − ⋅ Γ +
= ⋅ − ⋅ + ⋅  Γ Γ ⋅ Γ ⋅ 

 (5)

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

(
4

1 2 1 3 1 4
6 10 5

2 3
L

λ α α λ α α λ α α
β

λ λ λ

 Γ − ⋅ Γ + Γ ⋅ − ⋅ Γ + Γ ⋅ − ⋅ Γ + Γ
= ⋅ − ⋅ + ⋅ − ⋅ Γ Γ ⋅ Γ ⋅

(6)

where 1 2 3 4, , ,L L L L  represent the first four linear moments.  

2.2.2. Generalized Pareto Type IV (PGIV3) 

The distribution represents a particular case of the Pareto IV distribution when the position 

parameter 0γ = . It is also known as the beta_p or Singh-Maddala distribution [6,33]. 

The equations needed to estimate the parameters with MOM have the following expressions: 

( ) ( )
( )

1α λ α
µ β

λ

Γ + ⋅ Γ −
= ⋅

Γ
 (7)

( )
( ) ( )

( ) ( )
( )

2 22
2 1

2 1 2
α λ αβ

σ α λ α
λ λ

 Γ + ⋅ Γ −
 = ⋅ Γ ⋅ + ⋅ Γ − ⋅ −
 Γ Γ 

 (8)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

2 3 3

1.52 2

3 1 3 2 1
3 2 1 2 1

2 1 2 1
sC

λ λ α α λ α α

λ λ α α λ α α

λ λ α α λ α α

Γ ⋅ Γ − ⋅ ⋅ Γ + ⋅ + ⋅ Γ − ⋅ Γ +

− ⋅ Γ ⋅ Γ − ⋅ ⋅ Γ + ⋅ ⋅ Γ − ⋅ Γ +
=

Γ ⋅ Γ − ⋅ ⋅ Γ + ⋅ − Γ − ⋅ Γ +
 (9)

The equations needed to estimate the parameters with L-moments have the following 

expressions [33]: 

( ) ( )
( )1

1
L

λ α α
β

λ

Γ − ⋅ Γ +
= ⋅

Γ
 (10)

( ) ( )
( )

( ) ( )
( )2

1 2 1
2

L
λ α α λ α α

β
λ λ

 Γ − ⋅ Γ + Γ ⋅ − ⋅ Γ +
= ⋅ −  Γ Γ ⋅ 

 (11)

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )3

1 2 1 3 1
3 2

2 3
L

λ α α λ α α λ α α
β

λ λ λ

 Γ − ⋅ Γ + Γ ⋅ − ⋅ Γ + Γ ⋅ − ⋅ Γ +
= ⋅ − ⋅ + ⋅  Γ Γ ⋅ Γ ⋅ 

 (12)

2.2.3. Generalized Pareto Type III (PGIII) 

The equations needed to estimate the parameters with MOM have the following expressions 

[3,4]: 

1 11 1µ γ β
α α

   
= + ⋅Γ + ⋅Γ −   

   
 (13)

2 2
2 2 2 2 1 11 1 1 1σ β

α α α α

        
= ⋅ Γ + ⋅ Γ − − Γ + ⋅ Γ −                 

 (14)

3 3

1.52 2

3 3 1 1 2 2 11 1 2 1 1 3 1 1 1

2 2 1 11 1 1 1
sC

α α α α α α α

α α α α

            
Γ + ⋅ Γ − + ⋅ Γ + ⋅ Γ − − ⋅ Γ + ⋅ Γ − ⋅ Γ +            
            =

        
Γ + ⋅ Γ − − Γ + ⋅ Γ −                 

(15)

The shape parameter can be obtained approximately depending on the skewness coefficient, 

using the following function: 

if 0.1 7sC≤ ≤ : 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2

3 4 5

6 7 8

2.2463456 0.8505372 ln 0.1230871 ln

exp 0.0511417 ln 0.0024655 ln 0.006948 ln

0.0017015 ln 0.0004746 ln 0.0001676 ln

s s

s s s

s s s

C C

C C C

C C C

α

 − ⋅ + ⋅ +
 
 = ⋅ + ⋅ − ⋅ −
 
 ⋅ + ⋅ + ⋅ 

 (16)

2 22 2 1 11 1 1 1

σ
β

α α α α

=
       

Γ + ⋅ Γ − − Γ + ⋅ Γ −       
       

 
(17)

1 11β
γ µ

α α α
   

= − ⋅Γ ⋅Γ −   
   

 (18)

The equations needed to estimate the parameters with L-moments have the following 

expressions: 

2

3 3

1 L

L
α

τ
= =  (19)

2
2

1 11

Lα
β

α α

⋅
=

   
Γ ⋅ Γ −   
   

 
(20)

1
1 11L

β
γ

α α α
   

= − ⋅Γ ⋅Γ −   
   

 (21)

2.2.4. Generalized Pareto Type II (PGII) 

The equations needed to estimate the parameters with MOM have the following expressions [3–

5]: 

1
β

µ γ
α

= +
+

 (22)

( ) ( )

2
2

21 2 1
β

σ
α α

=
+ ⋅ ⋅ +

 (23)

