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Dhabi, United Arab Emirates; am10485@nyu.edu or sasha.migdal@gmail.com

Abstract: We study the Kelvinons: monopole ring solutions to the Euler equations, regularized as
the Burgers vortex in the viscous core. There is finite anomalous dissipation in the inviscid limit.
However, in the anomalous Hamiltonian, some terms are growing as logarithms of Reynolds number;
these terms come from the core of the Burgers vortex. In our theory, the turbulent multifractal
phenomenon is similar to asymptotic freedom in QCD, with these logarithmic terms summed up
by an RG equation. The small effective coupling does not imply small velocity; on the contrary,
velocity is large compared to its fluctuations, which opens the way for a quantitative theory. In the
leading order in the perturbation theory in this effective coupling constant, we compute running
multifractal dimensions for high moments of velocity circulation, in good agreement with the data
for quantum Turbulence and available data for classical turbulence. The logarithmic dependence
of fractal dimensions on the loop size comes from the running coupling in anomalous dimensions.
This slow logarithmic drift of fractal dimensions would be barely observable at Reynolds numbers
achievable at modern DNS.

Keywords: turbulence; multifractals; anomalous dissipation; fixed point; velocity circulation; Burgers
vortex; asymptotic freedom

0. Introduction

In 1948 Burgers discovered his vortex solution to the Navier-Stokes equations [1]. This exact
stationary solution with cylindrical geometry had an anomalous dissipation (a finite dissipation at
vanishing viscosity).

It should have been a breakthrough in the theory of turbulence. Instead, a phenomenological K41
theory by Kolmogorov and Obukhov [2] dominated the turbulence studies for the next 80 years, while
the Burgers’ discovery was almost forgotten.

While qualitatively describing some important turbulence features, the K41 scaling laws led the
microscopic theory to a dead end.

The main question: How is the inviscid Navier-Stokes theory different from the Euler theory
was unanswered, nor were the other nascent questions like what is the microscopic mechanism of the
spontaneous stochasticity?

In the last few years, there has been some progress in understanding the role of the singular
topological solutions of the Euler equations, with Burgers solutions resolving singularities. This
progress was inspired by the geometric approach to turbulence initiated in the 80-ties and 90-ties [3-6],
leading to the area law prediction [5].

This prediction was verified recently in DNS [7,8], which triggered a flux of new studies in the
geometric theory of turbulence.

This work was recently revised and summarized in a review paper [9].

Based on initial comments, the details of this theory will take time for the turbulent community to
process. The theory will likely need to be further explained, discussed, and split into smaller sets that
can be advanced separately.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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There are many subtleties to be clarified, some minor corrections to be made, and some questions
to be answered. Also, there are more data to compare with the Kelvinon theory and the Loop equation
solutions.

1. Trying to bend the Burgers cylindrical vortex into a torus

Let us start with the Burgers vortex solution of the Navier-Stokes equation:

U={—ax—g(r)y, —by+g(r)x,cz+d}; (1a)
&=1005 T4, (1b)
Crz
(1 - 641/> I'p
g = ——_—5— (1c)
r=1/x2+y>% (1d)
a=b=c/2; (le)

This solution describes an infinite cylinder with vorticity decaying as a Gaussian with the width
w=+2v/c; )

This constant ¢ represents the strain $ in the direction of the symmetry axis.

c=1-$-F 3)
t={0,0,1}; 4
R dgUy + 0,0 )

§ = |1Sugll = L= = diag (—a,~b,c) ©)

The parameter I'p represents the circulation in the closed loop surrounding this axis far from its
center. By the Stokes theorem, this circulation reduces to an area integral over the surface bounded
by this loop, which tends to I'p in the limit when the radius is much larger than the width w of the
vorticity core.

This relation can be directly verified by integrating Burgers velocity around the contour and
neglecting exponential terms in g(r).

It is also straightforward to compute anomalous dissipation

LcT?
E=v / reo e (6)

where L — oo is the length of the cylinder.

Let us try to compactify the Burgers vortex by bending a cylinder into the torus. Consider a
circular vortex line with a radius R much larger than the thickness w of the viscous core.

Locally, at the distances from the core r ~ w, the torus is equivalent to the cylinder, up to higher
order terms in w/R.

At larger distances, the vorticity is equivalent to the delta function in the cross-section plane, and
velocity is purely potential. It adds up from a linear term and a singular term

&(7) — Tpto(x)é(y); -
Z_J“(_’) — (—ax, —by, cz) + EM ®)

2 X242
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An important property of the Burgers solution is that the strain tensor (5) is constant and has no
singularities in the inviscid limit, unlike the rotational part of velocity. This constant strain represents
the local value of the nonsingular Euler strain outside the vortex core, continued inside the tube..

The invariant formula for the inviscid limit of vorticity would be the line integral (with [ being
the length of the line)

@() = § aCrs (157~ C(1); ©
'l =1 (10)

When the point 7 approaches some point C(ly) at the loop, the loop integration cancels the delta
function, and one recovers the Burgers delta function in the xy plane.

@(7) = C'(Io)Tp(l0)d(x)é(y); (11)
C'(lp) = (0,0,1); (12)

In the linear vicinity of a point C(ly) at this loop, we use the Burgers solution with z = I — [y to
find the derivatives

Ty =0; (13a)
o (6(1)) =3 (6(1)) E; (13b)

The velocity field here is taken at the loop C, which is a center of the Burgers core.
There is an important boundary condition for the strain tensor at the loop

A

s(Cm)-¢ay =y (14)

In general, the eigenvalue ¢(!) depends on the point [ at the loop, as the strain could be a function of
coordinates and the loop changes direction. This eigenvalue must be positive.

This boundary condition is an analog of the CVS conditions [9] (confined vortex surface) relating
the vortex sheet shape and the boundary value of the strain. In the case of the vortex sheet, this relation
imposed restrictions on a surface shape, as the Euler strain did not have any free parameters to adjust.

In the case of the loop, these restrictions can be treated as extra boundary conditions on the more
complex Euler flow outside the tube, as we shall see in the next Sections.

These restrictions are quite strong. In the case of a curved loop we are looking for, the constant
strain cannot have the loop tangent vector C'(1) as its eigenvector.

Unlike the Burgers formulas, these relations (13) are parametric invariant and do not depend on
the coordinate frame. This invariance makes them correct generalizations of Burger’s solution to an
arbitrary smooth loop.

These equations can be readily integrated

I'p(I) = const; (15)

3(7eC)= [ §(7) a7 (16)

We found a parametric invariant vector integral of the strain along the loop. Another way to
derive this formula is as follows:

#7eC)= [ dF Vi) =
C
7 7
d?’~§(?’)+/ a7 x &(7) (17)
C C
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The second term here vanishes because the vorticity at the loop @& () is aligned with its tangent vector
dr’.

From this relation, by integrating by parts, one can derive the following exact relation for the
circulation over the large loop C

C C C

In virtue of the eigenvalue equation, this is also equivalent to

—

Te = —j{cdl@’(l) E(D)e()) (19)

The generalization of Burger’s anomalous dissipation is also straightforward [9]:

rz 2o A A 2
_T s.&m =B 2
£ 8n7§cdlc (1)-8-C) =2 7§Cdlc(l) 20)

The problem we are facing is related to the strain. As we have seen, it cannot be a constant tensor
(its highest eigenvector must be equal to the local direction of the loop everywhere).
The generic Euler (singular) velocity field, corresponding to the above singular vorticity line,
reads
PR I'p = ar’
The harmonic potential ®(7) must be such that the strain at the loop
Sup (C(Z)) L 3:95® (C(Z)) (22)

has the local tangent vector C'(1) as its main eigenvector at every point on the loop.

