Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Leaf Gas Exchange and Photosystem II Fluorescence Responses to CO₂ Cycling

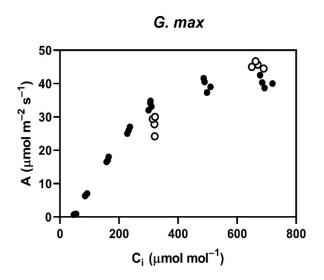
James Bunce

USDA-ARS, Adaptive Cropping Systems Laboratory, Beltsville, Maryland USA, retired; e-mail bunce-james49@gmail.com

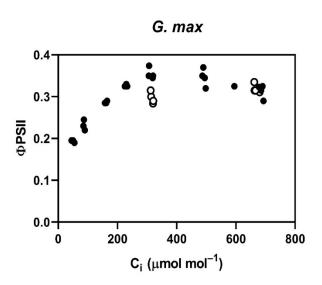
Abstract: Experimental systems to simulate future elevated CO₂ conditions in the field often have large, rapid fluctuations in CO₂. To examine possible impacts of such fluctuations on photosynthesis, intact leaves of field grown plants of five species were exposed to two-minute cycles of CO₂ between 400 and 800 µmol mol⁻¹ lasting a total of 10 minutes, with photosynthesis, stomatal conductance and PSII fluorescence measured at the end of each half-cycle, and also 10 minutes after the end of the cycling. Prior to the cyclic CO₂ treatments, steady-state responses of leaf gas exchange and fluorescence to CO₂ were determined. In four of the five species, in which stomatal conductance decreased with increasing CO₂, the cyclic CO₂ treatments reduced stomatal conductance. In those species, both photosynthesis and the photochemical efficiency of PSII were reduced at limiting internal CO₂ levels, but not at saturating CO₂. In the fifth species, there was no change in stomatal conductance with CO₂, and no change in either photosynthesis or PSII efficiency at any CO₂ level with CO₂ cycling. It is concluded that in many, but not all, species fluctuations in CO₂ may reduce photosynthesis at low CO₂ partly by decreasing the photochemical efficiency of photosystem II, as well as by decreasing stomatal conductance.

Keywords: elevated CO₂; fluctuation; photosynthesis; stomatal conductance; photosystem II; cycling; fluorescence

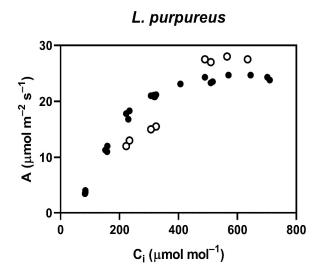
1. Introduction

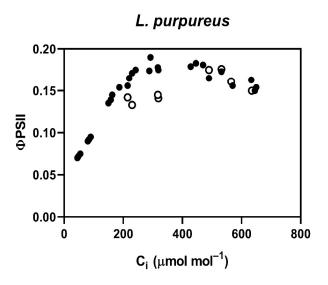

With the continuing increase in the CO₂ concentrations in the atmosphere [1], there has been considerable research examining the impacts of changes in CO2 concentration on plant functions and growth [2-5]. As a substrate for photosynthesis, CO2 is still currently a growth-limiting resource for plants which have C3 metabolism. Experiments imposing different CO2 concentrations on growing plants generally use CO2 sensors to dynamically regulate the supply of CO2 to the experimental system, while any removal of CO2 required during daylight is usually accomplished by plant photosynthesis and/or wind. Concern over impacts of short-term variation in CO2 concentration on plant function resulted primarily from the recognition of large magnitude CO2 fluctuations in free-air-carbon dioxide-enrichment facilities. Free-air- CO2 -enrichment (FACE) facilities were developed to provide elevated CO2 treatments to plant ecosystems outdoors with minimal disturbance of other environmental factors, such as wind, light, air temperature and humidity, and soil conditions [6]. However, in most FACE systems, CO2 release is at the perimeter of the plot, while the CO₂ concentration sampled to control the CO₂ release is near the center of the plot, often many meters from the release points. Because air movement is needed to distribute CO2 across the plot, there is a variable time lag between CO2 release and the detection of the concentration achieved, as well as disturbance by air turbulence. A few papers documented large fluctuations in CO2 concentrations over time within a given plot with FACE systems, using sampling systems that averaged CO2 concentrations over about 5 s periods [7,8]. Surprisingly, despite the existence of rapid response open path CO2 analyzers for about the last 25 years, rapid (seconds) CO2 concentration measurements in FACE plots have only recently been published [9,10]. Allen et al. [10], based on measurements in a FACE system of the Brookhaven National Laboratory design, concluded that "due to the difficulty of controlling elevated CO₂ concentrations in turbulent air, the range of fluctuations of CO₂ in FACE experiments are more than 10-fold greater than plants experience in natural conditions". After reviewing experiments comparing plant responses to elevated CO₂ with different degrees of fluctuation, it was concluded that plant growth was suppressed by the larger CO₂ fluctuations in FACE systems, probably by reducing photosynthesis [10].