( ) ( )
0.52 1 2 1

3 1sC
α αα

α α

⋅ − ⋅ ⋅ +
= ⋅

⋅ +
 (24)

The shape parameter can be obtained approximately depending on the skewness coefficient, 

using the following functions: 

if 2sC < : 
2 3 40.999946019 1.154837085 0.559584297 0.152516332 0.018234805s s s sC C C Cα = − ⋅ + ⋅ − ⋅ − ⋅  (25)

if 2sC ≥ : 
2 31.680766638 0.91819165 0.043608198 0.002324901

1 1.805341085
s s s

s

C C C

C
α

− ⋅ + ⋅ − ⋅
=

+ ⋅
 (26)

( )1 2 1β σ α α= ⋅ + ⋅ ⋅ +  (27)

1
β

γ µ
α

= −
+

 (28)

The frequency factor (for MOM), presented in Appendix B, can be obtained approximately, 

using a polynomial function of skewness and probability, whose coefficients are presented in table 

D1 from Appendix D. 

The equations needed to estimate the parameters with L-moments have the following 

expressions: 

1 1
L

β
γ

α
= +

+
 (29)

( ) ( )2 1 2
L

β

α α
=

+ ⋅ +
 (30)
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( )
( ) ( ) ( )3

1
1 2 3

L
β α

α α α

− ⋅ −
=

+ ⋅ + ⋅ +
 (31)

Based on these equations, the parameters have the following expressions: 

3

3

1 3
1
τ

α
τ

− ⋅
=

+
 (32)

( ) ( )2 1 2Lβ α α= ⋅ + ⋅ +  (33)

( )1 2 2L Lγ α= − ⋅ +  (34)

The frequency factor (for L-moments) can be obtained approximately, using a polynomial 

function depending on skewness and probability, whose coefficients are presented in table D2 from 

Appendix D. 

2.2.5. Generalized Pareto Type I (PGI) 

The equations needed to estimate the parameters with MOM have the following expressions: 

1
β α

µ γ
α

⋅
= +

−
 (35)

( ) ( )

2
2

21 2
α β

σ
α α

⋅
=

− ⋅ −
 (36)

( ) ( )
( )

0.52 1 2 2
3sC

α αα

α α α

⋅ + ⋅ ⋅ −
= ⋅

− ⋅
 (37)

The shape parameter can be obtained approximately depending on the skewness coefficient, 

using the following functions: 

if 0.1 1.5sC≤ ≤ : 
2 3

2
1.00404609 2.127093299 1.230376348 0.100951553

1 1.163661138 0.532187406
s s s

s s

C C C

C C
α

− − ⋅ − ⋅ − ⋅
=

+ ⋅ − ⋅
 (38)

if 1.5 2.8sC< < : 
2

3 4 5

2

25953.828411268 70057.489315297 66202.507287974
34489.86058943 8475.284356191 823.56972663

1 2982.326081943 1054.442301104

s s

s s s

s s

C C

C C C

C C
α

− ⋅ + ⋅ −

⋅ + ⋅ − ⋅
=

+ ⋅ − ⋅
 

(39)

( )
21 α

β σ α
α

−
= ⋅ − ⋅  (40)

1
β α

γ µ
α

⋅
= −

−
 (41)

The equations needed to estimate the parameters with MOM have the following expressions: 

1 1
L

β α
γ

α

⋅
= +

−
 (42)

( ) ( )2 1 2 1
L

α β

α α

⋅
=

− ⋅ ⋅ −
 (43)

( )
( ) ( ) ( )3

1
1 2 1 3 1

L
α β α

α α α

⋅ ⋅ +
=

− ⋅ ⋅ − ⋅ ⋅ −
 (44)

Based on these equations, the parameters have the following expressions: 

3

3

1
3 1
τ

α
τ

+
=

⋅ −
 (45)

( )
( ) ( )

2 32

3 3

4 7 52
3 3 1 3 1

LL τ
β

τ τ

⋅ ⋅ ⋅ −⋅
= −

⋅ + ⋅ ⋅ −
 (46)

2 1 2

3

3 8
3 9 3

L L L
γ

τ

+ ⋅ ⋅
= −

⋅ −
 (47)
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2.2.6. The Five-Parameter Wakeby Distribution (WK5) 

The equations needed to estimate the parameters with MOM have the following expressions: 

1 1
α γ

µ ξ
β δ

= + −
+ −

 (48)

( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2

2 2
2 2

1 1 11 2 1 1 2 1
α α γ γ

β β δ δβ β δ δ
σ

⋅ ⋅
− −

+ ⋅ + − ⋅ −+ ⋅ ⋅ + − ⋅ ⋅ −
=  (49)

The equations for skewness and kurtosis are presented in Appendix E. 

