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Abstract: Landslides around the main roads in the mountains not only cause fatal events but also 

cause ecosystem damage, including land degradation. This study aims to map the susceptibility of 

the landslides around the Saqqez-Marivan main rod of Kurdistan province, Iran, using ensemble 

Fuzzy logic with Analytic Network Process (Fuzzy Logic-ANP; FLANP), and with TOPSIS (Fuzzy 

Logic-TOPSIS; FLTOPSIS). A total of 100 landslides were first recognized by field surveys and then 

they were randomly divided into a 70% dataset (70 locations) and a 30% dataset (30 locations), 

respectively, for training and validating the methods. Eleven landslide conditioning factors, 

including slope, aspect, elevation, lithology, land use, distance to fault, distance to a river, distance 

to road, soil type, curvature, and precipitation were used. The performance of the methods was 

checked by the areas under the receiver operating curve (AUCROC). Results concluded that the 

prediction accuracy based on validating datasets were, respectively, 0.882 and 0.918 for FLANP and 

FLTOPSIS methods. Our findings demonstrated that although both models were known as 

promising techniques, the FLTOPSIS method had a better capacity for predicting the susceptibility 

of landslides in the studied area. Therefore, the susceptibility map developed by the FLTOPSIS 

method can be used for the proper management of areas with high landslide potential and also for 

managers and planners during the implementation of land allocation and development projects, 

especially in mountainous areas. 

Keywords: landslides; inventory; susceptibility; fuzzy TOPSIS; ROC curve; Iran 

 

  

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2023                   doi:10.20944/preprints202303.0277.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202303.0277.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

1. Introduction 

Road networks give access to nearly every area of the country, hence increasing the need for a 

well-established and resilient road network infrastructure. They are a significant component of 

critical infrastructure systems that are frequently exposed to natural and man-made hazards due to 

their wide spatial distribution [1]. Typically, the failures in policy planning during the rapid 

expansion of road networks in emerging nations are attributed to an underestimation of economic 

changes, fast expansion, future expansion, and uncertainties in regions with dynamic topography [2], 

Furthermore, unanticipated climate change can cause natural disasters such as landslides and 

earthquakes, which cause instability and have damaging cascading effects on the road network 

system [3]. Regional roads are a vital component of the infrastructure, and any disruptions caused by 

landslides can be disastrous for traffic [4]. In order to limit the threat posed by landslides to roadways, 

it is crucial to appropriately describe the risk of slope collapse at different scales, at different times, 

and in varied spatial locations. Nonetheless, insufficient investments were made to reduce the impact 

of landslides on the road system. In order to protect people's life and property, prevent ecosystem 

damages and also prevent waste of capital and resources, identifying areas more prone to landslides 

around communication roads in mountainous areas through landslide susceptibility map (LSM) with 

visual understanding appropriate is necessary. 

To the best of knowledge from the literature review, studies on the LSM around the road 

networks follow the two different methodologies. One tradition focuses on assessing the immediate 

or indirect socio-economic effects of disruptions and makes fewer attempts to assess their likelihood 

[5]. The second tradition integrates GIS and geological modeling with a greater focus on landslide 

severity assessments without quantifying the impacts of network interruptions. In a susceptibility 

analysis, it is essential to simultaneously consider the probability of landslide occurrences and the 

consequences of network disruptions in order to provide useful guidance for the preparation and 

response phases of landslide disasters. Current studies of landslide risk to roads focus primarily on 

both the likelihood of landslides and their effects on roads, and the joint effect is frequently used to 

describe the impact of landslides on roads [6]. Pantelidis [7]offers a comprehensive analysis of 

landslide susceptibility assessment systems for highways, discussing both quantitative and 

qualitative approaches (We refer to methods that evaluate risk using numerical scores as "semi-

quantitative."). The Federal Highway Administration (FHWA) of the United States suggested [8] a 

landslide susceptibility evaluation that was later changed by Budetta [9] to measure the risk of 

landslides along highways. The pure quantitative risk assessment (QRA) includes the hazard 

assessment in terms of the likelihood of failure or occurrence of an event of a certain scale multiplied 

by its effects [10], which semi-quantitative methods do not address. While landslide susceptibility 

and hazard have already been studied widely over the last two decades, using heuristic, statistical-

probabilistic, or deterministic strategies (e.g., Pregnolato et al. [11] and Chamorro et al. [12]), little 

work has been done, for various reasons, on the spatial assessment of landslide susceptibility and on 

the evaluation of the value of the factors at risk [13]. Optical images were used in several landslide 

susceptibility mapping studies for landslide inventory, vegetation indices, and land use/land cover 

knowledge discovery [14,15].  

