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Abstract

Federated Distillation (FD) has recently attracted in-
creasing attention for its efficiency in aggregating multi-
ple diverse local models trained from statistically hetero-
geneous data of distributed clients. Existing FD methods
generally treat these models equally by merely computing
the average of their output soft predictions for some given
input distillation sample, which does not take the diversity
across all local models into account, thus leading to de-
graded performance of the aggregated model, especially
when some local models learn little knowledge about the
sample. In this paper, we propose a new perspective that
treats the local data in each client as a specific domain and
design a novel domain knowledge aware federated distilla-
tion method, dubbed DaFKD, that can discern the impor-
tance of each model to the distillation sample, and thus is
able to optimize the ensemble of soft predictions from di-
verse models. Specifically, we employ a domain discrimi-
nator for each client, which is trained to identify the corre-
lation factor between the sample and the corresponding do-
main. Then, to facilitate the training of the domain discrim-
inator while saving communication costs, we propose shar-
ing its partial parameters with the classification model. Ex-
tensive experiments on various datasets and settings show
that the proposed method can improve the model accuracy
by up to 6.02% compared to state-of-the-art baselines.

1. Introduction
Federated learning (FL) has emerged as a prominent dis-

tributed machine learning framework to train a global model
via the collaboration among users without sharing their
original dataset [17, 22, 27]. Due to the benefits of preserv-
ing privacy and economic communication efficiency, FL has
been widely adopted in various applications such as medical
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image processing [8, 19, 32] and recommendation [2, 26].
The classic FL paradigm, FedAvg [22], iteratively opti-

mize the global model by aggregating the parameters of lo-
cal models trained from data resides on a number of remote
devices or servers. However, these methods usually suffer
from serious model performance degradation when the data
is not independently and identically distributed (Non-IID)
across clients, which is a common issue in FL scenarios.
This is mainly because the model parameters on different
clients are optimized towards diverse directions [14], lead-
ing to the overlarge variance of the aggregated model.

To tackle this challenge, federated distillation (FD) [13]
proposes to distill the knowledge of multiple local models
into the global model by aggregating only the output soft
predictions, which recently attracts increasing attention.
For instance, Tao et al. [18] leveraged the public dataset as
the distillation data samples to obtain the soft predictions
from multiple local models and then updated the global
model with the average of these soft predictions. Based
on [18], Zhu et al. [40] and Zhang et al. [37] improved the
distillation by replacing the public dataset with data gen-
erated by the generative model. Although these methods
achieve significant improvement over existing parameter-
averaging methods, they still do not take the model diver-
sity into account and may still limit the model performance.
More specifically, only computing the average of soft pre-
dictions will inevitably bring errors when some local mod-
els make wrong predictions for the distillation sample.

To break the limitations of existing federated distillation
methods, we in this paper propose a novel federated distil-
lation method dubbed DaFKD that can discern the impor-
tance of each model to the given distillation sample, and
thus is able to reduce the impact of wrong soft predictions.
More specifically, we consider that the local data in each
client constitutes as a specific domain and employ a domain
discriminator for each client to identify the correlation fac-
tor between the sample and the domain. For a given dis-
tillation sample, we endow the local model with high im-
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portance when its correlation factor is significant and vice
versa. The principle behind this is the fact that a model
tends to make the correct prediction when the sample is con-
tained in the domain for training the model. Furthermore,
to facilitate the training of domain discriminator, we pro-
pose sharing its partial parameters with the target classifica-
tion model. Through extensive experiments over various
datasets (MNIST, EMNIST, FASHION MNIST, SVHN)
and different settings (various models and data distribu-
tions), we show that the proposed method significantly im-
proves the model accuracy as compared to state-of-the-art
algorithms. The contributions of this paper are:

• We propose a new domain aware federated distillation
method named DaFKD which endows the model with
different importance according to the correlation be-
tween the distillation sample and the training domain.

• To adaptively discern the importance of multiple local
models, we propose employing the domain discrimi-
nator for each client which identifies the correlation
factors. To facilitate the training of the discriminator,
we further propose sharing partial parameters between
the discriminator and the target classification model.

• We establish the theories for the generalization bound
of the proposed method. Different from existing meth-
ods, we theoretically show that DaFKD efficiently
solves the Non-IID problem where the generalization
bound of DaFKD does not increases with the growth
of data heterogeneity.

• We conduct extensive experiments over various
datasets and settings. The results demonstrate the ef-
fectiveness of the proposed method which improves
the model accuracy by up to 6.02% compared to state-
of-the-art methods.

2. Related Work
Federated Learning with Parameters Aggregation

The main problem incurred by Non-IID for the model pa-
rameters aggregation based methods is the huge diverse of
the parameters of local models across clients [21,39], where
the local models are optimized to different directions. To
tackle this challenge, many prior works seek to to reduce the
diverse across local model parameters for efficient model
aggregation [1, 36]. For instance, Tian et al. [16] proposed
adding a regularization item in the local objective function
such that the divergence of the local model is constrained by
the global model. Sai et al. [14] proposed reducing the vari-
ance of local gradient to align the diverse local update. This
paper applies the ensemble distillation over the obtained lo-
cal models which is orthogonal to these methods.

