
Article

Not peer-reviewed version

Similarity Measure of

Spatiotemporal Event Setting

Sequences: Method Development

and A Case Study on Monitoring

Coastal Fecal Coliform Pollution

Events

Fuyu Xu 

*

 and Kate Beard 

*

Posted Date: 21 March 2023

doi: 10.20944/preprints202303.0366.v1

Keywords: spatiotemporal setting sequences; similarity measure; event sequences; matrix representation;

static variables; dynamic variables; basin characteristics; Jaccard index; relative importance analysis;

clustering analysis

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/1781812
https://sciprofiles.com/profile/694914


 

Article 

Similarity Measure of Spatiotemporal Event Setting 
Sequences: Method Development and A Case Study 
on Monitoring Coastal Fecal Coliform Pollution 
Events 

Fuyu Xu and Kate Beard 

School of Computing and Information Science, University of Maine, USA; fuyu.xu@maine.edu (F.X.); 

kate.beard@maine.edu; Tel.: 1-207-581-2147 (K.B.) 

Abstract: Examining the similarity of event environments or surroundings, more precisely settings, provides 

additional insight in analyzing event sequences as it provides information about the context and potential 

common factors that may have influenced them. This article proposes a new similarity measure for event 

setting sequences, which involve the space and time in which events occur. While similarity measures for 

spatiotemporal event sequences have been studied, the settings and setting sequences have not yet been 

studied. While modeling event setting sequences we consider spatial and temporal scales to define the bounds 

of the setting and incorporates dynamic variables alongside static variables. Using a matrix-based 

representation and an extended Jaccard index we developed new similarity measures that allow for the use of 

all variable data types. We successfully used these similarity measures coupled with other multivariate 

statistical analysis approaches in a case study involving setting sequences and pollution event sequences 

associated with the same monitoring stations, which validate the hypothesis that more similar spatial-temporal 

settings or setting sequences may generate more similar events or event sequences. In conclusion, these 

similarity measures have many potential real-world applications, and offer researchers a powerful tool for 

understanding different factors and their dynamics corresponding to occurrences of spatiotemporal event 

sequences. 

Keywords: spatiotemporal setting sequences; similarity measure; event sequences; matrix 

representation; static variables; dynamic variables; basin characteristics; Jaccard index; relative 

importance analysis; clustering analysis 

 

1. Introduction 

An event setting, or more explicitly a spatiotemporal event setting, can be defined as a space and 

its collective influencing factors which are related to the occurrence of an event or sequence of events 

at a specific time and location. It can refer to the physical location, such as a specific venue or building, 

or to the overall atmosphere and environs or surroundings of an event. Similarity measures between 

events and event sequences have been well studied [1–7]. Assessing similarity between event settings 

adds another dimension to event sequence analysis in that it offers context and information on 

potential shared influencing factors. We hypothesize that the occurrences of at least some types of 

events and event sequences are likely to be related to the spatiotemporal settings from which they 

arise. In other words, spatiotemporal differentials in environmental settings contribute to variations 

in levels and patterns of occurrences of events and event sequences. 

While as noted above, event sequence similarity has been well researched, no such similarity 

measures for event sequence settings have been found in the literature to date. 

This paper addresses this gap by developing similarity measures for event sequence settings. In 

[1], we established similarity measures for comparing event sequences and demonstrated their 

potential applications. In this study, we question whether similar patterns of event sequences reflect 

similarity in the spatiotemporal settings of the event sequences. A working hypothesis is that more 

similar spatial settings may generate more similar event sequence. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Measures of similarity among event sequence settings have several potential ap-plications in 

real world contexts. First, in predicting future events or phenomena, similarity measures can be used 

to identify patterns in the spatial-temporal settings of past events or phenomena, which can help 

predict the likelihood of similar events occurring in the future. For example, a similarity measure 

could be used to predict the likelihood of a hurricane occurring in a particular region based on the 

spatial-temporal settings of past hurricanes in the region. Second, for better understanding the spread 

of diseases or other public health concerns, similarity measures can be used to identify patterns in 

the spatial-temporal settings of disease outbreaks or other public health concerns. Such in-formation 

can help public health officials understand how diseases or other health concerns spread and take 

steps to prevent or mitigate their impact. In analyzing the impact of climate change, similarity 

measures can be used to identify patterns in the spatial-temporal settings of natural disasters or other 

events that may be influenced by climate change. Setting similarity information in this context can 

help policymakers and researchers understand the potential impacts of climate change and take steps 

to mitigate those impacts. In analyzing the distribution of resources or services, similarity measures 

can be used to identify patterns in the spatial-temporal settings of resource distribution or service 

delivery, which can help policymakers and service providers understand where resources or services 

are most needed and how to allocate them effectively. Similarity measures can also be used to identify 

patterns in the spatial-temporal settings of human activities, such as economic development or land 

use planning among other areas covering the natural and social sciences. 

We use the term ‘setting’ as defined by Worboys and Hornsby [8], and distinguish it from spatial 

context, which has been widely studied. We first review research work on spatial context for a better 

understanding of spatial or spatiotemporal settings proposed in this paper. Context has been defined 

in many ways, most often with location as the most important emphasis, namely spatial context. 

Context has been described as the "location and the identity of nearby people and objects." [9]. 

Context, as has been used in computer science includes any information available for characterizing 

the situation of an entity, where entity could be a person, place, or object, which is related to the 

interaction between a user and an application [10–12]. 