This main eigenvalue ¢ must be positive. Two lower eigenvalues —a, —b do not have to be equal,
as a further study of the Burgers vortex revealed. As Moffat et al. [10] have found, the vortex solution
for a general non-axisymmetric strain tends to the symmetric Burgers solution in the turbulent limit
|F B| >v.

We are only interested in that limit; therefore, we can skip the requirement of equal lower
eigenvalues.

So, is this it? A weak Euler flow regularized by a Burger vortex core? Not so fast.

This solution would not be valid for an arbitrary smooth loop C because, in general, the eigenvalue
condition will not hold.

We are unaware of any theorems that would prove the existence of the harmonic potential with
the prescribed main eigenvector of its Hessian S,z on a closed loop C in space. Presumably, such a
harmonic potential does not exist for an arbitrary (or even smooth) loop.

2. Matching principle and anomalies in the Euler Hamiltonian
The stationary solution we are looking for must minimize the Hamiltonian

272

2 (23)

In our case of the singular velocity field, we have to split this energy integral into two parts:
inside and outside a thin tube 7" surrounding the loop C. The radius R of a local cross-section of the
boundary 97 of this tube must be much larger than Burger’s thickness w but much smaller than the
local curvature radius R¢ of the loop C.
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Under these conditions, the inside of the tube is described by a cylindrical Burgers vortex, while
the outside is some Euler flow in the remaining space G = R3\ 7. This remaining space has the
topology of the full torus, the same as 7. We understand the space R is compactified as a sphere S°
by including the infinity.

At the surface of the tube and its vicinity, for the whole range w < R < Rc, there must be a
match of the inside Burgers flow up to higher order corrections in w/ R with the (yet unspecified) Euler
flow up to R/ R¢ corrections.

This requirement is a particular case of the matching principle, which we suggested first for the
vortex sheets, and then for the vortex lines (see [9] and references to earlier work within).

Thus, the Hamiltonian can be written as the sum of two terms

2 =2
_ [ %8
H= [ Fe 5 (24)
The last term is an anomaly, calculated in [9]. Up to negligible power corrections in R/Rc, w/R
2 2 2
Ry c(l )R
2 " 8n ]{ dl ('y + log ; (25)
cu)::c%o.ﬁ(ca))-cmm (26)
The term with log R
I
2 fc dllog R 27)

is canceled by a similar term coming from the Euler field. This cancellation is a consequence of the
matching conditions, as discussed in [9]. Here are these calculations. Taking the derivative in R, we
find the contribution of the surface 07

T 1—'B (_yl X, 0) .
UE(]") — E xz +y2 7 (28)
— 2
vE U I's / 27‘( f
_ YE _ 2
R |52 /aT 2 7 Tan2 R (29)

which adds up to zero with the derivative of the above log R term. Therefore, the sum of these two
terms in the Hamiltonian does not depend on R ( up to neglected power corrections).

As a result of this independence, we can take a limit R — 0 in the regularized Euler part and
finally find the anomalous Hamiltonian

H=Hp + del( (l)|C|2>; (30a)

2
Hr = Jim (/ n B|C| og|§|z>; (30b)

The flow ¥(7) minimizing this Hamiltonian has the common flaw of all Euler flows (except
topological ones): it continuously scales down to zero 7 = 0,I'p = 0 by changing the scale of the
velocity field.

Therefore, the zero velocity provides the absolute minimum of the Hamiltonian unless there are
some topological restrictions on a flow, preventing continuous scaling to zero within a topological
class.

doi:10.20944/preprints202303.0383.v4
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3. Topological Euler Flow

3.1. The Faddeev variables

The way to build topological solutions to the Euler equations was discovered in the eighties [11,12].
These are spherical Clebsch or Faddeev variables, as we suggested in [9]. These variables are elements
of 2-sphere geometrically, 3D rigid rotators in the Hamiltonian dynamics, or the S? sigma model in the
statistical field theory language.

The vorticity is locally parametrized as

@ = %Zeabcsﬁsb x VS; (31)
ST +S83+855=1; (32)

where Z is some parameter with the dimension of viscosity, staying finite when v — 0.
One could use various coordinates on the sphere. In particular, there are canonical coordinates

$1 = ZS3; (33)
¢2 = arg (S1 +152); (34)

With these coordinates, the vorticity becomes parametrized as with the ordinary Clebsch variables
0= @4)2 X 64)1 (35)

except these two variables ¢, ¢ vary on a rectangle —Z < ¢ < Z, —7 < ¢p < 7 rather than the
whole plane Rj.

The Euler equations are then equivalent to passive convection of the Clebsch field by the velocity
field (modulo gauge transformations, as we argue in [9]):

ipa = —7- Ve, (36)
. N
7= (92V1) (37)
Here V- denotes projection to the transverse direction in Fourier space, or:
Vg (')
Ly — 3. P

le (7’) = Va(r) +aaaﬁ; /d r m (38)

As we can see from this representation of velocity, it has a gap
AT(S) = 2tnVe; (S) (39)

at the surface where the phase ¢, has the gap A¢, = 27n.

3.2. Boundary conditions at the surface and its edge

This surface is bounded by a singular line C where the angular velocity in the transverse plane
diverges as 1/, preserving a finite circulation for an infinitesimal dual loop JC encircling C (Figure 4).

There is only a tangent discontinuity of velocity at the surface S¢ \ C, coming from the delta
function in vorticity. The boundary values are

doi:10.20944/preprints202303.0383.v4
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@ — 2mné(2)F x Vo (40)
7t — 7 =2mnVey; (41)
Sy =53; (42)
¢y = ¢, —27mn; (43)
wi =wy, =—0-Voi x Vi (44)

Here 7 is the local normal vector to the surface, and z is the normal coordinate.
The velocity gap must vanish at the edge of the surface, which requires the boundary condition

VS3(C) =0; (45)

On a simple surface with a boundary dS = C, as a consequence of incompressibility, the velocity would
be directed along the edge, i.e., the velocity v, along the inner normal to the loop will vanish

on = 3(C(1)) - C"(1)/ ‘é"(z)‘ 20 (46)

However, our velocity is singular at the edge, and the Euler solution only applies outside a thin
tube surrounding C. We must match this velocity with the Burgers solution at the surface of this tube
(see Figures 2 and 3).

It remains a computational problem to build a full velocity field, at least for the simple example
of a flat circle C; here, we just sketched the flow using its general properties, which follow from our
equations. These parametric 3D plots were created in [13] with Mathematica® by solving the model
particle motion equation in a velocity flow with the Kelvinon topology and geometry.

The singular rotational part of Euler velocity 7y = 2%3, (matching the Burgers vortex inside) will
contribute to the "normal inner" velocity v, at the junction with the tube; the result will depend on the
angle B in this plane normal to C’ and diverge in the Euler limit.

Together, the rotational and axial flow inside the tube and inside the vortex sheet results in a
spiral motion, as shown in Figure 2. In Figure 2, the thin spirals inside the green vortex sheet are
tangent to both sides. Each spiral’s big (alpha) cycle leads to vorticity normal to the vortex sheet,
responsible for the circulation I'c. The small (beta) cycles of each spiral correspond to rotation around
the local direction of the spiral, which corresponds to large tangent vorticity inside the vortex sheet.