Several techniques are used in MCDM, including min-max, max-min, ELECTRE, PROMETHEE, 

TOPSIS, fuzzy TOPSIS, compromise programming, analytic hierarchy process (AHP), fuzzy AHP, 

data envelopment analysis, and goal programming, that can be used to compare and rank multiple 

options before choosing the best-fit option. Fuzzy decision-making strategies have been drawing 

increasing interest among these methods for the answers to location problems that involve data that 

is ambiguous, partial, or has linguistic factors [16]. 

Multiple criterion decision-making (MCDM) is a common methodology that uses the TOPSIS 

method [17], which has been extensively used in the literature [18–21]. Similar to how it has been 

used in many other research areas, ANP has been used to predict landslides [22], floods [23], forest 

fires [24], Land subsidence [25], and earthquakes [26].  

Risk assessment and mapping have been done in many different ways around the world, using 

both qualitative and quantitative methods. Analytical Network Process (ANP) and landslide 
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susceptibility assessment factors are among the most popular and effective qualitative methods and 

tools [27,28]. On the other hand, multivariate and bivariate analyses are usually quantitative [29].  

The most important geo-environmental factors that make landslides more likely to occur are 

rock type, structural discontinuity, slope gradient, relative relief, aspect, soil depth and its properties, 

land use and land cover, groundwater, and hydrologic conditions [30,31]. In addition to factors such 

as distance to faults and lineaments and distance to rivers, construction activities, especially roads, 

are significant contributors to the occurrence of landslides [32,33]. Numerous researchers have 

proposed different strategies for landslide susceptibility mapping (LSM) by considering landslide 

triggering and precipitating factors. According to He et al. [34], geometric factors such as elevation, 

aspect, and slope are among the most significant factors. Also, hydrological factors are considered, 

such as the topographic wetness index (TWI), the sediment transport index (STI), and the distance 

from rivers exacerbate and trigger the landslides. Geological and environmental factors (such as 

lithology and land use) and soil textures [35] also contribute to more accurate landslide detection. 

Numerous studies have been conducted to identify the causes of landslides. Saleem et al. [36] 

examined how DEM derivatives (including slope and aspect) affected risk assessment and mapping 

of landslide susceptibility. In order to estimate landslide areas, Zhu et al., (2022) used 14 conditioning 

criteria (such as lithology, slope, distance to a river, NDVI, and total surface radiation). Zhang et al. 

[37] used 12 conditioning parameters and ensemble learning approaches to determine landslide 

susceptibility. Due to the heterogeneity of the Earth's surface, it is difficult to adopt a unique strategy 

and identify the causes responsible for the landslide. Some scientific organizations and institutes have 

established recommendations for the LSM intending to use common nomenclature and guide 

analysts [38]. However, the applied approaches differ from area to area and even within the same 

area [39].  

Considering the literature review, although TOPSIS and ANP have been broadly developed and 

used in a wide range of real-world problems, especially in priority of the alternatives such as 

sustainable development, environment, and renewable energy sources, there are rarely studies 

regarding ensemble Fuzzy logic with MCDM approaches such as TOPSIS and ANP in landslide 

susceptibility mapping. Consequently, the primary goals of this study are to (1) identify the most 

important factors affecting landslides in the studied area; (2) develop Fuzzy-ANP and Fuzzy-TOPSIS 

methods for identifying the areas with different potential for landslide occurrence; and (3) prepare a 

landslide susceptibility map for the Saqqez-Marivan road of Kurdistan province, Iran, with high 

prediction accuracy.  

2. Data acquisition and preparation 

2.1. Study area characteristics 

The case study is part of the communication route from Saqqez to Marivan and is located in 

Kurdistan province. The case study has a total of approximately 1100 km2. And it lies between the 

longitudes of 46˚ 10ʹ 34ʹʹ to 46˚ 29ʹ 33ʹ, east longitude and 35˚ 29ʹ 7ʹʹ to 36˚ 15ʹ 36ʹʹ north latitude (Figure 
1). The Saqqez - Marivan road has been a strategic and important road due to the connection between 

western Iran and Iraq and having trade relations with the Kurdistan region. The length of this route 

is 126 km, which has winding passes and important and steep passages, so that in winter due to snow 

and rain there is a possibility of dangers such as landslides and avalanches. Figure 2 shows different 

types of landslides which have occurred in the study area. 
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Figure 1. Location of landslides in the study area and Iran. 

 

Figure 2. Photos showing different types of landslides observed in the study area. 
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2. Materials and Methods 

2.1. Landslide conditioning factors (LCFs) 

Identifying and mapping an acceptable collection of conditioning factors connected to landslide 

episodes requires prior knowledge of the principal landslide contributors [40]. In general, the number 

of landslide conditioning factors considered varies from several to dozens [41]. Based on prior studies 

and the features of landslide development in the study area, eleven elements were selected under 

five categories in order to identify the important conditioning factors of landslide susceptibility. They 

are slope, aspect, elevation, lithology, land use, distance to fault, distance to a river, distance to road, 

soil type, curvature, and rainfall. It is important to note that the classification of the layers was based 

on regional characteristics and the expert’s opinions. Landslide conditioning factors are reported for 

each factor class in the study area. First, a digital elevation model (DEM) with a resolution of 12.5m 

×12.5m was prepared from the ALOS PALSAR satellite and from the site 

(https://vertex.daac.asf.alaska.edu/#).  