Knowledge Distillation is to transfer the knowledge
from one or more networks (teacher) to another (student)
[12]. The key step in knowledge distillation is to align the
soft prediction of the student model to that of the teacher
model [5, 25, 30, 33, 38]. For example, some works lever-
age a proxy dataset to distill knowledge between networks
[11,34]. Considering that the proxy dataset may not always
exist, some recent works proposed distillation in a data-free
manner including reconstructing samples used for training
the teacher [20,23] or learning a generator [35]. By follow-
ing this path forward, we in this paper particularly focus on
the distillation in federated learning by tailoring the gener-
ative model and ensemble distillation techniques.

Federated Distillation Federated distillation is to distill
the knowledge from multiple teacher models trained by dif-
ferent clients to the student model [3, 9, 28]. Lin et al. [18]
first proposed leveraging the knowledge distillation in the
server to transfer the knowledge from multiple local mod-
els to the global model based on an unlabeled proxy dataset.
Chen et al. [4] proposed linearly aggregating multiple local
models with weights generated by the Bayesian posterior
to produce a series of combined models and then, distilling
these models into one global model. Considering that these
methods rely on an unlabeled auxiliary dataset in the server
which may not exist in real-world settings, Zhu et al. [40]
and Zhang et al. [37] proposed replacing the proxy dataset
with data generated by the generative models and making
ensemble federated distillation in a data-free way. However,
most of these methods construct the ensemble knowledge
by simply computing the average of soft predictions from
multiple local models, which does not take model diver-
sity into account and may limit the model performance. In
this paper, we take the domain knowledge for training local
models into account and endow the local models with dif-
ferent importance when ensembling these soft predictions.

3. Methodology

In this section, we specify the proposed method DaFKD.
As illustrated in Figure 1, the key idea of the DaFKD is to
leverage a domain discriminator to discern the importance
of each local model to the given distillation sample such that
the performance of ensemble distillation can be improved.
Specifically, each client in DaFKD trains the local model
with its private dataset and the domain discriminator with a
global generator in an adversarial way. Then, the server ag-
gregates local models from all participated clients and make
ensemble distillation with the generator producing distilla-
tion samples and the discriminator producing importance.
Besides, to facilitate the training of the discriminator, we
further propose sharing partial parameters between the dis-
criminator and the target classification model. The work-
flow of the proposed algorithm is shown in the Algorithm 1.
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Figure 1. Illustration of the DaFKD framework in the server. The distillation data samples x̂ are generated by the generator θg . By inputting
the pseudo sample into the domain discriminator θdk, the correlation factor αk of each domain is obtained. Then, the soft predictions sk
are obtained by inputting the data into the local models wk and are scaled with the correlation factors α̂. Finally, the server aggregates all
scaled soft predictions and computes distillation loss LKD .

3.1. Problem Formulation

We aim to collaboratively train a global model for K to-
tal clients in FL. We consider each client k can only ac-
cess to his local private dataset Dk := {xn

i , yi}, where xi

is the i-th input data sample and yi ∈ {1, 2, · · · , C} is the
corresponding label of xi with C classes. We denote the
number of data samples in dataset Dk by Dk. The global
dataset is considered as the composition of all local datasets
D = {D1,D2, · · · ,DK}, D =

∑K
k=1 Dk. The objective

of the FL learning system is to learn a global model w that
minimizes the total empirical loss over the entire dataset D:

min
w

L(w) :=
K∑

k=1

Dk

D
Lk(w),

where Lk(w) =
1

Dk

Dk∑
i=1

LCE(w;xi, yi), (1)

where Lk(w) is the local loss in the k-th client and LCE is
the cross-entropy loss function that measures the difference
between the prediction and the ground truth labels.

3.2. Domain Discriminator

To endow the model with suitable importance to the
given distillation sample, an intuition is that the model has
high probability in making the correct prediction when the
sample is contained in the domain for training the model.
As a consequence, quantifying the correlation between the
domain and any given sample is necessary. Motivated by
the adversarial training techniques [7] where the discrim-
inator is trained to distinguish whether the generated data
is sampled from the distribution of the target dataset, we
in this paper proposes a domain discriminator which views
the local dataset as the target and outputs the correlation be-
tween the distillation sample and the local domain.

More specifically, we assign a personalized discrimina-
tor θdk for each client k and adopt a global generator θg

shared by all clients. At each round t, each participated
client k firstly pulls the generator θg from the server to pro-
duce pseudo dataset D̂k with D̂k samples by sampling noise
from the distribution pz . Then, each client k labels the sam-
ples in local private dataset Dk positive and the samples in
pseudo dataset D̂k negative. Using these data samples with
generated labels, each client k trains the domain discrimi-
nator θdk with the following loss function:

min
θd
k

Lk
adv(θ

d
k) =

−1

Dk + D̂k

[ ∑
xi∈Dk

log f(θdk;xi)

+
∑

xi∈D̂k

log (1− f(θdk;xi))
]
,

(2)

where f(θdk;xi) denotes the probability of xi being real
data. Considering that there have been extensive works for
training effective generators [37, 40] which can be jointly
used with our method, we in this paper simplify the training
of generator and adopt the basic FedAvg [22] to train the
generator, which still exhibits great effectiveness. Specif-
ically, after obtaining the discriminator θdk, the client k in
turn leverages the discriminator to train the generator, which
maximizes the loss function 2:

max
θg
k

Lk
adv(θ

g
k) =−Ez∼pz(z)log (1− f(θdk; g(θ

g
k; z))). (3)