In addition, there is an Euler flow outside the tube, which follows the Burgers spiral, but cannot
penetrate the vortex sheet, as the normal velocity vanishes at both sides. Therefore, the rotational
motion around the small cross-section of the torus does not go through the vortex sheet.

The external flow is sketched in Figure 3. Vorticity points in a local direction of each spiral; the
rotation velocity is orthogonal to vorticity, and the potential part of velocity is parallel to vorticity,
providing helicity. The tornadoes are attached to the vortex sheet providing the spiral motion of
particles towards the vortex sheet on both sides, separate from the spiral motion around the Burgers
tube (see discussion below).

One can see that the circulations I'c, I'p have opposite signs, in agreement with the Kelvinon
theory. The tornadoes can only move towards the vortex sheet as the negative normal strain S,,; < 0
leads to the exponential decay of the normal distance z o« exp (¢S, ). Therefore, the tornadoes rotate
clockwise, corresponding to negative circulation I'c, screwing the flow onto the surface in Figure 3.

The velocity in the center of the spiral flow around the tube also goes clockwise to provide
negative I'c, but this makes the circular motion in the cross-section plane go anticlockwise, meaning
positive circulation I's. Note that the trajectories are tangent to the vortex sheet at the surface. Vorticity
points in a local direction of each spiral; the rotation velocity is orthogonal to vorticity, and the potential
part of velocity is parallel to vorticity, providing helicity.

The rotation of tornadoes on both sides must be directed towards the sheet, pressing the flow
particles to this sheet on both sides. With some thinking, it becomes clear that the spiral motion around
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the tube cannot flow into the tornadoes on both sides — it is either one or another tornado that will rise
particles from the surface instead of moving them to the surface as stability requires.

The only way out of this topological puzzle is the following scenario. The external spiral motion
around the tube never connects to tornadoes; these tornadoes bring the flow from infinity to each side
of the vortex sheet independently of the spirals around the tube.

These spirals make a full circle around, passing through the inner side of the tube adjacent to the
sheet. The normal to-the-sheet velocity does not vanish in this region; instead, there is still a rotational
movement around the tube.

The cross-section of this flow is shown in Figure 1.

Figure 1. The cross-section of external flow. The green horizontal line is a cross-section of the vortex
sheet, the small red dots are the tube cross-sections, the ovals are the spiral particle trajectories projected
on the xy plane, and the blue vertical spirals are tornadoes.

Figure 2. Inner Navier-Stokes flow. The idealized spiral motion of liquid particles around the axial
vortex line inside the vortex tube (transparent yellow) and vortex sheet (transparent green). The
thickness of the vortex sheet and the vortex tube is magnified compared to the turbulent regime we are
studying. We trace 25 particles with different colors.
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Figure 3. Outer Euler flow. The idealized spiral motion of liquid particles around the axial vortex line
outside the vortex tube (solid yellow) with the tangent velocity boundary conditions at the vortex
sheet (solid green). This flow goes around the tube, sliding along the surface on each side rather than
passing through it. The thickness of the vortex sheet and the vortex tube is magnified compared to the
turbulent regime we are studying. We trace 25 particles with different colors.

Let us note in passing that this singular tube and change of the Neumann boundary conditions at
the edge invalidate the conditions of the de Lellis-Brue theorem in our case.

This theorem [9], in particular, claims that the surface Laplacian cannot be positive at the whole
disk-like vortex sheet if the velocity is nonsingular and tangent to the edge.

We need this positivity for stability, as it was argued in [9] as part of the CV'S conditions.

Let us come back to our boundary conditions.

The potential velocity part enters the strain near the loop and has no singularity.

The true boundary condition is an eigenvalue requirement (14).

The analogous CVS conditions [9] for the vortex sheet were equivalent to the velocity gap being a
null vector of a boundary strain at the surface

S-AT=0. (47)

The shape of the vortex sheet in [9] was fixed by this requirement, up to a few parameters.

We expect the same relation here to provide the same vortex sheet stability.

However, the velocity gap vanishes at the boundary, so this relation does not fix the boundary
value of the strain. The eigenvalue requirement represents this missing condition at the edge of the
discontinuity surface.

We conjecture that in the case of the Kelvinon, the shape of the discontinuity surface is determined by (47)
inside, plus (14) at the edge.

Note that here we deviate from our old hypothesis [14-17] that the shape of the discontinuity
surface minimizes its area.
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This minimal area would be an asymptotic solution of the loop equation at large smooth loops [9],
but not the exact shape of the discontinuity surface at an arbitrary loop.
Note also that as a consequence of (14), the eigenvalues of a strain at the surface have a form of

diag (—A(7),0,A(7)) (48)

The highest eigenvalue A(¥) > 0 has the eigenvector in the tangent plane of the surface, orthogonal
to the velocity gap (41), as it follows from (47) and stability requirement (the normal component of
strain at the surface must be negative).

Thus, if the velocity gap is orthogonal to the surface edge near the edge, the leading eigenvector
of the strain would indeed be directed along the loop, as we required.

This condition is compatible with the fact that VS3 vanishes linearly near the edge

—

VS3(F = C(lp)) o< (F— C(lo)); (49)
A7 — C(lp)) = 2mnZVSs o (7 — C(l)) L C'(ly); (50)

The last relation follows from the fact that C(1y) is the nearest point at the edge to the point 7 € S,
which leads to

(7 —C(l))* « C'(Ip) - (F— C(lp)) = 0 (51)

It would be very interesting to find the Kelvinon solution for the flat circular C, where the
discontinuity surface is the unit disk D?.

Figure 4. The dual loop (red) encircling the monopole ring (blue). The Burgers vortex resolves the
singular vortex line.

3.3. The mapping onto a disk on a sphere

This tube cross-section’s boundary 6C is mapped on the loop 7 on S?, covered n times.
Topologically, a circle is mapped on a circle with homotopy 711 (S;) = Z.

The circulation féc v, dry is related to the vorticity flux through the tube’s cross-section, which
equates it to the Burgers parameter I'p.

The circulation around a loop on a 2-sphere equals the area of one of two complementary spherical
caps Q+; 004+ = v, depending upon the orientation of v, i.e., the sign of the winding number # (see
Figure 5).

doi:10.20944/preprints202303.0383.v4
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< @

Figure 5. The regions at Q4 € S?, with opposite orientations of the boundary loop 9Q+ = 7. The
areas |2+ | add up to 47

In our coordinates, this loop 7y is some horizontal circle S3 = cos A = const .

Iy = j{ Vdry = / ddy Ndpy = 2mtnZ(1 — signncos A); (52)
6C (QFS

The boundary value of S3(C) = cos(A) remains as a constant parameter of our Clebsch field, to
be determined later from the minimization of the Hamiltonian.

There is, of course, a possibility to get zero circulation (and, therefore, zero velocity, in case Z = 0
or cos A = signn).

Let us now turn to the circulation I'c around the original loop. In the same way, as with the
Burgers circulation I'p, this circulation can be written as a vorticity flux through some Stokes surface
bounded by the loop and passing through the Euler region.