In the following, a slope map was prepared using DEM in ArcGIS software and then it was 

classified into 6 classes (Figure 3a). The aspect layer was extracted from DEM in ArcGIS software and 

it was prepared and classified into 9 classes (Figure 3b). The elevation of the sea level map was 

obtained from DEM in Arc GIS 10.7 software in 7 classes (Figure 3c). The lithology map was then 

retrieved from the geological map with a scale of 1:100,000 and then it was classified into 14 classes 

(Figure 3d). Land use/cover map prepared from the interpretation of Landsat 7 ETM+ satellite images 

obtained in 2017 in 12 classes (Figure 3e). Faults map of the studied area was obtained from the 

geological map with a scale of 1:100,000 and the distance to the fault map was classified into 5 classes 

(Figure 3f). Using the kriging method, the rainfall was mapped and then divided into five classes 

using 20 years of data (from 1996 to 2016) from the rain gauge stations both inside and outside of the 

studied area (Figure 3g). In landslide modeling, the curvature is widely used as one of the most 

important conditioning factors (Oh and Lee 2011). The DEM 12.5m was used to make the curvature 

map, which was then categorized into three classes: concave, convex, and flat (no curvature) (Figure 

3h). The soil layer of the region in two classes was referenced from the Map of Kurdistan province's 

land resources and capabilities with a scale of 1: 250,000 (Figure 3i). River networks were extracted 

from the DEM 12.5m and then the distance to the river map was classified into five classes (Figure 

3j). The excavation of roads in hilly areas causes slope instability and landslides [42]. The road 

network was obtained from the 1:50,000 scale topographic map. A distance to a road map with five 

categories was then created (Figure 3k).  

2.2. Landslide Inventory Map (LIM) 

Essentially, two datasets are required to create a landslide susceptibility map. The first dataset 

contains a map of the landslide inventory. The second dataset relates directly to factors that affect 

landslide occurrence. Landslide inventories are required for model training and validation in 

landslide susceptibility assessments. Inventories of landslides can be gathered using field surveys, 

news and government report detailing previous landslide events, and remote sensing data analysis 

[43]. Kavzoglu et al., 2014; Kilicoglu, 2021 [44,45] and Akinci et al. [46]used GNSS-based field surveys, 

high-resolution satellite images, Google Earth images, previous projects, and reports, atlases, and 

other sources to find the location of previous landslides. Consequently, the evidence gathered from 

prior landslides is referred to as an inventory map, and consists mainly of the locations of existing 

landslides. Obtaining knowledge about prior landslides is a critical component of landslide 

susceptibility assessment. Initially, a landslide inventory map with 100 landslide locations was 

created using Google Earth images and field surveys, among other sources. These landslides are 

classified into training (70%; 70 landsides) and validating (30%; 30 Landslides) for model building 

and validation, respectively. It is worth mentioning that there is no guideline or standard to classify 

the number of landslides in the training and validating datasets. We presented some references or 

some combinations in Table 1. 
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. 

Figure 3. The thematic map of landslide conditioning factors; (a) slope degree, (b) aspect, (c) elevation, 

(d) lithology, (e) land use, (f) distance to fault, (g) rainfall, (h) curvature, (i) soil, (j) distance to river 

(k) distance to road. 

Table 1. Different combinations of training and validating datasets in landslide susceptibility 

assessment. 

References Ratio (Percentage) 

[47–52] 70:30 

[53–55] 80:20 

[56,57] 75:25 

[58,59] 50:50 

2.3. Multi-Criteria Decision-Making Methods in LSM 

2.3.1. Fuzzy TOPSIS algorithm 

The MCDM technique known as TOPSIS was created by Hwang and Yoon [60] and is predicated 

on the idea of "relative closeness to an ideal solution" [61]. In other words, the main goal is to select 

an optimal solution from a range of options that should be as close as feasible to the positive ideal 

solution (PIS) and as far as possible from the negative ideal solution (NIS) [61–64]. In this method, 

the weights for each predetermined criterion are defined, the scores are computed, normalised, and 

then the geometric distance of each alternative to the PIS and NIS is obtained [65,66]. 

