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Abstract: In this study, we prove the norm separating property for the composition of Cesaro
and Gamma matrices with their transpose. As a result, we compute the £y-norms of six classes
of operators that commute with the infinite Hilbert o perators. Additionally, we find the norm of
Hilbert’s commutants on some well-known sequence spaces.
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1. Introduction

We can denote all sequences with real values by w. As a result, any linear subspace of
w is referred to as a sequence space. Banach space ¢, is the set of all real numbers sequences
x = (x)py € w such that

oo 1p
xlle, = (Z ka|”> <o (1<p<oo)
k=0

Assume T has non-negative entries and maps ¢, into itself and satisfies the inequality
ITxle, < Kllxle,,

for the constant K not depending on x and for every x € £,. The norm of T is the smallest
possible value of K. Several references have addressed the problem of finding the norm
and lower bound of operators on matrix domains [2—4,13-16].

Our study considers infinite matrices [A];, where all the indices j and k are non-
negative.

Hilbert matrix. If n is a non-negative integer, we define the Hilbert matrix of order n, Hy,
as follows:

1

Holik = T

(jjk=0,1,---).

In the case of n = 0, Hy = H is the well-known Hilbert matrix

1 1/2 1/3
1/2 1/3 1/4

H=11/3 174 1/5 .- |/
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20f13
which was introduced by David Hilbert in 1894. Below are some examples: 2
1/2 1/3 1/4 --- 1/3 1/4 1/5
1/3 1/4 1/5 --- 1/4 1/5 1/6
Hi=11/4 1/5 1/6 .| and Ha=|1/5 1/6 1/7
According to [7] theorem 323, the Hilbert matrix is a bounded operator on £, and 22
1Hll, e, = T(1/p)T(1/p*) = mwese(n/p),
.. . o101
where p* is the conjugate of p i.e. y =1L 2

24
Hausdorff matrices. One of the best examples of summability matrices is H;,, which is s
defined as 26

- 3 (o1 — ) ~kdu(6) 0 <k <],
Hylj =
0 otherwise.

where yi is a probability measure on [0, 1]. Even though it is a difficult task to obtain the -
£p-norm of operators, the Hausdorff matrices can be computed using Hardy’s formula [6, s
Theorem 216] which states that this matrix is a bounded operator on /;, if and only if 20

1 _
/efdmm<w, 1< p< oo
0

In fact, 30
|
1Hyllgye, = [ 07 du(o). (1.1)

Hausdorff operators have the interesting norm separating property. 31

Theorem 1.1 ([4], Theorem 9). Let p > 1 and Hy,, H, and Hy, be Hausdorff matrices such sz
that Hy = HyHy. Then Hy is bounded on {,, if and only if both H, and Hy, are bounded on £,. s
Moreover, we have 34

IHylle,~e, = 1Hglle, e, [1Hvlle, e,

Several famous matrices have been derived from the Hausdorff matrix. For positive  ss
integer 1, the following are the two classes: 36
37

Cesaro matrix. The measure du(6) = n(1 — 6)"~'d0 gives the Cesaro matrix of order 1, Cy;, 38

for which 30
(TH*]::kfl)
— L 0<k<),
[Culjx = ;")
0 otherwise.
Note that Cy = I, where [ is the identity matrix, and 40
1 0 0
1/2 1/2 0

G=C=1[1/3 1/3 1/3
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is the classical Cesaro matrix. For example,

1 0 o .- 1 0 0
2/3 1/3 0 --- 3/4 1/4 0

CG=13/6 2/6 1/6 ---| and C3=16/10 3/10 1/10

According to (1.1), Cy, has the /,-norm

(Gl — T+ DI(/p)
n Zpg)fp F(n—}-l/p*) 7
which for the famous Cesaro matrix that is ||C|[,, ¢, = %

The author, in [17] Theorem 3.1, has introduced a factorization for the Cesaro matrix

that will be used in the future.

Theorem 1.2. For integers n > m > 0, the Cesaro matrix C,, has a factorization of the form

Cu = SumCm = CinSn,m, where Sy, is a bounded operator on £y, and

1Sl _T(n+1)I(m+1/p%)
= T T+ )T (n+1/p*)

In particular, form =n — 1, C, = G,C,—1 = C;,_1Gy, where Gy, is the Gamma operator of order

n.

The matrix domain associated with C;, is defined by

. P
> 1 L/n+j-k-1

who has the norm

j p\ 1/p
@l 1 n+j—k—1
W= Y=L ( . )xk ,
Z%(jﬁg% j—k

and is a Banach space.