A small part of this surface will pass through the Burgers tube. As the vorticity inside the Burgers
tube is directed towards its axis, we can choose this surface to pass this tube in the local tangent plane
to the loop. The normal to this local tangent plane 7 || C'(I) x C”(I) is orthogonal to the direction of
the vorticity @ || C'(I).

Therefore, the flux is determined solely by the vorticity in the Euler region, which means that the
singular-line solution (21) with potential flow outside the loop does not provide a finite circulation I'c.

This requirement is the ultimate reason for the topological solution.

There is no contradiction at this level with the Clebsch field, but there is an interesting relation
based on the Stokes theorem.

Let us compute the Euler flux through the discontinuity surface on the upper side St

The flux through the surface is

I'c= / do- ot = / dpr Ndpy = 2rtmZ(1 — signmcos A); (53)
s¢ Q4
where m € Z is a winding number for ¢, around the loop C.

These two winding numbers 7, m are consistent with the boundary condition [9] at the surface
o7 of the infinitesimal tube 7
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) (5 )+ 5) = ma + np; (54a)

E=e(ficosp+Fsinp); (54b)
é//

n=—=; (54c¢)
€|

7 =C xii; (54d)

a = 27711 (54e)
[

IC| = f dl; (54f)
C

Here, ¢ — 0 is the radius of the tube.

3.4. The topology

Let us briefly discuss the topology of the Kelvinon. The equation (54a) implements the mapping
of a torus on a circle with homotopy 71 (T?) 2 Z x Z, which corresponds to a pair of integer winding
numbers n,m € Z.

What about mapping the 3D space by the Clebsch field S,(7)?

The Hopf mapping of the compactified 3-space to a 2-sphere, S* — S?, was already implemented
by a spherical Clebsch field in [11,12], but our Kelvinon is different.

The Kelvinon implements a mapping of the compactified 3-space G = S® without a monopole ring
T = T3 onto the spherical cap Q4 = D? rather than the full sphere S2.

Topologically,

G =S\ T3 =13 (55)
T — D?; (56)

As we have seen, this last mapping T® — D? is described by two winding numbers. Depending
upon the signs of these winding numbers, the Clebsch field maps physical space on one of the two
complementary caps on a sphere separated by a circle S3 = cos A.

The Appendix presents a family of smooth Clebsch fields with desired properties, including
winding numbers 1, m and a decrease of vorticity at infinity. We do not compute velocity for these
examples, as it would require a solution of a nontrivial Neumann problem on a minimal surface
bounded by an arbitrary smooth loop C.

The Euler velocity field maps the compactified physical space S® without the vortex surface onto
R3. The vortex surface (with its edge C) is excluded because the velocity field has a gap at that surface.
The space we excluded is a topological 3-disk D%, and so is the remaining space.

There are no topological invariants associated with this mapping by velocity field, but there are
such invariants for the mapping of the solid torus on a 2-disk by the spherical Clebsch field, as we
discussed above.

Comparing the expression (53) to Burger’s contribution to the line integral of velocity at the center
of the core of the tube, we get a self-consistency relation between parameters of the Euler flow

irasaﬁdrﬁ = —2mmZ(1 — signmcos A); (57)

This relation being linear, the normalization factor Z can be canceled so that this is a restriction
on a Faddeev vector field S, (7). The eigenvalue equation (14) also restricts the field S, (¥), leaving the
normalization factor arbitrary.

As suggested in [9], this factor will be determined from the energy balance between the incoming
energy flow and anomalous dissipation.
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There is some advance we have recently made in this part of the Kelvinon theory; we present it in
the next Section.

4. Energy balance revisited

For every stationary solution of the Navier-Stokes equation, the time derivative of any functional
of the velocity field, including the Euler Hamiltonian, must vanish.

Our matching principle suggests using this Navier-Stokes relation to fix the remaining free
parameter Z of the Euler flow in the Clebsch variables.

The energy dissipation is localized in the Burgers vortex core. We know it in an inviscid limit as
a functional of the local Euler strain at the loop (20). At fixed Clebsch field S,(7), this dissipation is
proportional to Z3 (two powers of Z from circulation I'g and one from the strain.)

The matching energy pumping into this region can be written in many forms. In the review
paper [9], we used the energy flux through the boundary of the volume V, which flux we then estimated
aseV.

There is a more direct approach, using notorious external random forces f(7), which we take as a
random uniform vector inside this volume.

This point needs clarification. Usual forces are also a function of time, correlated by a é(t —
t')f (7 — 7') with some slow function of space distance 7 — 7. Then the time averaging is assumed,
leading to some expressions for the equal time velocity correlations.

In our approach, we replace time averages with ensemble averages. We have an ensemble of
stationary flows, each with its uniform force f drawn from a Gaussian distribution. Our force is a
space-independent Gaussian random vector with Kronecker delta variance

<faf,g> = 0'50(/3 (58)

This ensemble averaging is equivalent to time averaging with delta-correlated Gaussian force
(such force is a different sample of a Gaussian vector at different times).

The energy pumping created by such a force inside a volume V before Gaussian averaging is
simply the work made by this force over the net momentum of the fluid inside this volume

£ = /V 53 F; (59)

This perturbed velocity 7, in turn, depends on the force through the Navier-Stokes equation.
We shall assume this relation to be linear, and later we justify that assumption in the inviscid limit
utilizing asymptotic freedom.

In the linear approximation, we have to solve linearized Euler equations for 7, ép

G- 65+Vop=7F; (60a)
Gup = (9gva) I + 64p0,0, (60b)
V2p =-V-G-o7; (60¢)

Symbolically, we can write the result
E=f-QFf (61)
A A
= Prd’7 (G -=VaV. G) 7,7 62
o=/ [ & 77 (62
Let us count the factors of Z here, assuming f to be O (1). As we have shown in [9] (see also the next

Section), in the inviscid limit, there is asymptotic freedom: Z grows as a power of the logarithm of the
effective Reynolds number
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1
Z ~ (logRey)? — oo; (63)

C 2

v
Then, we have G ~ Z,Q ~ 1/Z in the (61).
This makes the correction 67 ~ 1/Z much smaller than ¥ ~ Z

07/% ~ 272 ~ (log Rey)7% (65)

Now we have justified linear approximation for the perturbation of the Euler equation by an
external pumping force.

In general, asymptotic freedom in turbulence makes the fluctuations of the velocity field around
Kelvinon go to zero as a power of the logarithm of the Reynolds number.

The same thing happens in QCD with fluctuations of the gluon field around the instanton: these
fluctuations logarithmically die out compared to the instanton field.

As the background velocity fluctuation 7y = (47), is a linear function of f, the Gaussian
distribution of f is equivalent to the Gaussian distribution of %), which was considered in [9].
The difference is that we now have a microscopic equation (60), which allows us to compute this
background velocity field once the base Kelvinon flow is known.

Let us turn back to the energy balance. Naturally, only the total energy of the Navier-Stokes flow
is stationary. There are some contributions &}, Si’g from the remainder of the fluid both to the energy
pumping &, and to the energy dissipation &, in the energy balance equations

2
g;]_,_f.QA.f_gtrQ:S‘;+g—i?€dlc(l); (66)
(67)

where we subtracted the mean over the random forces from the Q term to satisfy the mean energy
balance. The outside volume energy flow components &), £}, are treated as constants rather than
random numbers (self-averaging of the random forces acting in the remaining infinite volume.)