The equations needed to estimate the parameters with L-moments have the following 

expressions [9]: 

1 1 1
L

α γ
ξ

β δ
= + +

+ −
 (50)

( ) ( ) ( ) ( )2 1 2 2 1
L

α γ

β β δ δ
= +

+ ⋅ + − ⋅ −
 (51)

( )
( ) ( ) ( )

( )
( ) ( ) ( )3

1 1
1 2 3 1 2 3

L
γ δ α β

δ δ δ β β β

⋅ + ⋅ −
= +

− ⋅ − ⋅ − + ⋅ + ⋅ +
 (52)

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )4

1 2 2 1
4 3 2 1 1 2 3 4

L
γ δ δ α β β

δ δ δ δ β β β β

⋅ + ⋅ + ⋅ − ⋅ −
= +

− ⋅ − ⋅ − ⋅ − + ⋅ + ⋅ + ⋅ +
 (53)

3. Case study 

The presented case study consists in the determination of maximum annual flows, on the Prigor 

River, Romania, using the proposed probability distributions.  

The Prigor River is the left tributary of the Nera River, and it is located in the south-western part 

of Romania, as shown in Figure 2. The geographical coordinates of the location are 44°55'25.5"N 

22°07'21.7"E. 

 

Figure 2. The Prigor River location—Prigor hydrometric station. 

The main morphometric characteristics of the river are presented in Table 3 [35]. 

Table 3. The morphometric characteristics. 

Length 

[km] 

Average  

Stream Slope [‰] 

Sinuosity 

Coefficient [-] 

Average 

Altitude, [m] 

Watershed 

Area, [km2] 

33 22 1.83 713 153 
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In the section of the hydrometric station, the watershed area is 153 km2 and the average altitude 

is 713 m. The river has a length of 33 km, with an average slope of 22 ‰ and a sinuosity coefficient 

of 1.83. 

There are 31 annual maximum flows, with the values presented in Table 4.  

For the analysis with AES, the maximum flows resulting from the selection are presented in 

Table 5. 

Table 4. The AMS from the Prigor hydrometric station. 

AMS 
 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 

Flow [m3/s] 9.96 15 10.1 14.8 7.30 21.2 18.2 21.4 13.1 14.5 35 
  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

Flow [m3/s] 19.9 22.1 11.8 80.3 88 51.6 72.2 16.2 42.6 28.5 12.8 

  2012 2013 2014 2015 2016 2017 2018 2019 2020   

Flow [m3/s] 31.2 24.1 52.2 21.1 18.9 6.40 24.9 15.1 36.6   

Table 5. The AES from the Prigor hydrometric station. 

AES 
 1995 1996 1997 2000 2001 2002 2004 2004 2004 2005 2005 

Flow [m3/s] 21.2 18.2 21.4 35 19.9 22.1 80.3 22.2 19.2 88 38.9 
  2005 2005 2006 2007 2007 2007 2008 2009 2009 2010 2012 

Flow [m3/s] 24 17.5 51.6 72.2 33.8 15.9 16.2 42.6 23.1 28.5 31.2 

  2012 2012 2013 2014 2015 2016 2016 2018 2020   

Flow [m3/s] 27.3 18.7 24.1 52.2 21.1 18.9 16.8 24.9 36.6   

The main statistical indicators of the data series, are presented in Table 6. 

Table 6. The statistical indicators of the data series. 

Prigor River 

Statistical Indicators 

µ  σ  vC  sC  kC  1L  2L  3L  4L  2τ  3τ  4τ  

[m3/s] [m3/s] [-] [-] [-] [m3/s] [m3/s] [m3/s] [m3/s] [-] [-] [-] 

AMS 27.6 21.1 0.762 1.66 5.16 27.6 10.7 4.26 2.43 0.386 0.399 0.228 

AES 31.7 18.9 0.595 1.83 5.77 31.7 9.30 4.22 2.14 0.293 0.454 0.230 

where 1 2 3 4 2 3 4, , , , , , , , , , ,v s kC C C L L L Lµ σ τ τ τ  represent the mean, the standard deviation, the 

coefficient of variation, the skewness, the kurtosis, the four L-moments, the L-coefficient of variation, 

the L-skewness, and the L-kurtosis, respectively. For parameter estimation with L-moments, the data 

series must be in ascending order for the calculation of natural estimators, respectively L-moments. 

4. Results 

The proposed distributions from the Generalized Pareto family, were applied to perform a flood 

frequency analysis using the annual maximum series (AMS) and annual exceedance series (AES) 

analysis, on the Prigor river. 

MOM and L-moments were used to estimate the parameters of the distributions. For the MOM, 

the skewness coefficient was chosen depending on the origin of the flows according to Romanian 

regulations [22,28], based on some multiplication coefficients for the coefficent of variation ( vC ). For 

the Prigor river, the multiplication coefficient 3 applied to the coefficient of variation resulting in a 

skewness of 2.29 for AMS and 1.786 for AES. 

In Table 7 and 8 are presented the results values of quantile distributions, for some of the most 

common exceedance probabilities in flood frequency analysis.  
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Table 7. Quantile results of the analyzed distributions for AMS. 