In geography, spatial-temporal contexts refer to the physical and social conditions that exist in 

a particular place and time [13–16]. These contexts can include factors such as the natural 

environment, climate, culture, economic conditions, and population characteristics. Spatial-temporal 

contexts can also refer to the historical and cultural background of a place, as well as the relationships 

and interactions that have occurred within that place over time. We distinguish spatial-temporal 

settings as referring to the specific location and time frame in which an event or phenomenon occurs. 

A spatial-temporal setting can be as broad as a particular region or as specific as a particular location 

within a region. It can also refer to a specific point in time, or a specific time interval. In general, 

spatial-temporal contexts describe the general or broader context in which an event or phenomenon 

occurs, while spatial-temporal settings describe the specific location and time frame in which the 

event or phenomenon occurs. 

Spatial context is an important factor in many domains and applications. For instance, spatial 

context strongly influences the transport disadvantage that in turn affects social exclusion and well-

being [17]. In travel behavior research, spatial context was shown to be strongly related to household 

travel patterns at an international scale [18]. A person’s health-related problems can be strongly 

affected by different types of spatial context, such as environmental exposures [19,20], social 

environment (characteristics of communities and neighborhoods) [20,21], and ease of access to health 

services [22]. Spatial context greatly influences the potential of getting a disease, the adoption of 

healthy lifestyle, and the ease of access to medical services for disease diagnosis and treatment. An 

early psychological behavior research study indicates that decision behavior is affected by spatial 

context or spatially varied factors [23]. A farming population was selected to study the effect of spatial 

context in decision processes because the outcomes of decision behavior are easily observable over 

the landscape. The decision making in farming is dispersed spatially among many farmers due to the 

uneven diffusion of market and technical information. With the strong emphasis and integration of 

spatial context, a new area of ecological studies called spatial ecology has emerged [24,25]. 
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Spatial context is also very important in recognition of objects in images. In a content-based 

image retrieval experiment, incorporating spatial context models dramatically reduced the 

misclassification and increased the accuracy of material detection by 13% [26]. In order to better 

recognize or identify defined objects ( e.g. cars, rivers, sky) in an image, combining the naturally 

classified texture or colors as spatial context greatly improved detection accuracy [27]. 

Spatial context plays an important role when measuring the similarity of two entities or event 

sequences. The effect of context on existing similarity measurement approaches has been reported on 

in the geospatial domain [28,29]. Their work focuses on quantifying the impact of changing contexts 

on similarity measures thus recognizing potential influence of context on similarity measure 

embedded in that context. This paper focuses on measures of similarity for spatial settings with the 

expectation that setting similarity is likely influencing the similarity of event sequences observed 

within a setting. 

In this study, we develop similarity measures between individual spatiotemporal settings and 

sequences of spatiotemporal settings which may affect or drive the formation of event sequence 

patterns. Spatiotemporal settings are characterized by a collection of parametric factors within the 

environs where events or event sequences are observed with an emphasis on location, time, and 

circumstances. We discuss the concepts of classification and scale of spatiotemporal settings followed 

by representation and variable selection for assessing spatiotemporal setting similarity. We then 

develop a matrix-based approach for computing similarity measures between spatiotemporal 

settings at a certain time point or period and sequences of spatiotemporal settings over serial times, 

which are evaluated through a case study. The developed similarity measure serves as an index that 

combines a set of quantitative and qualitative factors. 

2. Materials and Methods 

2.1. Model for Event Sequence Settings 

A key consideration in the specification of a setting is how to define its bounds both spatially 

and temporally. For the event sequence similarity measure described by Xu and Beard [1], they 

assume time series and derived events sequences are observed at fixed point locations. Clearly 

influences on a time series and by extension a derived event sequence extend beyond a point location 

but a projected extent will be application and scale dependent. What constitutes a spatial setting will 

thus vary based on the observed process, local environmental circumstances and monitoring 

practices and have scale implications for variable selection. As with most analyses, spatial and 

temporal scales must be considered in identifying and characterizing spatiotemporal event sequence 

settings.  As a basis for modeling sequences of spatiotemporal event settings, we first model an event 

situated setting at a specific temporal scale or time point with different spatial scales. Figure 1 

illustrates the potential for different spatial boundaries for a setting. Where a boundary is placed has 

implications for the set of influencing factors. With changes in spatial scale, the influencing factors 

for a setting may vary and may be both static and dynamic. 
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Figure 1. Schematic representation of an event situated setting considering different spatial scales for 

the setting. Influencing factors with different weights are shown only at Scale 1. More, fewer, or 

different sets of factors may apply at another scale. 

To account for the dynamic aspects of setting as relating to an event sequence at a location, we 

conceptualize the setting as a sequence, i.e., a sequence of settings at ordered time points as illustrated 

in Figure 2. The measurement of spatial pattern and heterogeneity is dependent on the scale at which 

the measurements are made. In this study, we do not consider interactions between scales. For a 

specific application context, we assume that we have determined the pertinent set of static and 

dynamic variables for representing all event settings at one spatial scale. For a set of monitored 

locations generating spatiotemporal event sequences as discussed in [1], we specify corresponding 

sequences of spatiotemporal event settings. Figure 2 graphically illustrates these conceptual 

sequences of spatiotemporal event settings with n dynamic and m static representative variables. 

2.2. Matrix Representation of Sequences of Spatiotemporal Settings 

For a given application context, we assume we have determined the major variables which 

strongly or satisfactorily represent the spatial settings for a set of sensor locations or monitoring 

stations where event sequences are observed. Given s  locations or monitoring stations and t 

temporal points, we conceptually associate an event sequence with a setting sequence.  We then 

represent these sequences of spatiotemporal event settings with a s × t  matrix as schematically 

illustrated in Figure 3. 
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Figure 2. Schematic illustration of sequences of spatial-temporal settings with t time points and s 

locations. 

