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Abstract: Using number theory, a formula is obtained that describes the thermal conductivities of 

ZrC, UC, UN, ThN, ZrN and ThxU1-xN at x = 0.2 and 0.5 with temperature change. This formula 

contains the atomic numbers of the elements, the thermal conductivities of the individual elements 

of the substance, and the structural parameter. There is no direct dependence on temperature in the 

formula, since it is hidden in the thermal conductivities of each element and in the structure 

parameter. In some temperature ranges, the structural parameter is constant; therefore, the thermal 

conductivity of some carbides and nitrides is expressed through summing the thermal conductivities 

of individual elements. 
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carbide, rational numbers, thermal conductivity.  

1. Introduction 

   Zirconium nitride and carbide are important materials in the design of nuclear 

power plants and equipment operating under extreme conditions [1]. Uranium carbide 

is considered as a promising material for fuel of fast nuclear reactors due to its unique 

properties [2].  Actinide nitrides are of interest as the fuel of nuclear power plants, 

since nitrides have a higher thermal conductivity compared to actinide oxides, which 

reduces the thermal degradation of reactors [3]. For these nuclear materials, the 

problem of describing their thermal conductivity has not yet been solved. We propose 

a new formula that describes the change of the thermal conductivity of these 

materials with the temperature through a very simple dependence on atomic numbers 

and thermal conductivities of individual components. 

2. Theoretical justification 

   Suppose we want to calculate an arbitrary physical quantity L that characterizes 

some physical property of an arbitrary substance with the chemical formula AkBlCn... 

where the number of elements in the formula must be greater than one. The desired 

physical quantity L depends on the components of the substance and its structure. 

This quantity L can be the temperature of phase transition of any order and any other 

thermophysical quantity, mechanical, electrical, magnetic, optical and other 

characteristics of the substance. It can be assumed that L somehow depends on the 

similar physical quantities Li of all components of the substance under consideration: 

L = L(LA, LB, LC, ....). Since the amount of a component in a substance affects its 
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properties, it should be concluded that chemical indexes should also be represented in 

the function: L = L(LA, LB, LC, ...., k, l, n, …). Since the atomic number of each 

component ultimately determines the electronic structure of a substance, we insist 

that the atomic numbers of all components also be represented in a functional 

relationship: L = L(LA, LB, LC, ...., k, l, n, …, A, B, C, …), where A is the atomic 

number of element A. The phase state of matter also determines L, and we assume 

that the state of matter should be represented by a structural parameter h: L = L(LA, 

LB, LC, ...., k, l, n, …, A, B, C, …, h). Since the properties of a substance can change 

due to changes in temperature T, pressure p, radiation dose D, static electromagnetic 

fields (E, B), etc., the value of L changes with such changes, but we will assume that 

L not depends on them directly, but only through Li and h: L(T,p,D,E,B,…) = 

L(LA(T,p,D,E,B,…), LB(T,p,D,E,B,…), LC(T,p,D,E,B,…), ...., k, l, n, …, A, B, C, …, 

h(T,p,D,E,B,…)). Since the basic physical properties of a chemical element depend 

on a set of integers that determine the position of the element in the periodic table, 

and given that the crystal structure is represented through a set of rational numbers 

representing the space group, we insist that the structural parameter h is a rational 

number, although it somehow depends on the lattice parameters: h = h(a, b, c, , , 

)Q, where Q is a set of rational numbers.  

   Now suppose that L  ABC… is the thermal conductivity of AkBlCn... and we want to 

find its dependence on temperature only: L(T) = L(LA(T), LB(T), LC(T), ...., k, l, n, …, 

A, B, C, …, h(T)). We found in [4] that for oxides and silicates (ZrO2, ZrSiO4, 

(U,Zr)SiO4, UO2) the best agreement with experiment is given by the following 

formula: 

...