Distributi

on 

Annual Maximum Series (AMS) 

Exceedance probabilities [%] 

MOM L-moments 

0.01 0.1 0.5 1 2 3 5 80 0.01 0.1 0.5 1 2 3 5 80 

PE3 214 160 123 107 90.7 81.5 69.5 12.0 231 172 130 113 95.4 85.3 72.7 11.4 

PGIV4 265 166 118 100 84.7 76.2 66.1 11.3 364 217 145 119 96.9 84.9 70.9 11.7 

PGIV3 260 166 118 101 85.5 76.9 66.6 11.3 813 323 169 128 96.8 82.1 66.5 12.6 

PGIII 279 169 117 98.7 82.7 74.2 64.3 12.0 800 320 168 128 95.7 82.1 66.6 12.5 

PGII 225 162 122 106 89.6 80.4 69.1 11.8 329 207 142 118 96.8 85.1 71.4 11.7 

PGI 171 138 112 100 87.6 80 70.2 10.5 329 207 142 118 86.8 85.1 71.4 11.7 

WK5 227 163 122 106 89.4 80.3 
69.0

0 
11.8 358 216 145 120 97.0 85.0 71.0 11.7 

Table 8. Quantile results of the analyzed distributions for AES. 

Distributi

on 

Annual Exceedance Series (AES) 

Exceedance probabilities [%] 

MOM L-moments 

0.01 0.1 0.5 1 2 3 5 80 0.01 0.1 0.5 1 2 3 5 80 

PE3 178 138 110 97.7 85.4 78.2 69.1 16.6 233 172 130 113 95.3 85.3 72.9 18.0 

PGIV4 233 150 108 93.5 80.3 73.2 64.9 17.2 277 190 137 116 96.0 85.1 72.0 18.1 

PGIV3 219 146 108 94.3 81.6 74.6 66.1 16.6 836 327 170 128 96.4 81.7 66.4 19.2 

PGIII 232 150 109 93.7 80.4 73.2 64.7 17.4 940 338 168 126 94.4 80.1 65.3 18.8 

PGII 170 136 110 98.0 86.0 78.9 69.7 16.6 452 240 150 121 96.4 83.9 69.9 18.3 

PGI 134 117 101 92.6 83.5 77.7 70.0 15.6 452 240 150 121 96.4 83.9 69.9 18.3 

WK5 150 128 108 98.1 87.3 80.5 71.4 17.0 202 164 130 114 96.7 86.6 73.7 18.2 

Figures 3 and 4, show the fitting distributions for AMS and AES, for the Prigor river. For plotting 

positions, the Alexeev formula was used [2]. 

  
(a) MOM        (b) L-moments 

Figure 3. The fitting distributions for AMS. 
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(a) MOM        (b) L-moments 

Figure 4. The fitting distributions for AES. 

In Figure S1, from the supplementary material, the confidence interval for each 

analyzed distribution is presented, both for MOM and L-moments, using Chow's relation 

[4,34], for 95% confidence intervals. 

Table 9 shows the values of the distributions parameters for the two methods of 

estimating and for both AMS and AES. 

Table 9. Parameter values of each distribution for MOM and L-moments. 

Distri

. 

AMS AES 

MOM L-moments MOM L-moments 

α  β  γ  λ  δ  ξ  α  β  γ  λ  δ  ξ  α  β  γ  λ  δ  ξ  α  β  γ  λ  δ  ξ  

PE3 0.766 24.1 9.2 - - - 
0.69

4 
26.9 9.0 - - - 1.254 16.9 10.6 - - - 

0.52

6 
28.2 16.9 - - - 

PGIV

4 
0.505 47.4 

-

2.51 
2.66 - - 

0.94

0 
80.0 7.47 5.19 - - 0.222 49.3 -17 1.26 - - 1.29 

164

9 
16.2 42.9 - - 

PGIV

3 
0.58 52.7 - 3.27 - - 0.37 20.3 - 0.92 - - 0.431 46.7 - 2.55 - - 0.15 19.6 - 0.36 - - 

PGIII 5.23 52.9 
-

28.5 
- - - 2.51 20.3 0.90 - - - 6.075 57.1 -28 - - - 2.2 14.2 11.2 - - - 

PGII 
-

0.042 
19.3 7.5 - - - 

-

0.14 
17.1 7.78 - - - 0.039 20.4 12.1 - - - -0.25 12.2 15.4 - - - 

PGI -15.4 -367 373 - - - 7.14 122 
-

114 
- - - 

-

6.735 

-

166 
176 - - - 

4.02

3 
49.2 

-

33.8 
- - - 

WK5 3.317 
4.01

4 
19 - 

0.04

7 
7.057 2.82 2.09 16 - 0.17 7.56 -20.5 1.82 27.5 - 

-

0.133 
14.7 -508 0.28 515 - 

-

0.25 

16.3

3 

The performance of the analyzed distribution was evaluated using the relative mean error 

(RME) criterion, the relative absolute error (RAE) criterion [36–38]. 

( )
2

1

1 n
i

i i

x x p
RME

n x=

− 
= ⋅  

 
  (54)

( )
1

1 n
i

i i

x x p
RAE

n x=

−
= ⋅  (55)

where ( ), ,in x x p  represent sample size, observed value, and estimated value for a given 

probability, respectively. For the RME and RAE performance indicators, the best model is the one 

with the minimum values. For the L-moments method, the variation diagram is additionally used for 

choosing the best fit model. 

The distributions performance values are presented in Tables 10 and 11. The values for the best 

model are highlighted in bold. 

Table 10. Distributions performance values for AMS. 
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Distr. 