It is worthwhile to note that the client can also train the
generator θgk and the discriminator θdk in an alternative way
like [7]. After obtaining the updated local generator θgk, the
server receives them from all Kt participated clients and
aggregates them to get the new global generator:

θg =
1

Kt

Kt∑
k=1

θgk. (4)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2023                   doi:10.20944/preprints202303.0432.v1

https://doi.org/10.20944/preprints202303.0432.v1


From a global perspective, the adversarial loss function can
be formulated as:

max
θg

min
θd
1 ,··· ,θd

K

Ladv(θ
d
1 , · · · , θdK)

= − 1

K

K∑
k=1

[
Ex∼pk(x)log f(θdk;x)

+ Ez∼pz(z)log (1− f(θdk; g(θ
g; z)))

]
.

(5)

Discussion. One concern for this method may be that the
local generator will lead to privacy leakage when it is up-
loaded from client to the server. In fact, there have been
many prior works solving this problem. For example, to
protect privacy, Zhu et al. [40] proposed generating feature
maps instead of the original data and Xin et al. [31] pro-
posed exploiting the differential privacy. Similarly, the pri-
vacy concern of the global generator can also be addressed
by only allowing the generator to output intermediate fea-
tures as specified in Zhu et al. [40]. The main method pro-
posed in this paper supports various generators and thus
can definitely achieve privacy protection as combined with
these privacy-protecting methods together, of which more
details can be found in Appendix A.

3.3. Domain-aware Federated Distillation

To obtain the classification model, in each round t, each
participated client k firstly locally trains the model wk

t and
sends it as well as the domain discriminator θdk to the server.
After receiving the two models, the server aggregates mul-
tiple local models wk

t by computing their average as:

ŵt+1 =
1

Kt

Kt∑
k=1

wk
t . (6)

Then, the server uses the global generator θg to generate
the pseudo dataset D̂g as the distillation data. After that, for
every distillation sample xi ∈ D̂g , the server computes the
importance of each local model wk

t with the domain dis-
criminator θgk as αk,i = f(θdk;xi) and then normalizes it
into the probability:

α̂k,i =
f(θdk;xi)∑Kt

k=1 f(θ
d
k;xi)

, (7)

which guarantees that
∑Kt

k=1 α̂k,i = 1. Finally, the server
inputs the pseudo sample xi into each local model wk

t

and the average model ŵt+1 to obtain the soft predictions
s(wk

t ;xi) and s(ŵt+1;xi), and applies ensemble knowl-
edge distillation with the importance α̂k,i to obtain the

Algorithm 1: Workflow of DaFKD Algorithm
Input : the learning rate η
Output: final classification model wT

1 In server:
2 Initialize classification model w1 and generator θg1 ;
3 for t = 1 to T do
4 randomly select Kt clients from K total clients;
5 for each selected client k in parallel do
6 sends wt and θgt to the client k;
7 receives wk

t , θdk, and θgk from the client k;
8 end
9 aggregates generators θgk with (4) to get θgt+1;

10 aggregates local models wk
t with (6) to get ŵt+1;

11 produces pseudo samples D̂g with generator θgk;
12 obtain correlation factors α̂ with (7);
13 distills knowledge with (8) to get wt+1;
14 end
15 In each selected client k:
16 receives wt and θgt from the server;
17 set local models wk

t = wt and θgk = θgt ;
18 set θdk as the same in previous round;
19 for e = 1 to E do
20 randomly draws a mini-batch of samples xk;
21 generates a mini-batch of pseudo samples x̂k;
22 updates wk

t and θdk with (9);
23 samples a mini-batch of noise samples zk;
24 updates local generator θgk with (3);
25 end
26 pushes the wk

t , θdk, and θgk to the server;

global model wt+1:

wt+1 = argminŵt+1
LKD(ŵt+1) (8)

=
1

D̂g

∑
xi∈D̂g

KL
( Kt∑
k=1

α̂k,i · s(wk
t ;xi), s(ŵt+1;xi)

)
,

where KL(·) is to compute the Kullback-Leibler divergence
(KL-divergence).
Discussion. In our method, the domain discriminator is not
necessary to be uploaded to the server. Since the domain
discriminator is mainly used to output the importance of
each model to the distillation sample, it can definitely be
used in each client when the distillation sample is generated
locally. Naturally, considering that each client has access
to the global generator which is used to train the domain
discriminator, the shared distillation dataset can be gener-
ated in each local client when the random seed of noise is
consistent. Besides, to further protect the privacy of impor-
tance, each client can directly upload the soft predictions
weighted by importance to the server, which we defer the
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Figure 2. Illustration of the Shared Learning between Discrimina-
tor and Classification Model.

details to the Appendix B.

3.4. Partial Parameters Sharing

Considering that the domain discriminator is trained over
the local dataset, its performance may be deteriorated when
the size of local dataset is small. Motivated by the idea in
the multi-task learning where sharing the encoder between
different tasks can promote each other, we propose shar-
ing partial parameters between the discriminator θdk and the
classification model wk to solve this problem. The intuition
behind this is that both the discriminator and the classifica-
tion model have to distinguish the sample from the extracted
features. Besides, another benefit of sharing layers is that
the communication cost can be reduced when the discrimi-
nator is also uploaded to the server.

