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Abstract

We present a geometric field theory in which the action and field equa-
tion are constructed from an ultra-high-density vector field and its covari-
ant derivative and have full general covariance in a higher-dimensional
spacetime. The field equation is the simplest possible generalisation of
the Poisson equation for gravity consistent with general covariance and
the equivalence principle. It contains the Ricci tensor and metric acting
as operators on the vector field.

If the covariant derivative is diagonalisable across a neighbourhood
under real changes of coordinate basis, spacetime coincides with a product
manifold. The dimensionalities of the factor spaces are determined by its
eigenvalues and hence by its algebraic invariants. Tensors decompose into
multiplets which have both Lorentz and internal symmetry indices.

The field equation has a ‘classical vacuum’ solution which is a product
of Minkowski spacetime and an Einstein manifold. A worked example is
provided in six dimensions.

Away from this classical vacuum, connection components in appropri-
ate coordinates include SO(N) gauge fields. The Riemann tensor includes
their field strength. Unitary gauge symmetries act indirectly on tensor
fields and some or all of the unitary gauge fields are found amongst the
SO(N) gauge fields.

Symmetry restoration occurs at the zero-curvature ‘decompactification
limit’, in which all dimensions appear on the same footing.

Keywords: Compactification, Kaluza-Klein, unification, gravity, gauge fields, sym-

metry breaking, product manifolds, General Relativity, field equation, orbits and sta-

bilisers
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titled Fully Covariant Spontaneous Compactification. The author retains copyright of

this document and it was never submitted for publication. It has now been removed

from the author’s website and is no longer publicly accessible on ResearchGate (though

a private file has been retained on the site).

The material has been fully revised and updated for this paper.

1 Introduction

1.1 Einstein’s search for a Unified Field Theory

Following the publication of general relativity (GR) in 1915, Einstein famously spent

much of the rest of his life in the search for a unified field theory of gravity and electro-

magnetism. In the course of this search, he looked into extending the dimensionality of

spacetime and also into notions of distant parallelism[1]. From the analysis presented

in this paper, it seems clear that he could not have succeeded in his aim, due to a lack

of certain conceptual ingredients which were not understood in his lifetime.

Firstly, unification of gravity with non-gravitational forces, in the way that Einstein

desired, requires a modern understanding of these forces as gauge fields associated with

local symmetries. Two crucial papers in developing this notion were those by Yang

and Mills[2] published in the year before Einstein’s death, and Utiyama[3] published

in the year after.

Other key ingredients are the transformation properties of coset spaces and the

concept of symmetry breaking. These were developed, and the relationships between

them revealed, in the 1960s (see Section 2.2). These concepts were not applied to

higher-dimensional theories until the late 1970s and early 1980s, and even then, not

usually in ways which were consistent with Einstein’s cherished principle of general

covariance (see Section 2.1).

These would have been necessary ingredients for Einstein’s approach to be suc-

cessful. In addition, the concepts underlying the analysis of distant parallelism were

usefully developed by Pereira and others in the 2000s and early 2010s – see, for exam-

ple,[4, 5, 6, 7]. This paper and its predecessors[8, 9] make use of all of these ingredients

to take the subject of Kaluza-Klein theories and spontaneous compactification in a new

direction, while staying faithful to the principles and philosophy of Einstein’s search.

1.2 Challenges to achieving unification and general ap-
proach of this paper

The current frontier of our understanding of how our universe works is based on two

types of theory.

One is quantum field theory, which describes the working of the strong and elec-

troweak interactions. In this framework, gauge potentials are coupled to matter fields

by replacing partial derivatives with covariant derivatives.

The other is GR, describing gravity, which could be termed a ‘geometric field

theory’. In GR, there are also covariant derivatives, containing the Levi-Civita con-
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nection. This connection transforms in a similar way to gauge potentials. The depth

of these parallels was first brought to light by Utiyama[3] in 1955.

In light of this, vast effort has gone into developing a quantum field theory of

gravity. The problems with this are well known. Much of the motivation for this

has been the success of the quantum field theory framework, both in its predictive

power and in unifying interactions. For example, it has allowed us to understand

that electromagnetism and the weak interaction are facets of a single electroweak

interaction.

GR, however, is a very different type of theory. Its symmetries are not internal sym-

metries relating components of field multiplets, but the symmetries of four-dimensional

spacetime. Moreover, its basic concepts are geometrical ones of connections and cur-

vature, which are not manifest in the quantum field theories.

It seems far from obvious that a unified framework for handling both gravity and

other interactions should be based on quantum field theory. It must contain quantum

field theories and GR as limiting cases, but why should it not be a geometrical field

theory or indeed some other kind of theory, as yet unknown?

Indeed, the first ‘unification theories’ were classical field theories. Maxwell’s elec-

tromagnetism unifies magnetic and electrical effects in a single theory. While quantum

mechanics was still being developed, Nordström[10, 11, 12], Kaluza[13] and Klein[14,

15, 16] proposed theories which sought to unify gravity and electromagnetism. These

were based on adding an extra spatial dimension to the four-dimensional spacetime of

relativity.

Kaluza-Klein theory succeeded in reproducing the Einstein-Hilbert-Maxwell ac-

tion, although its method for explaining charge quantisation was not consistent with

observed masses[17]. Furthermore, after the Second World War, attention turned to

the strong and weak nuclear interactions. The quantum field theory framework was

found to be admirably suited to describing these. Theories of spontaneous symmetry

breaking were developed within this framework. Initially, this work focused on global

symmetries, but this was extended to local symmetries[18, 19, 20, 21, 22], allowing

electromagnetism to be unified with the weak interaction[23, 24] and then the strong

interaction[25].

A further issue with Kaluza-Klein theory was that it provided no reason for one of

the dimensions to be compact. This was addressed when the mechanism of spontaneous

compactification was proposed in the late 1970s. The early papers utilised a scalar

potential, based on the techniques of spontaneous symmetry breaking[26, 27]. By

contrast, some papers in the early 1980s triggered compactification using a gauge

field[28, 29, 30].

However, these papers sought to incorporate ‘internal’ interactions, which are de-

scribed in terms of unitary symmetries. These are not symmetries of spacetime. The

geometry to describe the gauge fields for these interactions is one based on fibre bun-

dles. Therefore research focused on mechanisms which would result in these fibre

bundle structures after compactification. Furthermore, O’Raifeartaigh’s no-go the-

orem[31] limited the way in which these symmetries could be unified with those of

the Poincaré group. O’Raifeartaigh looked at ways in which the Lie algebras of the
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Poincaré group and an internal symmetry could be embedded in a larger Lie algebra.

He found that ‘none of these (except the direct sum) seems to be particularly attrac-

tive from the physical point of view’. This conclusion was strengthened for quantum

field theories by the Coleman-Mandula no-go theorem[32]. The only known exception

to this was supersymmetry (which in addition provided a solution to the hierarchy

problem, by guaranteeing cancellation of quadratic divergences at all orders in pertur-

bation theory). Consequently, most of the research either includes supersymmetry and

supergravity explicitly or is constructed in such a way as to facilitate supersymmetric

extensions.

We take a different approach in this paper. Unitary groups can be defined in terms

of the inner products of complex vectors. Unitary symmetries therefore arise naturally

when considering spinor multiplets. They do not appear in the transformation proper-

ties of the tensor fields of GR. However, the outer product of a spinor and its conjugate

or adjoint can always be decomposed into tensor fields. A unitary group acts on the

spinor and its conjugate or adjoint, but this induces a transformation on the tensors

of the outer product. These transformations include orthogonal or pseudo-orthogonal

transformations, which are isometries on the tangent space, and are amongst the gen-

eral linear transformations induced by changes of coordinates. We therefore take the

approach that a geometric unified field theory should include tensors of orthogonal

groups related to internal symmetries.

Unlike the theories based on fibre bundles, we start by asking what spontaneous

compactification would look like if the extra dimensions are real spacetime dimensions

on exactly the same footing as the four familiar ones. For an N -dimensional theory,

bases on a given tangent space are then related by elements of a group isomorphic to

GL(N,R). The orthonormality of a frame basis is preserved by a subgroup isomorphic

to its maximal pseudo-orthogonal subgroup. This is the group of transformations we

want to be included in those of the outer product of the spinor and its conjugate or

adjoint.

It is possible to study the decomposition of the GL(N,R) group of basis changes

with respect to its maximal pseudo-orthogonal subgroup. This leads naturally to the

Weitzenböck connection of teleparallelism[8].

However, for the current study, it turns out to be the Levi-Civita connection and

the associated covariant derivative of a vector, D̊IM
J , which are crucial to the spon-

taneous compactification described here. This is due to the Levi-Civita connection’s

role in describing curvature. (Although it would be interesting to translate the study

here into the teleparallel language and see what that reveals.) The field equation we

shall derive is based upon this quantity D̊IM
J . We will derive it in two different

ways. The more comprehensive method is by finding a covariant version of Poisson’s

equation for gravity. But prior to that, we shall take a model building-type approach,

giving heuristic reasons why we want to use this quantity, constructing an action from

it, and finding the corresponding Euler-Lagrange equation.

The primary decomposition of GL(N,R) is also different from that in [8] – it is

with respect to a direct product of general linear groups[9]. However, one or more of

these general linear groups correspond to the compact subspace, and these are then
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decomposed further, with respect to their maximal orthogonal subgroups. This is what

allows the identification of the gauge fields. It is therefore important to understand

this kind of decomposition from the outset.

1.3 Structure of this paper

In Section 2, we summarise some aspects of existing literature in two fields of research:

� Kaluza-Klein theories and spontaneous compactification;

� Non-linear realisations and spontaneous symmetry breaking.

As indicated above, this paper navigates the subtle interplay between the concepts

in these two bodies of theory. The existing Kaluza-Klein theories and models of

compactification vary widely in their features. The theory presented in this paper

has similarities and differences with each of these, so we take time to spell these out.

In a similar way, the analysis in this paper includes symmetry breaking, and while

the mathematics is very similar to that used in non-linear realisations, the way the

symmetry is broken is very different. Also, most theoretical physicists have a superficial

knowledge of this subject area at best, so it is worth providing a summary.

Having done this, we are in a position to provide a clearer, more detailed expression

of what motivates this study, which we do in Section 3. This culminates in providing

a motivation for basing our field equation on D̊IM
J and using orbits of its ‘index-

aligned’ part to determine the compactification pattern.

From this point, we are able to get into the real substance of this fully covariant

model of compactification. But this paper is the third of a series on this subject and

some recapping of the content of the other two is necessary, before we can progress

to new material. This is done in Section 4. The first part of this recaps relevant

parts of [8]: its decomposition of the group of changes of coordinate basis and the two

types of connection it describes. The second part summarises [9] and its analysis of

Kaluza-Klein-type compactification on a product spacetime. It covers:

� the decomposition with respect to a direct product of general linear groups;

� how the presence of diagonalisable tensors provides information about these

groups and the dimensionalities of the factor spaces;

� the decomposition of tensors on these spaces;

� how the Levi-Civita connection for such spaces can describe both gravity and

gauge fields.

The detailed new material starts in Section 5. In this short section, we describe

how the index-aligned part of D̊IM
J , DJ

I , may be used as the tensor which determines

dimensionalities of the factor spaces and symmetries of the compactified spacetime.