Statistical measures 

Methods of parameters estimation 
AES values 

MOM L-moments 

RME RAE RME RAE 3τ  4τ  3τ  4τ  

PE3 0.0238 0.0879 0.0224 0.0902 

0.399 

0.192 

0.399 0.228 

PGIV4 0.0352 0.1574 0.0184 0.0772 0.228 

PGIV3 0.0300 0.1394 0.0183 0.0750 0.303 

PGIII 0.0533 0.2081 0.0181 0.0736 0.299 

PGII 0.0228 0.1047 0.0190 0.0787 0.221 

PGI 0.0470 0.2327 0.0646 0.2671 0.221 

WK5 0.0184 0.0807 0.0185 0.0775 0.228 

Table 11. Distributions performance values for AES. 

Distr. 

Statistical measures 

Methods of parameters estimation 
AES values 

MOM L-moments 

RME RAE RME RAE 3τ  4τ  3τ  4τ  

PE3 0.0219 0.1063 0.0093 0.0405 

0.454 

0.220 

0.454 0.230 

PGIV4 0.0395 0.1736 0.0094 0.0376 0.230 

PGIV3 0.0347 0.1556 0.0156 0.0680 0.348 

PGIII 0.0399 0.1747 0.0153 0.0656 0.338 

PGII 0.0195 0.0967 0.0108 0.0394 0.272 

PGI 0.0269 0.1313 0.0108 0.0394 0.272 

WK5 0.0137 0.0689 0.0086 0.0359 0.230 

5. Discussion 

In this article, the applicability of the distributions from the Generalized Pareto family in flood 

frequency analysis was analyzed, with the Prigor river as a case study. 

The analysis was performed using AMS and AES. As can be seen both graphically (Figure 4) and 

tabularly (Table 7), the analysis with AMS is more conservative than the analysis with AES. 

The main advantage of the AMS analysis is the ease of data selection, these being chosen as the 

maximum flow corresponding to each year. The disadvantage of the analysis is the use of maximum 

flows characteristic of each year, which do not always represent floods. These values located in the 

right-hand (high probabilities), lead to a steeper graph with higher values of quantiles in the field of 

low probabilities (left-hand). 

The advantage of the analysis with AES is that the flows of the data series always represent 

floods. The disadvantage is the greater effort in data selection, through additional analyzes regarding 

data independence, respecting the condition that these maximum flows do not come from the same 

flood. 

The estimation methods of the analyzed distribution parameters were performed for MOM 

(standard method in Romania) and L-moments, two of the most used estimation methods in 

hydrology. In general, the L-moments method is a much more stable and robust method, being less 

influenced by the length of the observed data. 

For the MOM analysis, the skewness was chosen depending on the origin of the flows, as is the 

hydrological practice in Romania. 

All analyzed distributions represent particular cases of the Generalized Pareto distribution, 

being distributions of 3 and 4 parameters. The Wakeby distribution, which is a five-parameter 

distribution, was analyzed because it has as its particular case the PGII distribution, being a quantile 

function whose structure is made up of two quantile functions of the PGII distribution. 
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All the results obtained in the case study are presented compared to the Pearson III distribution, 

which is considered the ‘’parent’’ distribution in Romania, for the most used exceedance probabilities 

in hydrology.  

According to Tabel 10 and Tabel 11, the best fitted distributions with the smallest RME and RAE 

values are WK5 and PGII distributions. But based only on these indicators, the best fit distribution 

cannot always be selected, because these statistical indicators only properly evaluate the probability 

area of the observed values. Outside of this domain (left hand), they lose their relevance, because, in 

general, the data sets in Romania are not large enough (n>80). Thus, considering that it is desired to 

implement the L-moments method in Romania, it is necessary to use an additional criterion for 

choosing the distributions in the analysis with L-moments, namely the 3τ - 4τ  variation diagram. It 

is recommended to use distributions that have the values of these indicators very close to those of the 

observed data, especially in the case of 3-parameter distributions. 

From the obtained results with L-moments, it can be seen that the best results are with the PGIV4 

and WK5 distributions, which best approximate the statistical indicators of the data set, 3τ and 4τ .  

PGII and PGI distributions give satisfactory results because the natural values 3τ  and 4τ  of the 

distributions are close to those of the data sets. 

For PE3, PGIV3 and PGIII, both for MOM and L-moments, the resulting values are characterized 

by a high degree of uncertainty, especially in the area of small exceedance probabilities (left-hand), 

due to the fact that a proper calibration of the higher moments cannot be done. 

As observed in other materials [24], the apparent stability of the Pearson III distribution is due 

to the fact that the variation of the shape parameter for the two estimation methods does not differ 

much, except in the upper area of sC  and 3τ . The same cannot be said about the PGI, PGII and 

PGIII distributions, in which the variation is extremely large. 

Figure 5 shows the variation graph of the shape parameter for the PE3, PGIII, PGII and PGI 

distributions. As it could be observed in Section 2.1, both skewness and L-skewness depend only on 

the shape coefficient α . 

