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Abstract: The aim of this study was to assess the ability of multiscale sample entropy (MSE), refined 
composite multiscale entropy (RCMSE), and complexity index (CI) to characterize gait complexity 
through trunk acceleration patterns in subjects with Parkinson's disease (swPD) and healthy 
subjects, regardless of age or gait speed. The trunk acceleration patterns of 51 swPD and 50 HS were 
acquired using a lumbar-mounted magneto-inertial measurement unit during their walking. MSE, 
RCMSE, and CI were calculated on 2000 data points, using scale factors (τ) 1-6. Differences between 
swPD and HS were calculated at each τ, and the area under the receiver operating characteristics, 
optimal cutoff points, post-test probabilities, and diagnostic odds ratios were calculated. MSE in the 
antero-posterior direction at τ 4 and τ 5, and MSE in the ML direction at τ 4 outperformed the other 
entropy measures in terms of discriminative ability and characterized the gait of swPD with 79%, 
82%, and 78% probabilities, respectively, and correlated with the motor disability, pelvic kinematics, 
and stance phase. Using a time series of 2000 data points, a scale factor of 4 or 5 in the MSE procedure 
can be considered as a marker of gait variability and complexity in swPD. 

Keywords: Multiscale Sample Entropy; Refine Composite Multiscale Entropy; Cerebellar Ataxia; 
Parkinson’s disease; Trunk acceleration time series; Complexity index; Gait variability; Gait 
complexity; Gait pattern; Movement disorders 

 

1. Introduction 

Subjects with Parkinson’s disease (swPD) experience progressively invalidating gait impairment 
[1], which affects their quality of life and increases their risk of falling [1–4]. 

Because of the effects of dopamine depletion on motor control [5], swPD are characterized by 
increased gait variability [6–8], which can result in a number of gait abnormalities, including 
shuffling gait and reduced step length [9–11]. Altered trunk behavior showed to characterize gait 
impairment [12–20] and to represent a responsive outcome for medications and rehabilitation in 
swPD [19–24]. Wearable sensors, such as magneto-inertial measurement units (MIMUs), have shown 
to provide trunk acceleration-derived gait indexes that can accurately characterize gait abnormalities, 
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falls risk, and gait variability in swPD [14,25,26], as well as responsive measures to quantify the 
effectiveness of rehabilitation [27]. 

When retrieved from trunk accelerations, the coefficient of variation (CV), a commonly used 
statistical measure that quantifies the variability of spatio-temporal gait parameters [14,28–31], may 
present some limitations in assessing gait variability in swPD, such as a high dependency on gait 
speed, limited ability to provide information on the underlying patterns and short-term changes in 
gait variability [10,14,32], and lack of identification of gait variability at earlier stages of the disease 
[33]. Moreover, CV is dependent on the identification of gait cycles, which is a possible source of error 
due to irregular acceleration signals or difficulties in the identifications of acceleration peaks, 
particularly in neurodegenerative diseases [34–37]. 

To overcome these shortcomings, researchers have proposed adopting nonlinear entropy 
measures, which assess gait variability by providing a measure of the complexity and regularity of a 
time series, regardless of step detection [38–41]. 

Entropy quantifies the probability of the next state of the system based on what is known about 
the current state of a time series [42,43]. When the probability is high, the following system states 
provide little new information, resulting in low entropy values. When the probability is low, the 
subsequent data points in the system provide a greater amount of new information, resulting in high 
entropy values, indicating greater gait irregularity or complexity of the gait pattern. Several methods 
for calculating entropy have been proposed [43–46]. Among them, sample entropy (SampEn) [45] – 
based methods have been described as valid tools for assessing gait regularity in healthy subjects and 
pathological conditions [42,47,48], including trunk acceleration-derived gait signals from swPD [49]. 
Multiscale entropy (MSE) and refined composite multiscale entropy (RCMSE) have been shown to 
be the most appropriate entropy measures for assessing the repeatability of gait signals, particularly 
when analyzing shorter time series [43,46], such as those generated by ambulatory gait trials, where 
they limit the risk of noisy and unstable entropy estimates [45,50–52]. 

MSE is an extension of SampEn that computes SampEn at different scales by segmenting the 
original time series into different length windows through a coarse – graining procedure [53–58]. 
When MSE was applied to trunk accelerations, it revealed differences between treadmill and 
overground walking in older but not younger individuals [59], as well as a progressive decrease in 
trunk acceleration complexity from childhood to adulthood during natural walking [60]. RCMSE has 
been proposed to overcome the probability of undefined entropy of MSE [61] by calculating the 
entropies of each coarse – grained time series into a composite multiscale algorithm with a scale factor 
[61]. Recently, another method of entropy calculations, the complexity index (CI) has been introduced 
to assess gait complexity of swPD across a pre-determined range of scale factors [62–64]. However, 
its ability to characterize the gait of swPD, compared to healthy subjects, has never been investigated. 

Notably, when calculating MSE and RCMSE, researchers should consider which combination of 
signal embedding, tolerance radius, scale factor and length of data best fit with their type of data and 
study objectives [42]. A 2000 data points length of data (N) has been described as the acceptable trade-
off between instability of the results and drift into the data, and a value of 2 and 0.2 times the standard 
deviation as the most popular signal embedding (m) and tolerance radius (r) values, respectively. 
However, the choice of number of scales, commonly referred to as τ, differs across the studies 
analyzing MSE and RCMSE [42,43]. Because it may significantly affect sample entropy calculations, 
the optimal τ related to N to identify complexity and irregularity should be identified for each 
pathological condition [40,65]. 

Furthermore, when assessing the discriminative ability of entropy measures, the effects of age 
[39] and gait speed [66], which can overrepresent the differences between pathological and healthy 
gait [67], should be considered. 