To this end, we propose sharing the front model lay-
ers between the two models which are used to extract fea-
tures, as illustrated in Figure 2. Specifically, by denot-
ing the c-layer shared extractor by w̃k = [w̃k,1, . . . , w̃k,c]
where w̃k,i is the i-th layer of the shared extractor,
we can re-write the nd-layer discriminator by θdk =

[w̃k, θd,c+1
k , . . . , θd,nd

k ], and the n-layer classification model
wk by wk = [w̃k, wk,c+1, . . . , wk,n] with wk,i as the i-
th layer of the classification model wk,i. With the shared
layers, the discriminator and the classification model are
trained in a joint way:

min
θd
k,w

k
Lk
J(θ

d
k, w

k) = Lk
adv(θ

d
k) + Lk(w

k), (9)

where Lk
adv(θ

d
k) refers to (2) and Lk(w

k) is defined in (1).

3.5. Theoretical Analysis

In this section, we prove that our method can solve the
Non-IID problem of FD. To verify this, we first analyze the
distribution learned by the generator and discriminator.

Theorem 1 Denote the data distribution of each client k
by pk(x), the data distribution of all clients by p(x), and
the pseudo data distribution of the generator by pg(x). If
the Algorithm 1 trains the discriminator θdk and the global

generator θg to the optima for the loss function (5), then the
pseudo data distribution of the generator is p∗g(x) = p(x),

and the discriminator outputs f∗(θdk;x) = pk(x)
pk(x)+p(x) for

each client k = 1 . . .K.

The detailed proof is deferred to Appendix C. Theorem 1
exhibits that the global generator still learns the global data
distribution even though there are multiple discriminators
specialized for different clients. Besides, the discriminator
can distinguish the samples either from the global distribu-
tion or the local distribution, and thus can generate efficient
correlation factors with the collaboration of the generator
that produces global distribution. For simplicity of nota-
tion, we denote the local model f(wk;x) trained over the
local dataset Dk by hp̂k

(x) and f(w;x) trained over global
dataset D by hp̂(x). Besides, without losing generality, we
consider D1 = · · · = DK = m. Then, we can further
derive the generalization bound of the proposed method.

Theorem 2 Denote the empirical distribution of activa-
tion from each client k by p̂k and the empirical distribu-
tion of global dataset by p̂ = 1

K

∑K
k=1 p̂k. Then, given

the constants 0 < δ ≤ 1 and σ > 0, with the prob-
ability at least 1 − δ, the expected generalization error
Lp(

∑K
k=1 α̂k(x)hp̂k

) of domain-aware ensemble model is:

Lp(

K∑
k=1

α̂k(x)hp̂k
)

≤ (K + 1)Lp̂(hp̂) + (K + 1)

√
σ2log 2K

δ

2m
.

(10)

The proof can be found in the Appendix D. For ease of com-
parison, we here present the bounds of state-of-the-art FD
methods. Specifically, the bound of FEDFUSION [18] is

Lp(

K∑
k=1

α̂k(x)hp̂k
) (11)

≤ Lp̂(hp̂) +

√
σ2log 2K

δ

2m
+

1

2K

K∑
i=1

dH∆H(pk, p) + λk,

where λk=minh∈H Lpk
(h)+Lp(h) and FEDGEN [40] is

Lp(

K∑
k=1

α̂k(x)hp̂k
) ≤ Lp̂(hp̂) (12)

+

√
4

m′ (dlog
2em

d
+ log

4K

δ
) +

1

K

K∑
i=1

dH∆H(p′k, p) + λ′
k.

The main differences between DaFKD and baselines are
the items 1

K

∑K
i=1 dH∆H(p′k, p) and λk which measure the

distance between the local data distribution and the global
distribution and are incurred by the Non-IID. DaFKD does
not include the two items, which indicates that the Non-IID
problem is efficiently solved.
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Top-1 Test Accuracy
Dataset Setting FEDAVG FEDPROX FEDDFUSION FEDGEN FEDFTG DaFKD