  
(a) PIII        (b) PGIII 

  
(c) PII        (d) PGI 

Figure 5. The variation of parameter α . 
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The results of the quantiles obtained with the L-moments method, for the PGII and PGI 

distributions, both for AES and for AMS, and presented in tables 4 and 5, are the same, the two 

distributions being mutual special cases. The distributions WK5 and PGIV4 best approximate, as 

expected, the values of the indicators obtained with L moments, being distributions of 5 and 4 

parameters, respectively. 

Figure 6 shows the 3 4τ τ−  variation diagram of the distributions, as well as their relation to the 

values of the two indicators of the data sets. 

 

Figure 6. The 3 4τ τ−  diagram for analyzed distributions. 

Regarding the results obtained with MOM, for AES it can also be observed that the PGII and 

WK5 distributions have extremely close quantile values, due to the fact that for the same sC  they 

correspond to the same value of kC , the WK5 distribution becoming the PGII distribution, case as it 

was highlighted in other materials [4,8,9,22]. 

The WK5 distribution, although it is a distribution that was introduced in flood frequency 

analysis to achieve the so-called "separation effect" described by Matalas [9,22], it can be seen that it 

is extremely sensitive depending on the analysis used (AMS or AES), and this is due to the particular 

cases in which it can take.  

Figure 7 shows the skeness ( sC )-kurtozis ( kC ) variation diagram of the distributions. 

 

Figure 7. The s kC C−  diagram for the analyzed distributions. 

6. Conclusions 

Generalized Pareto distribution represents a usual distribution used in the analysis of extreme 

events in hydrology. In flood frequency analysis this is especially applied using the partial series of 

maximum flows. 

This article presents 5 distributions, of 3, 4 and 5 parameters that represent different forms of the 

Generalized Pareto distribution, some of them received limited attention in flood frequency analysis. 
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These distributions were analyzed (besides other families of distributions) in the research carried 

out in the Faculty of Hydrotechnics regarding the elaboration of a norm in Romania for the frequency 

analysis using L-moments method. 

The main purpose of the article was to identify other distributions from the same family that 

have applicability in flood frequency analysis using both AMS and AES. 

For the transparency and ease of use of these distributions, all the necessary elements for their 

use are presented, such as the exact and approximate relations of parameters estimation, and of 

frequency factors, care eliminates the need for iterative numerical calculation, thus facilitating their 

applicability. 

The performances of these distributions were verified in flood frequency analysis of the Prigor 

River, using the Annual Maximum Series and the Annual Exceedance Series. 

The results were evaluated using relative mean error and relative absolute error, which uses the 

inverse function of the distribution. In general, performance indicators have the disadvantage that 

they are only valid for the range of recorded values. Thus, in the case of the analysis with L-moments, 

the additional selection criterion of the best fit distribution is represented by the values of 3τ  and 4τ

, based on the 3 4τ τ−  diagram, compared to that of the data sets, being a more robust indicator over 

the entire range of excess probabilities. 

Based on the study results, and also from the research carried out in the Faculty of 

Hydrotechnics for other sites, for flood frequency analysis and the L-moments estimation method, 

good candidates, from the Generalized Pareto family, are the PGIV4 and WK5 distributions, being 

distributions of four and five parameters, having the advantage that it can calibrate all linear 

moments.  

Regarding the Wakeby distribution, this requires an additional analysis, because in some cases 

it turns into the PGII distribution, which is a three-parameter distribution, not achieving a satisfactory 

calibration of the linear moments. 

In general, the three parameters distributions can be used in the analysis with L-moments, but 

the selection of their use must be made based on the 3τ - 4τ  diagram, so that the natural values 3τ  

and 4τ  of the distribution to be very close to those of the observed data. Based on the work of Anghel 

si Ilinca [23], in Appendix A is presented the 3 4τ τ−  diagram for a wide range of distributions used 

in hydrology. 

Mathematical support in statistical analysis is useful because the use of software (EasyFit, HEC-

SSP, etc) without knowledge of mathematical foundations often leads to superficial analyzes with 

negative consequences. Another important aspect of the presentation of all the mathematical 

elements necessary for the application of these distributions is the fact that this software dedicated to 

statistical analysis are limited, and do not offer the possibility of choosing the skewness coefficient 

depending on the origin of the maximum flows, as is the practice in Romania. 

The research in this article is part of a more complex research carried out within the Faculty of 

Hydrotechnics, with the main aim of establishing the necessary guidelines for a robust, clear and 

concise norm regarding the determination of the maximum flow using the L-moment estimation 

method. 
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Abbreviations 

MOM the method of ordinary moments 

L-moments the method of linear moments  
µ  expected value; arithmetic mean 

σ  standard deviation 

vC  coefficient of variation 

sC  coefficient of skewness; skewness 

kC  coefficient of kurtosis; kurtosis 

1 2 3, ,L L L  linear moments 

2 , vLCτ  coefficient of variation based on the L-moments method 

3 , sLCτ  coefficient of skewness based on the L-moments method 

4 , kLCτ  coefficient of kurtosis based on the L-moments method 

Distr. Distributions 

RME relative mean error 

RAE relative absolute error 

xi observed values 

Appendix A. The Variation of L-kurtosis - L-skewness 

In the next section are presented the variation of L-kurtosis depending on the positive L-

skewness, obtained with the L-moments method, for certain theoretical distributions often used in 

hydrology. 