The TOPSIS technique procedure typically involves the following steps: 

Weights and decision matrices in the fuzzy TOPSIS method are defined as fuzzy numbers, and 

it is ranked similarly to the classic TOPSIS method according to the distance from the positive and 

negative values with equations (1). 𝐷 = [ 𝑋̃11 𝑋̃12 𝑋̃1𝑛𝑋̃21 𝑋̃22 𝑋̃2𝑛𝑋̃𝑚1 𝑋̃𝑚2 𝑋̃𝑚𝑛]                                                                                                             (1) 

When using triangular fuzzy numbers, 𝑋̃𝑖𝑗 = (𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝑐𝑖𝑗) The function of the option (i=1,2,…,m) is in 
relation to the criterion (j = (1,2,…, n). 

Using triangular fuzzy numbers, each component W j (standard weight) is represented by the 

equation (2). 𝑊 = (𝑤̃𝑖 , … , 𝑤̃𝑗  , … . , 𝑤̃𝑟)                                                                                                              (2) 

If the fuzzy numbers are triangular, these equations are applied: to calculate the scales of the 

unmeasured decision matrix for the positive and negative criteria: 
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Γ̃𝑖𝑗 = (𝑎𝑖𝑗𝑐𝑗+ , 𝑏𝑖𝑗𝑐𝑗+  , 𝑐𝑖𝑗𝑐𝑗+)                                                                                                                       (3) 

Γ̃𝑖𝑗 = (𝑎𝑗−𝑐𝑖𝑗 , 𝑎𝑗−𝑏𝑖𝑗  , 𝑎𝑗−𝑎𝑖𝑗)                                                                                                                      (4) 

Which is in these relations (𝑐𝑗+ = 𝑚𝑎𝑥𝑐𝑖𝑗) and (𝑎𝑗− = 𝑚𝑖𝑛𝑎𝑖𝑗). 

Consequently, the scale-less fuzzy decision matrix (R) is derived as follows: 𝑅̃ = [ 𝑟̃11 𝑟̃1𝑗 𝑟̃1𝑛𝑟̃𝑖1 𝑟̃𝑖𝑗 𝑟̃𝑖𝑛𝑟̃𝑚1 𝑟̃𝑚𝑗 𝑟̃𝑚𝑛]                       (5) 

where n denotes the number of criteria and m the number of options If the fuzzy numbers are 

triangular, equations 6 and 7 specify the requirements for the positive and negative features: 𝑉̃𝑖𝑗 =  𝑟̃𝑖𝑗 . 𝑊̃𝑗 = (𝑎𝑖𝑗𝑐𝑗+ , 𝑏𝑖𝑗𝑐𝑗+  , 𝑐𝑖𝑗𝑐𝑗+) . (𝑊𝑗1 , 𝑊𝑗2, 𝑊𝑗3 )
= (𝑎𝑖𝑗𝑐𝑗+ . 𝑊𝑗1, 𝑏𝑖𝑗𝑐𝑗+ . 𝑊𝑗2, 𝑐𝑖𝑗𝑐𝑗+ . 𝑊𝑗3)          (6) 

𝑉̃𝑖𝑗 =  𝑟̃𝑖𝑗 . 𝑊̃𝑗 = (𝑎𝑗−𝑐𝑖𝑗 , 𝑎𝑗−𝑏𝑖𝑗  , 𝑎𝑗−𝑎𝑖𝑗  ) . (𝑊𝑗1 , 𝑊𝑗2, 𝑊𝑗3 )
= (𝑎𝑗−𝑐𝑖𝑗 . 𝑊𝑗1, 𝑎𝑗−𝑏𝑖𝑗  . 𝑊𝑗1, 𝑎𝑗−𝑎𝑖𝑗 . 𝑊𝑗1 )       (7) 

Equation (8) calculates the positive ideal solution matrix, while equation (9) determines the 

negative ideal solution matrix. 𝐴+ = {𝑉̃1+, 𝑉̃2+ , … . , 𝑉̃𝑛+}                                     (8) 𝐴− = {𝑉̃1−, 𝑉̃2− , … . , 𝑉̃𝑛−}                  (9) 

Where 𝑉̃𝑖+ the best is the value I of all the options and   𝑉̃𝑖− the worst value of criterion I of all the 

options . 
The selections in A+ and A- represent options that are vastly superior and inferior, respectively 

[67]. 

The following equations can be used to determine the distance of each option from the positive 

and negative ideal solutions, respectively: 

Distance from each option to the neutral and positive solutions that are optimal 

Equation (10) can be used to express the distance between alternatives i and A with a positive 

ideal solution: 𝑆𝑖+ = ∑ 𝑑(𝑉̃𝑖𝑗 , 𝑉̃𝑗+)𝑛
𝑗=1  i = 1,2, … , m                                                                                           (10) 

The distance between alternative i A with the negative ideal solution can be formulated with 

equation (11): 𝑆𝑖− = ∑ 𝑑(𝑉̃𝑖𝑗 , 𝑉̃𝑗−)𝑛
𝑗=1  i = 1,2, … , m                                                                                           (11) 
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d (.,.) is the distance between two fuzzy numbers that if (a1, b1, c1) and (a2, b2, c2) are two triangular 

fuzzy numbers, that can be formulated with equation (12): 

𝑑(𝑀̃1, 𝑀̃2) = √13 [(𝑎1 − 𝑎2)2 + (𝑏1 − 𝑏2)2 + (𝑐1 − 𝑐2)2]                                               (12) 

It should be noted that d(Ṽij, Ṽj+)and d(Ṽij, Ṽj−) are definite numbers. 