While this determines the dimensionalities and symmetries, it does not tell us

about the curvature of spacetime and the distribution of the field MJ . For this, we

need a field equation. This is the subject of Sections 6 and 7.
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In Section 6, we take a linear sum of two terms as a Lagrangian density. One is

a mass term for MJ and the other is the trace of the square of D̊IM
J . This gives a

second order differential equation. We then rewrite this in a way which involves the

Ricci tensor. Thus we determine the field equation up to a proportionality constant.

In Section 7, we take a different approach. Laplace’s equation for gravity is not gen-

erally covariant, being based on scalars and three-vectors. We search for an amended

version of it which is both tensorial and consistent with the equivalence principle, by

examining the three-acceleration of a test particle freely falling in a gravitational field.

The result is another equation in D̊IM
J – essentially that which we had found in

Section 6, with the term resulting from the mass term reduced to zero. This allows us

identify the full field equation of Section 6 with (a tensorial generalisation of) Poisson’s

equation. This gives us the proportionality constant – just as it is found in GR, but

with a simpler correspondence between the tensorial and Newtonian equations.

In Sections 8 and 9, we turn to the properties and solutions of the field equation.

In Section 8, we note that the field equation is an eigenvalue equation which

describes the relationship between curvature and matter distribution. There may be

spacetimes for which the operator in this equation is trivial. But for other solutions

for which DJ
I is diagonalisable, its invariants may be used to classify the solutions,

according to the dimensionalities of the factor spaces, as set out in Section 5. We

then search for solutions which represent the ‘classical vacuum’ of the theory, for

an arbitrary number of additional dimensions. We find that there is a solution which

four-dimensional spacetime is flat and the space of the additional dimensions is curved.

There is also a solution for which both of these are curved, but it requires their Ricci

scalars to be around the same order of magnitude.

In Section 9, we apply this theory to the case where N = 6. We find the char-

acteristic equation for DJ
I for a classical vacuum solution, and the constraints on its

algebraic invariants. The compact factor space here is a two-sphere. We calculate the

Levi-Civita components in polar coordinates. By substituting these into the matrix

form of DIM
J in y-coordinates, we find a configuration of MI that satisfies the con-

straints. We also use the Levi-Civita components to find the Ricci tensor and show

that the configuration of MI satisfies the field equation. This provides us with a rela-

tion between the radius of the two-sphere and the density of the MI field. The density

needs to be extremely high for compactification to sub-nuclear scales.

This concludes the main content of the paper.

In Section 10, we discuss some issues that were not covered in previous sections.

These include:

� Putting additional matter multiplets in the system and how this affects the

geometry;

� A field equation for the gauge fields;

� Transformations which mix Lorentz tensors;

� Translations;
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� Isometries of spherical factor spaces;

� Quantum numbers, including charge quantisation;

� How the model evades O’Raifeartaigh’s no-go theorem;

� Symmetry restoration at the decompactification limit;

� The meaning of energy in the model;

� Infinite curvature and dimensional reduction.

Finally, we conclude in Section 11 with a summary of what we have done and

recapping some key features of the model.

1.4 Notation and mathematical language

This paper follows the language and notation of its predecessors, [8, 9]. It is designed

to fit a conceptual structure with group theory at its heart. Indices run as follows:

� Greek indices relate to our familiar four-dimensional spacetime and run 01, 2, 3;

� Upper-case Latin indices from the end of the alphabet (W,X, Y, Z) relate to

additional dimensions and run from 5 to N , where N is the total number of

space and time dimensions;

� Upper-case Latin indices from the middle of the alphabet (I, J,K,L,M,N) re-

late to additional dimensions and run from 5 to N , where N is the total number

of space and time dimensions;

� Upper-case Latin indices from the middle of the alphabet (i, j, k) run 1, 2, 3, for

example for macroscopic spatial dimensions.

Some other aspects of this, which may take some getting used to for researchers

who come from different traditions, are as follows:

� We use the same indices for coordinate bases and frame bases, as frame bases

may also be coordinate bases in some situations, and form part of the same

carrier space for the transformations;

� These indices are usually used explicitly, rather than using the language of

differential forms and exterior derivatives;

� The groups involved in this paper are considered to act directly on the bases on

tangent spaces. These bases are given the abstract notation eI and n̂I , rather

than considering them as differential operators, with the hat representing an

orthonormal basis;

� Most of the time, we avoid talking about ‘tetrad fields’ altogether, preferring to

talk about transformations between coordinate bases and various frame bases;
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� We largely avoid the language of fibre bundles, as we are seeking to emphasise

firstly how the group transformations are induced by changes of coordinates,

and secondly how four-dimensional spacetime and the compact space relating

to internal symmetries are two subspaces of a higher-dimensional spacetime that

have similar properties within the theory;

� We follow the notation of Pereira[6] and [8] and use a circle above a connection

or covariant derivative to specify that it is a Levi-Civita connection or covariant

derivative. Similarly dots above connections or covariant derivatives denote that

they are Weitzenböck ones;

� Where we need to specify which coordinate system a set of tensor components

relates to, we will do so by putting it in brackets in a superscript or subscript.

For example, the components of a vector V in a coordinate system u′I will be

written V I
(u′);

� Where we are evaluating a quantity at a given point, we generally state explicitly

which point it is evaluated at, to avoid confusion between the value of the

quantity and the functional form of that quantity;

� A metric is denoted with a Roman g, for example gIJ , to distinguish it from the

element gI
J of the group G (more clearly than just the position of the indices).

2 Existing literature from other authors

2.1 Kaluza-Klein theories and spontaneous compactifica-
tion

This subsection reviews some of the research which represented significant develop-

ments in these subjects. It focuses particularly on three things:

� The spacetime on which the theory is based;

� What the internal transformation group acts upon (where this is stated);

� How its gauge fields appear in the theory.

It concentrates on papers which are particularly relevant to the study in this article.

We will see how diverse these papers are, and how their features vary in how natural

they appear.

2.1.1 Kaluza-Klein theories of the 1920s-1960s

Just six years after GR was published, Kaluza[13] proposed what could be called the

first geometric unification theory. The theory presented in this paper was largely

algebraic. It postulated a five-dimensional metric, then from this it derived a Levi-

Civita connection, a Riemann tensor and a geodesic equation. The electromagnetic
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potential Aµ forms four components of the metric. The connection then contains its

field strength, Fµν .

The paper says little about geometry. However, the state parameters are taken

to be independent or largely independent of the fifth coordinate and this is termed

the ‘cylinder condition’. In correspondence relating to this paper between Kaluza and

Einstein, Einstein said

The idea of achieving [a unified field theory] by means of a five-dimensional

cylinder world never dawned on me[33]

so clearly this shape of spacetime was assumed by them.

Klein[14] adapted this theory. At the time of writing, I do not have access to his

original paper, but many features of it are clear from recent papers which describe it.

Klein used a different metric, with the form[15]

gIJ =

(
gµν + kAµAν kAµ

kAν k

)
(1)

where k is a constant. Again, the connection contains Fµν . He calculated the Ricci

tensor and the Ricci scalar. The five-dimensional Einstein-Hilbert action was found

to equal the four-dimensional Einstein-Hilbert-Maxwell action[15]. Goenner[33] tells

us that

A main motivation for Klein was to relate the fifth dimension with quan-

tum physics. From a postulated five-dimensional wave equation . . . and

by neglecting the gravitational field, he arrived at the four-dimensional

Schrödinger equation after insertion of the quantum mechanical differen-

tial operators − iℏ
2π

∂
∂x

He assumed the extra dimension to be a physical one and calculated its radius to be

of the order of 10−32m.

The spacetime here is isometric to M4 × S1. Indeed, I have shown in [9] how the

Klein metric may be derived from a canonical metric on this space, using a change of

coordinates in which Aµ appear as coefficients. (That is, Aµ are components of the

Jacobian matrix for the transformation.)

Jordan and Thiry effectively relaxed this isometry condition (see [34, 35] – again,

I do not have access to the original works). They generalised the spacetime to one

homeomorphic to Klein’s spacetime, by allowing the radius of the compact dimension

to vary over four-dimensional spacetime.

In 1953, Pauli extended Klein’s theory to try to account for isospin in mesons, in

work which he never published. However, this research is summarised in an article by

Straumann[36]. He replaced Klein’s S1 extra dimension by an S2 field space. Once

again, the gauge fields appeared as coefficients in the interval, when expressed in the

appropriate coordinates. This essentially results in the SU(2) Yang-Mills gauge the-

ory. This was the year before Yang and Mills submitted their paper for publication[2],

in which an SU(2) gauge group acts on a two-component wavefunction (for example,
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representing a proton and neutron). In hindsight, this model works by taking advan-

tage of the homomorphism between SU(2) and SO(3), as described in Section 7.4 of

[9].

The generalisation of Kaluza-Klein theory for an arbitrary non-Abelian gauge

group was put forward by Kerner in 1968[37]. This analysis is explicitly carried out

in a fibre bundle formulation. The base space is four-dimensional spacetime and the

group space provides the fibres. The aim is to produce the same kind of decomposition

of the action as Klein achieved. The resulting differential geometry, in terms of how

the gauge fields appear, is somewhat mixed up. A starting postulate is that

there is a connection in the bundle, given by a Lie algebra valued 1-form

A on the bundle manifold.

This has components1 which in our notation would be written AX
µ . However, use of lo-

cal geodesic coordinates means that the AX
µ appear in the metric for these coordinates

(as undifferentiated factors):

gIJ =

(
gµν + gXY AX

µ AY
ν gXY AX

µ

gXY AY
ν gXY

)
. (2)

Consequently, the gauge field appears in the Levi-Civita connection components in

both differentiated and undifferentiated factors. This feature persists into the compo-

nents of the Ricci tensor. After calculating the Ricci scalar and confirming it has the

desired form, the paper then studies the resulting geodesic equation.

2.1.2 Spontaneous compactification

The study of spontaneous compactification in the 1970s and 1980s was started by

Cremmer and Scherk[26]. They proposed a model in six dimensions. The fundamental

multiplets in this model were the metric field (with Einstein-Hilbert action), the gauge

field of an SO(3) internal symmetry and a Lorentz scalar multiplet which transformed

under the action of the defining representation of SO(3). The scalar multiplet acted

as a Higgs field which could cause two of the dimensions to spontaneously compactify

to a two-sphere. Thus in this paper, the gauge field is put in ‘by hand’ at the outset,

while the resulting spacetime has a four-dimensional factor and an S2 factor.

This model was generalised by Luciani[27] to one with an arbitrary number of extra

dimensions, which started with the metric field, the gauge field of a group K and a

Higgs multiplet. The compact space S was now acted on directly by a group G. If

G = K, and the symmetry breaking left H ⊂ G unbroken, then the gauge fields after

compactification could be associated with the Killing vectors of the one-parameter

subgroups of G not in H. However, G could alternatively be a non-trivial subgroup of

K. In this case, the maximal subgroup of K which commutes with G would also be

left unbroken.

1Kerner calls these ‘coordinates’ when they are introduced, but they appear to be compo-
nents of A
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A series of papers in the early 1980s by Volkov, Sorokin and Tkach considered

models with only metric fields and gauge fields — no scalar fields were required.

The gauge field multiplet acts as a matter source for gravity which causes curvature.