 

Figure A1. The variation diagram of s kLC LC− . 

Appendix B. The Frequency Factors for the Analyzed Distributions 

Table A1 shows the expressions of the frequency factors for MOM and L-moments. 

Table A1. Frequency factors. 

Frequency factor, ( )pK p  
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Appendix C. Estimation of the Frequency Factor for the PGIII Distribution 

The frequency factor, for MOM, can be estimated using a polynomial function: 

( ) = + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅2 3 4 5 6 7
p s s s s s s sK p a b C c C d C e C f C g C h C  

Table A2. The frequency factor for estimation with MOM. 

P  

[%] 
a b c d e f g h 

0.01 5.111737 2.313409 1.34999E+00 -7.76028E-01 1.82704E-01 -2.32091E-02 1.5563E-03 -4.330E-05 

0.1 3.808941 1.377403 3.45331E-01 -3.18752E-01 9.03167E-02 -1.30843E-02 9.7470E-04 -2.960E-05 

0.5 2.912620 0.812083 1.70251E-02 -1.14635E-01 3.94326E-02 -6.29710E-03 4.9970E-04 -1.590E-05 

1 2.527259 0.600436 -5.35487E-02 -5.65675E-02 2.33015E-02 3.98010E-03 3.2800E-04 1.070E-05 

2 2.140031 0.411098 -9.11407E-02 -1.47256E-02 1.07835E-02 -2.10400E-03 1.8480E-04 -6.200E-06 
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3 1.911447 0.311395 -1.00372E-01 2.88960E-03 5.08580E-03 -1.21600E-03 1.1520E-04 -4.100E-06 

5 1.619324 0.197967 -1.00797E-01 1.85338E-02 -4.64200E-04 -3.15600E-04 4.3000E-05 -1.700E-06 

10 1.208950 0.066749 -8.47851E-02 2.91844E-02 -5.24780E-03 5.25900E-04 -2.7400E-05 6.000E-07 

20 0.763538 -0.0362722 -5.31111E-02 2.86703E-02 -6.99220E-03 9.32800E-04 -6.5700E-05 1.900E-06 

40 0.224364 -0.103222 -6.80020E-03 1.62353E-02 -5.34190E-03 8.40400E-04 -6.63000E-05 2.100E-06 

50 0.001255 -0.111838 1.19116E-02 8.67100E-03 -3.76100E-03 6.53200E-04 -5.44000E-05 1.8000E-06 

80 -0.762791 -0.0547579 5.93627E-02 -2.07334E-02 3.89270E-03 -4.16000E-04 2.37000E-05 -6.000E-07 

90 -1.210684 0.0415455 6.68030E-02 -3.60124E-02 8.85020E-03 -1.19170E-03 8.48000E-05 -2.500E-06 

Table A3. The frequency factor for estimation with L-moments. 

P  

[%] 
a b c d e f g h 

0.01 9.0865E+00 -9.0870E+00 -5.6824E+00 1.4136E+01 -1.9532E+01 1.5682E+01 -6.8872E+00 1.2851E+00 

0.1 6.8300E+00 -6.8367E+00 -4.3709E+00 8.5137E+00 -9.3692E+00 6.1000E+00 -2.2178E+00 3.5120E-01 

0.5 5.3161E+00 -5.3440E+00 -3.2817E+00 4.4099E+00 -2.2009E+00 -1.0766E+00 1.7928E+00 6.1653E-01 

1 4.6040E+00 -4.6529E+00 -2.9168E+00 3.6177E+00 -1.7699E+00 -6.9899E-01 1.2546E+00 -4.3830E-01 

2 3.8961E+00 -3.9826E+00 -2.5218E+00 2.8156E+00 -1.2339E+00 -6.2320E-01 9.9972E-01 -3.5026E-01 

3 3.4784E+00 -3.5994E+00 -2.2840E+00 2.4127E+00 -1.0762E+00 -3.9996E-01 7.3125E-01 -2.6304E-01 

5 2.9457E+00 -3.1313E+00 -1.9655E+00 1.9096E+00 -8.1060E-01 -2.9906E-01 5.5319E-01 -2.0219E-01 

10 2.1976E+00 -2.5343E+00 -1.4975E+00 1.3114E+00 -5.3308E-01 -1.5403E-01 3.3379E-01 -1.2411E-01 

20 1.3864E+00 -2.0186E+00 -9.5952E-01 8.1735E-01 -2.7803E-01 -7.4878E-02 1.8663E-01 -5.9390E-02 

40 4.0582E-01 -4.0582E-01 -2.5879E-01 3.8534E-01 1.6327E-01 -4.2751E-02 -6.2078E-02 8.8377E-02 

50 1.9341E-04 -1.6511E+00 3.3144E-02 3.7384E-01 1.9857E-01 1.1770E-02 -3.1091E-02 6.4863E-02 

80 -1.3869E+00 -5.2845E-01 -9.5705E-02 1.2009E+00 -4.2838E-01 4.7547E-02 4.0683E-01 -2.1635E-01 

90 -2.1977E+00 1.0582E+00 -1.2265E-01 7.0118E-01 -4.1310E-01 -1.1862E-01 1.7678E-01 -8.4297E-02 

Appendix D. Estimation of the Frequency Factor for the PGII Distribution 

The frequency factor, for MOM, can be estimated using a polynomial function: 

( ) = + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅2 3 4 5 6 7
p s s s s s s sK p a b C c C d C e C f C g C h C  

Table A4. The frequency factor for estimation with MOM. 