 

Figure 3. Schematic matrix representation of sequences of spatial-temporal settings with t time points 

and s locations. λst - a setting at location s and time t. 

For each setting λ with n dynamic (ν) and m static variables (ρ), i.e.  

 

Such that, Figure 3 can be expanded to Figure 4 to become the variables-based matrix 

representation of the sequences of spatiotemporal event settings.  

 

Figure 4. Matrix representation of sequences of spatiotemporal event settings with s locations and t 

time points. 

2.3. Similarity Measures of Spatial Settings 

2.3.1. Pairwise Similarity between Individual Spatial Settings 

Pairwise similarity between individual settings is fundamental to further develop similarity 

measures between sequences of spatiotemporal settings based on certain criteria. In a study of 

environmental settings, for example, pairwise similarity can be used to measure the similarity 

between two or more settings based on factors such as temperature, humidity, rainfall, and other 

environmental variables. By calculating pairwise similarity scores, we can gain insights into how 

different or how similar settings relate to each other and identify patterns that may be useful in 

predicting future outcomes. 

In this study, we develop a new pairwise similarity measure between spatial settings based on 

the modifications of the Jaccard index described in [1]. The original Jaccard index is a similarity 

measure commonly used in the context of sets or binary vectors, where each element can either be 

present or absent [30]. To adapt the Jaccard index for measuring the similarity between spatial 

settings associated to thematic events, we need to determine a set of common features, including 
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static and dynamic variables, representing each spatial setting. Considering the number of common 

features for a pair of settings, we have two major considerations, 1) the magnitude or quantitative 

level of each element from both settings, and 2) for the dynamic variables or elements that their values 

should be measured at the same timestamps or time intervals. 

We first identify the co-existing dynamic variables between two representative dynamic variable 

sets 𝑙𝑙𝑑𝑑1 and 𝑙𝑙𝑑𝑑2, and the co-existing static variables between two representative static variable sets 𝑙𝑙𝑠𝑠1  and 𝑙𝑙𝑠𝑠2  of two spatial settings, setting 1 and 2. We calculate the relative ratios of individual 

common variables, and then sum them by dynamic and static variables. The modified Jaccard 

similarity between two spatial settings at time k can be expressed as the sum of relative ratios of all 

common features/variables divided by the total number of unique features/variables in both 

sets/settings as in Equation (1): 

Equation (1): 𝑠𝑠𝑠𝑠𝑚𝑚𝑘𝑘(𝑙𝑙1, 𝑙𝑙2) =
𝑆𝑆𝑑𝑑𝑘𝑘12+𝑆𝑆𝑠𝑠12

|𝑙𝑙𝑑𝑑1∪ 𝑙𝑙𝑑𝑑2|+|𝑙𝑙𝑠𝑠1∪ 𝑙𝑙𝑠𝑠2|
=

𝑆𝑆𝑑𝑑𝑘𝑘12+𝑆𝑆𝑠𝑠12𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠  
                                              (1) 

where, 𝑙𝑙1- set 1 representing spatial setting 1, including the subset 1 of dynamic variables (𝑙𝑙𝑑𝑑1 ) and the subset 

2 of static variables (𝑙𝑙𝑠𝑠1), 𝑙𝑙2- set 2 representing spatial setting 2, including the subset 1 of dynamic variables (𝑙𝑙𝑑𝑑2 ) and the subset 

2 of static variables (𝑙𝑙𝑠𝑠1), 𝑆𝑆𝑆𝑆𝑘𝑘12 – sum of relative ratios of common dynamic variables between two settings at time k, 𝑆𝑆𝑠𝑠12  – sum of relative ratios of common dynamic variables between two settings, assuming no 

changes over time during the experiment, 𝑁𝑁𝑑𝑑 = |𝑙𝑙𝑑𝑑1 ∪  𝑙𝑙𝑑𝑑2| – cardinality of union set of 𝑙𝑙𝑑𝑑1 and 𝑙𝑙𝑑𝑑2, 𝑁𝑁𝑠𝑠 = |𝑙𝑙𝑠𝑠1 ∪  𝑙𝑙𝑠𝑠2| – cardinality of union set of 𝑙𝑙𝑠𝑠1 and 𝑙𝑙𝑠𝑠2. 

 

We have two similarity calculation situations dependent on variable types. First, if variable 

values are interval, ratio, binary and categorical, the pairwise similarity at time k can be calculated 

using Equation (2) and (3). Note that the categorical data can be converted to binary data format 

based on the number of categories. 

If not considering weights or relative importance of individual elements/variables: 

 𝑠𝑠𝑠𝑠𝑚𝑚𝑘𝑘(𝑙𝑙1, 𝑙𝑙2) =
∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑘𝑘1𝑖𝑖)−𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑘𝑘2𝑖𝑖)��+∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠1𝑗𝑗�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠2𝑗𝑗���𝐶𝐶𝑠𝑠12𝑗𝑗=1𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1 𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠  

     (2) 

 

If considering weights or relative importance of individual elements/variables: 𝑠𝑠𝑠𝑠𝑚𝑚𝑘𝑘(𝑙𝑙1, 𝑙𝑙2) =
𝑐𝑐𝑘𝑘𝑑𝑑12 ∑ 𝜔𝜔𝑖𝑖�1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑘𝑘1𝑖𝑖)−𝑙𝑙𝑙𝑙𝑙𝑙(𝑑𝑑𝑘𝑘2𝑖𝑖)��𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1 𝑁𝑁𝑑𝑑 +