We have to factor our Z and solve the resulting equation (with variables X corresponding to X
with Z = 1)

1 /2 ~ = .
34 - A £ .
ZA_B+Z(f Q-f atrQ), (68a)
s B
A=t f aiey; (68b)
B¢, - &) (650)

The unknown parameter B here can be estimated as excessive energy pumped into our volume to
be dissipated inside the singular vorticity tube. This parameter is proportional to the missing volume
in each of the energy flows &), 8,’]

B~ eV[C] x e|C|? (69)

where € is a Kolmogorov energy flow per unit volume and V[C] is the volume occupied by our soliton
around the singular loop C.

The last estimate V o |C|® implies that the loop has only one scale, which can be taken as its
length C.

There are two scales for a large, almost flat loop with small normal deviations: the minimal area
|S[C]| and the width A of vorticity field distribution around this surface. In this case V[C] ~ |S[C]||A].

We postpone the discussion of large flat loops to the next section.

doi:10.20944/preprints202303.0383.v4


https://doi.org/10.20944/preprints202303.0383.v4
https://doi.org/https://doi.org/10.3390/fractalfract7050351

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023

15 of 27
The solution of this quartic equation at small A equals to
B\3 = .~ = .
Z— <A) +f M- f—-otr M; (70a)
g 9
M = — 7 b
= (70b)
1

A~ 7

log Rey (70¢)

In the scaling region (where there is only one scale €), the fluctuating part of Z, f M- f must
scale the same way as the first term in Z. Simple dimensional analysis shows that for that purpose, we
need the following scaling law

o~ ZB/Q ~ e3|C|3¢|C2|C| 2 ~ e3|C]5 (71)

How can the variance of random forces be related to the size of the volume taken by the Kelvinon?

These are not the symbolic forces at the boundaries of an infinite volume but rather effective forces
acting on the boundary of this volume, representing the effects of random pressure terms coming from
remote vortex structures.

This estimate must hold as long as we accept the K41 dimensional analysis for small enough
loops compared to the intrinsic size of the Kelvinon.

Finding a microscopic mechanism leading to such self-consistent forces would be necessary.

5. Asymptotic freedom revisited

Now we can revisit and extend the analysis of [9] of asymptotic freedom (logarithmic decrease of
running coupling constant of the Kelvinon theory with the local Reynolds number).
Let us elaborate on the relation (68b). Using the basic formula (52), we find

A=g fc dIE(1); (72a)
n?(1 — signn cos A)?

g = Lo sinncos ), (720)
S3(C(1)) = cos A; VI; (72¢)
Sap(C(1))C(1) = e()Ci(1); (72d)
ja{r,xdrﬁg,xﬁ = —27tm(1 — signmcos A); (72€)
3 daT + 97,

Supl7) = 20T P00 ; P, (726)
U = (¢20453) | ; (72g)

The variables with tilde S, 3, . . . correspond to the normalized flow, with Z = 1.
Factoring out the Z— dependence in the anomalous Euler Hamiltonian (30), we find

H=27? <H+gC log f) ; (73a)

g gnicp? : o R? )
H-g}idl('y%—logS +11z13}3 /P?—l—g|C|log@ ; (73b)

[ eV[C] : _
2= (fcdla(Z)) §

=

(73¢)

doi:10.20944/preprints202303.0383.v4
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This factor ¢ depends on only one dynamical variable: the boundary value S3(C) = cos A. The
Clebsch fields ¢, S3 outside the loop C satisfy the passive advection equations (36). The boundary
value of the strain § satisfies the boundary conditions (72).

The parameter ¢ must minimize the Hamiltonian, with fixed loop C and fixed Kolmogorov
constant €.

Varying the Hamiltonian (73) with respect to g, we find the transcendental equation for g, Z

_ 80 .
8= —1+log%' (74)
2H
_ = 75
80 = 1 (75)
(-1 +1log f) 7% = eR*[C]; (76)

NI

This R[C] is a functional of the loop C. By dimensional counting, it scales as |C]|

Ricl =1clf | ] 78)

This estimate assumes that there are no other scales in the solution. As mentioned above, for the
smooth, almost flat loop C, there may be an effective scale in the normal direction to the minimal
surface.

Neglecting such a case (it will be considered in the next Section), we can take R = R[C] as a
definition of the loop scale and write down the "renormalization group" equation for effective coupling

_ &
ER = gy
d
_ o 4sk .
B(gr) = P (80)

This beta function corresponds to the transcendental equation for g

3
4

1
3 loggr = —3+4log <€4R> (81)
8R v

The beta function and the solution for gr (log R) are plotted in Figure 6. This beta function has no
positive roots; it monotonously goes to —co.

B(9) gr(log(R))

' 25]
; 1.0 15 . 2 [
A6 20}
o 15)
|_0:,
-3».
[ )50
-4 [

1 2 3 4 5

Figure 6. The beta function f(g) and the running coupling constant gr (log R).


https://doi.org/10.20944/preprints202303.0383.v4
https://doi.org/https://doi.org/10.3390/fractalfract7050351

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023 doi:10.20944/preprints202303.0383.v4

17 of 27

The roots of the beta function would correspond to the fixed point of RG, leading to scaling laws
with anomalous dimensions. That would justify the traditional multifractal scaling laws. However, in
our theory, the beta function is calculable in explicit form and does not have a root.

Therefore, we have asymptotic freedom instead of the usual multifractal scaling laws. As
discussed below, the difference is hard to observe in DNS and even harder in real experiments
on Earth.

Now, with asymptotic freedom, we can justify the linearization of the Euler equation in the
presence of fixed external random force: this is the leading term of expansion in our running coupling
constant.

In the same leading approximation, the Z factor grows as a power of log Rey

1
4\ \ 3
Z— <§R4 log (iﬁ)) (82)

5.1. Anomalous Hamiltonian and the Matching Principle

This approach to the stationary solutions of the Navier-Stokes and Euler equation is unusual and
may be confusing. Let us summarize it and clarify the steps involved.

We use conventional Hamiltonian H = [, 7?/2 and conventional NS equations in whole space.
The viscosity is neglected outside the singular regions, and the Euler solution is used in that outside
region. The stationary solutions of the Euler and NS equations are matched in the region of distances r
from the singular line w < r < R¢, where w is the local width of the Burgers vortex, and Rc is the
local radius of curvature of the loop. This combined solution has some free parameters left, namely the
normalization constant Z for the Clebsch field in the outside region and S3(C) = cosA is the boundary
value of the Clebsch field component S3 at the loop.

It also depends on the shape of the discontinuity surface. The parameter Z is determined from
the energy conservation on the NS stationary solution diH = —E; + E, = 0 The shape of the surface is
determined by the eigenvalue conditions on the surface and at the loop, which are part of the matching
conditions at the surface of the tube.

We are left with the last parameter, S3, to be determined from the minimum of the Hamiltonian.

6. Multifractals

For historical reasons, the multifractals are assumed to be pure scaling laws for the moments of
the velocity differences, or circulation, in our case, as a function of the scale R.

Parisi and Frisch [18] borrowed this idea from Conformal Field Theory, where the moments of
similar structure functions are described by scaling laws with anomalous dimensions.

However, this was not the most general multifractal phenomenon in statistical field theory.

In the conformal field theory of critical phenomena in statistical mechanics, the anomalous
dimensions are universal functions of the normal dimension of the fluctuating variable (power of
circulation in our case).