Symmetric internal spaces, with the form G/H, are found to be solutions to the field

equations satisfying the ansatz that the gauge field strength is covariantly constant

in all coordinate directions. H is the holonomy group of the internal space[30]. This

may be either a simple group or a product of simple groups[38]. It is not necessary

for the gauge field triggering the compactification to be one for the whole of G —

the model can start with gauge fields for H only[29] or even an invariant subgroup of

H[38]. The field equations have a solution in which the gauge fields are equal to the

spin connections associated with the Levi-Civita connection on the internal space[28,

39].

These models, with connections related to spin connections and no Higgs-type

multiplet, superficially look different from those of Cremmer and Scherk and Luciani.

However, it was shown that when the Luciani model with G = K is applied to a case

where the internal space is symmetric, it reduces to the connection-based model[39].

This is because the components of the gauge fields of G which are associated with

G/H are non-dynamical: they have zero intensity and can be eliminated using a

gauge transformation.

2.1.3 Kaluza-Klein theories of the 1970s and 1980s

These papers investigating mechanisms of spontaneous compactification also formed

a basis for the further development of Kaluza-Klein theories. Various authors did

not concern themselves with how compactification arose, but focused on the field

content arising from it. Scherk and Schwarz[40] and Salam and Strathdee[41] addressed

symmetry aspects of the resulting spacetime, starting with the geometrical fields – the

vielbein, metric and connection – and then proceeding to other fields that might be in

the system. Salam and Strathdee provided important theory on harmonic expansions

on an internal quotient space.

Manton[42], on the other hand, considered symmetry breaking patterns for a gauge

field for a simple, compact Lie group on M4 × S2. He looked for solutions where the

unbroken gauge group is SU(2) ⊗ U(1). The four-dimensional effective Lagrangian

turned out to be just that for the bosonic part of electroweak theory.

2.2 Non-linear realisations and spontaneous symmetry break-
ing

This subsection summarises the conceptual development of non-linear realisations and

their description in terms of coset spaces, and how these relate to spontaneous sym-

metry breaking (SSB). It focuses on the aspects which are of most relevance to this

paper.

Goldstone’s first paper[43] on SSB and Gell-Mann and Lévy’s paper[44] which

introduced the non-linear sigma model were both submitted for publication in Nuovo

Cimento in 1960. However, these topics were studied in such different ways that it
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was not proved until after nearly a decade of research that they were two sides of the

same coin.

Goldstone’s paper and a follow-up with Salam and Weinberg[45] looked at po-

tentials with degenerate minima constructed out of scalar fields. They found that

whenever a Lagrangian has an invariance under a continuous global symmetry group

which is not (fully) shared by its vacuum states, there will be spinless fields of zero

mass present. These became known as Goldstone bosons.

Gell-Mann and Lévy considered three models relating to pion decays in a system

of pions and nucleons. The third of these effectively took a multiplet of four scalar

fields and constrained its length, allowing them to eliminate one of the fields from

the Lagrangian. This was the first of many papers in the 1960s in which scalars were

included non-linearly in the Lagrangian, so that the full symmetries of the system were

not explicit. Much of the early work revolved around one particular realisation of a

chiral group (for example, [46, 47, 48, 49]). However, in 1969, Callan, Coleman, Wess

and Zumino[50, 51] showed how a coset decomposition of a linear Lie group G could

be used to find the most general form of a Lagrangian in which a subgroup H was

linearly represented but the rest of the symmetries were realised non-linearly.

The geometry of these non-linear realisations was examined further by Isham

[52], who introduced the concepts of Killing vectors and of a metric (prompted by

Meetz[53]), and later by Boulware and Brown [54].

The extension of Goldstone’s mechanism of SSB to a gauge symmetry became

known as the Higgs mechanism, following a series of papers in the mid 1960s[18, 19,

20], but the non-Abelian case was addressed by Kibble[21]. This paper again used a

coset decomposition of the invariance group of the Lagrangian. It pointed out that

the vacuum manifold could be identified with the coset space.

This led researchers to realise that non-linear realisations represented the low-

energy effective theory where a global symmetry was spontaneously broken - this was

shown by Honerkamp [55] in a specific case and by Salam and Strathdee[22] in the

general case.

From this viewpoint, the coset space G/H represents the vacuum manifold – a

submanifold of the field space of the linear representation which is used to break

the symmetry. It is therefore crucial to start with scalar fields in the appropriate

representation to allow this. This issue was emphasised by Isham[56]. Once this is

done, representatives of G/H can be used to map every other G-multiplet in the system

into an H-multiplet.

3 Motivations behind this model of covariant
compactification

In 1876, Clifford suggested that the

. . . variation of the curvature of space is what really happens in that phe-

nomenon we call the motion of matter . . . That in the physical world noth-

ing else takes place but this variation.[57]
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This idea is expressed by Davies as

the forces and fields . . . themselves being explained in terms of geome-

try[58].

We are familiar with taking measurements in space using a ruler and in time by

using a clock. This is the spacetime of the ‘physical world’, as Clifford puts it. It is

hard to see how a ruler or a clock could (hypothetically) be applied to the internal

field spaces of Gell-Mann and Levy’s sigma models or those in the models proposed

by Kerner and Luciani.

The idea behind the model proposed here is to see how far we can take Clifford’s

notion. There should be a limit which we can smoothly approach in which all the

dimensions appear in the equations on an equal footing. That is, the theory should be

fully covariant over all N dimensions. In this limit, one cannot distinguish between

any of the spatial dimensions. Time would only differ from these by its signature and

the consequences of that, as happens in relativity.

However, under conditions which represent the universe we live in, the additional

dimensions would form a compact subspace. In this curved spacetime, we would

want some components of the curvature to represent gravity and other components

to represent gauge fields. That is, the gauge fields would not have to be ‘inserted by

hand’ as they are in the papers on spontaneous compactification described above –

rather, they would appear in the geometry, as in the original models of Kaluza and

Klein.

The immediate problem is that the known gauge symmetries are unitary symme-

tries, rather than spacetime symmetries. But a clue to resolving this can be found by

considering the symmetries of the compact spaces in the pre-1960 Kaluza-Klein the-

ories described above. In Kaluza and Klein’s work, and its extension by Jordan and

Thiry, which includes a U(1) gauge field, the compact space is S1. Rotations around

this space form the group SO(2). In Pauli’s model, which includes a SU(2) gauge

field, the compact space is S2. Rotations around this space form the group SO(3).

These are possible because the unitary group has a vector representation which is an

SO(N) group.

This property is unique to U(1) and SU(2). However, there is a generalisation

which can be used for any unitary group of the form U(d) or SU(d) where d = 2n,

with n an integer.

In this case, the direct action of the unitary group is on a d-dimensional spinor

multiplet of an orthogonal group. This spinor transforms as the (direct sum) Weyl

representation of SO(2n), the sole spinor representation of SO(2n+ 1) and as a fun-

damental representation of SO(2n + 2). For example, if n = 4, the group SU(16)

acts directly on a 16-dimensional spinor. This transforms as the direct sum of the

two spinors of SO(8), the spinor representation of SO(9) and either the left-handed

or right-handed spinor of SO(10).

The unitary group then acts by conjugation on the direct product of a spinor and

its conjugate. This direct product can be decomposed into tensors of the corresponding

orthogonal symmetries. U(d) preserves orthonormality on complex vector space, which
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describes the local values of the spinor fields, just as O(N) preserves orthonormality

on a real vector space, which describes the local values of vector fields contained in

the decomposition. The SO(N) rotations are contained in the indirect action of the

unitary group on the outer product.

Hence if we extend our four-dimensional spacetime to include s2 = 2n , s2 = 2n+1

or s2 = 2n + 2 additional dimensions, rotations in these extra dimensions may be

induced by an SU(d) transformation of a spinor. The gauge fields of SO(s2) then

span part or all of the space of the SU(d) gauge fields.

The extra dimensions would form a compact space in our universe. This would

give the full N -dimensional spacetime an SO(1, 3)⊗ SO(s2) symmetry.

However, we could consider what happens as the curvature of the compact space is

reduced steadily to zero. This would give us a ‘decompactification limit’. In this limit,

the SO(1, 3)⊗ SO(s2) symmetry would be extended to an SO(1, 3 + s2) symmetry of

rotations and boosts.

In such a limit, any matter fields would form multiplets of this full N -dimensional

symmetry group. If we want to derive field equations for the model from an action,

the action would need to be expressed in terms of these N -dimensional multiplets.

However, in our universe, we expect these to break into multiplets of SO(1, 3) ⊗
SO(s2).

For example, if the universe has two additional dimensions, the decompactification

limit is a six-dimensional flat spacetime. Rotations and boosts in this universe form

an SO(1, 5) group. The spacetime has six-dimensional vectors and a rank-two tensor

field XI
J has two indices running 1, 2, . . . , 6. Under conditions which represent our

universe, spacetime becomes a product manifold with two factors: one is our familiar

four-dimensional spacetime and the other is a compact two-space. A six-vector then

decomposes into a Lorentz four-vector and a two-vector of the internal SO(2) symme-

try. A rank-two tensor will similarly decompose into tensors with Lorentz and internal

indices: Xµ
ν , X

µ
X , XX

ν , X
X

Y .

This decomposition of tensors of a group into those of a subgroup tells us that the

coset space methods of Callan, Coleman, Wess and Zumino[50, 51] are the appropriate

ones to use. Effectively, the higher-dimensional symmetry is being ‘broken’ into the

symmetry of the space with the compact factor. But the way this symmetry is broken

is very from that described in Section 2.2. As Salam and Strathdee describe[22], spon-

taneous symmetry breaking of an internal symmetry occurs when observation energy

is reduced below a threshold. In covariant compactification, by contrast, symmetry

breaking occurs when curvature is increased above zero. That is, if you reduce cur-

vature to zero, there is no longer anything marking out certain dimensions as special,

and they all appear on the same footing. In place of the redefinition of the fields using

the coset space representative that Salam and Strathdee describe, we simply have a

change of coordinates. One consequence of this is that there are no Goldstone bosons

or massive vector fields resulting from covariant compactification. (See Section 4.2.3.)

Now in SSB, the symmetry breaking pattern is determined by algebraic invariants

of the Lorentz scalar multiplet which triggers the breaking. For example, if the mul-

tiplet ϕi transforms as the defining representation of an orthogonal group O(N), the
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vacuum manifold might consist of all states which satisfy ϕiϕi = r2. All of these states

have an invariance group of O(N−1), so this is the subgroup which is realised linearly.

(That is, all other fields will be representations of this subgroup at low energies.)

The question for covariant compactification is how the symmetry breaking pattern

would be determined. We start by noting that in SSB, ϕi is a non-trivial multiplet of

the unbroken symmetry group, O(N). We might therefore expect our model to involve

a non-trivial multiplet of SO(1, 3 + s2).

While this is indeed correct, we are in fact breaking more than the SO(1, 3 +

s2) symmetry. As explained in [8] and Section 4.1, the set of all changes of basis

on a N -dimensional tangent space form a GL(N,R) group under the operation of

matrix multiplication. The O(1, 3 + s2) group of changes of basis which preserves

orthonormality is a subgroup of this, and SO(1, 3 + s2) = SO(1, N − 1) is a subgroup

within that. The N -dimensional metric has N(N + 1)/2 independent components,

which depend solely upon the parameters of the corresponding GL(N,R)/O(1, N − 1)

coset space. The Levi-Civita connection and Riemann and Ricci tensors therefore

depend upon these parameters and their derivatives.