𝑐𝑐𝑠𝑠12 ∑ 𝜔𝜔𝑗𝑗�1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠1𝑗𝑗�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠2𝑗𝑗���𝐶𝐶𝑠𝑠12𝑗𝑗=1 𝑁𝑁𝑠𝑠  
      (3) 

 

Second, if variables are ordinal valued, the similarity can be calculated using Equation (4) and 

(5): 

If not considering weights or relative importance of individual elements/variables: 𝑠𝑠𝑠𝑠𝑚𝑚𝑘𝑘(𝑙𝑙1, 𝑙𝑙2) =
∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘2𝑖𝑖�)𝑛𝑛𝑖𝑖−1 �+∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠2𝑖𝑖�)𝑚𝑚𝑗𝑗−1 �𝐶𝐶𝑠𝑠12𝑗𝑗=1𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1 𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠  

     (4) 

If considering weights or relative importance of individual elements/variables: 𝑠𝑠𝑠𝑠𝑚𝑚𝑘𝑘(𝑙𝑙1, 𝑙𝑙2) =
𝑐𝑐𝑘𝑘𝑑𝑑12 ∑ 𝜔𝜔𝑖𝑖�1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘2𝑖𝑖�)𝑛𝑛𝑖𝑖−1 �𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1 𝑁𝑁𝑑𝑑  

+
𝑐𝑐𝑠𝑠12 ∑ 𝜔𝜔𝑗𝑗�1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠2𝑗𝑗�)𝑚𝑚𝑗𝑗−1 �𝐶𝐶𝑠𝑠12𝑗𝑗=1 𝑁𝑁𝑠𝑠  

   (5) 

 

Where, 𝑐𝑐𝑘𝑘𝑑𝑑12 – the number of common dynamic variables between two settings at timestamp k, 𝑐𝑐𝑠𝑠12 – the 

number of common static variables between two settings, 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 − weights or relative importance of dynamic and static independent variables to response 

variable,  𝑛𝑛𝑖𝑖 ,𝑚𝑚𝑗𝑗 − ordinal levels of dynamic variable i and static variable j, respectively, 
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𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑘𝑘1𝑖𝑖), 𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑘𝑘2𝑖𝑖)− the relative levels or magnitudes of two corresponding co-occurring elements 

in two dynamic subsets 𝑙𝑙𝑑𝑑1 and 𝑙𝑙𝑑𝑑2 at timestamp k, respectively: 

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑘𝑘1𝑖𝑖) =
𝑑𝑑𝑘𝑘1𝑖𝑖𝑑𝑑𝑘𝑘1𝑖𝑖+𝑑𝑑𝑘𝑘2𝑖𝑖  and 𝑙𝑙𝑙𝑙𝑙𝑙(𝑆𝑆𝑘𝑘2𝑖𝑖) =

𝑑𝑑𝑘𝑘2𝑖𝑖𝑑𝑑𝑘𝑘1𝑖𝑖+𝑑𝑑𝑘𝑘2𝑖𝑖        (6) 

 𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑗𝑗 − weights or relative importance of dynamic and static independent variables to response 

variable,  𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠1𝑖𝑖), 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠2𝑖𝑖)− the relative levels or magnitudes of two corresponding co-occurring elements in 

two static subsets 𝑙𝑙𝑠𝑠1 and 𝑙𝑙𝑠𝑠2, respectively:  

 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠1𝑖𝑖) =
𝑠𝑠1𝑖𝑖𝑠𝑠1𝑖𝑖+𝑠𝑠2𝑖𝑖  and 𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠2𝑖𝑖) =

𝑠𝑠2𝑖𝑖𝑠𝑠1𝑖𝑖+𝑠𝑠2𝑖𝑖         (7) 

 

2.3.2. Pairwise Similarity between Sequences of Spatial Settings 

Sequences of a spatial setting refer to the different configurations of the setting or a physical 

space that occur over time due to the changes of the dynamic variables while static variables are 

assumed stable during the study timeframe of interest. We can extend the modified Jaccard Index 

like pairwise similarity measure between individual settings, to calculate the pairwise similarity 

between sequences of spatial settings if the data from different locations are collected in equal time 

intervals or in the same order.  Assuming we have determined the granularity of time intervals or 

certain sequential order and the total number of timestamps, T, the similarity between two sequences 

of spatial settings from two locations (S1 and S2) can be expressed as Equation (8): 

 𝑠𝑠𝑠𝑠𝑚𝑚𝑔𝑔𝑙𝑙𝑔𝑔𝐴𝐴𝑔𝑔𝑙𝑙(𝑆𝑆1, 𝑆𝑆2) =
∑ 𝑠𝑠𝑠𝑠𝑚𝑚𝑘𝑘(𝑙𝑙1, 𝑙𝑙2)𝑇𝑇𝑘𝑘=1 𝑇𝑇  

                                                         =
∑ (𝑆𝑆𝑑𝑑𝑘𝑘12+𝑆𝑆𝑠𝑠12)𝑇𝑇𝑘𝑘=1𝑇𝑇(𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠  )

 

                       =
∑ 𝑆𝑆𝑑𝑑𝑘𝑘12𝑇𝑇𝑘𝑘=1𝑇𝑇(𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠)

+
∑ 𝑆𝑆𝑠𝑠12𝑇𝑇𝑖𝑖=1𝑇𝑇(𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠)

 

                       =
∑ 𝑆𝑆𝑑𝑑𝑘𝑘12𝑇𝑇𝑘𝑘=1𝑇𝑇(𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠)

+
𝑆𝑆𝑠𝑠12𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠 

              (8) 

 

In dealing with the sequences of spatial settings, we also need to consider the data types and the 

weights or relative importance of explanatory variables to response variables (events or event 

sequences of interests). So, we also have four situations when calculating the similarity between these 

setting sequences from different locations. 