Gamma matrix. The measure du(0) = n0"140 gives the Gamma matrix of order n, G, for

which

(VH—IIE—I)
")
[Gn]j,k = !

0 otherwise.

0<k<j,

Hence, by Hardy’s formula, G, has the £,-norm

hp

||Gn|\£ﬁf,, = m
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You should note that G; is the classical Cesaro matrix C. Here are some more examples of  se

Gamma matrices 57

1 0 o - 1 0 0

1/3 2/3 0 .- 1/4 3/4 0

G2=11/6 2/6 3/6 ---| ad G3=11/10 3/10 6/10
Consider G, (p) to be the matrix domain of G,, which is defined as follows: 58
1 { k- |
j=0 ( j ) k=0

Equipped with the norm 59

. N
(&1 & ntk-1
I = (}g " E( ) ) ,

Gn(p) is a Banach space. The Cesaro and Gamma matrices and their associated sequence o
spaces have been studied by Roopaei et al. in [8-11] for both cases 0 < p < 1and e
1 < p < 0. 62

63

The Hellinger-Toeplitz theorem can also be called the following theorem. 64

Theorem 1.3 ([2], Proposition 7.2). Let 1 < p,q < co. The matrix M maps £ into £, if and only e
if the transposed matrix, M, maps Lg« into £,+. Then we have 66

||M||[p%fq = ”MtHé,i*ﬁﬁp*-

As an example of the Hellinger-Toeplitz theorem, the transposed Cesaro matrix of 7
order 1 has the /,-norm o8

Ict| _I(n+1)r(1/p)
n Kp—%p F(n—l—l/p)

Motivation. Infinite Hilbert operator has an extremely complex structure, making o

it among the most complicated operators. Because of this complexity, it is used in the 7
cryptography area. Recently author [12] has introduced some classes of Hilbert’s commuta- 72
tors mostly based on Cesaro and Gamma matrices. Through this study, the author triesto 7
complete his previous work by computing the £,-norm of those operators. 73
74

For non-negative integers #, j and k, let us define the matrix B, by 75

(k+1)---(k+n)
(j+k+1)---(G+k+n+1)

[Buljx = (n:k>ﬁ(j+k+1,n+1) =

where the p function is 76
1
B(m,n) = / X1 - x)" 2 (m,n=1,2,...).
0

Clearly, By = H where H represents Hilbert’s matrix. 7
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We need the following lemma before we can discuss the Hilbert operator’s commu- s
tants, which reveals the relationship between the Hilbert operator and the Cesaro and 7
Gamma matrices. 80

Lemma 1.4 (Lemmas 2.3 and 3.1 of [13] and [14]). Hilbert matrices satisfy the following e

identities for positive integer n: 82

* H=B,C, o3

* H, =CyB, e

* H,C, =CyH s

* H,G, = G,H, 1 s

* By, is a bounded operator that has the £,-norm o7
1Bl o, = ),

where Cy, and Gy, are the Cesaro and Gamma matrices of order n and By, is the matrix which was  ss
defined earlier. 80

Commutants of the infinite Hilbert operator. Assume that # is a non-negative integer, oo
and define the symmetric matrix as follows: o1

o =B'B,  ¥!=B,B.

¢ =Clc, ¥ =C,C

and forn >1 02
3 =G'G, ¥ =G,G,

Note that forn =1, 03

Y:=¥{=¥] =CC" and &:={=3]=CC,

where the matrices ¥ and ® have the matrix representations o4
1 1/2 1/3
1/2 1/2 1/3

Y=11/3 1/3 1/3

and o5
1+1/44---  1/4+1/94--- 1/9+1/16+---
1/441/9+--+ 1/4+1/9+-- 1/9+1/16+-- ---
P=11/9+1/16+--- 1/9+1/16+--- 1/9+1/16+--- --- |
respectively. %

The author, in [8] Theorems 11.2.2 and 11.2.4, has proved that all the above matrices o7
are the Hilbert operator’s commutants. As emphasized, We bring those theorems with s
their proofs. %
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Theorem 1.5. The Hilbert operator’s commutants are the operators ®< and V5. 100
Proof. By applying Lemma 1.4 twice, we have 101
®H = C.H,C,=(H,C,)'C,
(CyH)'C, = HC!C,, = H®S,.
It can easily be seen from Lemma 1.4 that HB,, = B, H,. Now, 102
Y'H = B,(HB,)! = B,(B,H,)*
= BuH,B! = HB,B!, = HY".

