
Article

Not peer-reviewed version

Improved Prediction of Antisense

Oligonucleotide Efficacy for Exon

Skipping Using Ensemble

Learning and Feature Selection

Alex Zhu , Shuntaro Chiba , Yuki Shimizu , Katsuhiko Kunitake , Yasushi Okuno , Yoshitsugu Aoki ,

Toshifumi Yokota 

*

Posted Date: 22 March 2023

doi: 10.20944/preprints202303.0389.v1

Keywords: antisense oligonucleotides; exon skipping; machine learning; ensemble learning; personalized

medicine; n-of-1 therapy, splice switching; genetic disease; splicing; RNA

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2756406
https://sciprofiles.com/profile/584488
https://sciprofiles.com/profile/49477


 

Article 

Improved Prediction of Antisense Oligonucleotide 

Efficacy for Exon Skipping Using Ensemble Learning 

and Feature Selection 

Alex Zhu 1,2, Shuntaro Chiba 3, Yuki Shimizu 4, Katsuhiko Kunitake 5, Yasushi Okuno 3,4, 

Yoshitsugu Aoki 5 and Toshifumi Yokota 2,* 

1 Phillips Academy, 180 Main St, Andover, MA 01810, USA; azhu23@andover.edu or azzhu@ualberta.ca 
2 Department of Medical Generics, University of Alberta Faculty of Medicine and Dentistry, 8613-114 St, 

Edmonton, AB, Canada 
3 HPC- and AI-driven Drug Development Platform Division, RIKEN Center for Computational Science, 

Yokohama 230-0045, Japan; shuntaro.chiba@riken.jp (S.C.); okuno.yasushi.4c@kyoto-u.ac.jp (Y.O.) 
4 Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto 606-

8507, Japan; Shimizu.yuki.75s@kyoto-u.ac.jp 
5 Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and 

Psychiatry (NCNP), Kodaira, Tokyo 187-8551, Japan; kunitake-k@ncnp.go.jp (K.K.);  

tsugu56@ncnp.go.jp (Y.A.) 

* Correspondence: toshifumi.yokota@ualberta.ca 

Abstract: Antisense oligonucleotide (ASO)-mediated exon skipping has become a valuable tool for 

investigating gene function and developing gene therapy. Machine learning-based computational 

methods such as eSkip-Finder have been developed to predict the efficacy of ASOs via exon 

skipping. However, these methods are computationally demanding, and the accuracy of predictions 

remains suboptimal. In this study, we propose a new approach to reduce computational burden 

and improve prediction performance by using feature selection within machine learning algorithms 

and ensemble learning techniques. We evaluated our approach using a dataset of experimentally 

validated exon skipping events, dividing it into training and testing sets. Our results demonstrate 

that using a 3-way voting approach with random forest, gradient boosting, and XGBoost can 

significantly reduce computation time to under ten seconds while improving prediction 

performance, as measured by R2 for both 2′-O-methyl nucleotides (2OMe) and phosphorodiamidate 

morpholino oligomers (PMOs). Additionally, the feature importance ranking derived from our 

approach is in good agreement with previously published results. Our findings suggest that our 

approach has the potential to enhance the accuracy and efficiency of predicting ASO efficacy via 

exon skipping. It could also facilitate the development of novel therapeutic strategies. This study 

could contribute to the ongoing efforts to improve ASO design and optimize gene therapy 

approaches. 

Keywords: antisense oligonucleotides; exon skipping; machine learning; ensemble learning; 

personalized medicine; n-of-1 therapy; splice switching; genetic disease; splicing; RNA 

 

1. Introduction 

Antisense oligonucleotides (ASOs) are small single-stranded nucleotides that target specific 

mRNAs by binding to their sense strand through Watson-Crick base pairing, which can be employed 

to modulate gene expression through various mechanisms [1]. The therapeutic potential of ASOs was 

recognized in the 1970s [2]. However, unmodified ASOs have limited plasma persistence [3]. ASOs 

have gone through three generations, with improved stability and binding affinity due to modified 

sugar moieties, bases, and phosphodiester linkages [4]. For example, 2′-O-methyl nucleotides (2OMe) 
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and phosphorodiamidate morpholino oligomers (PMOs) are 2nd and 3rd generation ASOs, 

respectively [4] . 