Therefore, the aims of this study were: i) to identify the best τ in MSE or RCMSE procedure, or 
the ability of CI, to characterize the complexity and variability of trunk acceleration patterns of swPD 
during gait, compared with healthy subjects (HS), regardless of age and gait speed; ii) to assess the 
ability of MSE and RCMSE calculated using the identified optimal τ, and CI to characterize fallers 
within swPD;  iii) to assess the ability of MSE and RCMSE as calculated through the identified 
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optimal τ, and CI to differentiate swPD according to their disability stages; iv) identify correlations 
between MSE and RCMSE at the optimal τ, and CI, with clinical features and spatio-temporal and 
kinematic gait parameters in swPD. 

We hypothesized that MSE and/or RCMSE at a single τ, or CI, could characterize trunk 
irregularity in swPD, regardless of age and gait speed, and that could reflect clinical status and 
kinematic gait abnormalities. 

2. Materials and Methods 

2.1. Subjects 

Gait data from 51 swPD, acquired at “ICOT”, Latina, Italy, and at “IRCSS Casimiro Mondino”, 
Pavia Italy, were included in the study. SwPD were included according to the following inclusion 
criteria: (i) idiopathic PD diagnosis based on UK bank criteria [68]; (ii) Hoehn and Yahr (HY) scale 
classification 1-3 [69]; (iii) ability to walk unassisted for at least 30 meters along a laboratory corridor 
without presenting freezing of gait; (iv) a stable and accustomed drug dosage for at least 2 weeks 
prior to the gait assessment. Subjects with congnitive deficits as defined by Mini-Mentale State 
Examination score < 26 [70,71], moderate – to – severe depression, as defined by Back Depression 
Inventory scores > 17 [72,73], orthopedic or other diseases influencing gait behavior, such as other 
neurological conditions, clinically defined osteoarthritis, joint replacements, as well as subjects 
reporting hip or knee joint pain, limited hip range of motion, or anatomic alteration s of the joints, 
were excluded [74–76]. Gait data from 50 age and gait speed – matched healthy subjects (HS) were 
included for comparison. To match pwPD and HS, a 1:1 optimal matching procedure using the 
propensity score difference method was conducted [77]. Each HS was asked to repeat the gait task 
twice while walking at both their self-selected speed and a slower directed speed in order to reduce 
the effect of gait speed on the other speed-dependent gait parameters and to gather the largest sample 
size for speed-matched comparisons [19,78]. Age and gait speed were used as covariates in logistic 
regression analysis to calculate the propensity scores [79–81]. Table 1 summarizes the clinical 
characteristics of the included subjects. 

Table 1. Clinical and spatio-temporal gait characteristics of the included subjects. 

  swPD HS p 

Age [mean(SD)] 71.15 (5.12) 69.14 (4.80) 0.06 

Gender [n (%)] 
F  15 (29.41) 27 (54) 

0.01 
M 36 (70.58) 23 (46) 

Disease duration [mean(SD)] 8.04 (4.70) 

    

HY [n (%)] 

1 10 (19.60) 

2 17 (33.33) 

3 24 (47.05) 

UPDRS III [mean(SD)] 41.41 (18.22) 

UPDRS III < 32 [n (%)] 16 (31.27) 

UPDRS III ≥ 32 [n (%)] 22 (43.13) 

UPDRS III ≥ 58 [n (%)] 13 (25.49) 

History of falls (n° of falls in the previous 6 months) [mean (SD)] 1.35 (3.28) 

Gait speed (m/s) [mean (SD)] 1.08 (0.25) 1.09 (0.25) 0.91 

Stance phase (% gait cycle) [mean (SD)] 60.82 (2.27) 61.41 (3.42) 0.31 

Swing phase (% gait cycle) [mean (SD)] 39.18 (2.27) 38.59 (3.42) 0.31 

Single support (% gait cycle) [mean (SD)] 39.24 (2.92) 37.93 (5.29) 0.13 
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Double support (% gait cycle) 10.88 (2.33) 11.90 (4.92) 0.19 

Cadence (steps/min) [mean (SD)] 103.37 (20.44) 101.35 (14.06) 0.60 

Stride length (m) [mean (SD)] 0.94 (0.21) 1.22 (0.22) < 0.00 

Pelvic tilt (°) [mean (SD)] 3.33 (1.55) 3.01 (1.13) 0.25 

Pelvic obliquity (°) [mean (SD)] 3.87 (2.16) 5.38 (2.70) 0.01 

Pelvic rotation (°) [mean (SD)] 5.49 (3.29) 6.68 (3.90) 0.02 

HR AP [mean (SD)] 1.66 (0.26) 2.32 (0.64) < 0.00 

HR ML [mean (SD)] 1.62 (0.25) 2.23 (0.59) < 0.00 

HR V [mean (SD)] 1.68 (0.28) 2.41 (0.76) < 0.00 

stride length CV % [mean (SD)] 39.26 (19.44) 26.69 (13.76) 0.00 

swPD, subjects with Parkinson’s disease; HS, age and speed-matched healthy subjects; p, significance level at 
95% confidence interval in Mann-Whitney procedure; HY, Hoehn and Yahr disease stage classification; UPDRS 
III, motor section of the Unified Parkinson’s Disease Rating Scale; HR, Harmonic Ratio; AP, antero-posterior 
direction of the acceleration signal; ML medio-lateral direction of the acceleration signal; V vertical direction of 
the acceleration signal; CV, coefficient of variation. 

All participants gave their informed consent in accordance with the Helsinki Declaration, and 
the study was approved by the local ethics committee (CE Lazio2 protocol n.° 0053667/2021). 