The preference value for each alternative (i, V) is calculated using the following equation (13) 

[68]: (Ci+) = Si−Si++Si−  ;i=1, 2… m                                                                                                          (13) 

The alternatives are ranked with respect to the Ci+ in decreasing order [67]. 

2.3.2. Fuzzy analytical network process model (Fuzzy ANP   (  

The analytic hierarchy process (AHP) is not thought to be as comprehensive or precise as ANP 

[69]. However, in fact, there may be dependencies among the criteria. In AHP, it is assumed that there 

is no direct interaction between the criteria and that each criterion is independent in a one-way 

hierarchy [70]. ANP organizes decision criteria into a network of clusters and nodes in order to 

circumvent these limitations of AHP [71,72]. ANP is a relatively straightforward method for 

estimating individual decision-making model criteria. In this study, the ANP was used to calculate 

the final weights by following the steps below [73]:  

A: Building ANP models and structuring problems 

A problem should be clearly presented and divided into logical systems. As a result, based on 

the decision maker's judgment, a framework that represents the network can be specified using 

appropriate processes. 

Step B: Pairwise comparisons  

ANP defines the problem in terms of clusters and the decision components housed within them 

at various degrees of abstraction, much like AHP. For instance, the study's first cluster is its goal (for 

example, developing a vulnerability index), followed by the second cluster's dimensions or criteria 

(which include topography, geological, climate, and biology components), and the third cluster's 

indicators (containing the twenty selected indicators). The control criterion is used to compare how 

important the pairs of choice components within each cluster are. Additionally, interdependencies 

between cluster indicators are examined pairwise. Consequently, as suggested by Feizizadeh et al. 

[74], Relative significance is assessed on a scale from 1 to 9, with the lower bound denoting equal 

relevance and the higher bound denoting excessive significance. The eigenvector can be used to 

describe the measure of an element's influence on other elements. This evaluation is based on the 

relative weights of two indicators—a matrix row component and a matrix column component [26]. 

For the purpose of reverse comparison, a mutual value was established to highlight the importance 

of the element as it relates to the (jth) element. Similar to AHP, the comparison matrix gives pairwise 

comparison values, and the local priority vector is derived from the eigenvector using the following 

formula:  

. max.AW W=                            (1) 

Matrix A is a pairwise comparison matrix with the largest eigenvalue denoted by W, which 

represents the eigenvector. A consistency matrix A's eigenvector X can be calculated using 

( max ) 0A I  =−             (2) 

The λmax  value is an essential ANP verification criterion. This metric acts as a reference index 

for analyzing the estimated vector by calculating the consistency ration ( )CR . 
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( max )

1

n
CI

n

 −
=

−                             (3) 

The consistency of the pair-wise matrix is assessed using the consistency index (CI). The accepted 

consistency value (CR) must be less than 0.1. 

CI
CR

RI
=

                         (4)                  

RI indicates the average consistency index for reciprocal matrices of similar order containing any 

random entries. 0.1CR  , the estimated value is considered acceptable; otherwise, a new 

comparison matrix is continuously sought until this measure's acceptable range is not achieved. 

Phase C: Calculating the Super Matrix 

The super matrix's calculation, which is divided into clusters and their constituent elements, is 

aided by pair-wise comparison. The following describes the N-cluster supermatrix: 

 

The number of items in each kth cluster is mk , where Ck represents the kth cluster and 

( 1, 2... )k n= [26]. 

Step D: Selection 

The goals of this step are used to analyse each signal and choose the best one for the final 

judgment. The selection criteria are based on the alternative weights that were acquired from the 

constructed supermatrix. 

For the ANP model's mapping of landslide susceptibility assessment, there are three steps to the 

final weight calculation method:  

1. Step 1: Objective (LSM). In this step, the subject model and structure are created using 11 factors 

including slope, aspect, elevation, lithology, land use, distance to fault, distance to a river, 

distance to road, curvature, and rainfall. These factors are classified into four clusters: topography 

(elevation, slope, curvature, and aspect), geology (soil type, distance to fault and lithology), 

anthropogenic (land use and distance to road), and climate (rainfall, distance to river).  