We are therefore looking to break a GL(N,R) group of symmetries down to its

GL(4,R) ⊗ GL(N − 4,R) subgroup. Now GL(N,R) has N2 degrees of freedom; so

does a generic rank-two tensor XI
J . We are also looking for a tensor which carries

information about the curvature of the compactified space. Both of these criteria are

satisfied by the covariant derivative of a vector MI :

DIM
J = ∂IM

J +MKΓIK
J (3)

– it has N2 degrees of freedom and contains information about the curvature through

the connection ΓIK
J . This will be the key quantity we work with in developing a fully

covariant model of compactification.

4 Relevant content from my previous papers

[8] explains the geometric meaning of the general linear and special orthogonal groups

and their relation to two types of connection. [9] describes product spacetimes and

the groups of changes of basis on these. It explains how the presence of diagonalisable

tensors provides information about these groups and the dimensionalities of the factor

spaces. It shows how tensors decompose on these spaces. And it explains how the

Levi-Civita connection for such spaces can describe both gravity and SO(N) gauge

fields and gives examples of how these gauge fields can also gauge SU(N) symmetries.

We recap the relevant content from [8] and summarise the main findings of [9] in this

section.
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4.1 Basis transformations and connections

Take a curved pseudo-Riemannian manifold M with t time dimensions and s space

dimensions. A change of coordinates u′I(uJ) induces a change of basis at a point A:

e′
I |A =

∂uJ

∂u′I

∣∣∣∣
A

eJ |A. (4)

Note that ∂uJ

∂u′I

∣∣∣
A

is a matrix of values. Carrying out two successive changes of co-

ordinates results in two such matrices, multiplied together. The set of all possible

Jacobian matrices at A forms a group JA which is isomorphic to GL(4,R).
If we choose a pseudo-orthonormal basis n̂I |A on this tangent space, any other

pseudo-orthonormal basis k̂I |A is related to it by

k̂I |A = iI
J
∣∣∣
A
n̂J |A (5)

where i is an element of a group IA ⊂ JA which is isomorphic to O(t, s).

Then if we denote the transformation between the chosen frame basis n̂J |A and a

chosen coordinate basis eI |A by j:

eI |A = jI
J
∣∣∣
A
n̂J |A, (6)

this can be uniquely decomposed into an element of IA and a representative of the

coset space JA/IA which has no dependence on the group parameters of IA:

j = li. (7)

Now if we consider a bundle of tangent spaces across a coordinate neighbourhood, we

can choose a field of pseudo-orthonormal frames across this neighbourhood, n̂J(u).

Similarly, we have a field of coordinate bases, eI(u). These are related by

eI(u) = jI
J n̂J(u) = lI

K iK
J n̂J(u). (8)

Given the pseudo-orthonormality of the frame field and the fact that IA preserves

pseudo-orthonormality, the metric then takes the form

gIJ = (eI , eJ) = lI
K lJ

L ηKL. (9)

If we so choose, we can use the frame field to define a parallelism across the neigh-

bourhood. Then j(u) determines the corresponding Weitzenböck connection:

Γ̇IJ
K(u) ≡ −

(
j∂Ij

−1)
J

K ≡
(
∂I(j)j

−1)
J

K . (10)

Alternatively, we can use the metric to define the Levi-Civita connection:

Γ̊IJ
K(u) =

1

2
gJL (∂LgIJ − ∂IgLJ − ∂JgLI) . (11)

There are similarities and differences between the properties of these connections, as

shown in Table 1.
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Table 1: Comparison of the properties of the Levi-Civita and Weitzenböck connec-
tions.
Levi-Civita Γ̊IJ

K Weitzenböck Γ̇IJ
K

Used in GR Used in teleparallel theories

Metric-compatible Metric-compatible

Symmetric on lower indices: Γ̊IJ
K =

Γ̊JI
K

Has torsion: ṪIJ
K = Γ̇IJ

K − Γ̇JI
K

For given coordinate system, uniquely
defined across coordinate neighbour-
hood, in terms of metric

For a given coordinate system, not
unique – depends on choice of paral-
lelism; defined in terms of matrices jI

J

Parallel transport along segments of dif-
ferent geodesics don’t commute – so re-
sult depends on path

Uniquely defined once coordinates and
parallelism are chosen – then parallel
transport is independent of path taken

For any connection Γ
(u)
LM

N , we may define the covariant derivative of a vector, with

components

DLV
M = ∂LV

M + V NΓLN
M . (12)

The Levi-Civita connection determines geodesics, through the geodesic equation:

∂2uK

∂τ2
+ Γ̊IJ

K ∂uI

∂τ

∂uJ

∂τ
= 0. (13)

Its field strength is the Riemann tensor, which describes the intrinsic curvature of M:

RM
KLN = ∂LΓ̊NK

M − ∂N Γ̊LK
M + Γ̊NK

J Γ̊LJ
M − Γ̊LK

J Γ̊NJ
M . (14)

If a body is in free fall, it is taken to follow a geodesic, as in GR. It is possible to

construct a set of coordinates – Riemann normal coordinates – for which the coordinate

basis is pseudo-orthonormal along the geodesic. If we wish, we can align the timelike

vector in this basis with the four-velocity vector of the body. Then the coordinates

constitute a rest frame for the body.

If we take xI as the rest frame coordinates and n̂I as the corresponding basis along

the geodesic, this basis is related to that for any set of curvilinear coordinates on M
by

eM = jM
I n̂I =

∂xI

∂uM
n̂I . (15)

At a given point A on the geodesic, this is evaluated as

eM |A = jM
I |A n̂I |A =

∂xI

∂uM

∣∣∣∣
A

n̂I |A. (16)

The pseudo-orthonormality of the basis along the geodesic means that the Levi-Civita

connection reduces to zero along this curve. But in a curved spacetime, it is not

possible for the coordinate basis to be pseudo-orthonormal away from the geodesic.

This means that intrinsic curvature may be distinguished by the variation in the Levi-

Civita connection with separation from the geodesic. This will be important to us

later in this paper.
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4.2 Compactification on product manifolds

4.2.1 Product manifolds

[9] looks at Kaluza-Klein theories and compactification on product manifolds. The

definition adopted for a generic product manifold is simply that, in the appropriate

coordinates, the metric takes a block diagonal form:

gIJ =

(
gµν(y

ρ, yZ) 0

0 gXY (yρ, yZ)

)
. (17)

Such spaces are not unusual. Most spacetimes of interest in general relativity are

products of four one-dimensional spaces – that is, they are completely diagonalisable.

A notable exception is the Kerr metric, but even this can take block diagonal form.

Indeed, a two-dimensional cylinder is a product manifold, with factor spaces S1 and

R1. Even the humble two-dimensional plane fits this description, with two R1 factor

spaces. Other than these, a simple example was given in [9] of deforming a cylinder

to introduce bulges and/or constrictions – resulting in a tube of varying radius – see

Figure 1.

x x

θ θ

Figure 1: Homeomorphism from a cylinder to a tube of varying radius (repro-
duced from [9] with kind permission of World Scientific Publishing Co Pte Ltd)

Replacing the R1 factor space here with four-dimensional Minkowski spacetime

gives us the background spacetime of the Jordan-Thiry model.

The simplest product manifolds are ones in which one or more of the factor

spaces are Ricci-flat or are Einstein manifolds. Einstein manifolds (along with all

two-dimensional manifolds) have the property that the mixed form of their Ricci ten-

sor is diagonal, with all eigenvalues equal:

RJ
I =

R

N
δJI =

1

N


R

R

. . .

R

 . (18)

These are important to understanding the ‘classical vacuum’ of Kaluza-Klein theories,

as described below in Section 4.2.4.
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4.2.2 Orbits of rank-two tensors and diagonalisability

The important insight which underlies much of the analysis in [9] is that under a

change of coordinates, the action of JA on a rank-two tensor in mixed form XI
J is a

similarity transformation:

X ′
K

J =
∂uL

∂u′K XL
I ∂u

′J

∂uI
= (jXj−1)K

J . (19)

Similarity transformations preserve eigenvalues. The eigenvalues of a matrix are

completely determined by its ‘algebraic invariants’ – the traces of its powers:

tr(X) = XI
I ; tr(X2) = XI

JXJ
I ; tr(X3) = XI

JXJ
KXK

I ; . . . . (20)

The action of JA partitions the space of all rank-two tensors into orbits, where every

element of an orbit has the same eigenvalues. Some orbits contain diagonal matrices,

but some do not. For a start, a diagonal matrix has the property

XI
J = XJ

I . (21)

We write such a tensor XJ
I and refer to it as ‘index-aligned’. (It is the mixed form of

a symmetric tensor, but may not be a symmetric matrix due to the signature of the

spacetime.) This property is preserved under the action of JA. So for a tensor to be

diagonalisable under JA, it must be index-aligned.

However, from any rank-two tensor, we can always construct an index-aligned ten-

sor. This is because an arbitrary rank-two tensor can be decomposed into symmetric

and anti-symmetric parts. In their mixed form, these take the forms:

XJ
I = XI

J +XJ
I ; XI

J −XJ
I . (22)

Index-alignment is a necessary but not sufficient condition for a real tensor to

be diagonalisable under JA. Some real, index-aligned tensor matrices have complex

eigenvalues – that is, they diagonalise to a complex matrix. This cannot be achieved by

the action of JA, which only contains real matrices. If, instead, a matrix has only real

eigenvalues but some of them are repeated, it may or may not be diagonalisable under

JA. Indeed, two matrices can have the same eigenvalues and one is diagonalisable while

the other is not. But if matrix has distinct real eigenvalues, it is always diagonalisable

under JA.

4.2.3 Stabiliser groups and the product space decomposition theo-
rem

It turns out that the presence of diagonalisable tensors tells us a lot about the group

theory and geometry of spacetime. The multiplicities of the eigenvalues of any such

tensor determine the ‘breaking pattern’, i.e. which symmetries are realised linearly or

‘unbroken’.
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For example, if XJ
I can be diagonalised to the form

a

a

a

a

b

b


(23)

it is invariant under a group G = G1⊗G2 which is isomorphic to GL(4,R)⊗GL(2,R).
These invariance groups, which contain the Lorentz group and an SO(2) group, are

valid in any coordinate system, up to equivalence.

Furthermore, any changes of basis in the first four dimensions and/or in the last

two dimensions preserve this form for XJ
I . It is only transformations which mix the

coordinates on the two subspaces which result in a non-diagonal form for XJ
I .

The group G stabilising the diagonal tensor X is a subgroup of J , which provides

a new decomposition of j ∈ J :

j = Lg (24)

where g = g1 ⊗ g2 is an element of G = G1 ⊗ G2, and L is a representative of J/G

which has no dependence on the parameters of G.

G2 can be a direct product of general linear groups. The relationship between J

and its subgroups in the case where it is not a direct product is shown in Figure 2.