2.2. Procedures 

Data weres collected using an inertial sensor (BTS GWALK, BTS, Milan, Italy) positioned at L5 
via a unique ergonomic belt. The "Walk +" protocol of the G-STUDIO software (BTS, Milan, Italy) was 
used to detect the linear acceleration patterns of the trunk during gait in the anterior-posterior (AP), 
medio-lateral (ML), and vertical (V) directions, as well as spatio-temporal parameters and pelvic 
kinematics, at a sampling rate of 100Hz. A triaxial accelerometer and gyroscope (16 bit / axis) as well 
as a triaxial magnetometer are included in the sensor (13 bit). Spatio-temporal characteristics of the 
included sample are described in Table 1. Because sample entropy algorithms are sensistive to 
concatenation of gait trials [82], to collect the largest number of consecutive data points, subjects were 
asked to walk through a 30-meter long pathway at their own pace (Figure 1). 

 

Figure 1. Triaxial trunk acceleration. Triaxial trunk acceleration extrapolated by L5 inertial sensor 
after subjects were asked to walk barefoot down a 30-meter-long corridor at a self-selected speed. 
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Because this study focused on natural locomotion, participants were allowed to choose their 
desired speed without interfering with their rhythm or receiving external sensory information. HS 
were also requested to walk at a slower pace to increase the sample size for the matching procedure. 
The multiscale entropy techniques were calculated using the MATLAB software (MATLAB R2022a 
7.4.0, MathWorks, Natick, MA, USA). 

2.3. Entropy Algorithms 

The MSE calculation consisted of two procedures: i) a coarse-graining procedure for obtaining 
representations of the original time series on various time scales (Figure 2); and ii) the SampEn 
procedure for quantifying the coarse-grained time series' regularities [86]. The original time series 
was separated into non-overlapping windows of length, and the data points inside each window 
were averaged to generate the coarse-grained time series at a scale factor of τ. As illustrated in Figure 
2, coarse-grained time series are separated by a scale factor of τ for the original time series. 

 

Figure 2. Coarse Graining Procedure. Given a time series 𝑥1, 𝑥2 … 𝑥𝑖+2, we first create coarse-
grained time series by averaging a growing number of data points in non-overlapping windows. 
Schematic illustration of the coarse-graining procedure in Multiscale Sample Entropy for scale τ = 2 
in a) and for scale τ = 3 in b); data length of the trunk acceleration time series reduced respectively to 𝑁2  and 𝑁3 . 

SampEn was calculated as follow: 
Let x = {𝑥1, 𝑥2 … 𝑥𝑁} represent a time series of length N. 
Using Equation (1), build model vectors of size m: 𝑥𝑖𝑚 = {𝑥𝑖   𝑥𝑖+1  … 𝑥𝑖+𝑚−1},          1 ≤ 𝑖 ≤ 𝑁 − 𝑚                                       (1) 

1. There will be correspondence if the distance between two vectors (xmi, xmj) is smaller than a 
predefined tolerance r. The distance between the two vectors was calculated using the norm of 
infinity: 𝑑𝑖𝑗𝑚 =  ‖𝑥𝑖𝑚 − 𝑥𝑗𝑚‖∞,                              1 ≤ 𝑖, 𝑗 ≤ 𝑁 − 𝑚, 𝑗 ≠ 𝑖                          (2) 

2. If 𝑑𝑖𝑗𝑚 was less than or equal to the predefined tolerance r, we defined (xmi, xmj) a pair of m-
dimensional matched vectors. Total number of pairs of m-dimensional matched vectors, given 
nm.  

3. We repeated steps 1–3 for m = m + 1, where nm+1 represents the total number of (m + 1) 
dimensional matched vector pairs as shown in Figure 3.  
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4. The SampEn was defined as the logarithm of the ratio of 𝑛𝑚+1 to 𝑛𝑚 as in Equation (3): 𝑆𝑎𝑚𝑝𝐸𝑛(𝑥, 𝑚, 𝑟) =  − ln 𝑛𝑚+1𝑛𝑚                                                 (3) 

 

Figure 3. Sample Entropy calculation. For each pattern of m points in trunk acceleration signal, places 
in other parts of the signal where the template is seen are identified within tolerance r. Sample 
Entropy is calculated as the negative natural of the conditional probability that the pattern of m+1 
points will match if that the pattern of m points did match. After the signal matched the first two parts 
of the pattern m, this is the probability that pattern match will complete, m+1. The number of m 
matches are compared to the number of complete pattern (m+1) matches. 

The k-th coarse-grained time series 𝑦𝑘(𝜏) = {𝑦𝑘,1(𝜏)  𝑦𝑘,2(𝜏) … 𝑦𝑘,𝑝(𝜏)} of x was defined as follows: 𝑦𝑘,𝑗(𝜏) =  1𝜏  ∑ 𝑥𝑖 ,𝑗𝜏+𝑘−1𝑖=(𝑗−1)𝜏+𝑘                 1 ≤ 𝑗 ≤ 𝑁𝜏 , 1 ≤ 𝑘 ≤ 𝜏                     (4) 

As in the conventional MSE algorithm proposed by Costa et al. [46]., the MSE at a scale factor of 
τ was defined as the SampEn of the first coarse-grained time series as in Equation (5): 𝑀𝑆𝐸(𝑥, 𝜏, 𝑚, 𝑟) = 𝑆𝑎𝑚𝑝𝐸𝑛(𝑦1(𝜏), 𝑚, 𝑟 )                                    (5) 

2.3.1. Refined Composite Multiscale Entropy (RCMSE)  

To calculate RCMSE, the SampEns of all coarse-grained time series were calculated in the CMSE 
algorithm at a scale factor of τ, and the CMSE value was defined as the mean of τ SampEns: 𝐶𝑀𝑆𝐸(𝑥, 𝜏, 𝑚, 𝑟) =  1𝜏 ∑ 𝑆𝑎𝑚𝑝𝐸𝑛(𝑦𝑘(𝜏), 𝑚, 𝑟) =  1𝜏𝜏𝑘=1 ∑ (−𝑙𝑛 𝑛𝑘,𝜏𝑚+1𝑛𝑘,𝜏𝑚 )𝜏𝑘=1          (6) 

where 𝑛𝑘,𝜏𝑚  represents the total number of m-dimensional matched vector pairs and is constructed 
from the k-th coarse grained time series at a scale factor of 𝜏. 