At the same time, in asymptotically free theories, like QCD, the anomalous dimensions depend on
the so-called running coupling constant, which tends to zero inversely proportional to the logarithm
of scale.

So, the multifractal as a critical phenomenon has some precedent in statistical and quantum field
theory. However, it is a dynamic question of whether the effective coupling is a universal number
(a simple root of the beta function at finite coupling constant in the case of conformal theory) or it
is running to zero like in asymptotically free theories (the double root of the beta function at zero
coupling constant).

We can now answer that question for the Kelvinon theory in favor of asymptotic freedom [9].

Our asymptotic freedom does not correspond to small velocity. On the contrary, velocity is large
while its fluctuations are small; the same happens with the gluon field around instanton in QCD or
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with the electroweak field near the 't Hooft-Polyakov monopole (more relevant analogy, as we also
have a monopole here).

The novel phenomenon in turbulence is that the inverse powers of the Reynolds number do not
appear in our expansion. In the inviscid limit, such terms become negligible, and the convergence to
this limit slows down to the inverse powers of the logarithm of the Reynolds number.

This expansion in the zeroth approximation involves the nontrivial Kelvinon field S,(7) € S?,
mapping the physical space (with added infinity and removed loop C) onto the spherical cap Q1 € S?.

There are two possibilities for the orientation signn = +1, corresponding to an upper or lower
cap on a sphere. These two possibilities are equivalent as they correspond to the reflection Sz = —S3.
In the asymptotically free limit, the boundary value S3(C) = cos A tends to the North or South pole,
depending upon the sign of 7.

cos A =signn+ O ((log Rey)~ %) (83)

This asymptotic formula will be compatible with our self-consistency relation (57) for the

circulation I'c only if sign m = — sign n. Then both sides of this equation are O (1) when the running
coupling constant gr goes to zero.

]{ raSapdrg = —27tm(1 + signncos A) — —4mm; (84)
C

In this case, with the f correction in the linear approximation:

8
I'c=4mmZ (1-
c = A ( 27Tn2)
1 N 3 ~
— 47tme3 R3 (gR - gR Zi(;)az) +4mm (f M- f —otr M) (85a)

This expression for the velocity circulation has the same structure as the one in [9]

Tc=T1+¢-§-& (86a)
§~N(0,1); (86b)
T = 47tme3 R} (gR - gR 25{0 ) — dtmotr M; (86¢)
4= 4rrmo M; (86d)

The non-fluctuating part T of circulation shows the logarithmic growth with the scale R through

the running coupling g, * ~ (logR)3, 3, but the parabolic term € - § - ¢ does not depend on the running
coupling constant.
There are also higher-order terms of expansion in effective coupling gr, which we have neglected.
According to [9], this corresponds to the circulation PDF

N 1 - T|>
W(T) 7\/@ exp ( 0 (87)

where g > 0 is the leading eigenvalue of the 3 x 3 matrix 4.
The effective fractal dimension for higher moments, corresponding to the saddle point in the
integral for the moments

() o / ATTPW(T) — saddle point; (88)

_ dlog(T?) adlog qo 1\ o(t/q0)
Ap/logR) = dlogR %palogR—i_ 1+E dlogR’

if p > pe; (89)
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If there is no internal scale in a Kelvinon, the parameter R is proportional to the size of the loop
|C|, and the area inside the loop scales as R2. In that region, we have a K41 formula for A, up to higher
corrections in asymptotically free coupling constant gr
dlogt  4p

_>

A(p'logR)%palogR 3

if p < pe; (90)

As it was shown in [9] from an alternative dynamical theory (loop equations), the asymptotic
dependence of the circulation PDF in the true inertial range |I'| > v,e% |R|% > v must tend to
the scaling law I’ ~ /|S,,;,[C]|, where |S,,;,[C]| is the minimal area of the surface bounded by C.

In our context, this means that R3 is to be replaced by \/|Sin |-

As for the next correction in A(p,log /|Smin|) at large p, it depends upon the dimensionless ratio
T/40.

Asymptotic freedom tells us this ratio goes to infinity as in (86). Differentiating that ratio and
using the RG equation, we find

T ~5 g5 [ 80 ).
. — const (gR g8 27m2> ; 1)
9(7/q0) 3 S08R
31og R — const gp (1+ 82 (92)

Thus, our prediction for the asymptotic behavior of the running index A(p,10g \/|Syix|) is

1 3 S08R \ .
A(p > pe,10g \/ |Smin|) — p + const (1 + 2p> SR (1 +4/ 8m2> ; (93)

where gr is related to log /|5, | by a transcendental equation (81).

We do not have enough data to compare this formula for varying log /|5, |- However, we have
the data obtained for the fractal dimension of classical [7,8] and quantum [19] circulation in turbulent
flows.

These authors used a square loop C with a variable side a and fitted their data to constant values
of A(p) for each p over the inertial range of log 4, neglecting possible systematic deviations from that
fit.

In the future, it would be interesting to fit that data by our formula with the running coupling
constant gr(loga).

Here are the DNS data from these papers, fitted by our formula with constant gr Figure 7, Figure 8.
The more detailed analysis of underlying data may reveal this slow dependence of log a.

doi:10.20944/preprints202303.0383.v4


https://doi.org/10.20944/preprints202303.0383.v4
https://doi.org/https://doi.org/10.3390/fractalfract7050351

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023 doi:10.20944/preprints202303.0383.v4

20 of 27

0_1 . . . L . . . L . . . L N N N -
0 2 4 6 8

Figure 7. DNS data [8] for classical circulation fractal dimensions A(p) fitted against our asymptotic
formula (93) (blue) and K41 line 47;9 (green).

14" | | | | | ]
12}

10}

0_—1 I I I 1 I I I 1 I I I 1 I I I 1 I L L 1 L L L l_—
0 2 4 6 8 10 12

Figure 8. DNS data [19] for quantum circulation fractal dimensions A(p) fitted against our asymptotic
formula (93) (blue) and K41 line %p (green)

One should give proper credit to the numerical work [7,8,19] and successful phenomenological
models [20,21] explaining these data by approximating the chain of the Hopf equation for velocity
moments.

However, phenomenological theory cannot distinguish between the constant fractal dimensions
and those running with logarithms of scale; this is a task for a microscopic theory.

The microscopic theory so far says nothing about the transient region p ~ 5 where both asymptotic
laws break. Only the phenomenological theory [20,21] accurately describes the fractal dimensions (for
velocity differences only !) in the whole domain of small and large p.
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7. Questions and answers

I had to answer various questions and critical comments when discussing this paper with
colleagues.

Let us go through the most interesting questions; it would help a like-minded reader to understand
this unconventional work.

1. Q:
By differentiating your relation for the velocity at the center of the Burgers vortex, you get an

identity

ooy 2 (FCEM)-C)

al dl
C'(1)-S(C())-C'() +3(C(1))-C"(1) =
() +3(C(1)) - C"(1) (94)
From that, we conclude that
(1) = /dlc(l)+/dlvn(l)1c(l) (95)

where (1) is the local curvature of the loop, and v, (1) is the velocity projection on the inner
normal of the loop.

According to the Burgers solution, the second term vanishes at the center of the loop. Therefore,
with the positive c(I) you need for stability, this formula contradicts the periodicity of velocity at
the loop.