ASOs modify target mRNA expression through two main mechanisms: RNase H-dependent 

cleavage and steric block [5]. RNase H-dependent ASOs, designed as gapmers, bind to the target 

RNA and trigger cleavage by the endogenous RNase H enzyme, leading to target gene silencing [6–

8]. Steric blocking ASOs, on the other hand, are often employed to specifically exclude (exon 

skipping) or retain (exon inclusion) a specific exon(s), leading to alternations in splicing decisions 

[2,9]. 

Exon skipping, where an ASO causes the exclusion of a specific exon in splicing, has emerged 

as a promising treatment for genetic diseases, especially muscular dystrophies. US Food and Drug 

Administration has approved multiple exon-skipping ASO treatments for Duchenne muscular 

dystrophy (DMD), including eteplirsen, golodirsen, viltolarsen, and casimersen [10–13]. Exon 

skipping has shown promising potential as a treatment option for many genetic diseases beyond 

DMD. Splicing defects are a common cause of many genetic diseases, and exon skipping can be used 

to restore proper splicing by skipping over faulty exons. Milasen, a patient-customized n-of-1 ASO 

drug targeted for a pseudoexon in the CLN7 gene, was recently approved by the FDA for the 

treatment of Batten’s Disease, demonstrating the potential of exon skipping for personalized 

medicine [14,15]. Exon skipping therapies are also being explored for other genetic diseases such as 

cystic fibrosis, retinitis pigmentosa, sarcoglycanopathy, dysferlinopathy, fibrodysplasia ossificans 

progressiva, epidermolysis bullosa, frontotemporal dementia and parkinsonism linked to 

chromosome 17 (FTDP-17), and cancer, among others [15–34]. 

Despite these promising developments, there are still significant challenges in developing 

effective exon-skipping therapies. A major hurdle is a difficulty in selecting an optimal sequence for 

exon skipping, as the efficacy of ASOs is often unpredictable due to numerous factors involved in the 

exon-skipping process [35]. Designing effective ASO sequences requires consideration of various 

criteria [36], particularly for exon skipping [37]. Software tools such as eSkip-Finder can aid in this 

process [38]. eSkip-Finder (https://eskip-finder.org) is a web-based tool developed by Chiba et al. that 

provides a solution for identifying optimal ASO sequences for exon skipping by using machine 

learning models built from a curated database of publications and patents [38]. 

The selection of important features is a crucial step in the tool’s approach, and the eSkip-Finder 

uses an exhaustive search of subsets of features to identify these critical components. However, due 

to the high computational cost, the subset size was limited to seven features. To optimize the 

performance of the models, hyperparameters in the support vector regressor are optimized through 

a grid search. This optimization process is computationally intensive, requiring a significant amount 

of computing power, and can take several days to complete. 

This paper seeks an alternative solution to reduce the computational cost associated with the 

eSkip-Finder. Some machine learning algorithms such as decision-tree or random forest have built-

in feature ranking capabilities [39]. Ensemble methods are also proven to have good performance 

with reasonable computation cost [40,41]. We explored their utility in ASO efficacy prediction and 

demonstrated that a combination of three algorithms, namely random forest, gradient boosting, and 

XGBoost, through a 3-way voting mechanism can significantly reduce computation time while 

maintaining or slightly improving the prediction performance. This approach offers a promising 

solution for reducing computational cost in the ASO efficacy prediction process. 