J ∼= GL(N,R) H1
∼= O(t1, s1)

G1
∼= GL(N1,R)

I ∼= O(t, s)

G2
∼= GL(N2,R)

H2
∼= O(t2, s2)

Figure 2: The relationships between tangent space groups on product manifolds
(reproduced from [9] with kind permission of World Scientific Publishing Co Pte
Ltd)
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In Section 6 of [9] it is shown that if L can be consistently defined across a coordi-

nate neighbourhood, then it can be used to define a coordinate basis which can only

exist on a product space. Then in Section 12, this is all put together into the following

theorem:

Theorem 1. If any real tensor field of the form XJ
I can be diagonalised across a

region of spacetime with the same multiplicities of its eigenvalues, then

� The spacetime coincides with a product manifold across that region;

� The dimensionalities of its factor spaces are equal to the multiplicities of the

eigenvalues;

� The tensor is stabilised by G across the region, where G is a direct product of

the general linear groups of basis changes on the factor spaces;

� A representative L−1 of the coset space J/G will take us from a generic coor-

dinate basis to a basis relating to a set of coordinates which respect the factor

spaces;

� In any coordinate system which respects the factor spaces, the tensor field is

diagonalised.

By ‘a coordinate system which respects the factor spaces’ we mean a set of coor-

dinates of which subsets parametrise each of the factor spaces individually: {yI} =

{yµ, yX}.
So for example, if XJ

I can be diagonalised across a region to the form (23), the

spacetime is a product of a four-dimensional space and a two-dimensional space. Note

that a and b do not need the same values everywhere, they just need the same multi-

plicities. By allowing them to vary, we are promoting them to scalar fields.

Note also that L−1 plays a similar role to the one it plays in SSB, except that in

SSB, the parameters in its exponent are realised as Goldstone bosons.

4.2.4 Applying the product space decomposition theorem in the
Kaluza-Klein framework

Given how common product spaces are, the product space decomposition theorem may

not seem too impressive. But it has highly significant consequences in the context of

Kaluza-Klein theories. In this context, G describes the symmetries of the system which

are manifest in the compactified spacetime. On product manifolds, we can decompose

tensors in terms of the factor spaces. For example, for the six-dimensional spacetime

we have just considered, a six-component vector V I breaks into a Lorentz four-vector

V µ and a two-component multiplet V X .

Similarly, the Levi-Civita connection components can be assembled into subsets:

{Γ̊IJ
K} = {Γ̊µν

ρ, Γ̊µν
X , Γ̊µX

ν , Γ̊XY
ν , Γ̊µX

Y , Γ̊XY
Z}. (25)

The components Γ̊µX
ν and Γ̊µν

X vanish if gµν is independent of the coordinates on

the compact factor space – a generalisation of Kaluza’s ‘cylinder condition’.
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We end up with the following interpretation of this framework. In deep space, in the

absence of background fields or any passing gravitational waves or waves of the gauge

fields, spacetime is represented by a Cartesian (direct) product of four-dimensional

Minkowski space and an Einstein manifold or two-dimensional manifold (or a set of

these). We describe this as the ‘classical vacuum’ of the theory. In y-coordinates

(those that respect the factor spaces), the metric has the form

gIJ =

(
ηµν 0

0 gXY (yZ)

)
. (26)

(If G2 is a direct product group, there is more than one factor space and gXY is itself

block diagonal.) Meanwhile, the operator (mixed) form of the Ricci tensor is

RJ
I =

(
0 0

0 R2
s2

δYX

)
(27)

where R2 is the Ricci scalar of the compact factor space.

When there is gravitating matter or a background gravitational field, these gener-

alise to

gIJ =

(
gµν(y

ρ) 0

0 gXY (yZ)

)
(28)

and

RJ
I =

(
Rν

µ 0

0 R2
s2

δYX

)
. (29)

Adopting more a general coordinate system, where one or more coordinates is a

function of both yµ and yX , gives values to components of the Levi-Civita connections

with both types of index. These represent ‘fictitious’ SO(s2) gauge fields - that is,

ones with zero field strength.

To get gauge fields with a non-zero field strength, we need to move away from

a Cartesian product space, to one where the curvature of the additional dimensions

varies with yµ.

Even in two dimensions, we can see how allowing the curvature to vary in this

way gives values to the relevant components of the connection. For a tube of varying

radius with coordinates {x, θ}, the metric is (see Section 5 of [9]):

gIJ =

(
1 + ( ∂r

∂x
)2 0

0 r2(x)

)
. (30)

So, as we move along x, we find that the radius shrinks or grows, resulting in a change

in metric for the space parametrised by θ, giving us

Γ̊xθ
θ = −1

r

∂r

∂x
. (31)

If the generalised cylinder condition holds – that is, as we move around the compact

subspace, the metric for the four-space does not change – the covariant derivative of

V µ with respect to four-dimensional spacetime is then

D̊µV
ν = ∂µV

ν + V ρ Γ̊µρ
ν (32)
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– just as we get in GR – while the covariant derivative of V X with respect to four-

dimensional spacetime is

D̊µV
X = ∂µV

X + V Y Γ̊µY
X (33)

where

Γ̊µX
Y = Γ̊Xµ

Y = −1

2
gY Z∂µgZX . (34)

If we now transform to a set of Riemann normal coordinates on the compact factor

space (but retain curvilinear coordinates on the four-dimensional spacetime) then these

connection components are transformed into a spin connection for SO(s2). They can

be identified with gauge fields of SO(s2) and span part or all of the space of the gauge

fields of the corresponding unitary symmetry.

[9] provides two examples of this. In the first, there are two extra dimensions,

so we get SO(2) gauge fields. The vector (defining) representation of SO(2) is the

doublet representation of U(1). D̊µV
X can be rewritten as the covariant derivative of

a complex scalar. This gives it exactly the right form for the coupling of this field to

a U(1) gauge field, where that gauge field is proportional to that of SO(2).

In the second example, there are three extra dimensions, giving us SO(3) gauge

fields. The vector representation of SO(3) is the triplet (vector, adjoint) representation

of SU(2). The SO(3) gauge fields are proportional to the triplet of SU(2) gauge fields

and V i couples to them as a vector of SU(2).

The field strength tensor for SO(N) gauge fields, FµνX
Y , can be found in the

Riemann tensor components for these coordinates. It does not contribute to the Ricci

tensors for either factor space. Meanwhile, Rµν still describes our normal gravity

operating in four spacetime dimensions – it is not diluted by propagating through

extra dimensions, as is sometimes claimed of Kaluza-Klein theories.

If one wants to use the language of fibre bundles to describe the product spacetime,

this is possible. The oriented orthonormal frames in the tangent spaces for the compact

space form a bundle over the four-dimensional spacetime, with structure group SO(N).

However, this description misses out most of the beauty of this model – in particular,

the way that all the factor spaces, compact and non-compact, are treated on the same

footing.

5 Using a covariant derivative to determine the
factor spaces and symmetry groups

We decided at the end of Section 3 that the appropriate quantity for breaking J-

symmetry is the covariant derivative of a vector. From Section 4.1, we can see that

the connection which most naturally describes curvature is the Levi-Civita connection.

We therefore utilise the Levi-Civita covariant derivative:

D̊IM
J = ∂IM

J +MK Γ̊IK
J . (35)

We shall write the matrix of components as DI
J for short.
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We can now apply the analysis of Section 4.2 to this. The action of J on DI
J

partitions the space of all possible values of this matrix into orbits. These orbits are

characterised by the scalar invariants

DI
I , DI

JDJ
I , DI

JDJ
KDK

I , . . . (36)

If we take the index-aligned part of this tensor matrix,

DJ
I ≡ D̊IM

J + D̊IMJ , (37)

it has orbits which contain diagonal matrices. By imposing constraints on DJ
I using

its algebraic invariants, we can therefore specify spacetimes which coincide over finite

regions with a product space, for which the factor spaces have particular dimension-

alities. Away from their classical vacuums, these will have gauge fields amongst the

connection components.

It is worth noting that the trace of D̊IM
J − D̊IMJ is zero. Thus only DJ

I con-

tributes to the first scalar invariant, DI
I . In any coordinate system, this is simply the

sum of the eigenvalues of DJ
I . For example, if DI

I diagonalises to (23),

DI
I = 4a+ 2b. (38)

6 Deriving a field equation from a Lagrangian

The last section explained how the covariant derivative of a vector could be used to

fix the dimensionalities of the factor spaces of a product manifold. This leads to a

particular decomposition of tensors.

What it does not tell us about is the curvature of the factor spaces. Now, in GR,

the field equation determines the curvature of spacetime and the matter distribution.

We want a field equation which does likewise for this theory.

There are two approaches to this. The first we shall take is to to construct a

Lagrangian from scalar invariants and use the principle of least action. Taken alone,

this looks rather like guesswork. But we will see in Section 7 that the same field

equation results from the simplest possible generalisation of Poisson’s equation for

gravity.

For D̊IM
J , the second algebraic invariant looks like a kinetic term:

DI
JDJ

I = D̊IM
JD̊JM

I . (39)

But we want the extra dimensions to be tightly compact, so we need a mass term:

MIM
I .

We therefore take our Lagrangian to be

L = D̊IM
JD̊JM

I − kMIM
I (40)
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where k is a constant (dimensionful, but invariant and constant across spacetime).

The action integral uses the measure |j| dNu:

S =

∫
Ω

(
D̊IM

JD̊JM
I − kMIM

I
)
|j| dNu (41)

where |j| has the property

D̊I |j| = 0. (42)

We then subject MI to an active variation over the region Ω – one in which the

coordinate basis is preserved – which vanishes at the boundary. The field equation

then follows by using established procedures. (The method may be found on p146–147

of D’Inverno[59]. It includes making use of the fact that for a contravariant vector

density of weight +1, the covariant derivative is equal to the partial derivative).

We thus arrive at the field equation

D̊ID̊JM
I = −kMJ . (43)

This does not look much like the field equation of GR. However, by using the

relation

[D̊K , D̊J ]M
I = RI

LKJM
L (44)

we get the following form for the field equation:

(RI
J + D̊ID̊J)M

J = −kMI (45)

where RIJ is the Ricci tensor.

Just as in GR, we find the proportionality constant by comparing with known

results from Newtonian gravitation. However, with the above field equation, we can

do this much more directly, as we show in the next section.

7 Deriving a field equation by generalising Pois-
son’s equation

7.1 Generalising Laplace’s equation

We start by considering a test particle – one whose own gravitational field is negligible

– moving in a background gravitational field. Newtonian gravitation has a scalar

potential, ϕ. This means that the work done in moving the particle from one point to

another is independent of path; around a closed loop it is zero. Denoting the particle’s

Newtonian velocity vector v, the acceleration due to the field is

dv

dt
= −∇ϕ. (46)

Laplace’s equation for gravity simply equates the divergence of this to zero:

∇.(∇ϕ) = 0. (47)
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In general relativity, if a test particle has no non-gravitational forces acting on

it, it is considered to be in ‘free fall’. For a particle with finite real mass, it moves

on a timelike geodesic. Its relativistic velocity vector, whose components we shall

denote CI , is covariantly constant along the geodesic. Hence the free fall acceleration

is entirely due to the variation in the transformation j0 between the coordinate basis

and the particle’s rest frame along the path.

The result of parallel transporting the velocity vector from one point to another de-

pends on the path taken, and parallel transporting it around a closed loop of intersect-

ing geodesics induces a transformation. We therefore do not expect our generalisation

of Laplace’s equation to contain the derivative of a scalar potential.