The logarithms of the ratio of 𝑛𝑘,𝜏𝑚+1 to 𝑛𝑘,𝜏𝑚  for all 𝜏 coarse-grained series are investigated first 
in the CMSE algorithm, and the average of these logarithms is then determined as the entropy value. 
When one of the values of 𝑛𝑘,𝜏𝑚+1 to 𝑛𝑘,𝜏𝑚  is 0, the CMSE value is undefined. The likelihood of inducing 
undefined entropy is higher when the CMSE is used to examine a short time series than when the 
MSE is used. Because of this flaw, the CMSE algorithm's short time series analysis applications are 
limited. To overcome this issue, Wu et al introduced the RCMSE method [61]. The RCMSE algorithm 
was calculated according to following steps: 
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1) To obtain coarse-grained time series on different time scales, we utilized the coarse-graining 
process indicated in Equation (4).  

2) For all 𝜏  coarse-grained series, the number of matched vector pairs, 𝑛𝑘,𝜏𝑚+1  and 𝑛𝑘,𝜏𝑚  , was 
determined at a scale factor of 𝜏. 

3) For 1 ≤ 𝑘 ≤ 𝜏 , let 𝑛̅𝑘,𝜏𝑚  (𝑛̅𝑘,𝜏𝑚+1)  denote the mean of 𝑛𝑘,𝜏𝑚  (𝑛𝑘,𝜏𝑚+1) . Equation (7) provides the 
RCMSE value at a scale factor of 𝜏.  𝑅𝐶𝑀𝑆𝐸(𝑥, 𝜏, 𝑚, 𝑟) =  − ln(𝑛̅𝑘,𝜏𝑚+1𝑛̅𝑘,𝜏𝑚 )                                         (7) 

where 𝑛̅𝑘,𝜏𝑚+1 = 1𝜏 ∑ 𝑛𝑘,𝜏𝑚+1𝜏𝑘=1  and 𝑛̅𝑘,𝜏𝑚 = 1𝜏 ∑ 𝑛𝑘,𝜏𝑚𝜏𝑘=1 . 

Eq. (7) can be written as follows: 𝑅𝐶𝑀𝑆𝐸(𝑥, 𝜏, 𝑚, 𝑟) =  − ln (𝑛̅𝑘,𝜏𝑚+1𝑛̅𝑘,𝜏𝑚 ) − ln (1𝜏 ∑ 𝑛𝑘,𝜏𝑚+1𝜏𝑘=11𝜏 ∑ 𝑛𝑘,𝜏𝑚𝜏𝑘=1 ) =  − ln(∑ 𝑛𝑘,𝜏𝑚+1𝜏𝑘=1∑ 𝑛𝑘,𝜏𝑚𝜏𝑘=1 )          (8) 

2.3.2. Complexity Index (CI). 

We also use the trapezoid rule to calculate CI by integrating the entropy values over a pre-
determined range of scales [56]. This index reflects the amount of information, or entropy, in a signal 
over a range of time scales, as shown in Figure 4. High entropy values over a wide time scale range, 
and thus a high CI, indicate high complexity, and vice versa [87]. The maximum scale that can be 
analyzed depends on the length of the original time series [88]. 

 

Figure 4. Complexity Index. Multiscale Entropy plot of the triaxial trunk acceleration signal 
evaluated for all scale factors τ; the complexity index was determined for the Antero-Posterior 
direction of a healthy subject by calculating the area under the curve given by the multiscale Entropy 
values. 

2.4. Clinical Assessment 

The HY disease staging system and the motor examination section of the Unified Parkinson's 
Disease Rating Scale (UPDRS-III) were used to determine the severity of Parkinson's disease [89] 
(Table 1). Clinical scales were administered by an assessor who was not aware of the gait reports. 
SwPD were classified as fallers (at least one fall) or non-fallers based on a self-reported history of falls 
in the 6 months preceding the gait assessment [90,91]. A fall was defined as an unintentional landing 
to the ground that was not caused by a significant intrinsic event or a dangerous situation [90,92]. 

2.5. Statistical Analysis 

To identify entropy measures with good ability to discriminate between swPD and HS, as 
represented by an area under the receiver operating characteristics curve (AUC) ≥ 0.70 at a 95% 
significance level and 80% power under the null hypothesis of an AUC = 0.50, a minimum sample of 
68 participants (34 swPD and 34 HS) was calculated. 

After checking the normality of the distributions and equality of the variances through the 
Shapiro-Wilk and Levene’s test, respectively, a Mann-Whitney test was performed to identify 
significant differences between swPD and HS in entropy measures at each τ, spatio-temporal gait 
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features, pelvic kinematics, HRs, and CV. Cohen’s d with Hedge’s correction were calculated to 
assess the effect size. 