1 10 6 4 1 1 ( )
... , (1)

( ) 3 ( ( ) ( ) ( ) ...)ABC A B C

h T

T k T l T n T k A l B n C   

   
               

  

where the parameter h is associated with the most electronegative element, in our 

case with C. It has been observed that h is a constant over a certain range of 

temperatures. Thus, for example, for silicate (U0.016Zr0.984)SiO4 at temperature range T 

(470, 1070] K where h = 1, the thermal conductivity is next: 

0.016 0.984 4

1
0.016 ( ) 0.984 ( ) ( ) 4 ( ) 1 1 1

( ) , (1 )
80 0.016 0.984 4

U Zr Si O
U Zr SiO

T T T T
T

U Zr Si O

   



       

        

  

where atomic numbers: U = 92, Zr = 40, Si = 14, O = 8. For zircon ZrSiO4 in the 

temperature range T[570, 1170] K where h = 2/3, the thermal conductivity is next: 
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4

1
( ) ( ) 4 ( ) 1 1 2 / 3

( ) , (1 )
80 4

Zr Si O
ZrSiO

T T T
T

Zr Si O

  



    

     
 

where atomic numbers are Zr = 40, Si = 14, O = 8.  

   We applied formula (1) to describe the thermal conductivity of carbides and nitrides 

and found (see the next section) that for some ceramics the structural parameter h is 

fixed in a certain temperature range, which makes it possible to represent the thermal 

conductivity of ceramics as the sum of the thermal conductivities of its components.  

   To assess the correctness of formula (1), relative errors were calculated in this work 

using the following formula: 

exp

exp

100%, (2)
theory 





   

where theory is the result of using formula (1) and exp is taken from experimental 

data. 

3. Discussion 

   For zirconium carbide ZrC, formula (1) has the following form: 

1 10 6 4 1 ( )
, (3)

( ) 3 ( ( ) ( ))ZrC Zr C

h T

T T T Zr C  

   
      

 

where atomic numbers are Zr = 40, C = 6. The result of calculations by formula (3) 

and comparison with the experiment [1] is given in Table 1. The thermal conductivity 

of carbon in the form of bulk diamond was taken from [5], [6], where theoretical data 

for bulk diamond are presented, which are in good agreement with the available 

experimental data [7].  

   Table 1 shows that the parameter h decreases with increasing T. The step of 

changing h between 400 and 600 K is h = 1 at 100 K. Therefore, we can express h in 

terms of T in this temperature range and obtain for ZrC  at T   [400, 600] K:  

1

( )( ) ( ) 1 1 92
( ) , (3 )

80 10

Zr C diamond

ZrC

T T
T a T

Zr C

 


             
  
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where 
11

100
a K     . In order to fully express the thermal conductivity of a 

substance over the entire range of T, it is necessary to know the dependence of h on 

the lattice parameters as the temperature changes: h = h(a(T), b(T), c(T), (T), (T), 

(T))Q.  

   Table 1. Thermal conductivity of ZrC calculated over formula (3) at different temperatures. 

Thermal conductivities for pure Zr are taken from [8], for bulk diamond – from [5], [6]. 
exp

ZrC are 

the experimental values for ZrC taken from [1], where the data are corrected to 100% TD (total 

density). 
theory

ZrC are the values obtained from (3). Relative errors  are calculated according to (2). 

T,  K exp ,ZrC
W/(m·K) 

exp ,Zr  
W/(m·K) 

( )
,

C diamond


W/(m·K) 

h ,theory

ZrC
W/(m·K) 

,  % 

300 19.5 22.7 1664 13/2 19.0 2.5 

400 20.26 21.6 1441 26/5 20.50 1.2 

500 20.42 21 1168 21/5 20.50 0.4 

600 20.9 20.7 922 16/5 21.1 0.9 

700 20.9 20.9 720 5/2 21.0 0.5 

800 22.0 21.6 559 9/5 22.3 1.4 

900 22.32 22.6 465 3/2 22.16 0.7 

1000 23.31 23.7 425 13/10 23.20 0.5 

 

   For uranium carbide UC, formula (1) has the following form: 

1 10 6 4 1 ( )
, (4)

( ) 3 ( ( ) ( ))UC U C

h T

T T T U C  

   
      

 

where atomic numbers are U = 92, C = 6. The result of calculations by formula (4) 

and comparison with the experiment [2], [9] is given in Table 2. Table 2 shows that 

the parameter h decreases with increasing T. The negative value of h = –1/666 at T = 

800 K requires studying the function UC =UC(h) at fixed T, that is, at fixed U and 

C.  