D 103
Theorem 1.6. The operators @, CI>§ 41 Y5 and ¥$ are the commutants of the Hilbert operator of ~ 10a
order n. 105
Proof. By applying Lemma 1.4 twice, we have 106

‘Y%Hn = Cn(HnCn)t = Cn(CnH)t
= CyHC! = H,C,C,, = H,¥5.
Also applying Lemma 1.4 results in 107
‘F;%Hn = Gn<HnGn)t = Gn(Ganfl)t
= GuH,_ G, = H,G,G!, = H,¥5.
The proof of the other items is similar. [ 108
2. Main Results 109
For non-negative integers m and #, let us define the following matrices 110

o0, =B,B, ¥, =BuB,

®hn = CuCn Fin = CuC,

and form,n > 1 111
i =GpGn  ¥hu = GuG.

Note that for m = n, all the above matrices are reduced to the Hilbert operator’s commuta- 112

tors that we introduced earlier. Through this section, we will prove the norm separating 11
property for the Cesaro and Gamma matrices of the form: 114

ICuChlle,—2, = ICmlle, e, I Calle, e,
ICHCull,—e, = 1Coulle, 2, ICalle, e,

1GnuGille, e, = 1Gumlle,~e, G lle, e,
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||G£nGn HZ,,%K,, = ”G;tn ||€pafp Gn ||Kpaé,,-

Theorem 2.1. For non-negative integers m and n, matrices ¥y, , and @, , are bounded operators 120
on £y and 121

_T(m+1)T(n+1)mwese(m/p)
G2 T T (m+1/p )T (n +1/p)

C
(k&

g, | _ I'(m+1)T'(n+1)mwese(m/p)
=l = T T+ 1/p)T(n + 1/p*)

In particular, the matrices Y5, and @, are bounded operators on £y, and 123

e e _ I?(n+1)mesc(n/p)
%56, = 19500, = I

Theorem 2.2. For positive integers m and n, matrices ‘I’%/n and CID%,H are bounded operators on £, 124
and 125

mnpp*
mp—1)(np* — 1)

¥l e, = (

mnpp*

D5 = :

|| m,n f,;—)fp (mp*—l)(np—l)

In particular, the matrices ¥S and % are bounded operators on Ly and 127

1’12 *
18yt = 198,20, = o=y

Theorem 2.3. For non-negative integer n, the matrices Y%, and ®%, are bounded operators on Ly 12
and 129

”\PhH _ Hq)bH _ F(n+1/p)F(n—|—1/p*)ncsc(7r/p)
nilly—Lp nilly—tp 1_'2(11—1—1) .

3. Proof of Theorems 130

In this section, we focus on proving our claims, but first, we need the following lemma. 13

132

Lemma 3.1. For the Hilbert operator we have || H? lle,~e, = |l H”%pae,,'

Proof. Let H be the Hilbert operator with matrix entries 1/(j + k)(j,k > 1), and write a3
M; = 7t/ sin(rm). It is well known that ||H|[;, ¢, < My, for p > 1. Here we show that 2

|1H ||gp_>gp > My, and | H?|| sty = M? /p (so that equality holds in both cases). The same 135
statements hold for the alternative Hilbert operator with matrix entries ]Jrk%l 136
Choose r with rp > 1, and let x;, = 1/k" for k > 1. Lety = Hx and z = Hy. Then 137

o 1 S|
i = — 2 %dt
Yi k; (j+k)k" —/1 (t+ )t
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Now,
®© 1 Mr
7dt — 2
/o (t+ )t J’
and
1 11 1
7,dt</ —dt = .
/o L+t~ Jo jt (1—r)j
SO
M, 1
> (3.1)
V=TT A=)

Informally, y; is approximately M,x;, so ||y[|¢, is approximately M,||x|s,. For0 < x < a,
we have (1 — £)P > 1 — £ hence (a — x)P > aP — paP~1x. Hence
-1
P M p M
yj = ]'rp 1— rjrp7r+1 4

so,

oo

Y = MIg(p) - M+ 1),
]:

while Y ;7 x}: = ((rp). Now let r — 1/p from above. Then {(rp) — oo, while {(rp —r +

1) = ¢(2—1/p). Hence HZ“E” tends to My .
4

We now turn to H2. We require the following
Let uy = 1/k for k > 1. Then

> 1& /1 1
oy = Y= 5 )

k=1 I'e=a
1 1 1 .
= (e f) =il

whereL]-_EZ 11 By (3.1),y > Myx —u/(1—r),s

Hu Hu
ZZMr(Hx)_m :Myy_ 1_1’.