To identify the entropy measures that best discriminated between swPD and HS, AUCs at each 
τ were calculated. AUCs ≥ 0.70 were deemed to have sufficient overall discriminative ability [93]. 
Optimal cutoff points (OCPs) were calculated as the entropy values that maximized the sum of 
sensitivity and specificity. To investigate the likelihood of being correctly classified by a given 
combination of entropy measure and τ at the OCP, positive and negative likelihood ratios (LR+ and 
LR-, respectively) were calculated and transformed into positive and negative post-test probabilities 
(PTP+ and PTP-, respectively) through a Fagan’s nomogram [94]. Diagnostic odds ratios (DORs) were 
also calculated to assess the diagnostic performances [95]. The combinations of entropy measures and 
τ with the highest DOR and PTPs were considered as the best entropy measures to characterize gait 
complexity in swPD. 

The ability of the identified entropy measures to discriminate between fallers and non fallers 
was assessed through a Mann-Whitney test. 

The ability of the identified entropy measures to discriminate across the disability levels, 
Kruskal-Wallis test with Dunn’s post – hoc analysis and Holm’s correction was performed using the 
HY stage and the UPDRS III thresholds as between – subjects factors. UPDRS III scores < 32, ≥ 32, and 
≥ 58 were considered as reflecting mild, moderate, and severe motor disease, respectively [96]. 

To assess the correlations between the identified entropy measures and the clinical features of 
swPD, spatio-temporal gait characteristics, pelvic kinematics, and the other trunk-acceleration-
derived gait indexes that characterize swPD [12,14], a partial correlation analysis excluding the effects 
of age and gait speed was conducted. 

Statistical analyses were carried out using the IBM SPSS ver. 27, NCSS 2022, and JASP vers. 0.16 
softwares. 

3. Results 

Significant differences between swPD and HS were found in all combinations of entropy 
measures and τ (Table 2), and in stride length, pelvic obliquity, pelvic rotation, HRs and CV (Table 
1), regardless of age and gait speed. 

Table 2. Differences in entropy measures between swPD and HS. 

Entropy measure Direction τ swPD [mean (SD)] HS [mean (SD)] p Cohen's d 

MSE 

AP 

τ 1 0.35 (0.10) 0.30 (0.06) 0.00 0.66 

τ 2 0.45 (0.15) 0.38 (0.09) 0.00 0.61 

τ 3 0.52 (0.17) 0.42 (0.12) < 0.00 0.68 

τ 4 0.56 (0.20) 0.44 (0.14) < 0.00 0.74 

τ 5 0.59 (0.22) 0.45 (0.15) < 0.00 0.71 

τ 6 0.60 (0.23) 0.46 (0.16) < 0.00 0.72 

ML 

τ 1 0.38 (0.14) 0.32 (0.09) 0.01 0.56 

τ 2 0.48 (0.20) 0.38 (0.12) 0.00 0.62 

τ 3 0.55 (0.25) 0.42 (0.15) 0.00 0.64 

τ 4 0.60 (0.29) 0.44 (0.17) 0.00 0.66 

τ 5 0.64 (0.33) 0.46 (0.18) 0.00 0.66 

τ 6 0.65 (0.34) 0.48 (0.20) 0.01 0.59 

V 

τ 1 0.33 (0.10) 0.28 (0.09) 0.00 0.54 

τ 2 0.43 (0.15) 0.34 (0.12) < 0.00 0.66 

τ 3 0.49 (0.19) 0.38 (0.14) < 0.00 0.68 
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τ 4 0.52 (0.22) 0.38 (0.16) < 0.00 0.73 

τ 5 0.54 (0.24) 0.40 (0.16) 0.00 0.69 

τ 6 0.55 (0.25) 0.40 (0.17) 0.00 0.70 

RCMSE 

AP 

τ 1 0.31 (0.09) 0.26 (0.07) 0.01 0.63 

τ 2 0.38 (0.12) 0.32 (0.09) 0.02 0.55 

τ 3 0.42 (0.14) 0.34 (0.10) 0.01 0.60 

τ 4 0.44 (0.17) 0.35 (0.11) 0.00 0.64 

τ 5 0.46 (0.18) 0.36 (0.12) 0.00 0.63 

τ 6 0.47 (0.20) 0.37 (0.12) 0.00 0.62 

ML 

τ 1 0.31 (0.11) 0.27 (0.08) 0.01 0.49 

τ 2 0.38 (0.16) 0.31 (0.11) 0.01 0.53 

τ 3 0.43 (0.20) 0.33 (0.13) 0.01 0.53 

τ 4 0.45 (0.24) 0.35 (0.14) 0.01 0.54 

τ 5 0.48 (0.27) 0.37 (0.14) 0.01 0.52 

τ 6 0.50 (0.30) 0.38 (0.15) 0.02 0.50 

V 

τ 1 0.28 (0.09) 0.24 (0.08) 0.00 0.52 

τ 2 0.35 (0.13) 0.28 (0.11) 0.01 0.58 

τ 3 0.38 (0.17) 0.29 (0.13) 0.00 0.62 

τ 4 0.40 (0.19) 0.30 (0.13) 0.01 0.63 

τ 5 0.41 (0.20) 0.31 (0.14) 0.01 0.61 

τ 6 0.42 (0.21) 0.31 (0.14) 0.01 0.60 

CI MSE 

AP 2.59 (0.89) 2.06 (0.59) < 0.00 0.71 

ML 2.78 (1.29) 2.10 (0.75) 0.00 0.64 

V 2.42 (0.96) 1.84 (0.69) < 0.00 0.70 

CI RCMSE  

AP 2.08 (0.75) 1.69 (0.49) 0.01 0.63 

ML 2.14 (1.07) 1.68 (0.62) 0.01 0.53 

V 1.90 (0.82) 1.45 (0.06) 0.01 0.61 

swPD, subjects with Parkinson’s disease; HS, age and gait speed – matched healthy subjects; p, significance level 
at 95% CI in Mann – Whitney procedure; MSE, multiscale sample entropy; RCMSE, refined composite multiscale 
entropy; CI, complexity index; AP, antero-posterior direction of the acceleration signal; ML, medio-lateral 
direction of the acceleration signal; V, vertical direction of the acceleration signal. 