MNIST,
E = 20

α = 0.05
α = 0.1
α = 1

69.11± 1.39
95.16± 0.79
98.11± 0.14

80.77± 0.35
93.21± 0.55
97.08± 0.69

79.42± 0.57
94.27± 0.12
98.37± 0.40

81.06± 1.09
94.98± 0.47
96.39± 0.90

80.95±1.06
94.43±0.49
98.47±0.21

82.33±0.44
95.56±0.41
98.96±0.38

SVHN,
E = 20

α = 0.05
α = 0.1
α = 10

33.01± 0.12
53.54± 0.21
81.44± 0.01

49.24± 0.16
57.77± 0.86
82.61± 0.34

49.46± 0.17
66.78± 0.33
84.91± 0.64

47.36± 0.42
60.03± 1.12
82.91± 0.73

48.69±1.87
63.75±0.11
83.49±1.32

51.14±0.16
72.80±0.11
87.31±0.85

FASHION
MNIST,
E = 20

α = 0.05
α = 0.1
α = 10

30.01± 0.54
67.97± 0.03
82.37± 0.82

39.71±0.23
66.65± 0.08
82.06± 0.53

30.08± 0.82
68.46± 0.14
82.67± 1.03

36.59± 0.98
67.29± 2.05
81.57± 1.96

34.84±0.77
67.25±0.14
81.96±1.86

37.85±0.24
70.81±0.21
83.37±0.06

EMNIST,
E = 40

α = 0.05
α = 0.1
α = 10

67.28± 0.14
69.13± 0.23
81.35± 1.03

69.73± 0.17
73.72± 0.55
81.61± 0.71

68.89± 0.07
72.85± 0.93
81.85± 1.08

68.95±0.88
72.15± 2.04
82.02± 1.19

67.08±0.97
72.91±1.87
82.65±1.04

67.64±1.86
74.96±0.91
84.60±1.86

Table 1. Performance of our DaFKD and other baseline methods on four image datasets. For all methods, a smaller α indicates higher
heterogeneity and E indicates the local training steps.

 

 

 

(a) MNIST Dataset.

 

 

 

(b) SVHN Dataset.

 

 

 

(c) FASHION MNIST Dataset.

 

 

 

(d) EMNIST Dataset.

Figure 3. Visualized performance w.r.t data heterogeneity.

4. Experiments

In this section, we compare the performance of our pro-
posed approach with related works.

4.1. Setup

Baselines: In addition to FEDAVG [22], FEDPROX
regularizes the local model training with a proximal term in
the model objective [16]. FEDDFUSION is a data-based
knowledge distillation method, which applies unlabeled
training samples as the proxy dataset [18]. FEDGEN is a
data-free knowledge distillation approach that each client
can directly regulate the local model updating using the
generated unlabeled samples in server [40]. FEDFTG
learns a generator to ensemble knowledge of local models
in a data-free manner and fine-tunes the global model in
server instead of broadcasting the aggregated model back
to each client directly [37].

Dataset: We conduct experiments on four image
datasets with heterogeneous dataset partition: MNIST [15],
EMNIST [6], FASHION MNIST [29] and SVHN [24].
Among them, MNIST, EMNIST and SVHN dataset is for

digit and character image classifications, and FASHION
MNIST is a fashion-product dataset which is used to learn
a multi-class classification task.

Configurations: Unless otherwise mentioned, we set
the number of local training epoch E = 20, communication
round T = 60, the client number K = 20 with an active ratio r
= 0.4. For local training, the batch size is 32 and the weight
decay is 1e−3. The learning rate is 0.01 for distillation and
0.001 for training the classifier, generator, and discrimina-
tor. Like FEDGEN [40], we use the Dirichlet distribution
Dir(α) on labels to simulate the data heterogeneity. We ap-
ply all the training samples and distribute them to user mod-
els, and we use all the testing samples for the performance
evaluation. For the classifier in all methods, we employ
ResNet11 [10] as the basic backbone. For the generator
in FEDGEN, FEDFTG and DaFKD, we apply the network
composed of two embedding layers(for one-hot label vector
and noise vector respectively) and the fully-connected layer
with LeakyReLU and BatchNorm layers. For the multi-task
learning structure in our DaFKD approach, we treat all pre-
vious layers before the last fully-connected layer as share
layers, and we use two different fully-connected layers to

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 March 2023                   doi:10.20944/preprints202303.0432.v1

https://doi.org/10.20944/preprints202303.0432.v1


Communication Round
Dataset Accuracy FEDAVG FEDPROX FEDDFUSION FEDGEN FEDFTG DaFKD

MNIST
acc = 85%
acc = 90%

22.67±2.33
33.33±1.00

18.33±3.67
40.00±3.33

19.67±8.33
46.33±2.33

21.67±2.00
39.00±3.67

20.67±1.33
43.67±3.67

19.00±2.67
38.33±1.67

SVHN
acc = 55%
acc = 60%

58.33±6.67
> 60

50.67±3.33
> 60

21.67±3.33
40.67±2.00

32.67±5.67
57.33±3.67

30.00±4.67
55.67±2.33

14.00±2.33
18.67±1.33

FASHION
MNIST

acc = 60%
acc = 65%

21.00±1.33
35.67±3.67

22.67±5.67
38.33±4.00

20.67±3.33
34.33±0.67

25.00±3.33
39.67±2.67

27.67±4.67
43.33±6.66

18.67±2.33
33.67±3.00

EMNIST
acc = 65%
acc = 70%

16.33±6.33
57.66±1.33

18.00±3.33
44.67±2.67

21.33±5.67
42.67±4.67

23.33±1.67
50.67±2.33

22.67±3.67
41.33±0.67

20.00±3.33
40.67±4.33

Table 2. Evaluation of DaFKD and other baseline methods on four image datasets (α = 0.1), in terms of the communication rounds to reach
the target test accuracy (acc). Here we highlight the best and second-best results in bold.
 

 

 

(a) MNIST Dataset.

 

 

 

(b) SVHN Dataset.

 

 

 

(c) FASHION MNIST Dataset.

 

 

 

(d) EMNIST Dataset.

Figure 4. Fitted learning curve of four image datasets in 60 communication rounds (α = 0.1).

get outputs as the classifier result and discriminator result.