P  

[%] 
a b c d e f g h 

0.01 1.932014 0.061904 2.87112E+00 -7.95586E-01 4.95418E-02 1.03747E-02 -1.7871E-03 7.910E-05 

0.1 1.809609 0.670411 2.12699E+00 -1.15732E+00 2.84537E-01 -3.77979E-02 2.6299E-03 -7.530E-05 

0.5 1.704417 1.213220 7.62347E-01 -6.51934E-01 1.98072E-01 -3.05909E-02 2.3988E-03 -7.580E-05 

1 1.664419 1.314780 1.78438E-01 -3.55564E-01 1.25632E-01 -2.09008E-02 1.7176E-03 -5.610E-05 

2 1.622183 1.265729 -2.90832E-01 -7.64258E-02 5.00117E-02 -9.92700E-03 8.9160E-04 -3.080E-05 

3 1.590286 1.151049 -4.79305E-01 5.83412E-02 1.03575E-02 -3.85500E-03 4.1630E-04 -1.570E-05 

5 1.530888 0.909001 -5.98849E-01 1.79061E-01 -2.88591E-02 2.47620E-03 -9.6700E-05 9.000E-07 

10 1.377562 0.424384 -5.22494E-01 2.28357E-01 -5.36328E-02 7.14020E-03 -5.0690E-04 1.490E-05 

20 1.047703 -0.1346753 -1.97916E-01 1.36073E-01 -3.93659E-02 5.98720E-03 -4.6780E-04 1.480E-05 

40 0.355375 -0.4660863 1.82363E-01 -3.47085E-02 2.20900E-03 2.60000E-04 -4.8700E-05 2.100E-06 

50 0.0051002 -0.428129 2.42055E-01 -7.58534E-02 1.42094E-02 -1.57970E-03 9.61000E-05 -2.5000E-06 

80 -1.042946 0.1095022 7.44175E-02 -5.46187E-02 1.56946E-02 -2.36020E-03 1.82600E-04 -5.700E-06 

90 -1.389758 0.3823067 -6.62687E-02 -9.67300E-03 6.70430E-03 -1.27020E-03 1.09700E-04 -3.700E-06 

The frequency factor, for L-moments, can be estimated using a polynomial function: 

( ) = + ⋅τ + ⋅τ + ⋅τ + ⋅τ + ⋅τ + ⋅τ + ⋅τ + ⋅τ + ⋅τ2 3 4 5 6 7 8 9
p 3 3 3 3 3 3 3 3 3K p a b c d e f g h i j  

Table A5. The frequency factor for estimation with L-moments. 

P  

[%] 
a b c d e f g h i j 

0.01 2.8976E+00 1.6049E+01 -1.6633E+02 2.1072E+03 -1.1711E+04 4.1260E+04 -8.4364E+04 1.0671E+05 -6.8465E+04 1.4604E+04 

0.1 2.9921E+00 7.9122E+00 2.1160E+01 4.6340E+01 2.0703E+02 -3.9480E+02 1.4671E+03 -2.0265E+03 6.6772E+02 - 

0.5 2.9751E+00 7.0733E+00 2.1320E+01 5.3452E+00 9.7924E+01 -9.9393E+01 -9.5564E+01 -5.9326E+01 - - 
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1 2.9389E+00 6.8741E+00 1.4223E+01 1.0895E+01 3.3199E+01 -1.1624E+02 4.7113E+01 - - - 

2 2.8667E+00 6.5598E+00 3.8790E+00 2.8740E+01 -6.6614E+01 2.3564E+01 - - - - 

3 2.8214E+00 5.3368E+00 6.0252E+00 1.9543E+00 -3.1305E+01 1.4174E+01 - - - - 

5 2.7060E+00 3.9951E+00 4.1471E+00 -1.3220E+01 -2.6956E+00 4.0738E+00 - - - - 

10 2.4017E+00 2.0082E+00 -1.6983E+00 -9.9252E+00 7.8868E+00 -1.6725E+00 - - - - 

20 1.7989E+00 -4.8676E-01 -4.2616E+00 1.0072E+00 1.7490E+00 -8.0770E-01 - - - - 

40 6.0025E-01 -2.4049E+00 -3.1267E-01 2.3727E+00 -1.6966E+00 4.4147E-01 - - - - 

50 3.8891E-04 -2.3323E+00 1.3905E+00 4.8092E-01 -8.1390E-01 2.7475E-01 - - - - 

80 -1.8003E+00 5.2569E-01 1.0120E+00 -1.3741E+00 8.6642E-01 -2.2985E-01 - - - - 

90 -2.4001E+00 2.1286E+00 -9.6924E-01 2.3252E-01 4.1754E-02 -3.3573E-02 - - - - 

Appendix E. The Skewness and Kurtosis for the WK5 Distribution 
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Appendix F. The Skewness and Kurtosis for the PGIV Distribution 
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