MSE in the AP direction at τ 4 (MSEAP τ4) and τ 5 (MSEAP τ5), and MSE in the ML direction at τ 
4 (MSEML τ4), revealed the best ability to characterize the gait of swPD, compared with HS (Table 3). 
Particularly, MSEAP τ4 values ≥ 0.53, MSEAP τ5 values ≥ 0.60, and MSEML τ4 values ≥ 0.59 characterized 
swPD with 79%, 82%, and 78% probabilities, respectively, and the highest DORs (Table 3, Figure 5). 

Table 3. Discriminative ability of the entropy measures. 

Entropy 

measure 
Direction τ AUC (95% CI) OCP LR+ LR- PTP+ PTP- DOR 

MSE AP 

τ 1 0.69 (0.58 - 0.79) ≥ 0.39 2.55 0.72 71 41 3.54 

τ 2 0.68 (0.56 - 0.77) ≥ 0.42 2.04 0.54 66 34 3.78 

τ 3 0.70 (0.59 - 0.79) ≥ 0.49 3.16 0.48 75 32 6.58 

τ 4 0.71 (0.59 -0.80) ≥ 0.53 3.93 0.45 79 30 8.73 
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τ 5 0.70 (0.58 - 0.79) ≥ 0.60 4.59 0.53 82 34 8.66 