   The function UC =UC(h) is shown in Fig.1. This is hyperbola with shifted center to 

the point ,0
C

U

 
 
 

. UC(h) has an essential discontinuity at 
C

h
U

  . At h = 0,  

( ) / 80.UC U CU      The domain of positive UC(h) is ( , )
C

h
U

   Q, where Q is 

a set of rational numbers. Only one value of h from this domain gives the physical 

value of UC(h). The range of negative values of UC(h) is not physical.  
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   Table 2. Thermal conductivity of UC calculated over formula (4) at different temperatures. 

Thermal conductivities for pure U are taken from [8], for bulk diamond – from [5], [6]. 
exp

UC are the 

experimental values for UC taken from [2], [9]. 
theory

UC are the values obtained from (4). Relative 

errors  are calculated according to (2). 

T,  K exp ,UC
W/(m·K) 

,U
W/(m·K) 

( )
,

C diamond


W/(m·K) 

h ,theory

UC
W/(m·K) 

,  % 

300 751 27.6 1664 1/10 768 2.3 

400 691 29.6 1441 1/11 706 2.2 

500 703 31.7 1168 1/16 704.5 0.2 

600 691 34 922 1/26 691.5 0.07 

700 703 36.4 720 1/66 706 0.4 

800 703 38.8 559 –1/666 703.7 0.1 

   

 

   Figure 1. The graph of the function UC(h) is represented by formula (4) at a fixed temperature, 

and hence constant thermal conductivities U and C. Only one value of hQ gives the physical 

value of ( )UC h . 

   For uranium nitride UN, formula (1) has the following form:  

1 10 6 4 1 ( )
, (5)

( ) 3 ( ( ) ( ))UN U N

h T

T T T U N  

   
      

 

where atomic numbers are U = 92, N = 7. The result of calculations by formula (5) 

and comparison with the experiment [3] is given in Table 3. Table 3 shows that the 

parameter h is a constant at T [400, 900] K and (900, 1200] K. Therefore, we can 

describe UN as the sum of the thermal conductivities of its components: 
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   Table 3. Thermal conductivity of UN calculated over formula (5) at different temperatures. 

Thermal conductivities for pure U and N are taken from [8]. 
exp

UN are the experimental values for 

UN taken from [3], where the data are corrected to 100% TD (total density). 
theory

UN are the values 

obtained from (5). Relative errors  are calculated according to (2). 

T, K exp

UN , 
W/(m·K) 

U , 
W/(m·K) 

N , 
W/(m·K) 

h theory

UN , 

W/(m·K) 

,  % 

300 13.0 27.6 0.026 1/9 12.9 0.8 

400 14.5 29.6 0.03252 1/10 14.7 1.4 

500 15.9 31.7 0.03864 1/10 15.8 0.6 

600 17.15 34.0 0.044 1/10 16.92 1.3 

700 18.25 36.4 0.0493 1/10 18.11 0.8 

800 19.0 38.8 0.054 1/10 19.3 1.6 

900 20.0 41.3 0.0587 1/10 20.5 2.5 

1000 20.9 43.9 0.063 1/9 20.5 1.9 

1100 21.7 46.3 0.0672 1/9 21.7 0 

1200 22.3 49.0 0.0713 1/9 22.9 2.7 

 

1
( ) ( ) 1

( ) , (5 )
80

U N
UN

T T h
T

U N

 



  

   
 

 

where h = 1/10 at T   [400, 900] K and h = 1/9 at T (900, 1200] K.  