So, again by (3.1)

M; M L

T

T T U-n) G-nf

Hence

MP MM+ L
77 PR T —n)j

zF >
z; 2

Write 17(s) = Y724 ]L—SJ this is convergent for s > 1. Then

Yo = MPE(p) — s MY (M (rp 7 1) 4 (rp 1),
j=1

139

141

142

143

148

149
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Whenr — 1/p from above, 77(rp —r+1) tends to the finite limit 77(2 — 1/p). So [|z[[4, /|| x|[,

-
o
N

tends to M1 /p O 153
Proof of Theorem 2.1. (a) We first compute the £,-norm of Y7, ,,. Obviously 154
[ ¥5nlle, e, < 1Cmlle, e, [IChlle, e,
_ Tm+1)T(n+1)I1/p)T(1/p*)
I'(m+1/p*)I'(n+1/p) '
Now, according to Lemma 3.1 and Lemma 1.4 155
IHIZ by = 1H o, = | HH gy,
= ||Bmcm(BnCn)t||€pa£,, = ”qu%,nB;”Kpaé,,
< 1Bulle, e, ¥50nlle, e, 1 Bille, e, -
Hence 156
2
|| c HHHZP—MP
= |IBumlle,—e, 1 Bhlle, e,
T(m+ 1T (n+1)I(1/p)T(1/p*)
T(m+1/p)I'(n+1/p)
_ I'(m+4+1)I(n+1)mesc(n/p)
T(m+1/p)C(n+1/p)
(b) For computing the norm of ®j, ,,, we consider two cases: 157
158
(1) m Z n 159

In this case, regarding Lemma 1.4 and the identity C;; = S;,nCyy = Cy S, wehave 160

H3, = (CuBm)'CyuBy = B}, CL.CuSmnBm = BL, DS, SmnBm.

Hence 161
C 1l L,
|| —Lp > B B
H m”é,,%l,, H m”épalp
_ Tm+1DI'(n+1)mesc(n/p)
I'(m+1/p)L(n+1/p*)
(2) m<n 162
Similarly, by applying Lemma 1.4 and the identity C;, = C;;,S;,» we have 163

Hj = (CuBy)'CyBy = Bl (CuSmn)'CuBy = BL S, @5, By

and again 108

1S5l > Il v,
malltty 2 B, TS

H n”@;,%ﬁp

I'(m+1)I'(n+1)mwesc(m/p)
I(m+1/p)T(n+1/p*)
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The other side of the above inequalities is due to the norm inequality

=ty < NCulle, 0, [1Culle, e,
I(m+1)I'(n+1)mwesc(m/p)
T(m+1/p)T(n+1/p*)

[

which completes the proof. In particular, for m = n

85yt = 1951, = o DTS/ 7)
nllly—Lp nllly—L)y F(n+1/p*)r(n+1/p)'

In the following, we intend to present another proof for obtaining the norm of matrices

c C
Y5, and @7, ;.

Remark 3.2. Suppose that ||'¥5, ,
‘anlo = C, hence

e _ Tm+1)T(1/p)
Lp—ly = H m”fpaép = F(m+1/p*) ’

%50

which proves that

. T(m+1)T(1/p*
¥l 2, = T g, ),

Now, since ¥j ,, = C!, hence according to the Helinger-Toeplitz Theorem

I'(n+1)I(1/p)
it _
1¥0,nlle,~e, = 1Calle,—e, = CESVI

which shows that

195l g, = L DEO DA/ )T/
mn ey =Ly T(m+1/p*)T(n+1/p) i

where h(p) is a positive function of p. Finally, since ¥§ , = I, for the identity matrix, hence

¥5,0

=ty = Mlley—e, =1,
which indicates that h(p) = 1. Therefore, we have proven

_ T(m+1)I(n+1)I(1/p)T(1/p*)
Y2 T T T (m+ 1/p )T (n+1/p)

c
‘|1Ym,n

The method for obtaining £,-norm of @, , is the same.