τ 6 0.70 (0.59 - 0.79) ≥ 0.63 3.78 0.57 78 35 6.63 

ML 

τ 1 0.67 (0.55 - 0.77) ≥ 0.40 3.28 0.52 76 33 6.31 

τ 2 0.69 (0.57 - 0.78) ≥ 0.46 2.87 0.49 73 32 5.86 

τ 3 0.69 (0.56 - 0.78) ≥ 0.52 3.16 0.48 75 32 6.58 

τ 4 0.69 (0.57 - 0.79) ≥ 0.59 3.69 0.51 78 33 7.24 

τ 5 0.69 (0.57 - 0.78) ≥ 0.63 3.44 0.55 77 35 6.25 

τ 6 0.67 (0.55 - 0.76) ≥ 0.62 2.35 0.55 69 35 4.27 

V 

τ 1 0.70 (0.58 - 0.79) ≥ 0.33 2.18 0.56 68 35 3.89 

τ 2 0.71 (0.59 - 0.79) ≥ 0.36 1.89 0.39 64 27 4.85 

τ 3 0.70 (0.58 - 0.79) ≥ 0.39 1.94 0.36 65 26 5.39 

τ 4 0.71 (0.59 - 0.79) ≥ 0.42 2.09 0.37 67 26 5.65 

τ 5 0.70 (0.58 - 0.79) ≥ 0.42 2.09 0.37 67 26 5.65 

τ 6 0.69 (0.58 - 0.78) ≥ 0.41 1.93 0.41 65 28 4.71 

RCMSE 

AP 

τ 1 0.66 (0.54 - 0.76) ≥ 0.35 2.6 0.66 71 39 3.94 

τ 2 0.65 (0.53 - 0.74) ≥ 0.33 1.81 0.57 63 35 3.18 

τ 3 0.66 (0.55 - 0.76) ≥ 0.39 1.85 0.62 64 37 2.98 

τ 4 0.67 (0.55 - 0.76) ≥ 0.36 1.87 0.54 65 35 3.46 

τ 5 0.68 (0.56 - 0.77) ≥ 0.38 1.77 0.56 63 35 3.16 

τ 6 0.67 (0.56 - 0.77) ≥ 0.38 1.72 0.59 63 37 2.92 

ML 

τ 1 0.67 (0.55 - 0.77) ≥ 0.26 2.09 0.32 67 24 6.53 

τ 2 0.67 (0.55 - 0.76) ≥ 0.33 2.55 0.43 71 30 5.93 

τ 3 0.67 (0.55 - 0.76) ≥ 0.36 2.17 0.48 68 32 4.52 

τ 4 0.67 (0.55 - 0.76) ≥ 0.39 2.24 0.49 69 32 4.57 

τ 5 0.66 (0.54 - 0.76) ≥ 0.39 2.17 0.48 68 32 4.52 

τ 6 0.65 (0.53 - 0.75) ≥ 0.42 2.11 0.55 67 35 3.84 

V 

τ 1 0.68 (0.56 - 0.77) ≥ 0.27 2.1 0.51 67 33 4.12 

τ 2 0.67 (0.56 - 0.77) ≥ 0.30 2.1 0.55 67 35 3.82 

τ 3 0.68 (0.56 - 0.77) ≥ 0.31 2.04 0.54 67 35 3.78 

τ 4 0.67 (0.55 - 0.76) ≥ 0.32 2.04 0.54 67 35 3.78 

τ 5 0.67 (0.55 - 0.76) ≥ 0.32 1.87 0.54 65 35 3.46 

τ 6 0.67 (0.55 - 0.76) ≥ 0.34 1.92 0.55 65 35 3.49 

CI MSE 

AP 0.71 (0.59 - 0.80) ≥ 1.91 1.94 0.36 66 26 5.39 

ML 0.69 (0.57 - 0.78) ≥ 2.25 2.24 0.49 69 32 4.57 

V 0.71 (0.59 - 0.80) ≥ 1.63 1.67 0.51 62 33 3.27 

CI RCMSE  

AP 0.67 (0.55 - 0.76) ≥ 2.12 2.31 0.65 69 39 3.55 

ML 0.67 (0.55 - 0.76) ≥ 1.71 2.09 0.42 67 29 4.98 

V 0.67 (0.56 - 0.77) ≥ 1.50 2.04 0.49 67 32 4.16 

AUC, area under the receiver operating characteristics curve; OCP, optimal cutoff point; LR+, positive likelihood 
ratio; LR-, negative likelihood ratio; PTP+, positive post-test probability; PTP-, negative post-test probability; 
DOR, diagnostic odds ratio; MSE, multiscale sample entropy; RCMSE, refined composite multiscale entropy; CI, 
complexity index; AP, antero-posterior direction of the acceleration signal; ML, medio-lateral direction of the 
acceleration signal; V, vertical direction of the acceleration signal. 
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Figure 5. Confusion matrices. Confusion matrices of multiscale entropy in the AP direction at τ 4 (a), 
and τ 5 (b), and in the medio – lateral direction at τ 4 (c). Radar plots represent the true positive (TPR), 
true negative (TNR), false positive (FPR) and false negative (FNR) rates at each optimal cutoff point. 

No differences between swPD fallers and non-fallers in MSEAP τ4 (p = 0.281), MSEAP τ5 (p = 
0.377), and MSEML τ4 (p = 0.966) were found. 

MSEAP τ4 (H2 = 7.07, p = 0.03) and MSEAP τ5 (H2 = 6.50, p = 0.04) differentiated between swPD 
according to UPDRS III. Post – hoc analysis revealed significant differences in MSEAP τ4 and MSEAP 
τ5 between mildly and moderately impaired, and severely impaired swPD (Figure 6). MSEML τ4 did 
not differentiate across UPDRS III scores (H2 = 3.69, p = 0.16). No significant differences in age (H2 = 
1.20, p = 0.55) and gait speed (H2 = 0.04, p = 0.98) were found across the UPDRS III thresholds. No 
differences across the HY stages in MSEAP τ4 (H2 = 0.090, p = 0.956), MSEAP τ5 (H2 = 0.105, p = 0.949), 
and MSEML τ4 (H2 = 0.357, p = 0.836) were found. 
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Figure 6. Ability to differentiate across the motor disability levels. Differences in multiscale entropy 
(MSE) at scale factor τ 4 and τ 5 in the antero – posterior direction according to motor disability as 
assessed by the motor section Unified Parkinson’s Disease Rating Scale (UPDRS III). P- values 
represent significant differences at Dunn’s pot-hoc analysis with Holm’s correction after Kruskal – 
Wallis’s procedure. 

Regardless of age and gait speed, MSEAP τ4, MSEAP τ5, and MSEML τ4 positively correlated with 
UPDRS III. MSEAP τ4 and MSEAP τ5 negatively correlated with pelvic obliquity and pelvic rotation. 
MSEAP τ4 negatively correlated with cadence. MSEML τ4 positively correlated with the stance and 
double support phases, and negatively correlated with the swing phase (Figure 7). 

 

Figure 7. Partial correlation analysis. Partial Spearman’s correlation analysis excluding the effects of 
age and gait speed between clinical features, spatio – temporal and kinematic gait characteristics, 
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trunk acceleration derived harmonic ratios, stride length coefficient of variation, and multiscale 
entropy measures. Highlighted connecting lines represent significant correlations, and their width 
represents the strength of the correlation, which is also reported numerically. Link: 
https://app.flourish.studio/visualisation/12786560/edit. 

4. Discussion 

The main objective of this study was to assess the ability of trunk acceleration derived MSE, 
RCMSE, and CI to characterize swPD gait variability as an expression of the complexity of trunk 
acceleration signals calculated across a range of τ 1 - 6, regardless of age and gait speed. 

We found that swPD showed higher entropy values than age and gait speed matched HS for all 
the tested scale factors, and that MSE in the AP direction at τ 4 and τ 5, and MSE in the ML direction 
at τ 4, characterized the gait behavior of swPD with 79%, 82%, and 78% probabilities, respectively, 
and the best diagnostic performances, as expressed by DORs. These findings are consistent with 
previous research, which reported higher entropy values in swPD, indicating lower gait regularity 
than HS [49,56], and a disruption of trunk accelerations [14] due to the greater number of adjustments 
required to overcome the increasing instability caused by impaired sensorimotor integration [41]. 
Conversely, a previous study reported lower entropy values in swPD than healthy controls [97]. 
Aside from a different method of entropy calculation, this contradictory result may be explained 
primarily by differences in the healthy control group, which was significantly younger and walked 
faster than swPD in Kamath's study compared to our sample. Gait entropy measures are strongly 
related to age, with younger people exhibiting greater complexity than older people [98,99]. To avoid 
misrepresenting differences in gait complexity through entropy measures, the ages of the compared 
groups should be comparable. In this way, because we matched swPD and HS based on age in this 
study, we reported differences between the groups that are not dependent on age. Furthermore, 
nonlinear gait indexes are correlated with gait speed [43,58,100], which is known to be reduced and 
affects most of the spatio-temporal and kinematic gait parameters, potentially overrepresenting the 
differences between neurotypical and pathological gait [66]. Although we calculated entropy 
measures directly from trunk acceleration patterns, avoiding the need for step detection, which is a 
controversial issue in MIMUs- based gait analysis of subjects with neurological conditions [34], we 
also matched swPD and HS for gait speed. Therefore, our findings allow us to consider MSE in the 
antero-posterior and medio – lateral directions as age and speed -independent biomarker of gait 
complexity in swPD. 