   For thorium nitride ThN, formula (1) has the following form: 

1
( ) ( ) 1 ( )

( ) , (6)
80

Th N
ThN

T T h T
T

Th N

 



  

   
 

 

where atomic numbers are Th = 90, N = 7. The result of calculations by formula (6) 

and comparison with the experiment [3] is given in Table 4. Table 4 shows that the 

parameter h gradually increases with increasing T.  

   For mixed ceramics ThxU1-xN, where x = 0.2 and 0.5, formula (1) has the following 

form: 

1

( ) (1 ) ( ) ( ) 1 1 ( )
( ) , (7)

80 (1 )

Th U N
ThUN

x T x T T h T
T

x Th x U N

  




     
    

   

 

where atomic numbers are Th = 90, U = 92, N = 7. The result of calculations by 

formula (7) and comparison with the experiment [3] is given in Table 5.  Since      
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Table 4. Thermal conductivity of ThN calculated over formula (6) at different temperatures. 

Thermal conductivities for pure Th and N are taken from [8]. 
exp

ThN are the experimental values for 

ThN taken from [3], where the data are corrected to 100% TD (total density). 
theory

ThN are the values 

obtained from (6). Relative errors  are calculated according to (2). 

T, K exp

ThN , 
W/(m·K) 

Th , 
W/(m·K) 

N , 
W/(m·K) 

h theory

ThN , 
W/(m·K) 

,% 

300 46.6 54 0.026 1/42 46.5 0.2 

400 45.24 54.5 0.03252 1/37 45.53 0.6 

500 43.9 55.1 0.03864 1/30 43.4 1.1 

600 42.7 55.8 0.044 1/27 42.5 0.5 

700 41.5 56.4 0.0493 1/24 41.3 0.5 

800 40.26 56.9 0.054 1/22 40.44 0.4 

900 39.16 57.3 0.0587 1/20 39.28 0.3 

1000 38.05 57.8 0.063 1/18 37.97 0.2 

1100 37.06 58.3 0.0672 1/17 37.39 0.9 

1200 36.06 58.7 0.0713 1/16 36.66 1.7 

 

   Table 5. Thermal conductivities of (Th0.2,U0.8)N and (Th0.5,U0.5)N calculated over formula (7) at 

different temperatures. exp are the experimental values for (Ux,Zr1-x)SiO4 taken in [3], red left 

column is for (Th0.2,U0.8)N and right blue is for (Th0.5,U0.5)N. Thermal conductivities for pure Th 

and U are taken from [8]. theory are the values obtained from (7), red left column is for  

(Th0.2,U0.8)N and right blue is for (Th0.5,U0.5)N. For h is the same coloring as for exp and theory. 

Relative errors  are calculated according to (2) and are given in brackets. 

T, K 
0.2 0.8

exp

Th U N
 , 

W/(m·K) 

0.5 0.5

exp

Th U N
 , 

W/(m·K) 

Th , 

W/(m·K) 

U , 

W/(m·K) 
0.2 0.8Th U Nh  

0.5 0.5Th U Nh  
0.2 0.8Th U N

theory  

(,%) 

0.5 0.5Th U N

theory  

(,%) 

300 17.41.8 20.11.9 54 27.6 -20/63 -10/77 17.3(0.6) 20.1(0) 

400 18.11.8 21.51.9 54.5 29.6 -20/63 -10/73 18.2(0.5) 21.5(0) 

500 19.81.8 22.52 55.1 31.7 -20/63 -10/73 19.1(3.5) 22.2(1.3) 

600 20.61.9 23.52.1 55.8 34 -20/63 -10/73 20.1(2.4) 23.0(2.1) 

700 21.32.1 24.42.2 56.4 36.4 -20/63 -10/71 21.2(0.5) 24.3(0.4) 

800 21.92.2 25.12.2 56.9 38.8 -20/63 -10/71 22.3(1.8) 25.1(0) 