2. Materials and Methods 

The datasets used in this study were the same as those used in Chiba et al. [38]. That is, for PMO, 

369 and 57 measurements were used for training and testing and there were 98 and 11 unique ASO 

sequences in each split without overlapping; for 2OMe, 197 and 31 measurements were used for 

training and testing and there were 111 and 13 unique ASO sequences in each split without 

overlapping. As PMO and 2OMe have different chemistry thus different binding affinity, the datasets 

were handled separately. 
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For each measurement, there were 32 numerical features calculated via bioinformatics tools as 

discussed in Chiba et al (such as dose). The categorical feature, Malueka’s category, was excluded 

from modeling. As reported in [38]. this feature is not important in determining the ASO efficacy. 

The feature was specifically linked to dystrophin exons [42]. Models developed with this feature 

included will be difficult to generalize to other genes. 

The efficacy was measured as a percent in the range 0 to 100. The efficacy is the value to predict, 

making this a regression problem. All 32 features were inputted into the machine learning models 

and feature selection was left to the models. 

The machine learning libraries included scikit-learn (0.42.2) [43] and XGBoost (1.6.1) [44]. The 

following regressors were used: support vector, random forest, gradient boosting, and XGBoost. The 

last three were also used to vote by the simple average of the individual predictions. The support 

vector regressor was included for comparison purpose, as it was used in Chiba et al. All those 

regressors were built without hyperparameter tuning, i.e., default parameters were used in each 

regressor (except random seeds). The computation code was developed using Python (3.9.7) on Mac 

(Quadcore i5, 2 GHz CPU, 16 GB RAM). 

Two metrics were used to assess model performances: R2 and mean absolute error (MAE) 

between true efficacy values and predictions. The models were first assessed on the training data via 

10-fold cross-validation. The best model was then selected and applied to the reserved test data. The 

R2 and MAE on each fold were collected and their mean and standard deviation were further 

computed to aid the best model selection. 

While the random forest, gradient boosting, and XGBoost models were trained, they also 

collected data to compute the feature importance score. The voting regressor had no feature 

importance score, however. We therefore used the model-agnostic method, permutation feature 

importance provided by scikit-learn, to rank the feature importance. 

3. Results 

The performance metrics for various models using 10-fold cross-validation on the training data 

are shown in Table 1. 5-fold and 20-fold cross-validations were also attempted and the results were 

similar to what was reported here. The data splitting was based on ASOs, i.e., there were no 

overlapping ASOs in training and validation splits. As can be seen from Table 1, for both PMO and 

2OMe ASOs, the 3-way voting approach gives the largest R2 and smallest mean absolute error (MAE). 

We thus chose this approach and applied it to the test datasets. The support vector regressor 

performed noticeably poorly as there was no hyperparameter optimization in the current study. It 

shall also be noted that the whole computing took about 10 seconds on a laptop computer. 

Table 1. Model performance assessed on training datasets with 10-fold cross-validation. 

Methods 
PMO 2OMe 

R2 MAE R2 MAE 

Support Vector 0.138 ± 0.076 22.06 ± 4.02 0.558 ± 0.093 17.70 ± 5.32 

Random Forest 0.555 ± 0.247 15.39 ± 4.84 0.729 ± 0.169 10.59 ± 3.31 

Gradient Boosting 0.564 ± 0.234 14.97 ± 4.58 0.721 ± 0.152 10.13 ± 2.77 

XGBoost 0.530 ± 0.214 15.58 ± 3.87 0.717 ± 0.164 10.56 ± 3.49 

3-way Voting 0.576 ± 0.244 14.87 ± 4.63 0.740 ± 0.157 10.07 ± 3.29 

The uncertainty represents standard deviation of 10-fold cross validation. 

When the 3-way voting models, trained on the training data with all features, were applied to 

the test data, the predictions were similarly assessed. For PMO, we have R2 = 0.706 and MAE = 12.25, 

and for 2OMe, R2 = 0.795 and MAE = 9.237. The R2 values are higher than those reported [38], which 

were 0.6 and 0.7 respectively. The true efficacy and predicted one have a good linear correlation, as 

depicted in Figure 1. It shall be noted that, unlike the support vector regressor which can generate 
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unrealistic, negative efficacy values, the 3-way voting approach will not possibly predict a negative 

efficacy as long as the input data has no negative efficacy. 