1) Variable type: Interval, ratio, binary and categorical; not considering the weights of individual 

variables: 

 𝑠𝑠𝑠𝑠𝑚𝑚𝑔𝑔𝑙𝑙𝑔𝑔𝐴𝐴𝑔𝑔𝑙𝑙(𝑆𝑆1, 𝑆𝑆2) =
∑ ∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑑𝑑𝑘𝑘1𝑖𝑖)−𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑑𝑑𝑘𝑘2𝑖𝑖)��𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1𝑇𝑇𝑘𝑘=1 𝑇𝑇(𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠)

+
∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑠𝑠1𝑗𝑗�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑙𝑙𝑠𝑠2𝑗𝑗���𝐶𝐶𝑠𝑠12𝑗𝑗=1 𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠 

   (9) 

 

2) Variable type: Interval, ratio, binary and categorical; considering the weights of individual 

variables: 

 

            𝑠𝑠𝑠𝑠𝑚𝑚𝑔𝑔𝑙𝑙𝑔𝑔𝐴𝐴𝑔𝑔𝑙𝑙(𝑆𝑆1, 𝑆𝑆2) =
𝑐𝑐𝑘𝑘𝑑𝑑12 ∑ ∑ 𝜔𝜔𝑖𝑖�1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑑𝑑𝑘𝑘1𝑖𝑖)−𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙𝑑𝑑𝑘𝑘2𝑖𝑖)��𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1𝑇𝑇𝑘𝑘=1 𝑁𝑁𝑑𝑑 +

                                                               
𝑇𝑇∗𝑐𝑐𝑠𝑠12 ∑ 𝜔𝜔𝑗𝑗�1−𝐴𝐴𝐴𝐴𝑠𝑠�𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠1𝑗𝑗�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠2𝑗𝑗���𝐶𝐶𝑠𝑠12𝑗𝑗=1 𝑁𝑁𝑠𝑠  

   

     (10) 

 

3) Variable type: ordinal; not considering the weights of individual variables: 
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      𝑠𝑠𝑠𝑠𝑚𝑚𝑔𝑔𝑙𝑙𝑔𝑔𝐴𝐴𝑔𝑔𝑙𝑙(𝑆𝑆1, 𝑆𝑆2) =
∑ ∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘2𝑖𝑖�)𝑛𝑛𝑖𝑖−1 �𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1𝑇𝑇𝑘𝑘=1 𝑇𝑇(𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠)

+
∑ �1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠2𝑖𝑖�)𝑚𝑚𝑗𝑗−1 �𝐶𝐶𝑠𝑠12𝑗𝑗=1 𝑁𝑁𝑑𝑑+𝑁𝑁𝑠𝑠 

      (11) 

 
4) Variable type: ordinal; considering the weights of individual 

variables: 

 

             𝑠𝑠𝑠𝑠𝑚𝑚𝑔𝑔𝑙𝑙𝑔𝑔𝐴𝐴𝑔𝑔𝑙𝑙(𝑆𝑆1, 𝑆𝑆2) =
𝑐𝑐𝑘𝑘𝑑𝑑12 ∑ ∑ 𝜔𝜔𝑖𝑖�1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑑𝑑𝑘𝑘2𝑖𝑖�)𝑛𝑛𝑖𝑖−1 �𝐶𝐶𝑘𝑘𝑑𝑑12𝑖𝑖=1𝑇𝑇𝑘𝑘=1 𝑁𝑁𝑑𝑑 +

                                                              
𝑇𝑇∗𝑐𝑐𝑠𝑠12 ∑ 𝜔𝜔𝑗𝑗�1−𝐴𝐴𝐴𝐴𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠1𝑖𝑖�−𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠2𝑖𝑖�)𝑚𝑚𝑗𝑗−1 �𝐶𝐶𝑠𝑠12𝑗𝑗=1 𝑁𝑁𝑠𝑠  

                                   (12) 

2.4. Setting Similarity Analysis Workflow 

To estimate similarity levels between event settings, a critical step is to effectively select and 

quantify the major attributes representing these settings where events or event sequences occur. As 

introduced above, the variables can be static or dynamic or both, potentially covering a wide range 

of environmental variables. The selection of variables in developing similarity measures will be 

domain dependent and should be statistically discriminant. In a water quality monitoring 

application, for example, the static spatial setting variables of interest could include land cover, 

topography, and soils, and dynamic variables could be weather related. Figure 5 shows the steps for 

implementing similarity assessment between event settings or sequences of event settings in a 

specific domain. 

 

 

Figure 5. Spatial-temporal setting similarity analysis flowchart. 

Define a thematic event and identify sequences of spatiotemporal events: assume that we 

focused on an event or event sequences related research in a specific domain and identified a series 

of sequences of spatiotemporal events and completed similarity analysis between these sequences. 

Identify relevant spatial settings and spatial features or variables: select potential dynamic 

and static variables representing spatial settings, which are deemed relevant to event occurrences 

based on domain knowledge. In studying air pollution events, for example, we could include data 

on wind direction, wind speed, sites of local manufactures, major pollution sources, concentration of 

major pollutants, transportation density, etc. A correlation matrix for these initial selected variables 

can be used to eliminate redundant information.  