900 22.52.2 25.72.5 57.3 41.3 -20/64 -10/71 22.7(0.9) 25.8(0.4) 

1000 23.22.2 26.42.3 57.8 43.9 -20/65 -10/71 23.2(0) 26.7(1.1) 

1100 23.62.5 27.02.5 58.3 46.3 -20/66 -10/71 23.5(0.4) 27.4(1.5) 

1200 24.22.2 27.52.6 58.7 49 -20/67 -10/73 24.0(0.8) 27.6(0.4) 

 

the influence of N is negligible, since N  x·Th, (1–x)·U over the entire 

temperature range, we excluded it from the calculations.  
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   Table 5 shows that the parameter h is a constant for some temperature intervals. 

Therefore, we can describe, for example, 
0.5 0.5Th U N

  as the sum of the thermal 

conductivities of its components: 

0.5 0.5

1
0.5 ( ) 0.5 ( ) ( ) 2 2

( ) , (7 )
80Th U N

Th U NT T T h
T

Th U N

  



     

    
 

 

where h = –10/73 at T   [400, 600] K and h = –10/71 at T (600, 1100] K.  

  For zirconium nitride ZrN, formula (1) has the following form: 

1
( ) ( ) 1 ( )

( ) , (8)
80

Zr N
ZrN

T T h T
T

Zr N

 



  

   
 

 

where atomic numbers are Zr = 40, N = 7. The result of calculations by formula (8) 

and comparison with the experiment [1] is given in Table 6. Since the influence of N 

is negligible, since N  Zr over the entire temperature range, we excluded it from 

the calculations.  Table 6 shows that the parameter h is a constant for some 

temperature intervals. Therefore, we can describe ZrN as the sum of the thermal 

conductivities of its components: 

   Table 6. Thermal conductivity of ZrN calculated over formula (8) at different temperatures. 

Thermal conductivities for pure Zr are taken from [8]. 
exp

ZrN are the experimental values for ZrN 

taken from [1], where the data are corrected to 100% TD (total density). 
theory

ZrN  are the values 

obtained from (8). Relative errors  are calculated according to (2).   

 

 

 

 

 

 

T, K exp

ZrN , 

W/(m·K) 
Zr , 

W/(m·K) 

h theory

ZrN , 

W/(m·K) 

,% 

300 38.2 22.7 -5/41 37.4 2.0 

370 41.0 21.9 -5/39 40.9 0.2 

470 43.0 21.2 -5/38 42.7 0.7 

570 44.0 20.8 -5/37 45.6 3.6 

670 46.0 20.84 -5/37 45.7 0.6 

770 46.0 21.4 -5/37 47.0 2.2 

870 46.4 22.3 -4/30 46.8 0.9 

970 49.3 23.4 -4/30 49.1 0.4 

1070 49.2 24.54 -3/23 48.2 2 

1170 50.3 25.7 -3/23 50.4 0.2 

1270 52.5 26.7 -3/23 52.4 0.2 

1370 52.5 27.6 -3/23 54.2 3.2 
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1
( ) ( ) 1 3 / 23

( ) , (8 )
80

Zr N
ZrN

T T
T

Zr N

 



  

   
 

 

at T   [1070, 1370] K. 

 

4. Conclusion 

   We have applied number theory to describe the thermal conductivity of carbides 

and nitrides of Zr, Th and U as a function of temperature. We used the same formula 

obtained in our previous work for oxides and silicates of Zr and U. The parameter h 

included in the formula (1), which is related to the crystal structure of ceramics, 

turned out to be constant in some temperature ranges, which made it possible to write 

the thermal conductivities of the ceramics in terms of the sum of the thermal 

conductivities of its components. Our next step is to describe the behavior of h as a 

function of temperature dependent lattice parameters. This will make it possible to 

describe the thermal conductivity of nuclear ceramics as the temperature changes in 

terms of the thermal conductivities of its components over the entire temperature 

range. 
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