2. Step 2: Construct binary comparison matrices and derive priority vectors. This step is similar to 

the analytical hierarchy process (AHP) in that the importance or priority of criteria or sub-criteria 

is determined within the range of 1–9 by the control criterion and by experts. In this stage, the 

final weights of the factors (clusters) are found by multiplying the relative weights of the factors 

in the matrix from the second stage. This creates a matrix of pairwise comparisons of the 11 

research criteria (once looking at the lack of communication and again at the relationships), using 

even comparisons and fuzzy numbers.   
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3. Step 3: Determining the final weight of the criterion and sub-criterion. Before the final stage of 

determining the general weight of the criteria, by multiplying the matrices obtained from the fifth 

step together, the final weight of each criterion is finally determined. After determining the 

weights of the classes of each criterion by the ANP method, using fuzzy membership functions, 

run the model was performed in ArcGIS software. The weighing of criteria and sub-criteria was 

done by Super Decision software. 

2.4. Validation of the methods 

The precision or dependability of the landslide susceptibility maps is particularly significant for 

landslide susceptibility or hazard mapping investigations [75]. On the basis of standard methods, 

such as the receiver operating characteristics (ROC) curve, the model's performance should be 

assessed [15,76]. The area under the ROC curve (AUCROC) is plotted based on the sensitivity (true 

positive rate) and specificity (false negative rate) [77]. The AUCROC ranges between 0 and 1 in which 

0.5 is the threshold and the higher the AUCROC is, the higher the performance (training dataset) and 

prediction accuracy (validation dataset) of the methods will be [78].  

4. Results and analysis 

4.1. Model building and comparison 

In this study, fuzzy TOPSIS and fuzzy ANP were applied to derive the sub-criteria weights. In 

fuzzy ANP, after constructing the network and pairwise comparisons of internal and external factors 

and dependencies, Super Decision software provides three large matrices. By combining target 

comparison matrices, criteria, and sub-criteria, a large weightless matrix is formed. Finally, in order 

for a large weightless matrix to be a large weighted matrix, the large weightless matrix must be 

multiplied by a clustered matrix.  

The final weight of each criterion in the Fuzzy ANP method is presented in Table 2. As can be 

seen, the criteria of distance to road, rainfall, and soil have the highest predictive capability for the 

landslide model while curvature, land use, and lithology have the lowest affecting on landslide 

occurrence in the study area. Moreover, in the fuzzy TOPSIS model results show that distance to the 

road has the highest predictive capability in landslide modeling and then rainfall and distance to the 

fault, respectively, are the most important factors. However, lithology and land use have the lowest 

importance on landslide occurrences. Table 3 shows the final obtained weights of the two methods 

(Fuzzy ANP and Fuzzy TOPSIS). 

Table 2. The performance of the methods based on Fuzzy ANP and Fuzzy TOPSIS. 

Model Fuzzy ANP Fuzzy TOPSIS 

Criteria The weight Final Rank 
Distance to 

positive ideal 

Distance to 

negative ideal 

Relative proximity 

to the ideal solution 
Rank 

Distance to 

river 
0.095 5 0.232 0.108 0.317 8 

Distance to 

road 
0.141 1 0.108 0.235 0.675 1 

Land use 0.080 9 0.343 0.105 0.295 10 

Lithology 0.028 11 0.355 0.111 0.283 11 

Rainfall 0.108 3 0.117 0.185 0.598 2 

Slope 0.089 7 0.201 0.108 0.343 6 

Soil 0.112 2 0.151 0.110 0.423 4 

curvature 0.060 10 0.343 0.111 0.303 9 

Aspect 0.095 6 0.189 0.091 0.337 7 
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Distance to 

fault 
0.104 4 0.145 0.149 0.502 3 

Elevation 0.088 8 0.168 0.112 0.385 5 

4.2. Developing landslide susceptibility mapping 

We produced and mapped landslide susceptibility based on the obtained weights of the two 

methods (fuzzy ANP and fuzzy TOPSIS) in Arc GIS 10.7. the weights were assigned to the sub-criteria 

and criteria and the landslide susceptibility maps were generated. We divided the two maps into five 

susceptibility categories: very low, low, moderate, high, and very high (Figure 4). Observing these 

figures shows an almost similar pattern in the distribution of different susceptibilities around the 

roads because the distance to the road was known to be the most important factor in the occurrence 

of landslides. Moreover, it can be said that the roads located in the northern part of the region are 

more susceptible to the occurrence than the southern parts of the region (Figure 4). 
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Figure 4. Landslide susceptibility maps of the models (a) Fuzzy ANP (b) Fuzzy TOPSIS. 

Table 3 displays the percentages of each class's area and the percentage of landsides in each class 

for both methods. It can be seen that in the Fuzzy ANP method, the low susceptibility class has the 

largest area (30.78%), followed by the moderate susceptibility class (28.37%), the high susceptibility 

class (19.29%), and the very susceptibility low (15.04%) and very high (6.51%). Moreover, the table 

reveals that the percentage of landslides from very low (0 %) to very high (51%) susceptibility classes 

decreased. In the fuzzy TOPSIS method, the percentages for the very low, low, moderate, high, and 

very high susceptibility classes are 19.33%, 29.52%, 27.91%, 16.98%, and 6.27%, respectively. 