Collect spatial data and preprocess it: collect sufficient data on pre-selected static and dynamic 

variables intuitively correlated to occurrences of the thematic events.  Preprocessing or preparation 
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of the collected data includes normal distribution check, normalization, standardization of 

measurement units, and binarization of categorical data, etc.  

Analyze relative importance/weight of preliminarily selected variables: to improve the 

computation speed and accurate representation of similarity measures we should identify those 

variables most relevant to the events of interest and reduce the number. To determine which variables 

are most important to the thematic events and for the similarity measures, we can conduct Relative 

weight analysis (RWA) [31–33] and partial least squares regression (PLSR) [34].  

Calculate pairwise similarities between spatial setting sequences: Once the most relevant 

features or variables are identified, we can use the similarity measures developed in this study to 

compute the pairwise similarity between spatial settings and sequences of spatial-temporal settings 

and form the similarity matrix. 

Validate the similarity measure: with the similarity matrix of spatial setting sequences, we can 

further conduct clustering analysis to group event sequences associated locations or stations, and 

then conduct the comparison analysis with clusters of event sequences as ground truth. The other 

approach is to compare the results with other methods. 

3. Case Study: Setting Similarity of Coastal Monitoring Stations for Fecal Pollution 

To demonstrate the use of our proposed method above, we determined the pairwise similarities 

of 16 monitoring stations along the Maine coast with the selected setting attributes for costal fecal 

pollution event sequences. The Maine Department of Marine Resources (DMR) manages the shellfish 

growing areas in coastal Maine based on the fecal pollution situations observed from more than 2000 

monitoring stations. Fecal coliform is a type of bacteria that is found in the intestines and feces of 

warm-blooded animals, including humans. It is used as an indicator of fecal contamination of water 

[35]. Monitoring fecal coliform levels in coastal waters is important because it can help identify 

sources of contamination and provide an early warning of contamination, enabling faster responses. 

Maine DMR typically collects water samples at these monitoring stations (>2000) at regular intervals 

and analyzes them for fecal coliform levels. Grouping monitoring stations as similar spatial settings 

of fecal pollution events can provide several benefits and advantages. First, it can provide useful 

information for early detection of pollution events at similar stations [36,37]. Second, cluster analysis 

of monitoring stations across a wider area can help to identify trends and patterns in fecal coliform 

levels and pollution events, which can inform efforts to improve water quality. Third, followed by 

the previous two benefits, it will help to optimize resource allocation and prioritize monitoring efforts 

based on areas of higher pollution risk, which can help to reduce costs and increase efficiency in 

monitoring and management activities. Fourth, it can help to make more informed decisions about 

pollution control measures, such as beach closures or water treatment. Lastly, it also helps to increase 

public awareness of coastal water quality issues and the need for responsible use and management 

of marine resources. 

3.1. Experimental Site and Design 

3.1.1. Site and Variables 

In this case study we selected 16 monitoring stations along the Maine coast, with the following 

DMR assigned Location IDs: WE020.00, WE028.00, WG008.10, WG027.00, WG038.00, WM003.00, 

WN057.00, WN077.20, WQ023.00, WR011.00, WS027.00, WS051.00, WT015.00, WT018.00, WT024.00, 

WV019.00, as shown on the map (Figure 6). Multiple factors related to fecal coliform concentration 

around these monitoring stations contribute to characterizing the corresponding spatial settings for 

fecal pollution events. Some studies have shown that shoreline, basin hydrology, and marine 

environment affect the retention, survival, and distribution of fecal coliform [38]. Based on data 

availability we selected a combination of basin characteristics as static variables and some marine 

environmental factors as dynamic variables.  Their abbreviations and description are shown in Table 

1. 
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Figure 6. Selected monitoring stations/locations on the Maine coast for depicting spatiotemporal 

settings of fecal pollution event sequences. 

Table 1. Description and abbreviation of selected basin characteristics and dynamic parameters. 

Abbreviation/Code Description Unit 

Static Variables (Basin Characteristics)   

BSLDEM10M Mean basin slope computed from 10 m DEM percent 

COASTDIST Shortest distance from the coastline to the basin centroid miles 

DRNAREA Area that drains to a point on a stream square miles 

ELEV Mean Basin Elevation feet 

ELEVMAX Maximum basin elevation feet 

LC11DEV 
Percentage of developed (urban) land from NLCD 2011 classes 

21-24 
percent 

LC11IMP 
Average percentage of impervious area determined from NLCD 

2011 impervious dataset 
percent 

PCTSNDGRV Percentage of land surface underlain by sand and gravel deposits percent 

SANDGRAVAF Fraction of land surface underlain by sand and gravel aquifers dimensionless 

SANDGRAVAP Percentage of land surface underlain by sand and gravel aquifers percent 

STATSGOA Percentage of area of Hydrologic Soil Type A from STATSGO percent 

STORAGE Percentage of area of storage (lakes ponds reservoirs wetlands) percent 

STORNWI 
Percentage of storage (combined water bodies and wetlands) 

from the National Wetlands Inventory 
percent 

BKSF Bank-full Streamflow ft^3/s 

BKW Bank-full Width ft 

BKD Bank-full Depth ft 

BKA Bank-full Area ft^2 

Pop_Dnsity Population Density persons/mi^2 

Dynamic Variables     

Tide Tide stages: H, L, F, E, HF, HE, LF, LE 3 Hours 

Salinity Ocean water salinity   

Wind Wind direction: E, S, W, N, NW, NE, SW, SE Direction 

RainCum24 Cumulative precipitation in 24 hours inch 

RainCum48 Cumulative precipitation in 48 hours inch 
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RainCum72 Cumulative precipitation in 72 hours inch 

RainCum96 Cumulative precipitation in 96 hours inch 

3.1.2. Data Collection 

We used the geolocations of the 16 selected monitoring stations to delineate the corresponding 

basins with StreamStats v4.13.0 (https://streamstats.usgs.gov/ss/) and download all associated basin 

characteristics data. For the static variables described in Table 1, the data were extracted as shown in 

Table S1. We obtained marine environment related variables and fecal coliform measurements from 

Maine DMR (Table S2). 