From (12) and the covariant constancy of CI ,

∂CI
(u)

∂uJ
= −CK

(u) .̊ΓJK
I (48)

Note that in the rest frame coordinates,

C0
(x) = 1, Ci

(x) = 0. (49)

Now from (16), at any point A on the geodesic,

e0|A = j0
0|A n̂0|A + j0

i|A n̂i|A (50)

and

ei|A = ji
0|A n̂0|A + ji

j |A n̂j |A. (51)

We now define a ‘Newtonian coordinate system’ vM as one for which

j0
0 = 1 +O(ϵ), j0

i = O(ϵ), ji
0 = O(ϵ) (52)

at every point on the geodesic, where ϵ is a very small parameter. That is, the change

of coordinates may mix up the spatial basis vectors to any extent, but the mixing

of the spatial and timelike bases is very limited and e0 ≈ n̂0. Then using the usual

transformation law for vectors together with (49), we have

C0
(v) = 1 +O(ϵ), Ci

(v) = O(ϵ). (53)

Substituting these into (48), we find

∂CI
(v)

∂vJ
= −Γ̊J0

I +O(ϵ). (54)

Thus the spatial components of the acceleration are given by

ai ≈ −c2Γ̊00
i (55)

where c is the speed of light.

As remarked in Section 4.1, intrinsic curvature may be distinguished by the vari-

ation in the Levi-Civita connection with separation from the geodesic. It is therefore
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promising to see components of it appearing in this equation. However, this cannot

function as a generalisation of the gradient of the gravitational potential, as it is not

tensorial. It has been derived from the expression on the right hand side of (48). Tak-

ing that expression, −CK
(u)Γ̊JK

I , as our ‘potential gradient’ would represent a minor

improvement over the right hand side of (55), as it at least has covariance in its indices.

But it still will not suffice, for two reasons: it is still not tensorial and furthermore it

contains a local vector, −CK
(u), which is only defined on the particle’s path.

We can tackle the second of these issues by replacing the local vector in this

expression with the vector field which determines the overall shape of the spacetime,

MI . This gives us MK
(u)Γ̊JK

I . Then finally, to ensure that our ‘potential gradient’

transforms as a tensor, we add on a term. The term we must add is none other than

the partial derivative of MI , giving us back the familiar covariant derivative:

D̊JM
I
(u) = ∂JM

I
(u) +MK

(u)Γ̊JK
I . (56)

This is the simplest possible generalisation of ∇ϕ consistent with general covariance

and the equivalence principle.

To see the correspondence more clearly, observe that

D̊0M
i
(u) = ∂0M

i
(u) +M0

(u)Γ̊00
i +M j

(u)Γ̊0j
i. (57)

Then if vI are now coordinates in which the equivalent of (53) holds for MI , this

contains the expression on the right hand side of (55), upto a constant:

D̊0M
i
(v) = ∂0M

i
(v) + Γ̊00

i +O(ϵ). (58)

Our generalisation of Laplace’s equation, (47), then follows immediately, as a co-

variant divergence of (56). However, we have to be careful to take the divergence on

the correct index. From (55) we see that the appropriate equation is

D̊ID̊JM
I = 0. (59)

7.2 Using Poisson’s equation to find the proportionality
constant

To find the ratio between k and m2, we note if we take the field equation (43) and set

J = 0 – that is, take the timelike component – we have

D̊iD̊0M
i − D̊0D̊0M

0 = −kMIgI0. (60)

In a coordinate system which becomes Newtonian at A, defining t by

t = v0/c (61)

we get

D̊iD̊0M
i|A − 1

c
D̊tD̊0M

0|A = −kM0|A g00|A +O(ϵ). (62)
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The first term on the left is our generalisation of∇2ϕ derived in the previous subsection

- this can be expanded to give

D̊i(∂0M
i + Γ̊00

i)|A − 1

c
D̊tD̊0M

0|A = −kM0|A g00|A +O(ϵ) (63)

where Γ̊00
i is related by (55) to the three-acceleration caused by ϕ. The meaning of

the next term is unclear, but it may be that it vanishes in the non-relativistic limit

(unless there is a very rapid variation in D0M
0) due to the factor of 1/c. Assuming

this to be the case, comparing with Poisson’s equation for gravity, we then expect the

right hand side to reduce to 4πGρ/c2 where ρ is the density of the field MI . If we

assume that in this coordinate system M0|A = 1, as we had for C0 in the rest frame,

we get

k =
4πGρ

c2
. (64)

(Note that if m varies with uN , so does ρ.) We therefore take as our generalisation of

Poisson’s equation

D̊ID̊JM
I = −4πGρ

c2
MIgIJ . (65)

It can easily be verified that the two sides of this equation have the same dimensionality.

This is the full field equation for a universe containing only MI . Its Ricci form is

(RI
J + D̊ID̊J)M

J = −4πGρ

c2
MIgIJ . (66)

8 Solutions

8.1 Properties of the field equation

It is informative to compare and contrast (66) with the field equation of GR and the

equations of motion in non-relativistic and relativistic quantum mechanics.

(66) can be viewed as an eigenvalue equation for MI . Like the Schrödinger, Dirac

and Klein-Gordon equations, it contains a differential operator, RI
J + D̊ID̊J . But the

Schrödinger, Dirac and Klein-Gordon equations assume (pseudo)-orthonormal coor-

dinates on flat space or spacetime. By contrast, (66) incorporates geometry into the

operator. Geometrical information is encoded in the field equation through the Ricci

and metric tensors; to this extent, it has similarities with the field equation of GR. But

unlike GR, these tensors do not appear on their own - they appear as matrix operators

acting on MI . It therefore relates geometry to matter, but in a very different way to

GR.

These similarities and differences give us insights into solutions of the field equa-

tion. It differs from solving the quantum mechanical equations, because these have

only one unknown: the wavefunction. For (66), Γ̊IJ
K is also an unknown, occuring in

the operator. Instead, like GR, we expect the solutions to tell us a relation between

geometry and matter.
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8.2 Solutions with a trivial operator

The vacuum field equation of GR, when contracted with a vector, may be expressed

in the form of an eigenvalue equation:

RI
JV

J =
R

2
V I . (67)

We saw in Section 4.2.1 that for Einstein manifolds (and all two-dimensional mani-

folds), the eigenvalues of RI
J are all equal. This means that every vector is an eigen-

vector. This is because for these spacetimes, RI
J is proportional to the identity, so the

operator RI
J −R/2 δIJ is zero.

It may be that there are spacetimes for which the operator (66) has the same prop-

erty – that it is always proportional to the identity, so that all vectors are eigenvectors.

This would take further research to verify.

8.3 Solutions with diagonalisable DJ
I

Section 5 provides a way of classifying all other solutions for whichDJ
I is diagonalisable.

They can be classified by the following equivalent classifications:

� The algebraic invariants of DJ
I ;

� The eigenvalues of DJ
I ;

� The stabiliser groups of DJ
I ;

� The dimensionalities of the factor spaces.

Fixing just the first algebraic invariant, the trace DI
I , simplifies the Ricci form

of the field equation. For example, if there are just two factor spaces, so that G =

GL(4,R)⊗GL(s2,R), we have

DI
I = 4a+ s2b (68)

where a(u) and b(u) are the eigenvalues associated with the four-dimensional spacetime

and the compact factor space respectively. Then substituting this result into (66), we

find

RI
JM

J + 4∂Ia+ s2∂
Ib = −4πGρ

c2
MIgIJ . (69)

8.4 Specific solutions for symmetric DIJ

Now consider the case where the covariant derivative matrix is index-aligned – that is,

the antisymmetric part of D̊IMJ is zero. Note that this choice eliminates N(N − 1)/2

of the N2 degrees of freedom of D̊IM
J . Then in y-coordinates, we have

D̊νM
µ = a δµν ; D̊Y MX = b δXY . (70)

This will enable us to find a classical vacuum solution. As mentioned in Section

4.2.4, this is a Cartesian product of four-dimensional Minkowski space and an Einstein
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manifold or two-dimensional manifold. (70) allows us to find an explicit form ofRIJM
J

from its definition and for gIJM
J from the field equation, as follows.

First, we note that for this form of solution, the Ricci tensor decomposes into Rµν

and RXY . We thus have

RµνM
ν = D̊νD̊µM

ν − D̊µD̊νM
ν = D̊ν(a δ

ν
µ)− D̊µ(4a) = −3 ∂µa (71)

and

RXY MY = D̊Y D̊XMY − D̊XD̊Y MY = D̊Y (b δYX)− D̊X(s2b) = (1− s2) ∂Xb. (72)

Second, both sides of (65) are a higher-dimensional vector, which decomposes into a

Lorentz vector and a vector of the internal symmetry:

D̊ID̊µM
I = −4πGρ

c2
MIgIµ (73)

and

D̊ID̊XMI = −4πGρ

c2
MIgIX . (74)

Substituting in (70), we get

∂µa = −4πGρ

c2
Mνgνµ (75)

and

∂Xb = −4πGρ

c2
MY gY X . (76)

By comparing (71) and (72) with (75) and (76), we immediately see that there are

solutions in which the Ricci tensors and metrics are related by

Rµν =
12πGρ

c2
gµν (77)

and

RXY =
4πGρ

c2
(s2 − 1)gXY . (78)

As ρ → 0, both manifolds become Ricci flat. If, instead, ρ is constant, both these

manifolds are Einstein manifolds, with Ricci scalars

R(1) =
48πGρ

c2
(79)

and

R(2) =
4s2(s2 − 1)πGρ

c2
(80)

– they are of the same order. Clearly, neither of these solutions represents the classical

vacuum we are looking for.

However, we have an alternative. If Mν = 0, its covariant derivative matrix and

a vanish. Then the equations admit a solution in which the four-space is flat and the

other submanifold is curved.

A few comments about this solution are worth making here:

30

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 March 2023                   doi:10.20944/preprints202303.0314.v1

https://doi.org/10.20944/preprints202303.0314.v1


� A similar decomposition can naturally be used with analogous results when G2

is itself a direct product of general linear groups;

� We have arrived at this solution without any need to have a purely geometric

term in the Lagrangian. This provides some justification for choosing the covari-

ant derivative as the tensor which determines the symmetry breaking pattern2.

9 Worked example: the two-sphere

In this section, we work through an example of applying the theory we have developed

in the previous sections. In this example, G2 ≃ GL(2,R). This is the simplest example

with a non-trivial H2 (the maximal orthogonal subgroup of G2 - see Figure 2). It

has an SO(2) gauge group, or equivalently a U(1) gauge symmetry, as described in

Section 4.2.4 and [9]. The additional dimensions form a sphere. We calculate the

components of the covariant derivative matrix in spherical polar coordinates and find

a field configuration on the sphere which satisfies the constraints. We then show

directly that this solution satisfies the field equations.

We start by identifying coordinate-independent constraints on DJ
I which lead to

a solution with G2 ≃ GL(2,R) and a flat four-space. That is, we find the relations

between the algebraic invariants of DJ
I that specify the orbits we are interested in.