4.2. Performance Overview
Test accuracy. Table 1 shows the performance of

our DaFKD and other baseline methods on four image
datasets. We carry out experiments against different levels
of data heterogeneity on each dataset, and DaFKD achieves
the best performance in most cases. Among all men-
tioned approaches, FEDDFUSION, FEDGEN, FEDFTG
and DaFKD apply the knowledge distillation with extra
data to improve the model training. As shown in Table 1,
these KD based methods are notably excellent, and outper-
form FEDAVG and FEDPROX in most scenarios. Besides,
DaFKD is the only KD-algorithm that is robust against dif-
ferent datasets while consistently performs well, especially
surpassing the second by 2-6% with different data hetero-
geneity levels on SVHN dataset. These results verify our
motivation that the domain discriminator can identify the
correlation and thus solve the heterogeneity problem.

Data heterogeneity and Client participant. Figure
3 displays the test accuracy with different levels of data
heterogeneity on four image datasets. As vividly shown
in this figure, all methods achieve an improvement in test
accuracy with the decreasing degree of data heterogeneity.
Most notably, DaFKD gains a significant improvement in
test accuracy in data heterogeneity α = 0.1 and steadily
outperforms all methods. Figure 5 provides the test accu-

 

 

 

(a) SVHN Dataset.

 

 

 

(b) FASHION MNIST Dataset.

Figure 5. Test accuracy w.r.t. ratio r between active clients and
total clients in each round (α = 0.1).

racy under different ratios r between active clients and total
clients. In this figure, DaFKD performs best with different
ratios r and the higher accuracy is achieved as applying
more active clients in each communication round.

Communication rounds. Table 2 shows evaluation
of DaFKD and other baseline methods in terms of the
communication rounds to reach the target test accuracy.
Here we highlight the best and second-best results in bold.
DaFKD reaches most best and the second-best evaluation
results on all datasets. What is more, although FEDAVG
reach the target accuracy with fewer communication rounds
on EMNIST dataset, DaFKD finally can surpass it by
significant 5% after all communication rounds. Meanwhile,
Figure 4 displays the fitted learning curve of four image
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(a) Box plot w.r.t E.

 

 

 

(b) Box plot w.r.t B.

 

 

 

(c) Box plot w.r.t d.

Figure 6. Performance of DaFKD under different configurations (a) local training epoch E, (b) sample size B in classifier and generator,
(c) dimension d of noise on SVHN with α = 0.1.

DaFKD DaFKDno−sharing DaFKDno−correlation

α = 0.05 α = 0.1 α = 0.05 α = 0.1 α = 0.05 α = 0.1
MNIST 82.33±0.44 95.56±0.41 84.67±0.92 95.23±0.16 80.57±1.67 94.14± 0.85
SVHN 51.14±0.16 72.80±0.11 50.78±0.03 74.01±1.08 50.33±2.08 72.51±0.98
FASHION MNIST 37.85±0.24 70.81±0.21 35.45±0.34 70.51±0.14 34.64±1.68 64.35±1.87
EMNIST 67.64±1.86 74.96±0.91 68.20±0.07 73.61±2.32 65.01±0.06 71.72±0.67

(a) Test accuracy (%) of DaFKD with different techniques.
DaFKD DaFKDno−sharing DaFKDno−correlation

MNIST
acc = 85%
acc = 90%

19.00±2.67
38.33±1.67

21.33±1.67
47.00±2.67

20.67±1.33
45.33±2.67

SVHN
acc = 55%
acc = 60%

14.00±2.33
18.67±1.33

22.33±2.67
35.33±5.67

20.67±1.33
31.00±3.67

FASHION MNIST
acc = 60%
acc = 65%

18.67±2.33
33.67±3.00

18.67±1.00
33.33±1.67

19.33±0.67
37.67±1.67

EMNIST
acc = 65%
acc = 70%

20.00±3.33
40.67±4.33

22.33±2.00
45.66±1.67

21.33±2.33
42.33±0.33

(b) The number of communication rounds to reach the given accuracy.

Table 3. Ablation studies.

datasets in 60 communication rounds, where we adapt
the test accuracy per five communication rounds to fit the
learning curve. In the figure, each method rapidly increases
at the beginning and slows down as training goes. DaFKD
always keeps a leading tendency in the test accuracy.

Parameter sensitivity analysis. To figure out whether
DaFKD is sensitive to some specific parameters, we select
local training epoch E, sample batchsize B and dimension
d of noise on SVHN with α = 0.1 to carry out experiments.
Figure 6 shows the performance of DaFKD under different
configurations. DaFKD achieves the better result when
we increase the local training epochs at the beginning.
However, DaFKD has a comparable performance when the
E is set to 20 and 40. In order to balance communication
expense and test accuracy, we give priority to the local
training epoch E = 20 here. In addition, DaFKD achieves
a similar performance with different sample size B and
dimension d of noise. This indicates that DaFKD is
only sensitive to few parameters and still robust to most
parameters in a large range.

The impact of sharing parameters. We share all front
layers (ResNet11) before the last fully-connected layer as
share layers between the generator and the discriminator in
DaFKD. Table 3 shows the results. As can be seen, param-

eter sharing facilitates the training of DaFKD in two folds:
1) it enables higher accuracy in most cases; 2) it acceler-
ates convergence where it consistently costs fewer rounds
as reaching some given accuracy. Furthermore, parame-
ter sharing can save communication costs by transmitting
fewer parameters in each round. Besides, from Table 3.(a),
we can find that DaFKD with correlations performs better
in all cases (sharing or not). From the last two columns of
Table 3.(b), we can find that parameter sharing can acceler-
ate convergence faster than correlations.