However, the percentage of landslides is 0% for very low susceptibility calls, follows by low 

susceptibility (2%), moderate susceptibility (6%), high susceptibility (33%), and very high 

susceptibility (59%).    

Table 3. Distribution of landslides in the study area's predicted landslide-prone zone, based on Fuzzy 

ANP and Fuzzy TOPSIS. 

 Fuzzy ANP Fuzzy TOPSIS 

Landslide classes 
Class area 

(%Pixels) 

Landslide 

(%Pixels)  

Class area 

(%Pixels) 

Landslide 

(%Pixels)  

Very low susceptibility 15.04 0 19.33 0 

Low susceptibility 30.78 5 29.52 2 

Moderate susceptibility 28.37 9 27.91 6 

High susceptibility 19.29 35 16.98 33 

Very high susceptibility 6.51 51 6.27 59 

In order to validate the produced landslide susceptibility map, the area under the ROC curve 

(AUCROC) based on the validation dataset for the fuzzy TOPSIS method was found to be 0.918%, 

and for fuzzy ANP, it was found to be 0.89%. In addition, the results of the fuzzy TOPSIS method 

indicate that it is more precise than the fuzzy ANP method for producing a map of landslide 

susceptibility in the study area. These findings are shown in Table 4 and Figure 5.  
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Table 4. AUCROC values of the models using the validation dataset. 

Row models Validating dataset 

1 Fuzzy TOPSIS 0.918 

2 Fuzzy ANP 0.882 

 

Figure 5. ROC curve of the methods using the validation dataset. 

Discussion 

As natural hazards such as landslides are varied regarding magnitude and severity, they have 

significant financial and human losses. Predicting this event with the existing tools seems necessary 

because it is very useful for policymakers, stockholders, and land allocation projects before, during, 

and after the event [79]. Governments employ the basic and straightforward process of "landslide 

susceptibility mapping" (LSM) to develop landslide control policies [80]. The LSM can reduce losses 

and injuries by identifying and classifying locations that are prone to landslides [81]. The study of 

multidimensional occurrences like landslides has greatly benefited from the use of geographic 

information systems (GIS) and remote sensing techniques (RS). This has been made possible by the 

extraction of LCFs for landslide analysis, such as slope, distance to road, etc. [82].  

Saqqez-Marivan communication main road in Kurdistan province, Iran, with a length of 126 km 

is one of the busiest communications roads due to its geographical location and great importance in 

transportation, especially access to the two border crossings between Iran and Iraq. This road has a 

large number of mass movements, including rock falls and landslides every year. In this study, for 

assessing and mapping the landslide susceptibility, the following predisposing factors were selected 

and mapped that including Slope, Aspect, elevation, lithology, land use, distance to fault, distance to 

a river, distance to road, soil type, curvature, and rainfall. Our findings indicated that based on the 

fuzzy ANP model the elevation of 2100 m-2300 m had the highest impact while class 1700 m- 1900 m 

had the lowest impact on landslide occurrence. Moreover, based on fuzzy TOPSIS the class of 1500 

m-1700 m had the highest impact and the class 2100 m – 2300 m had the lowest impact on landslide 

incidence. Furthermore, the findings concluded that based on both models, the class of slope angle 

30-40 degrees was more susceptible to landslide occurrence while the slopes lower than 5 degrees 

were the least susceptible to a landslide incidence.  

This finding that shows the median slope is more prone to landsliding also can be validated and 

proved by Huang et al. [83] who reported that too high and too low slopes are not prone to landslides. 

Distance to rivers is one of the most important factors that control slope instability. This is because 

the shear stress of water flow is much more than the shear strength of soil banks and beds.  In the 
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study area, distances lower than 100 m from the rivers had the highest frequency of landslides. While 

the last class of distance from the river (> 2000 m) had the least impact on the landslide’s occurrence. 
It indicates that the lower the distance from the rivers, the higher the susceptibility to a landslide 

incidence. Pourghasemi et al. [84] declared and reported that with decreasing distance from the 

rivers, the probability of landslide occurrence is increased.   

Another important factor is curvature, which is the rate of change of slope angle or aspect in a 

specific direction (i.e., topographic convergence or divergence). Based on both models, the class of 

concave slopes had the highest impact on landslide occurrence; however, flat slopes have the least 

effect on landslide occurrence. The obtained result also is in good agreement with Asmare [85] who 

claimed that concave and flat slope forms are respectively the most and lowest susceptibility to 

landsliding. Evaluation of the distance to the fault showed that class 1500 m -2000 m had the highest 

impact on landslide occurrence while the distance more than 3000 m from the faults has the least 

effect on landslide occurrence. Pourghasemi et al. [84] declared that landslides at a distance of 1501 

and 2000 m from a fault had a higher probability of a landslide occurrence. 