We want the matrix DJ
I in y-coordinates to take the form

DJ
I =



0

0

0

0

b(y)

b(y)


. (81)

This means that this matrix has characteristic equation

D4(D − b1)2 = D6 − 2bD5 + b2D4 = 0. (82)

This is specified by the traces of the powers:

trD = 2b; tr(D2) = 2b2; . . . . (83)

Now, we do not want our constraints to specify a particular value of b – we need

derivatives of b to be non-zero. We can achieve this generality by expressing the

second and later invariants in terms of the first:

tr(D2) =
1

2
(trD)2; tr(D3) =

1

4
(trD)3; . . . . (84)

2However, it may be that V I itself has a geometric interpretation. This solution is one of a
wider family for which Dν

µ = 0, which is Killing’s equation for the four-dimensional spacetime.

I am currently exploring the geometric interpretation of the constraints on DJ
I in this regard.
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These conditions specify that if DJ
I is diagonalisable, it must diagonalise to the form

(81). This is stabilised by G ≃ GL(4,R) ⊗ GL(2,R) and the two factor spaces must

be four-dimensional and two-dimensional. As we saw in the last section, there is a

solution for which the first factor space is flat four-dimensional spacetime and the

second is a two-dimensional Einstein manifold. With the appropriate sign for ρ, this

must be a two-sphere.

We can therefore adopt the coordinates yX = θ, ϕ for all of this manifold except for

where θ = π and where ϕ = 0, 2π. The basis for these coordinates has inner products

(lθ, lθ) = r20 (85)

(lθ, lϕ) = 0 (86)

(lϕ, lϕ) = r20sin
2θ (87)

where r0 is the sphere’s radius.

This means that an orthonormal basis at A is given by

n̂θ|A =
1

r0
lθ|A (88)

n̂ϕ|A =
1

r0sin
2θ

∣∣∣∣
A

lϕ|A. (89)

As noted in Section 4.1, the field of such basis vectors does not form a basis for any

coordinate system.

As explained in Section 4.2.3, the basis lX for the yX coordinates and the or-

thonormal basis n̂X are related by an element g2 ∈ G2. This is simply

g2 =

(
r0 0

0 r0sinθ

)
. (90)

We could, if we wanted to, take the parallelism defined by

¯ : n̂X |A 7→ n̂X |B (91)

and use it to construct a Weitzenböck connection. Instead, we calculate the Levi-Civita

connection and find that its non-zero components are

Γ̊θ
ϕϕ = −sinθ cosθ (92)

Γ̊ϕ
ϕθ = Γ̊ϕ

θϕ = cotθ. (93)

Now, the solution we are looking at is one for which the antisymmetric part of D̊IMJ

is zero. Thus from (81) we have

D̊IM
J =



0

0

0

0

b(y)

b(y)


. (94)
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Substituting in the components of the Levi-Civita connection, we find

D̊θM
θ = ∂θM

θ = b(θ, ϕ) (95)

D̊θM
ϕ = ∂θM

ϕ +Mϕcotθ = 0 (96)

D̊ϕM
θ = ∂ϕM

θ −Mϕsinθ cosθ = 0 (97)

D̊ϕM
ϕ = ∂ϕM

ϕ +Mθcotθ = b(θ, ϕ). (98)

It is easy to see that a solution to these equations is

Mθ = ξsinθ (99)

b = ξcosθ (100)

Mϕ = 0. (101)

Comments on this solution can be found in Section 10.

From the Levi-Civita connection, we can calculate the Riemann tensor. Con-

tracting this with the metric then reveals that the Ricci tensor has two non-zero

components:

Rθθ = 1 (102)

Rϕϕ = sin2θ. (103)

Note that this means the Ricci tensor is proportional to the metric, as expected.

We then want to check whether the solution (99)-(101) satisfies the field equations.

From these, (81), (85)-(87) and (102)-(103) we find that

RθY MY + ∂θ(D̊XMX) = −ξsinθ = − 1

r20
gθXMX (104)

and

RϕY MY + ∂ϕ(D̊XMX) = 0 = gϕXMX . (105)

Therefore the two-space part of (66) is satisfied if

r20 =
c2

4πGρ
. (106)

Note that to cause the extra dimensions to compactify so tightly, the field MI has to

have a staggeringly high density. For example, for the radius to be the Planck length,

the density needs to be of the order of 1095 kgm−3. Even if r0 is only at nuclear

scales, it would need to be of the order of 1056 kgm−3. (With a rising number of extra

dimensions, the necessary density falls away according to (80)). Note that r0 will vary

with yµ if ρ does – this would give rise to background gauge fields.

Other aspects of this solution are discussed in Section 10.

10 Discussion

This section is far more speculative than the rest of the paper, but it should provide

a flavour of the likely future directions of this research.
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10.1 Additional matter multiplets and their effect on the
geometry

The only matter currently in the model is the multiplet MI . It should be recognised

that MI is not itself a gravitational potential. Rather, gravity acts through the con-

nection, while MI is a ultra-high-density vector field which determines the background

geometry which any other fields present experience.

If we put additional matter in the system, we would want it to perturb the geometry

– causing gravitational curvature, and if it is charged, inducing gauge fields. We

would want to add it in the form of tensor or spinor fields for the full N -dimensional

spacetime. Any such multiplet would then decompose on the product spacetime into

multiplets which carry both four-space and internal indices.

For example, spinors on the product spacetime would transform as both Lorentz

spinors (fermions) and the defining representation of unitary gauge symmetries. Work

to clarify the relationship between the gauge symmetries of the standard model and the

higher-dimensional J-symmetry is ongoing. The outer product of a higher-dimensional

spinor field and its adjoint can be decomposed into a set of higher-dimensional tensor

fields. This will include both scalars and vectors of SO(1, N − 1).

The effect of such additional matter on the geometry is easiest to explore in the

case of a vector field. If we add a second vector field, V I , to our model, this would not

be an eigenvector of our initial operator, RI
J + D̊ID̊J . Instead, it would perturb the

connection, resulting in a new operator R′I
J + D̊′ID̊′

J , in the following way. As these

operators act linearly on vector fields, we could construct a total vector field MI +V I .

This would then be an eigenvector for the perturbed operator R′I
J + D̊′ID̊′

J .

10.1.1 Charge quantisation and calculations on a Cartesian product
space

If the perturbation caused by a new matter multiplet is small, and there are no back-

ground gauge fields, then the geometry they inhabit would be approximately a Carte-

sian product space. In this case, field configurations would need to be periodic over the

compact space. Such configurations can be decomposed as a linear sum of harmonics,

as described, for example, by Satheesh Kumar and Suresh[16] in the five-dimensional

case (where these are Fourier modes) and by Salam and Strathdee[41] in more general

cases.

This results in a Klein-type quantisation of internal charges, as follows. Rotations

of such field configurations around the compact space are generated by differential

operators satisfying the Lie algebra of the relevant SO(N) group. The harmonics are

eigenfunctions of these operators, whose eigenvalues are inversely proportional to their

periods. These are the charge quantum numbers. This will be covered in greater detail

in a forthcoming paper.

In searching for solutions to the field equations for such spaces, researchers should

be aware of points raised by Pons[60]. Firstly, one would be looking to find a four-

dimensional effective theory, by integrating over the compact factor space. Thought

would need to be given to whether it is necessary that the solutions are ‘consistent
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truncations’, in the sense that there is a way of carrying out the reduction to a four-

dimensional effective theory either from the Lagrangian or from the field equations, and

the resulting field configurations are the same. Secondly, in seeking a specific solution,

a researcher might naturally make certain simplifying assumptions (for example, to

obtain particular field content, such as we have done in Section 8.4). This should

be done with caution, as it is possible that these could be equivalent to imposing

constraints, resulting in the specific solution having a lower degree of symmetry than

a completely general consistent solution.

10.1.2 Gauge fields induced by matter

However, we also need to consider deviations from a Cartesian product space, as these

include our gauge fields. This provides geodesics which are not purely on one of

the subspaces. This puts a question mark over whether it is possible to use the usual

harmonic expansions over the compact manifold. It is certainly unclear how dimension

reduction could be carried out in this case.

The other type of deviation from a Cartesian product space is a relaxation of the

generalised ‘cylinder condition’. It seems reasonable to anticipate that on scales well

above that of the compact space, variations of the four-metric over the compact space

would not have any physical impact. But a method of dimensional reduction that is

suited to such spacetimes would be needed to verify this.

Not only would the gauge fields affect the field configurations of the matter, the

matter would act as a source for the gauge fields. This raises another issue that we

have not tackled in this paper: a field equation for the gauge fields. Usually in field

theories, this takes the form

D̊νFµν = gjµ. (107)

Until we have incorporated charged matter into the model, we cannot know for certain

how, or indeed if, this equation can arise. However, we note that in GR, the field

equation is not the only constraint on the geometry – the Riemann tensor also obeys

the Bianchi identity:

D̊µRνρσκ + D̊κRνρµσ + D̊σRνρκµ = 0. (108)

On a product space in y-coordinates, we easily find

D̊νRµνX
Y = D̊Y GµX − D̊XGµ

Y . (109)

Then on going over to frame (Riemann normal) coordinates on the compact space,

this gives us

D̊νFµνX
Y = D̊Y GµX − D̊XGµ

Y . (110)

That is, the derivative of the field strength is equal to a Lorentz vector which carries

internal symmetry indices. It is conceivable that when combined with the field equation

for the charged matter, this could result in the desired field equation for the gauge

fields.
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10.2 Symmetries beyond G

10.2.1 O’Raifeartaigh’s theorem and what happens to symmetries
on compactification

We now return to an issue raised in the Introduction – that of O’Raifeartaigh’s no-

go theorem[31]. This makes it clear that we need to examine the action of higher-

dimensional transformations more closely.

It is clear that J and its maximal pseudo-orthogonal subgroup I, when acting

directly on tensor fields, mix Lorentz multiplets of different rank. This sounds un-

physical, but they do not act directly on these multiplets in our physical universe.

Remember that L−1 has been used to redefine all multiplets of J as multiplets of G.

This redefinition is induced by a change of coordinates from the generic curvilinear

ones uI to a set which respect the factor spaces, yI . This, for example, breaks an N -

vector into a neutral four-vector and a charged scalar. G1 transforms the four-vector

components and G2 is a coordinate transformation on the charge space. Consequently,

only G is gauged.

If we were to undo this change of coordinates in our physical universe and adopt

a more general set of coordinates uI , this would introduce gauge fields for the rest of

J into our theoretical calculations, and these would mix Lorentz multiplets. However,

for our physical universe, as a product spacetime, these would be pure gauge. They

would only become dynamical fields in the decompactification limit.

In our product spacetime, the symmetries which mix Lorentz tensors of different

rank are non-linearly realized, just as the fermionic spin-changing symmetries are non-

linearly realized in the Volkov-Akulov model[61, 62]. This may hint at a relationship

between J-symmetry and supersymmetry 3.

This raises the question of whether this model violates O’Raifeartaigh’s theorem

and its successor, the Coleman-Mandula theorem. As explained in [9], it is at present

difficult to evaluate whether it violates the latter, but it appears to successfully evade

O’Raifeartaigh’s theorem. Put in the language of this paper, O’Raifeartaigh’s concern

with a model with I-symmetry is that there would be a corresponding N -dimensional

translation group. The generators of the translations on the additional dimensions

would have continuous spectra of eigenvalues.

And indeed, this would be the case in the decompactification limit. However,

as we compactify, the s2-dimensional flat subspace is replaced by a compact space.