5. Conclusion
In this paper, we seek to tackle the data heterogene-

ity challenge in the federated knowledge distillation. We
propose a novel method dubbed domain-aware federated
knowledge distillation, namely, DaFKD, which imposes an
importance on each local model for some given distillation
sample. To quantify the importance, we leverage a domain
discriminator to compute the correlation between the distil-
lation sample and the domain for training the local model.
Furthermore, to facilitate the training of the domain dis-
criminator, we propose sharing its partial parameters to the
classification model. Extensive experiments conducted on
various datasets and settings show that our method achieves
significant improvement for the model accuracy.
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A. DaFKD Without Uploading the Discriminator

The privacy of local generators can be protected by using secure aggregation. The privacy of the global generator can be
protected by only outputting features instead of the original data, as shown in Figure 7, which is elaborated in FEDGEN[40]
and mentioned in Section 3.2.
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Figure 7. Feature generator. The discriminator and the generator learn the feature map instead of the original dataset. Similarly, the
distillation dataset also includes the feature map.

B. DaFKD Without Uploading the Discriminator

In fact, the discriminator and the correlation factors are not necessarily visible to the server to protect the privacy of clients.
More specifically, all clients can use the same generator to produce pseudo distillation data locally. Then, each client k inputs
the distillation data xi to the discriminator θdk to produce correlation factors f(θk,d, xi) and input the distillation data to the
classification model wk to produce soft predictions sk,i. To enable the domain-aware federated distillation, each client k
multiplies the correlation factors f(θk,d, xi) to the corresponding soft predictions s obtaining f(θk,d, xi)sk,i and transmits
it to the server. At the same time, the server aggregates f(θk,d, xi) from all clients in a privacy-preserving manner by
using differential privacy or homomorphic encryption to obtain

∑Kt

k=1 f(θk,d, xi). After receiving multiplied soft predictions
αk,isk,i from all clients and the aggregated

∑Kt

k=1 f(θk,d, xi), the server normalizes the multiplied soft predictions getting
αk,isk,i∑Kt

k=1 f(θk,d,xi)
. To enable distillation, the server uses the same random seed as each client is adopted to produce the pseudo

data xi and inputs it to the global model ŵ obtaining s(ŵ;xi). Finally, the server implements the ensemble distillation using
(8), i.e.,

wt+1 = argminŵt+1
LKD(ŵt+1) =

1

D̂g

∑
xi∈D̂g

KL
( Kt∑
k=1

α̂k,i · s(wk
t ;xi), s(ŵt+1;xi)

)
.

C. Proof of Theorem 1

Theorem 1 Denote the data distribution of each client k by pk(x), the data distribution of all clients by p(x), and the pseudo
data distribution of the generator by pg(x). If the Algorithm 1 trains the discriminator θdk and the global generator θg to the
optima for the loss function (5), then the pseudo data distribution of the generator is p∗g(x) = p(x), and the discriminator

outputs f∗(θdk;x) =
pk(x)

pk(x)+p(x) for each client k = 1 . . .K.
Proof : To analyze the distribution fitted by the global generator and multiple discriminators, we formally present the overall
adversarial loss function including the generator and all discriminators as:

max
θg

min
θd
1 ,··· ,θd

K

Ladv(θ
d
1 , · · · , θdK) = − 1

K

K∑
k=1

[
Ex∼pk(x)log f(θdk;x) + Ez∼pz(z)log (1− f(θdk; g(θ

g; z)))
]
, (13)
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where pk(x) is the data distribution of client k. Given the fixed generator θg , considering the distribution of generated data
as pg(x), we have

min
θd
1 ,··· ,θd

K

Ladv(θ
d
1 , · · · , θdK) = − 1

K

K∑
k=1

[
Ex∼pk(x)log f(θdk;x) + Ex∼pg(x)log (1− f(θdk;x))

]
= − 1

K

K∑
k=1

[ ∫
x

pk(x)log f(θdk;x)dx+

∫
x

pg(x)log (1− f(θdk;x))dx
]

= − 1

K

K∑
k=1

[ ∫
x

pk(x)log f(θdk;x) + pg(x)log (1− f(θdk;x))dx
]
.

(14)

Obviously, the equation (14) achieves the minima when

f∗(θdk;x) =
pk(x)

pk(x) + pg(x)
, ∀k = 1, · · · ,K. (15)

Now, to solve the optimal generator, we bring (15) back to (13) and obtain

max
θg

Ladv(θ
g) = − 1

K

K∑
k=1

[
Ex∼pk(x)log

pk(x)

pk(x) + pg(x)
+ Ex∼pg(x)log

pg(x)

pk(x) + pg(x)

]
= − 1

K

K∑
k=1

[ ∫
x

pk(x)log
pk(x)

pk(x) + pg(x)
dx+

∫
x

pg(x)log
pg(x)

pk(x) + pg(x)
dx

]
= − 1

K

K∑
k=1

[ ∫
x

pk(x)log
pk(x)

pk(x) + pg(x)
+ pg(x)log

pg(x)

pk(x) + pg(x)
dx

]
= −

∫
x

1

K

K∑
k=1

[
pk(x)log

pk(x)

pk(x) + pg(x)
+ pg(x)log

pg(x)

pk(x) + pg(x)

]
dx

= log 4− 1

K

K∑
k=1

JSD(pk(x)||pg(x)),

(16)

where JSD denotes the Jensen-Shannon Divergence. Since the centroid defined as the average sum of a finite set of probability
distributions is the minimizer of Jensen-Shannon divergences between a probability distribution and the prescribed set of
distributions, we can derive the formulation of optimal pg(x) as p∗g(x) =

1
K

∑K
k=1 pk(x), which completes the proof.