3.1.3. Methods 

We use partial least squares regression (PLSR) analysis [32,33] to obtain the relative importance 

of all variables against the fecal coliform scores. We use the similarity measure developed in this 

study to achieve the similarity matrix of spatial setting sequences and use the method developed in 

[1] to obtain the similarity matrix of the corresponding fecal pollution event sequences with the same 

locked timestamps. After converting the similarity matrices of both setting and event sequences to 

the distance matrices we did a cluster analysis [39]. 

3.2. Relative Weights and Selection of Representative Variables for Spatial Settings 

The results of the partial least squares regression analysis on 39 variables reveal that some 

variables are more important than others in predicting the fecal coliform levels (Table 2 and Figure 

7). The signs associated with each variable provide insight into the direction of their impact on the 

fecal coliform levels. Salinity has the highest relative importance and the strongest negative influence 

on the fecal coliform. On the other hand, shortest distance from the coastline to the basin centroid 

(COASTDIST), Bank-full Streamflow (BKSF), and percentage of storage (combined water bodies and 

wetlands) from the National Wetlands Inventory (STORNWI) have the highest positive influence on 

the fecal coliform levels. 

Table 2. Relative weights of 39 selected variables with signs. 

Negative Variables Relative Importance Positive Variables Relative Importance 

Salinity -34.696 COASTDIST 7.252 

STATSGOA -7.763 BKSF 7.217 

BKW -5.725 STORNWI 6.092 

ELEV -3.630 RainCum72 4.256 

STORAGE -1.069 LC11DEV 3.789 

Tide.HF. -0.817 BSLDEM10M 3.200 

Wind.NW. -0.790 Tide.HE. 1.455 

BKA -0.778 RainCum96 1.389 

Tide.H. -0.771 ELEVMAX 1.298 

LC11IMP -0.472 Wind.CL. 1.121 

Wind.S. -0.373 RainCum48 1.082 

BKD -0.372 RainCum24 0.878 

Wind.N. -0.247 DRNAREA 0.871 

Tide.E. -0.218 Wind.NE. 0.654 

Pop_Dnsity -0.186 PCTSNDGRV 0.399 

Wind.E. -0.109 SANDGRAVAP 0.393 

Wind.SW. -0.106 Tide.F. 0.325 

Wind.SE. -0.095 Tide.LE. 0.042 

Wind.W. -0.056 SANDGRAVAF 0.004 

Tide.L. -0.015     
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Figure 7. Bar chart of relative importance of 39 selected static and dynamic explanatory variables for 

fecal coliform bacterial measurements. 

To reduce the number of variables for calculating similarity in the formula developed in this 

study we select the variables with higher weights. In this case study we select those variables with 

absolute values of relative importance greater than 1. We then re-ran PLSR with these selected 

variables against corresponding fecal coliform levels. The relative importance of these variables from 

the second round PLSR is shown in Table 3 and Figure 8, which can be used as relative weights for 

calculating similarities between spatial setting sequences when considering contribution from these 

individual variables. 

Table 3. Relative weights of 16 selected variables with signs. 

Negative Variables Relative Importance Positive Variables Relative Importance 

Salinity -33.900 BKSF 8.500 

STATSGOA -11.500 STORNWI 6.500 

ELEV -8.700 COASTDIST 6.200 

BKW -6.700 RainCum72 4.200 

STORAGE -1.100 BSLDEM10M 3.700 
   ELEVMAX 3.000 
   Tide.HE. 1.400 
   RainCum96 1.400 
   LC11DEV 1.100 
   Wind.CL. 1.100 

    RainCum48 1.100 

 

Figure 8. Bar chart of relative importance of 16 selected static and dynamic against fecal coliform 

bacterial measurements. 

3.1. Clustering Analysis of Spatial Setting Sequences and Fecal Pollution Event Sequences 

We computed all pairwise similarities between spatial setting sequences using the method of 

this study using the 16 selected variables in the previous section for 16 rain-storm-involved 

timestamps. The clustering analysis of spatial setting sequences labeled with monitoring stations 

yields interesting insights into the underlying patterns and structures of the data of these selected 

static and dynamic variables (Figure 9). The result indicates that there are 3~4 distinct clusters within 
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the data, with each cluster representing a unique pattern of spatial setting sequences with similar 

characteristics. Figure 9 shows some geographically proximate spatial setting sequences in the same 

or connected clusters but not all due to the diverse contributions of different static and dynamic 

variables. These clusters provide valuable information about the types of spatial setting sequences, 

which we next relate to clusters of fecal pollution event sequences. 

 

Figure 9. Clusters of 16 spatial setting sequences labeled with monitoring stations. 

We generated a similarity matrix between fecal pollution event sequences also labeled with 

monitoring stations and the corresponding setting sequences at the same time frame (16 days). With 

the conversion to the distance matrix, we implemented the clustering analysis and the similarity 

heatmap and the clustering result is shown in Figure 10. Three major clusters are clearly identified. 