In this study, MSE in the AP direction as calculated at τ 4 and τ 5, and MSE in the ML direction 
at τ 4, outperformed the other scaling configurations in terms of discriminative ability. Riva, et al., 
previously found that τ 2 represented the best scale factor to identify clinically meaningful gait 
irregularity through trunk acceleration - derived MSE in older adults [34]. In this way, our findings 
suggest that higher scaling factors are required to highlight gait irregularities that are caused by 
Parkinson's disease rather than aging. In our study, however, MSEAP τ4, MSEAP τ5, and MSEML τ4 
were unable to distinguish between fallers and non-fallers. This finding represents yet another 
distinction in the calculation of MSE between healthy older adults, where MSE is higher in fallers, 
and swPD, where the increase of gait irregularity appears to be a direct expression of the clinical 
features, regardless of fall history. Indeed, we found that MSE values correlated with motor 
disability, as assessed by UPDRS III, and that MSE in the AP direction was significantly higher in 
subjects with greater motor impairment. However, we found no differences in entropy values across 
disease stages as calculated by HY, confirming that gait irregularity in swPD is most likely due to 
motor symptoms, rather than the longitudinal progression of the disease [49,101], as further 
reinforced by the lack of correlation with disease duration. Moreover, we found that higher MSE 
values in the AP direction correlated with lower ranges of movement of the pelvis in the frontal and 
transverse plane, regardless of age and gait speed. Pelvic rigidity and trunk rotation reduction have 
been consistently described as characterizing features of swPD [13,19,21,102]. Because we directly 
calculate entropy measures from lower trunk acceleration, we can argue that abnormalities in MSE 
in the AP direction reflect the irregularity of trunk behavior in swPD due to pelvic rigidity, as an 
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expression of the disruption of trunk acceleration patterns [103]. MSE in the ML direction correlated 
with stance, swing, and double support phases, which are temporal gait parameters that reflect gait 
stability in swPD [104–106]. In this way, we might hypothesize that MSEML τ4 represents a marker of 
inefficiency of the compensatory strategy to antero – posterior irregularity [58], resulting in increased 
medio lateral irregularity. However, because no significant differences were found in temporal gait 
features between swPD and HS at matched gait speed (Table 1), we cannot ascertain that this 
mechanism is characteristic of swPD rather than a consequence of the reduced gait speed. As a result, 
MSEAP τ4, MSEAP τ5, and MSEML τ4, characterize the irregularity of trunk accelerations during gait, 
and correlate with the motor symptoms of swPD and reduced pelvic kinematics. The lack of 
correlation with other trunk acceleration-derived gait indexes that have previously been shown to 
characterize the gait abnormalities of swPD [14], such as HR and CV, supports the hypothesis of 
entropy as a measure of gait irregularity that reflects a different aspect of gait variability than the CV 
[34]. However, because of the relatively high false positive rates (Figure 5), MSEAP τ4, MSEAP τ5, and 
MSEML τ4, while providing insights into the gait behavior of swPD, cannot be considered as gait 
biomarkers alone, requiring additional research into the integration with other gait and clinical 
features. 

To our knowledge, this is the first application of RCMSE on trunk acceleration derived gait data 
from swPD. Although significant differences between swPD and HS were found in RCMSE at all 
scale factors, none of them achieved sufficient discriminative ability to be considered accurate 
biomarkers of gait irregularity in swPD in this study. Refined algorithms are used on data series with 
high frequency oscillations. In the field of gait analysis, RCMSE appears to fit better with less 
predictable signals [86,107], such as electromyographic, than with pre-filtered trunk acceleration 
patterns at natural steady - state locomotion, which are rather regular and repetitive in time and 
amplitudes. Analyzing more unstable gait conditions in swPD, such as gait initation, freezing, as well 
as real-world data, could provide additional insights into RCMSE. In this way, MSE was sufficient 
for the signal typology that we examined. 

In this study, we also assessed CIs. As RCMSE, although significant differences between swPD 
and HS were found, their discriminative ability was not sufficient to be considered as markers of gait 
irregularity in swPD. Previous studies have reported increased CI in swPD after rehabilitation [62] or 
deep brain stimulation [63], indicating that the increase in complexity represents improvements in 
ability to overcome obstacles during gait [62]. In contrast, Ahmadi et al. reported higher CI values 
during the over imposed dual task gait condition when compared to natural locomotion [64]. Given the 
differences in sensor localization and the lack of healthy control groups in the aforementioned studies, 
a comparison with our results is difficult. In this study, we discovered that lower scale factors, 
regardless of age or gait speed, were unable to characterize swPD when compared to HS. As a result, 
the inclusion of non-discriminant entropy values in the CI calculation may have resulted in an 
underrepresentation of gait irregularity in swPD.  

This study presents several limitations. First, in this study we fixed length of 2000 data points, 
m = 2 and r = 0.2 times the standard deviation because these parameters are the most used to calculate 
entropy measures in gait samples. Therefore, our results can be only interpreted based on the 
aforementioned parameters. To test the relative consistency of our calculations, different 
combinations of m and r should be tested [45,108]. Another limitation of this study is the retrospective 
self-reported history of falls, which could have led to recall bias. Furthermore, we only assessed swPD 
during the ON phase of the medication. Because differences in entropy measures as measured by 
shank – mounted MIMUs between ON and OFF phases have been reported in swPD, further studies 
investigating the ability of trunk acceleration – derived MSE indices to assess the effectiveness of 
medications are needed. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, Figure 1: Triaxial trunk acceleration, Figure 2: Coarse graining procedure, Figure 
3: Sample entropy calculation, Figure 4: Complexity Index, Figure 5: Confusion Matrices, Figure 6: Ability to 
differentiate across the motor disability levels., Figure 7: Partial Correlation Analysis; Table S1: Clinical and 
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spatio-temporal gait characteristics of the included subjects. Table S2: Differences in Entropy measures between 
swPD and HS. Table S3: Discriminative ability of the entropy measures. 
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