D. Proof of Theorem 2
Theorem 2 Denote the empirical distribution of activation from each client k by p̂k and the empirical distribution of global
dataset by p̂ = 1

K

∑K
k=1 p̂k. Then, given the constants 0 < δ ≤ 1 and σ > 0, with the probability at least 1− δ, the expected

generalization error Lp(
∑K

k=1 α̂k(x)hp̂k
) of domain-aware ensemble model is:

Lp(

K∑
k=1

α̂k(x)hp̂k
)

≤ (K + 1)Lp̂(hp̂) + (K + 1)

√
σ2log 2K

δ

2m
.

(17)

Proof : We seek to establish the relationship between Lp(
1
K

∑K
k=1 α̂khp̂k

) and Lp̂(hp̂). Considering that the convexity of the
loss function in terms of the prediction, we have

Lp(

K∑
k=1

α̂k(x)hp̂k
) =

∫
x

p(x)L(

K∑
k=1

α̂k(x)hp̂k
(x))dx ≤

∫
x

p(x)
[ K∑
k=1

α̂k(x)L(hp̂k
(x))

]
dx. (18)
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Considering the optimal discriminator f∗(θdk;x) =
pk(x)

pk(x)+p(x) where p(x) = 1
K

∑K
k=1 pk(x), we have

α̂k(x) =
f(θdk;x)∑K
k=1 f(θ

d
k;x)

=

pk(x)
pk(x)+p(x)∑K

k=1
pk(x)

pk(x)+p(x)

=
pk(x)

(pk(x) + p(x))
∑K

i=1
pi(x)

pi(x)+p(x)

≤ pk(x)
pk(x)+p(x)

max{p1(x),··· ,pK(x)}+p(x)

∑K
i=1 pi(x)

≤ pk(x)
p(x)

Kp(x)+p(x)

∑K
i=1 pi(x)

= (K + 1)
pk(x)∑K
i=1 pi(x)

=
(K + 1)

K
· pk(x)
p(x)

.

(19)

Bringing the bound of α̂ in (19) back to (18) derives:

Lp(

K∑
k=1

α̂k(x)hp̂k
) ≤

∫
x

p(x)
[ K∑
k=1

(K + 1)

K
· pk(x)
p(x)

L(hp̂k
(x))

]
dx

=
(K + 1)

K

K∑
k=1

∫
x

pk(x)L(hp̂k
(x))dx

=
(K + 1)

K

K∑
k=1

Lpk
(hp̂k

).

(20)

Next, we bound the Lpk
(hp̂k

) with its empirical counterpart Lp̂k
(hp̂k

) through Hoeffding inequality. Without losing the
generality, we consider the simplified case where the size of samples in all clients are equal, i.e., D1 = D2 = . . . = DK = m.
Then, a simple application of the Hoeffding’s inequality gives:

P (|Lpk
(hp̂k

)− Lp̂k
(hp̂k

)| ≥ ϵ) ≤ 2exp(−2mϵ2

σ2
), (21)

where ϵ > 0 and σ > 0 are the constants. Thereby, with probability at least 1− δ
K , we have:

Lpk
(hp̂k

) ≤ Lp̂k
(hp̂k

) +

√
σ2log 2K

δ

2m
. (22)

For all K devices, we have

P

[ K⋂
k=1

(
Lpk

(hp̂k
) ≤Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)]

= 1− P

[ K⋃
k=1

(
Lpk

(hp̂k
) ≥Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)]

≥ 1−
K∑

k=1

P

[(
Lpk

(hp̂k
) ≥Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)]
≥ 1− δ.

(23)
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Putting (22) back to (20) derives:

Lp(

K∑
k=1

α̂k(x)hp̂k
) ≤ (K + 1)

K

K∑
k=1

(
Lp̂k

(hp̂k
) +

√
σ2log 2K

δ

2m

)
. (24)

Considering that hp̂k
minimizes the loss function over the distribution p̂k of training dataset Dk, Lp̂k

(hp̂k
) ≤ Lp̂k

(hp̂) can
be easily obtained. According to the definition that p̂ = 1

K

∑K
k=1 p̂k, we can derive

1

K

K∑
k=1

Lp̂k
(hp̂k

) ≤ 1

K

K∑
k=1

Lp̂k
(hp̂) = Lp̂(hp̂). (25)

Thereby, the following inequality holds with probability at least 1− δ:

Lp(

K∑
k=1

α̂k(x)hp̂k
) ≤ (K + 1)

K

K∑
k=1

Lp̂k
(hp̂k

) + (K + 1)

√
σ2log 2K

δ

2m

≤ (K + 1)Lp̂(hp̂) + (K + 1)

√
σ2log 2K

δ

2m
.

(26)
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