Proof of Theorem 2.2.
(a) By the definition we have

mnpp*
mp—1)(np” — 1)

||‘P§1n Ly—lp < ||Gm||é,,afp||cit1||épa£p = (

From the definition and relation C;; = C,,_1G; = G,C,,_1, we have the identity

‘P;Ln = Cm—le(Cn—lcn)t = Cm_l‘I’%lanlfl.

t,~t, = f(m,n, p), where f is a real positive function. Since

166

171

172

174
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Hence by applying the previous part we obtain 180
1S, | [k 4 ||€p—>€,, mnpp*
mllly—l, = = ’

LT Hcm—l||€p—>€p ||C,t1,1||e,,—>ep (mp - 1)(71]7* - 1)
which proves our equality. 161
(b) For computing the £,-norm of ®;,,, its enough to use the identity DLy = 12
(GmCin—1)!GnuCp1 = C!_®3,,Cy_1. Now, the proof is routine. Particularly, for m = 1, 1ss
we have 184

2 *
ye — ||PS _ n-pp )
H n||€p~>£p H n||5p~>fp (ﬂpfl)(i’lp**l)
Proof of Theorem 2.3. According to the definition 185
1€l e, < [1Bulle, e, IBhlle, e
p=tp Pty p=tp
_ Tn+1/p)f(n+1/p")T(1/p)L(1/p")

I2(n+1) '

Now, by applying the identity ¥2®¢ = H? and Lemma 3.1 we have 186
2
H\I;b” HHZHKP—)KP HHHEP—%,,
ly—t = =
T D5 lle, e, NPl
_ [n+1/pF(n+1/p*)I(1/p)I(1/p")

2(n+1) '
which completes the proof. 187
4. Some Applications 180
In a fixed sequence space &X', matrix A has the following matrix domain: 100

Ay ={xew:Axe X} 4.1)

The special and important case X = £, will be written as A, instead of Ay,. When I'is 10
the infinite identity matrix, I, = /, is rather trivial. Researchers have been inspired by 1.2
this concept to define new Banach spaces as infinite matrix domains. See the textbook [1]. 1es
Using our main theorems, we obtain the norm of Hilbert’s commutants on some famous 1e4

sequence spaces in the sequel. 195

Corollary 4.1. Let Cy;, be the Cesaro operator of order n. Then 196

(a) @, is a bounded operator from C,,(p) into £, and 107

(b) @, is a bounded operator on C,,(p) and 108
I2(n+1)mesc(/p)

c _
Hq)n||cn(p)—>cn(iﬂ) T+ 1/p)T(n+1/p*)°
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Proof. Since C, is invertible, the map x — C,x indicates that C,,(p) and ¢ p are isomorphic 10

spaces. (a) According to the definition of matrix ®§, and Hellinger-Toeplitz theorem 200
Il ICHCoxlle
ey, = Sup it = sup
=t = R Tllep)  coer, CuxTl,
IChylle
= sup Iyl b= ||C7t1||€pﬁfp
yel, y Ly
_ T+ 1)r/p)
I[(n+1/p)
(b) By applying Theorem 2.1 we have 201
|5l c, () [[Cn @5
1llc,prcu = sup i = sup —
NG = S Tlam ey, 10,
[¥5Cnxlle, ¥aylle,
= sup —=—r— =sup ——— = ¥l
oar, Caxlle, et Tl =ty
_ PP+ D)r/pra/p’)
T(n+1/p)T(n+1/p*) "
D 202
Corollary 4.2. Let G, be the Gamma operator of order n. Then 203
(a) @} is a bounded operator from G, (p) into £, and 204
__n
D¢ G, (p)—e, = PR
(b) @} is a bounded operator on Gy (p) and 208

2 9%
126 () Gulp) = T

Proof. Readers should be able to figure it out for themselves. [J 206

Corollary 4.3. Let Cy, be the Cesiro operator of order n. Then Y, is a bounded operator on Cy(p) 207

and 208
@b _ I'(n+1/p)T(n+1/p*)mcsc(mt/p)
1%l (p)—ca(p) = 2001 1) :
Proof. By symmetricity of Hy,, identity B,H, = HB, and Theorem 2.3 we have 200
I¥5xlc, () 1Ca¥hxl¢
H‘Pb ||Cn Cu = sup — WP gy P
nllCu(p)—Culp) xeC,,Izp) e,y cuver, NCaxlls,
B IHnByxlle, |IB, Hx]|y,
Chxely 1Cux|ls, Cuxelyp ICnxlle,
|05 Caux[|¢ @Yyl
= sup ||g - =sup —— = ||®Z||€paép
Cnxely "fop yely ”]/pr

I(n+1/p)T(n+1/p*)T(1/p)T(1/p*)
I2(n+1)
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