 

 

Figure 1. Predictive performance of 3-way voting for PMO (left) and 2OMe (right) ASOs. When the 

3-way voting approach was applied to the test data, we observed improved predictive performance 

for both PMO and 2OMe AOs compared to previous studies. 

The feature importance ranking using the training data as reported by the 3-way voting is shown 

in Figure 2. The rankings using the test data are similar on top-ranked features, suggesting that 

overfitting is not a concern. Among top 5 and 10 features using training or test dataset, 3 and 8 are 

common for PMO and 4 and 9 are common for 2OMe. The 4 PMO features used in Chiba et al. here 

were ranked at 1, 24, 11, and 15. The 6 2OMe features used in Chiba et al. here were ranked at 2, 25, 

4, 3, 17, and 11. In both cases, some correlation can be observed. We also noted that some features 

were strongly correlated, e.g., niscore and niscore_per_base. Niscore_per_base was ranked 17th, but 

niscore was ranked 5th in our 2OMe model. Therefore, at least some discrepancies can be attributed 

to the feature correlations. Due to the randomness in the algorithms, the rank order can be slightly 

different in each run. 
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Figure 2. Feature importance as determined by the 3-way voting method. The feature importance 

scores for PMO and 2OMe are displayed on the left and right sides of the figure, respectively. Higher 

scores indicate greater importance of the feature for predicting exon skipping efficacy. 

To check if the voting approach works for different genes and exons, we applied the trained 

PMO model to the exon 73 skipping of collagen type VII alpha 1 chain [9]. The results are summarized 

in Table 2. The predictions by the voting approach preserve the ranking order of ASO efficacy 

experimentally measured. Cautions must be taken when one extends the model to a different 

application domain, however. As more data is accumulated in databases such as eSkip-Finder, we 

expect predictive models will be validated rigorously and extended as needed. 

Table 2. Prediction of exon 73 skipping of collagen type VII alpha 1 chain using PMOs. 

ASO Name Voting predicted eSkip predicted Experimental [14] 

H73A(+16+40) 63% (ranked #1) 60% (ranked #1) 100% (ranked #1) 

H73A(+16+35) 37% (ranked #3) 23% (ranked #3) 40% (ranked #3) 

H73A(+21+40) 42% (ranked #2) 48% (ranked #2) 85% (ranked #2) 
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4. Discussion 

We applied machine learning algorithms with built-in feature selection capabilities to train on 

and predict exon-skipping PMO and 2OMe ASO efficacy. The model build process requires much 

less time. Among various algorithms assessed, the voting strategy yielded the best-performing 

predictors in terms of R2 and mean absolute error (MAE) between the true and the predicted efficacy. 

R2 were 0.706 (PMO) and 0.795 (2OMe), which were slightly higher than were reported [38]. The MAE 

was also reported as a reference. This observation on the voting approach was consistent with the 

general consensus in the machine learning community. Due to the model itself, no negative efficacies 

are predicted in our approach, whilst the support vector regressor does not have this guarantee. 

Important features used in our approach were similar to what eSkip-Finder discovered. Features 

used by Chiba and colleagues were overall ranked high in our voting approach and some differences 

can be explained by feature correlations. Thus, our modeling approach has similar interpretability. 

As mentioned above, the voting approach predicts non-negative efficacies as long as there are 

no samples with negative efficacies in the training data. However, this can be a drawback, i.e., the 

approach will not predict any efficacies larger than the highest efficacy in the training data, since 

decision trees are used essentially in the individual algorithms. This potential limitation can be easily 

remedied by collecting training samples with large efficacies. 

The proposed voting approach has a very short training time. We believe that the same approach 

might be applicable to developing predictive models for other diseases where ASO efficacy data is 

available. The voting scheme still relies on engineered features scientists hand-picked. As a possible 

future extension, one could consider machine learning algorithms in combination with natural 

language processing techniques, which has been successfully applied to biological sequence analysis 

[45]. 
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