A:Tam afraid I disagree with your formula for the tangent component of the velocity field. My
formula, (16), is manifestly periodic (and also parametric invariant, as it should be). With explicit
initial data, it reads

5(C(1) = 3(C(O) + [ sy - e (%)
Using the eigenvalue condition $(C(I')) - C'(I') = ¢(I')C'(I') it can be written as
F(C(1)) = 5(C(0)) + /O L (e ) 97)
Multiplying this equation by C'(1), we find the correct relation for the tangent velocity

(1) = 3(C(0)) - C'(1) + / dl'c( )- &) 98)

Take | = L in (97); we have the periodicity condition

G — / dr'e() e (1" (99)

This expression does not change if you shift c(I’) by any constant, as the extra term will integrate
into zero

/ aré'(1"y = (L) — €(0) = G; (100)

In particular, one may subtract from c(1’) its (positive) mean value on the loop. Thus positivity of
c(I) does not contradict the periodicity.
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2. Q: What is the boundary value of the Euler velocity at the boundary C of the vortex surface? The
normal to the loop component of velocity must vanish for mass conservation (incompressibility),
which condition directs the boundary velocity along the loop. Do you agree?

A: There is no boundary value of the Euler velocity, as it diverges as 1/7, where r — 0 is the
radius of the vortex tube.

Velocity at the center of the Burgers vortex is directed along the loop, the same as vorticity, thus
providing nontrivial helicity density.

This velocity component normal to the loop v, is not zero for the following reason. This normal
inner component of velocity is singular (diverges as 1/ near the edge), so one cannot neglect the
existence of a thin Burgers tube (see Figure 2).

The boundary conditions for the Euler flow are imposed at the surface of the tube, not at its
center, and there is a match.

3. Q:
What prevents the Kelvinon from flying in the normal direction to the ring, as all vortex rings do?
I also wanted to ask if the Kelvinon has a non-zero impulse « [ , Ispace X x @d®x. The impulse is
proportional to the net linear momentum. For the Burgers loop part, it is not difficult to compute
the impulse as a line integral around the loop, which is non-zero.

A: The Neumann boundary condition for the potential part in the velocity (with the rotational
part being the Biot-Savart integral), by definition of the stationary state, cancels the sheet’s motion
(normal velocity vanishes, and tangent one does not mean a moving surface). As for the Burgers
tube attached to the surface at the edge, the same thing happens. The mean velocity in the normal
plane to the ring vanishes at every point of the loop, so it does not move.

The finite negative radial strain pushes flow inside the ring, moving along the axis in the rotating
vortex with circulation I'c. In addition, there is a (much faster) circular motion in the normal
plane, going around the small circle at each point of the loop. Together, these motions create a
spiral, shown in Figure 2.

That self-induced velocity v = I'log R/w comes from the region far from this surface, just like
my anomalous part in the Hamiltonian. This part, indeed, cancels by the surface contribution by
the Neumann boundary conditions, which are designed for a steady state.

So, the vortex surface attached to the vortex ring acts like a parachute, or, better to say, as a wing,
stopping the normal motion. The flux goes around the surface and the ring in circles, as shown
in Figure 3.

As for the net momentum, I cannot prove it is zero, even for a stationary velocity field tangent to
the surface and the ring.

All I need is a stationary distribution of circulation based on stationary flow. The loop and the
surface must also be stationary, but the net momentum of the flow could be finite. The integral of
the velocity field over volume is not restricted by its value at the surface. Take an example of the
flow around the rigid body.

I analyze this question in the section 3.2.

In that section, I also discuss the relation of the CVS conditions for the vortex sheet § - A = 0
and the new boundary condition $ - 7i = c7i. I argue that they are related, given that the velocity
gap linearly vanishes at the edge of the surface.

4. Q:
Is the diffusion of the sheet also everywhere balanced on its surface by strain presumably induced
by other portions of the sheet?

A: This balance leads to the CVS condition, which I analyzed in my previous work. In a stationary
solution, the diffusion term exactly cancels the advection term, which happens with both Burgers


https://doi.org/10.20944/preprints202303.0383.v4
https://doi.org/https://doi.org/10.3390/fractalfract7050351

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 April 2023 doi:10.20944/preprints202303.0383.v4

23 of 27

and Townsend solutions in the vorticity region. For the flat surface, the normal velocity vanishes,
and the negative normal strain makes the solution stable.

For a curved vortex sheet, this is provided by the CVS equations. So, it does not happen for
arbitrary sheets. The sheet’s shape must adjust for this cancellation, which is what happens in
my exact CVS solution with the hyperbolic sheet x|y|! = const.

As for decay, the decay time (and reconnection time) are not infinite, but they grow with the
Reynolds number. Thus my "stationary" solution only holds for this growing decay time.

5. Q:
When you compute the energy, for example, the equation with Euler’s constant, do you use
an expression for the energy in terms of the vorticity? I think that the expression to use is

o« B - @d®x, where B is the vector potential. Is this the expression you used?

allspace

A: No, why? I used ordinary [, d°75%/2 and substituted the Burgers solution. BTW note that the
Burgers vortex may generally have a constant velocity in the z direction.

Look at the computation in the appendix in my Phys Reports [9].
6. Q:

Did you prove the positivity of ¢(1)?

A:

I could not prove it in the general case, but I have presented arguments in favor in Section 3.2. It
is left as an open problem to prove it.
7. Q:

I wanted to mention the Kelvin-Benjamin maximum energy principle: A steady inviscid vortex
has maximum energy with respect to isovortical perturbations (i.e., imagine perturbing the
vortex by an arbitrary incompressible velocity field acting for a short pseudo-time). Given this,
shouldn’t the relaxation procedure maximize the Hamiltonian? Perhaps, this principle does not
apply because the Hamiltonian is infinite in an inviscid limit?

A:

Mathematically, I am investigating the turbulent (not inviscid) limit where the Reynolds number
is arbitrarily large but not infinite.

The Hamiltonian minimization is a tricky part, indeed. Consider the Euler flow outside the
Burger’s tube and the attached sheet. The parameters of this flow (including the normalization
of the Clebsch field Z) minimize the Euler Hamiltonian ( the integral of the space outside the
tube and the sheet), with the boundary conditions at the surface of the tune and the sheet. As
I have shown, these boundary conditions involve the outside flow parameters (the boundary
value of S3, the shape of the vortex sheet, and the Z factor).

Now, the Euler part of the Hamiltonian (integral over the outside region) is not conserved. Its
time derivative equals minus anomalous dissipation. However, the total Hamiltonian, which
includes the integral inside the vortex tube and sheet) is conserved. Its time derivative vanishes
with a proper value of the normalization factor Z, an Euler integral of motion.

For this particular value of Z, which provides the energy balance, the total Hamiltonian is
conserved in the NS (dissipation is exactly canceled by energy pumping).

Our Matching Principle at work here: all the variables and parameters of the Euler flow are to be
defined as those of the NS flow with an infinitesimal viscosity. Logarithmic divergences prevent
from setting viscosity to zero, but I generalize the Euler flow (call it turbulent flow) as the one
minimizing the conserved Hamiltonian.

So, this is a definition of the inviscid limit of the NS in the presence of anomalies; this definition
formally becomes the Euler theory with anomalous terms in the Hamiltonian. There is no
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inviscid limit, but there is an intermediate logarithmic regime where all the negative powers of
the Reynolds number are neglected, but the logarithmic terms remain. These terms are summed
up by the renormalization group equation, leading to asymptotic freedom.