 

Figure 10. Similarity-based heat map and distance based hierarchical clustering between 16 

monitoring stations for fecal pollution event sequences. 

3.4. Cross Analysis between Clusters of Setting Sequences and Clusters of Event Sequences 

Cross-analysis between clusters of spatial settings and clusters of events sequences can provide 

insights into the causes and effects of pollution events in coastal waters. We put clustering results 

above from both setting sequences and event sequences side by side to build the cross-comparison 

graph (Figure 11). By examining components of the major clusters of setting sequences and pollution 

event sequences, we find cases of at least two stations within one major cluster among the event 

sequence clusters that were also grouped in the same major cluster of setting sequence clusters. We 
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found 11 out of 16 monitoring stations showing this pattern. Specifically, WS027.00, WT015.00, 

WT024.00, and WR011.00 in event sequence Cluster E1 are also in setting sequence Cluster S2; 

WG008.10 and WE020.00 in Cluster E2 are also in Cluster S1; WQ023.00 and WV019.00 in Cluster E2 

are also in Cluster S2; and WG027.00, WG038.00, and WM003.00 in Cluster E3 are also in Cluster S1. 

This cross-analysis between clusters of spatial settings and event sequences can help to improve our 

understanding of the complex interactions between environmental factors and basin characteristics 

and identify drivers for fecal coliform pollution events in coastal marine water. 

 

Figure 11. Cross analysis between clusters of setting sequences and clusters of event sequences. 

4. Discussion 

We developed similarity measures through modeling spatial setting sequences. The model uses 

a matrix representation of spatiotemporal event settings and considers both static and dynamic 

variables. To measure the similarity between spatial settings, the Jaccard index is modified based on 

the variables' magnitude and the time interval at which dynamic variables are measured. Pairwise 

similarity between individual spatial settings is crucial for developing similarity measures between 

sequences of spatiotemporal settings based on specific criteria. The pairwise similarity measure can 

help to identify patterns and predict future outcomes of corresponding event sequences. 

The model's matrix representation of sequences of spatiotemporal settings can be used to 

represent a set of sensor locations or monitoring stations where event sequences are observed. The 

matrix representation has the flexibility to include n dynamic and m static variables that represent all 

event settings at one spatial scale. The modified Jaccard index measures the similarity between 

individual spatial settings and forms the basis for similarity measures between sequences of 

spatiotemporal settings. The modified Jaccard similarity between two spatial setting sequences 

considers the relative ratios of common features/variables. These measures provide information on 

the differences or similarity of spatial settings which in turn contribute to the analysis of event 

sequences arising from these settings. 

Through the case study we demonstrated how to model the spatial-temporal setting sequences 

and provide a useful framework for understanding and characterizing spatial setting sequences 

corresponding to event sequences. The model's focus on defining the bounds of a setting and 

considering both static and dynamic variables allow for a comprehensive understanding of 

associated event sequences. The pairwise similarity measure helps identify patterns in event settings 

or setting sequences to comprehensively understand better the occurrences of events and event 

sequences. The similarity measures developed in this paper and the framework incorporating static 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 March 2023                   doi:10.20944/preprints202303.0366.v1

https://doi.org/10.20944/preprints202303.0366.v1


 15 

 

and dynamic variables to represent settings will provide a useful tool for a range of applications, 

from environmental settings to predictive modeling. 

One potential application of similarity measures for event sequence settings is in the field of 

disaster management. By analyzing the spatial-temporal settings of past disasters, emergency 

responders can better predict the likelihood and potential impact of future disasters and allocate 

resources more effectively. For example, if a particular region is prone to frequent flooding, similarity 

measures can be used to identify patterns in the spatial-temporal settings of past floods and help 

emergency responders anticipate and prepare for future floods in that region. 

Overall, the use of similarity measures for event setting sequences has a wide range of potential 

applications in various fields, including disaster management, urban planning, transportation 

planning, and cultural heritage management. By analyzing the spatiotemporal context of events and 

their surrounding environmental factors, researchers and practitioners can gain a deeper 

understanding of the underlying mechanisms that drive those corresponding events and event 

sequences and use that knowledge to make more informed decisions about the management and 

planning of future events and activities. 

5. Conclusions 

In conclusion, modeling spatiotemporal event sequences requires a careful consideration of 

spatial and temporal scales to define the bounds of the setting. The dynamic aspects of the setting 

should also be accounted for by conceptualizing the setting as a sequence. A matrix representation 

of sequences of spatiotemporal event settings can be developed for each setting with both dynamic 

and static variables. Pairwise similarity between individual settings and sequences of spatial settings 

can be calculated based on modifications of the Jaccard index, using a set of spatial features that 

represent each spatial setting.  

With a careful consideration of spatial and temporal scales to define the bounds of the setting, 

we develop a modeling approach that incorporates dynamic variables or features in addition to static 

variables. Using a matrix-based representation of spatiotemporal setting sequences, we developed 

new similarity measures that include quantitative levels of individual elements within the sequence 

and comparison with locked timestamps or order. These similarity measures allow for use of all 

variable data types in the equations.  Overall, these similarity measures along with the matrix-based 

representation of spatiotemporal event setting sequences incorporating both static and dynamic 

variables provide a novel method in support of event sequence analysis. 

Supplementary Materials: Table S1: Static variables of basin characteristics associated with 16 monitoring 

stations. Table S2: Dynamic variables and fecal coliform scores in 16 monitoring stations. 
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