The translations on this space are then replaced by transformations in a compact

group. For example, if the compact space is a spherical space, Ss2 , it has an isometry

group SO(s2 + 1). The space itself is diffeomorphic to SO(s2 + 1)/SO(s2). Now,

the model in this paper gauges SO(s2). This leaves the transformations of the coset

space SO(s2+1)/SO(s2) ungauged. There are s2 of these, and these are precisely the

transformations which reduce to translations in the decompactification limit.

For example, if we have six extra dimensions which curl up into S6, G2 has an

SO(6) subgroup of proper rotations. This has 15 parameters. But S6 has a wider

3Gabrielli[63] also looks at extending the Lorentz group to include symmetries which mix
fields of different integer spin, but in four dimensions.
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SO(7) group of symmetries. This has a total of 21 parameters – leaving six param-

eters which are not gauged. These are the ones which reduce to translations in the

decompactification limit.

Now if we are looking for commuting sets of observables, SO(2n) and SO(2n+ 1)

are both rank-n groups. This means that if we have an even number of additional

dimensions, we have no additional quantum numbers that commute with those of H2.

(For example, SO(6) and SO(7) both have three mutually observable quantum num-

bers.) If, on the other hand, we have an odd number of additional dimensions, there

is one additional quantum number associated with the wider group of symmetries.

However, it has discrete eigenvalues, so O’Raifeartaigh’s theorem is evaded. Further

discussion of quantum numbers is provided in the next section and this will all be

covered more in more detail in a forthcoming paper.

10.2.2 Symmetries and degrees of freedom on the two-sphere

It is worth thinking about how these spherical symmetries play out in the two-sphere

example of Section 9. The two-sphere has an SO(3) symmetry, which is not present

in our initial Lagrangian, and it can be identified with the manifold SO(3)/SO(2).

However, both g2 and our solution (99)-(101) are dependent only on one periodic

component. All reference to the ϕ coordinate has dropped out and the ϕ-component

of MI has also dropped out of the solution. Consequently, only the SO(2) symmetry

is manifest in the solution. This is analogous to the finding of Volkov et al [39] that

for Luciani-type compactification on G/H (where H is the holonomy group of the

compact submanifold), the gauge potentials associated with G/H are non-dynamical

and can be eliminated using a gauge transformation. Interestingly, in our case the

solution depends on the θ coordinate on the sphere, and therefore has periodicity π

(rather than 2π as it would for the corresponding ϕ-dependence, for example).

Note that the solution we found was not necessarily the most general one. From

the fact that the curvature of a two-dimensional compact manifold can be completely

described using the Ricci scalar, we knew that it must be a sphere and that we could

utilise polar coordinates. But we then stated a particular solution of (94) and showed

that it satisfies the field equations.

An informative direction for future research might be to look into what we are able

to say about the most general solution of which is consistent with the field equations

and the constraints - both for two dimensions and for higher dimensionality, where the

Einstein manifold is not fully determined by the scalar curvature. This could examine

the question of whether the additional symmetries of the compact space always drop

out in the way just described.

10.3 Energy and the limits of curvature

This theory makes it clear that in the absence of any matter, spacetime has its maximal

symmetry. Consequently, our universe, with its broken symmetry, is not the ‘ground

state’ or the ‘low energy state’ in this model. Symmetry is not restored as energy is

increased beyond a threshold (either the energy in an experiment or the energy in the
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system). Instead, it is restored as curvature is reduced to zero. The distribution of

that curvature between dimensions is determined by the covariant derivative of MI ,

while the intensity of the curvature is determined by ρ: mass-energy causes curvature

and the greater the mass-energy, the greater the curvature. Thus when the densities

of the matter fields are reduced to zero, the curvature is reduced to zero and the whole

universe is flat in all N dimensions.

If we want to examine the energy in the system, we need to bear in mind that the

relativistic view of energy and energy density is as non-covariant quantities – they are

just some of the components of tensors, namely mass-energy and energy-momentum

density. We also need to consider the meaning of gravitational energy. In GR, the

equivalence principle makes it impossible to separate gravitational and inertial energy-

momentum in a covariant way. To do this, the teleparallel approach is required[5].

As well as the decompactification limit, it is worth considering the opposite limit,

where the compact factor space shrinks to a point. This would give us a four-

dimensional theory, but the compact space would have infinite curvature, requiring

MI to have an infinite density. So if only finite densities are allowed, the singularities

that so concerned Penrose[64] (see Cipriani and Senovilla[65] for an expanded analysis)

would not occur in this model.

Nonetheless, we could perform calculations in this theoretical limit. Not only would

the MI fields have infinite density, if we had Kaluza-Klein modes for additional fields,

their masses may also become infinite. These masses would be reset to finite values

as the curvature of the compact factor space is returned to a finite value. This sug-

gests a possible interpretation of the renormalisation procedure: the limit of infinitely

curved extra dimensions is described by unrenormalised quantum field theories, while

renormalisation represents resetting the curvature to its actual value. Indeed, taking

this one stage further, we are increasing the number of dimensions above four in this

procedure, so this could even provide a physical interpretation of dimensional regu-

larisation4. This is all entirely speculative, but it is worth noting that several authors

have shown a relation between the dynamics of forces and renormalisation[54, 67, 68].

10.4 Symmetries of the Standard Model

Of course, the evenutual aim of this research is to incorporate or reproduce the gauge

fields and matter content of the Standard Model. Fermions would need to be incorpo-

rated by introducing one or more higher-dimensional spinors. These would decompose

into multiplets carrying both Lorentz spinor indices and indices relating to internal

symmetries.

Doing this in a way which provides the correct transformation properties for the

resulting fermion fields is a non-trivial matter. It is beyond the scope of this paper

and is under current investigation. For SU(3) colour symmetry, there is the question

of its embedding in SU(4) ≈ SO(6) (or a higher SU(d) group) and why only SU(3)

is gauged. For the electroweak symmetry group SU(2)⊗ U(1), there is the matter of

4In a similar vein, Tanaka[66] has studied the regulation of ultraviolet divergences with
higher Kaluza-Klein modes of a spinor.
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how these transformations interact with parity transformations. It is unclear whether

the framework set out in this paper is sufficient to achieve this, or whether it must be

adapted in some way.

11 Conclusions

We have shown that introducing a tensor field into an empty N -dimensional space

can cause part of that space to compactify – even if it is not a multiplet of any other

symmetry groups – but only if that field has the necessary properties. The covariant

derivative of a vector field has the correct properties. It forms an orbit under the

action (19) of the general linear group of the full spacetime. The symmetry breaking

pattern – and hence the product structure of the spacetime – depends on which orbit

the operator form of the symmetrised covariant derivative belongs to.

Furthermore, we found a suitable Lagrangian for such a system, such that the field

equation (65) resulting from it is a simple generalisation of Poisson’s equation. We

have shown that such a system can admit a solution containing Minkowski spacetime,

where the remaining dimensions form a compact Einstein manifold. The constraints

on the symmetrised covariant derivative matrix which ensures this solution can be

written in terms of the traces of its powers, and we have found these explicitly (83) in

the case where the compact factor space is a two-sphere.

We have shown that when the constraints are satisfied across a coordinate neigh-

bourhood, all tensor fields decompose naturally into tensors of the subspaces. The

Levi-Civita connection for the product spacetime includes the Levi-Civita connection

for the Minkowski spacetime. It also has components for which the associated spin

connection is a gauge potential for an internal symmetry. This differs, for example,

from the theories of Kaluza and Klein, in which the gauge potential appears directly

in the metric.

The model has the following features:

� Additional dimensions are physical dimensions, which appear on the same foot-

ing as the four we are familiar with in the ‘decompactification limit’ of zero

curvature;

� Variations in the curvature of the compact factor space with the four-dimensional

coordinates are manifested as gauge fields; singularities in the extra dimensions

cannot results unless matter fields have infinite density;

� Symmetries in the higher-dimensional group of coordinate transformations are

non-linearly realised, by adopting coordinates adapted to the factor spaces;

� The full higher-dimensional symmetry is not restored at higher energies, it is

only becomes manifest at the ‘decompactification limit’;

� The action is invariant under the full higher-dimensional symmetry, the field

equation is fully covariant and symmetry breaking patterns are determined by

invariants;
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� Unitary gauge symmetries do not act directly on the space or its tensors; they

act directly on spinors, but their action on outer the products of a spinor and

its conjugate includes an orthogonal transformation which rotates vector and

tensor fields;

� There are only additional translation symmetries at the ‘decompactification

limit’; in our universe, these are replaced by additional internal symmetries,

which provide at most one additional quantum number with discrete eigenval-

ues, thus evading O’Raifeartaigh’s no-go theorem;

� The model could possibly provide a physical interpretation of renormalisation.
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Öfversigt af Finska Vetenskaps-Societetens Förhandlingar (Helsingfors),
Bd. LVII. (Afd. A. N:o 28 1914-1915), pp. 1–21. doi: 10.48550/arXiv.
physics/0702223. arXiv: physics/0702223.

[13] Theodor Kaluza. “On the unification problem in physics”. In: Interna-
tional Journal of Modern Physics D 27.14 (2018), p. 1870001. doi: 10.
1142/S0218271818700017. arXiv: 1803.08616.

[14] Oskar Klein. “Quantum theory and five-dimensional relativity theory”.
In: The Oskar Klein Memorial Lectures: Vol 1: Lectures by CN Yang and
S Weinberg. World Scientific, 1991, pp. 67–80. Translated from Z.Phys.
37 (1926) 895-–906.

[15] William O Straub. Kaluza-klein for kids. 2014. url: https://vixra.org/
abs/1406.0172.

[16] VH Satheesh Kumar and PK Suresh. Gravitons in Kaluza-Klein Theory.
2006. doi: 10.48550/arXiv.gr-qc/0605016. arXiv: gr-qc/0605016.

[17] James Martin Overduin and Paul S Wesson. “Kaluza-klein gravity”. In:
Physics reports 283.5-6 (1997), pp. 303–378.

[18] Peter Ware Higgs. “Broken symmetries, massless particles and gauge fields”.
In: Phys. Lett. 12 (1964), pp. 132–133.

[19] Peter W Higgs. “Broken symmetries and the masses of gauge bosons”. In:
Physical review letters 13.16 (1964), p. 508.

[20] Peter W Higgs. “Spontaneous symmetry breakdown without massless
bosons”. In: Physical review 145.4 (1966), p. 1156.

[21] Tom WB Kibble. “Symmetry breaking in non-Abelian gauge theories”.
In: Physical Review 155.5 (1967), p. 1554.

[22] Abdus Salam and J Strathdee. “Nonlinear realizations. I. The role of Gold-
stone bosons”. In: Physical Review 184.5 (1969), p. 1750.

[23] Abdus Salam. “Weak and electromagnetic interactions”. In: Elementary
particle theory: relativistic groups and analyticity. Ed. by N Svartholm.
John Wiley & Sons, 1968, pp. 367–377.

[24] S Weinberg. “A Model of Leptons”. In: Phys. Rev. Lett 19 (1967), p. 1264.

[25] Howard Georgi and Sheldon L Glashow. “Unity of all elementary-particle
forces”. In: Physical Review Letters 32.8 (1974), p. 438.
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