The absolute maximum of the Hamiltonian would not be mechanically stable, plus it only exists
if you impose restrictions. In our case, there is, indeed, a restriction of a cancellation between the
dissipation and pumping. Such a restriction would eliminate the zero and the infinite solution
for parameter Z in the Euler velocity field.

In that sense, I agree with your comment- given the energy balance, this is just an extremum.

Our work belongs to theoretical physics, not applied math. Rather than solving established
equations, we postulate new ones to be verified in experiments and DNS. Our new matching
principle removes ambiguities from the weak Euler solutions, leading to asymptotic freedom.

Remains to be seen whether it applies to real turbulence.

8. Conclusions

Here is what we added to the previous results published in the review paper [9].

*  We clarified the topology of the Kelvinon. Its boundary value ¢, (97) at the surface of the
infinitesimal tube 7 surrounding the singular line C maps a torus on a circle, which mapping is
described by two integer winding numbers related to velocity circulations around two cycles of
the torus.

e The 3D field S,(7) maps the compactified 3-space without the infinitesimal tube 7" onto one of
the two caps on a sphere S? separated by the circle 7 : S3 = const .

*  We visualized the velocity field inside and outside Kelvinon by tracking liquid particles marked
by different colors. The inside flow Figure 2 goes in spirals parallel to the loop, whereas the
outside flow Figure 3 also contains the tornadoes attached to each side of the vortex sheet.

*  We modified the energy balance analysis of [9] using conventional random forces and expanding
the energy pumping into the Kelvinon in series in the running coupling constant gr ~ 1/ log R.
This approach gives us a microscopic definition and corrects the log R dependence of the
phenomenological parameters in the circulation PDF tails [9].

*  We studied the vorticity field in the topological family of Kelvinons and presented a smooth
Clebsch field in the Euler region (outside the vortex sheet and the tube) for arbitrary smooth loop
C and arbitrary winding numbers 7, m.

*  We found the self-consistency conditions for the Kelvinon field (57), (14) from the matching
conditions with the Burgers vortex, overlooked in the [9].

*  Using these conditions, we removed the ambiguity in relative signs of the winding numbers 7, m:
they must have opposite signs.

e We computed and compared predictions of the Kelvinon theory for the fractal dimension
A(p,logr) in the leading perturbation expansion in 1/ log r with the DNS data (Figures 7 and 8)
with a good fit except for the transient region 4 < p < 7.

In conclusion, we suggested a microscopic quantitative approach to the turbulence problem,
assuming a low density of vortex structures. We presented some predictions for the multifractal
indexes, modified by powers of the logarithm of the scale.

Here is what still needs to be elaborated and clarified.

®  The self-consistency conditions (57), (14) need to be investigated further. Presumably, the
boundary values of the Clebsch field on each side of the discontinuity surface provide the
set of free parameters needed to satisfy these self-consistency conditions.

¢ The notion of the region occupied by Kelvinon needs to be clarified and defined unambiguously.
With correct definition, observable results should not depend upon the shape of the boundary of
this region, and its volume should be a well-defined functional of the loop C.
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¢  Higher correction in perturbation expansion in the running coupling constant gg need to be
computed; fractal dimensions should become universal functions of the logarithm of scale without
any phenomenological parameters to fit the DNS data.

Data Availability Statement: Data sharing does not apply to this article, as no new data were created or analyzed
in this study.
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Appendix A. Topological family of the Kelvinon fields

Let us present an explicit example of the Clebsch field with the required topology, which could
serve as initial data for the Hamiltonian minimization by relaxation.
We introduce a surface of the minimal area bounded by our loop C

Spin (C) = arg min / ds (A101)
$:95=C
For every point 7 € R3, there is the nearest point 71 at the minimal surface S,,;, (C).
71 = argmin (¥ — 7)2; (A102)

7ﬂesmin(c)

For this point 7] at the surface there is also a nearest point 7 at its edge C, minimizing the geodesic
distance d(a, b) along the surface from 7; to the edge

S = (sin 6 cos ¢, sin fsin ¢, cos B) ;

so = argmind(7;, C(s)); (A103)
S

= C(so); (A104)

Let us also introduce the local frame with vectors £(s), 7i(s), #(s) at the loop:
C'(s)% =1; (A105a)
i(s) = C'(s); (A105b)

alll
fi(s) = < °) (A105¢)
1C"(s)]
F(s) = £(s) x #i(s); (A105d)
Our field is then defined as follows:
_ 27 (A106a)
¢ 1dC]

p = arg ((F—7o) - (i(s0) +10(s0))) ; (A106b)
o=/ (F— )2 +d(71, 7o) (A1060)
6 = f(pz); (A106d)
f(0) = 4; fleo) =75 f'(p?) >0 (A106e)
¢ = ma+np; (A106f)

(A106g)
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In the variational solution for the Kelvinon flow, one may use this Anzatz and optimize the
smooth monotonous function f(p?) to reach the minimum of the Euler Hamiltonian at fixed winding
numbers n, m.

In this example, the Clebsch field maps the physical space G = R3\ T onto the disk on a 2-sphere
Q. : S3 < cos A. With the function f(p?) monotonously decreasing from f(0) = A to f(co) = 0, this
Kelvinon would map the physical space to the complementary region ()_.

When the point 7 approaches the nearest point 7 at the minimal surface, the difference j = 7 — 7;
is normal to this surface.

When the point 7; approaches the nearest point 7 at the edge C of the surface, the geodesic
becomes a straight line in R3, tangent to the surface and p becomes Euclidean distance to the loop

d(?1,70) — |?1 *?0|,‘ (A107)
P> = [P =71+ [ = 7o = 7~ 7ol (A108)

Note that all variables s, 7,71, , B, 0,60, ¢ depend on 7 € Rs through the minimization of the
distance to the surface and the loop. By construction, p = | — 7| away from the surface, when
71 = 7o,d(71,7) = 0.

The Euler angles 0, ¢ for the Clebsch field take the boundary values at the loop :

$(7 — C) = ma+np; (A109)
6(F —C) = A+0((F-CP); (A110)

and 6(e0) = 0 or 71.

Assuming the decay f(p?) — f(c0) + const /p?, one may estimate the decay rate of V cos ~
1/|7?, V¢ ~ 1/|7|, which corresponds to vorticity decaying as 1/ |7|*
convergence of the enstrophy integral at infinity.

The Biot-Savart integral for velocity corresponding to such vorticity would decay as 1/7? or faster,
sufficient for convergence of the Euler Hamiltonian at infinity.

Let us move 7 along the normal from the surface at 7;. Our parametrization of 6 does not change
in the first order in normal shift ij = 7 — 71, as p? has only quadratic terms in 7.

We conclude that the normal derivative of the Clebsch field ¢1 = Z(1 + cos #) vanishes

. This decay is sufficient for the

I =0; (A111)

We requested vanishing normal velocity at the discontinuity surface for this surface to be
stationary.
In terms of the Clebsch parametrization, the normal velocity would vanish provided

Ind = (@x‘f)n,-?e sc\C (A112)

As for the angular field ¢ in (A106), its normal derivative does not vanish in the general case. The
angle & does not change when the point 7 moves in normal direction N (7;) from the surface projection
7| by infinitesimal shift if = eN (7| ). However, another angle  changes in the linear order in € as

N(#) - (ii(s0) + 17 (s0)) # 0 (A113)
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