Also based on both models, the highest frequency of landslides was observed on the Entisols 

while Inceptisols has the least effect on landslides occurrence. Both Entisols and Inceptisols are young 

soils with mainly weak or incipient development [86] Entisols have covered most of the region and 

since they are young, immature, and undeveloped, and also human factors such as the improper 

construction of roads on these soils have manifested themselves and these soils are highly susceptible 

to landslides in the study area. 

Land use survey shows that based on the fuzzy ANP model the class of the pasture and based 

on fuzzy TOPSIS the class of the semi-dense forest had the highest effect on landslides occurrence. In 

contrast, farming land and agricultural land classes have the least effect on landslide occurrence. The 

rainfall map shows that the class 700 mm - 800 mm had the highest frequency of landslide in the 

study area while the class 485 mm - 500 mm had the least effect on landslide occurrence. With 

increasing rainfall, the probability of landslide occurrence is increased. In other words, rainfall erodes 

and washed the topsoil of the slope surface and destroys the completeness between soil mass and 

rock and consequently decreasing the shear strength of the rock and soil mass increases the 

probability of landslide occurrence [83]. 

The underlying geology is one of the most significant factors for landslides. Based on the fuzzy 

ANP model dark gray shale formation and based on fuzzy TOPSIS the Low-level valley terrace had 

the highest effect on landslides occurrence while based on the fuzzy ANP model Orbit Olin limestone 

formation and based on fuzzy TOPSIS the Upper Cretaceous formation had the least effect to 

landslide occurrence. Rosly et al. [87] concluded that the areas that have been covered by shale 

interbedded with sandstone are more prone to landslide occurrence. In fact, shale has a high amount 

of clay and is classified as highly plastic soil with increasing pore water pressure from rainfall, the 

amount of infiltration and consequently matric suction are decreased and finally, the shear strength 

of the soil is diminished and landslide would be occurred [87].   

We discussed and showed that FLTOPSIS mathematical method outperformed the FLANP 

methods in landslide susceptibility assessment. As TOPSIS is an easily understandable and 

programmable calculation technique, it is more popular that has been wieldy used by researchers in 

some fields of study. In fact, it can account simultaneously for various criteria with different units 

[88]. In other words, FLTOPSIS well afford the weak points of fuzzy logic including normalization 

and compatibility between the weights [89]. Additionally, TOPSIS due to lake of ability to solve 

uncertainty and ambiguity in judgment operation has attempted to combine MCDMs with other 

methods such as the Fuzzy theory [90].  

The ANP method is simple, realistic, flexible, time-consuming, and cost-effective in use and it 

could create transparency and responsibility in decision procedure [91]. Balougn et al. [92] claimed 

that the ANP cannot well model comparison judgments because of uncertainty in the human 

preference model. Moreover, its applicability by combining with Fuzzy logic, FLANN, has been 

reported by Alilou et al.[93]in the evaluation of watershed health. The first limitation of this study is 

related to the FLTOPSIS method which is not applicable to solving hierarchical issues because a 
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hierarchical system is not considered in this method. Another limitation is to complete the 

questionaries by expert’s knowledge to find the reliable and reasonable weights in ANP’s method.   

5. Conclusion 

We ensembled the Fuzzy logic with MCDM approaches such as TOPSIS, FLTOPSIS, and ANP, 

FLANP, in landslide susceptibility mapping around the Saqqez-Marivan mountain road, Kurdistan, 

Iran. were used to analyze landslide susceptibility assessment using these hybrid MCDM methods. 

We constructed a database constituted of eleven conditioning factors and a landslide inventory map 

by a combination of 70% (70 points) of the total observed landslides to generate landslide 

susceptibility maps and the remaining 30% (30 points) for validation of the methods. The maps were 

then classified into five susceptibility classes: very high, high, moderate, low, and very low. We 

highlighted the most important achievements and findings in this research below:  

The three most important factors influencing the occurrence of landslides were, respectively, the 

distance to the road, rainfall, and the type of soil. 

Our methodology scheme concluded that the FLTOPSIS method (AUC = 0.918) was superior to the 

FLANP (AUC = 0.882) in predicting landslides in the study area. We believe that FLTOPSIS could 

more solve uncertainty and ambiguity in judgment operation than FLANP.  

The FLTOPSIS method, which rarely has been used in landslide susceptibility assessment, can be 

used as a promising and innovative, and potentially useful technique that to create a landslide 

susceptibility map in other landslide-prone areas.  

The findings of this research can be utilized by the local government in order to manage 

appropriately, organize systematically, and plan development within the susceptible areas to 

landslides.  

We suggest combining the Fuzzy logic with other MCDMs methods such as ELECTRE, ELECTRE, 

and VIKORE in the future and comparing the obtained results to achieve a highly reasonable and 

reliable landslide susceptibility map. 
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