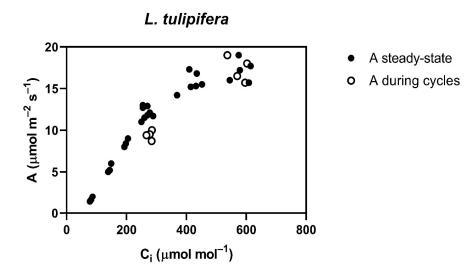
Because of the difficulty of reproducing fluctuations observed in FACE plots in controlled experiments, most experiments to assess the impacts of fluctuating CO2 have used either regular cycles of CO₂ or brief pulses of high CO₂ [11-15]. Hendrey et al. [11] measured chlorophyll fluorescence responses to short-term cyclic variation in CO2 concentration of several frequencies. Holtum and Winter [12] measured responses of CO2 uptake to short-term cyclic variation in CO2 concentration, but did not measure stomatal conductance, and found that variation in CO₂ reduced photosynthesis in two tree species. Bunce [13] provided long-term cyclic CO2 treatments compared with constant elevated CO2 treatments at the same mean elevated CO₂ in open top chambers, and found that the cyclic CO2 treatments reduced photosynthesis, stomatal conductance and plant growth in wheat and cotton. Short-term series of pulses of elevated CO2 mimicking those observed in FACE plots reduced photosynthesis and stomatal conductance in wheat and rice leaves [14]. In indoor chambers, a larger magnitude of fluctuations of CO2 applied continuously reduced photosynthesis, stomatal conductance and growth of four herbaceous species compared with a smaller amplitude of CO2 variation [15]. Although reduced stomatal conductance often occurs in response to CO₂ fluctuations, it is not the sole cause of the reductions in photosynthesis, even if the stomatal closure were entirely "patchy" in nature [15,16].

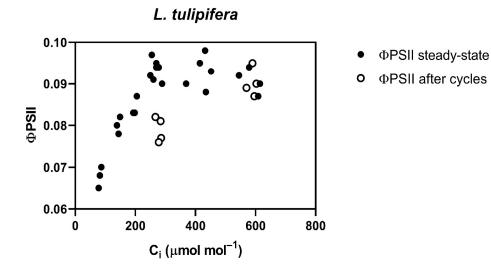

This work examined whether reduced photochemical efficiency of photosystem II occurred in response to CO₂ fluctuations, and might cause some of the suspected reductions in photosynthesis in field-grown plants in FACE systems, in addition to reductions in stomatal conductance.

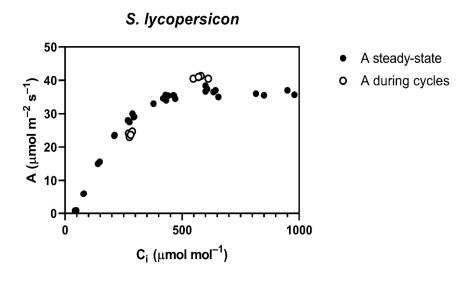
2. Results

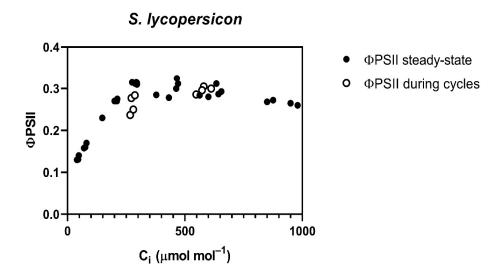

Throughout the cycling of CO₂, four of the five species studied, G. max, L. purpureus, L. tulipifera and S. lycopersicum had reduced assimilation rate (A) and PSII efficiency (ΦPSII) at the rate-limiting sub-stomatal CO₂ (C_i) values of about 250 to 300 µmol mol⁻¹ occurring at 400 µmol mol⁻¹ external CO₂ (Fig. 1). At the higher C_i, occurring at 800 µmol mol⁻¹ external CO₂, A was actually slightly increased in all of these species except L. tulipifera, and the $\Phi PSII$ was the same as before the cycling of CO_2 in all four of these species (Fig. 1). The reduction in ΦPSII and A to below steady-state values was evident at the end of the first 400 µmol mol⁻¹ half cycle and continued throughout the cycling of CO₂ in all of these four species. In G. max, the stomatal conductance decrease caused by cycling was nearly complete in the first half-cycle, while the other species had slower decreases in stomatal conductance, but stomatal conductance had stabilized before the end of the 10 minutes of cycling. All species were the same as G. max in the speed of the Φ PSII decrease, i.e. it decreased by the end of the first half-cycle. The decrease in ΦPSII during CO₂ cycling, observed at the lower Ci, was accompanied by increased non-photochemical quenching. Ten minutes after the end of CO₂ cycling, there remained lower stomatal conductance at each CO₂ level in all four of these species (Table 1). Also, at ten minutes after the end of CO₂ cycling, Φ PSII and photosynthesis measured at 400 μ mol mol⁻¹ both remained lower than before the CO₂ cycling. However, values of A and ΦPSII measured at 600 μmol mol-¹ did not differ significantly from control values when measured at 600 μmol mol⁻¹ (Table 2) in any species, despite lower stomatal conductance in all species except *P. crispum*.


- A steady-state
- o A during cycles


- ΦPSII steady-state
- ΦPSII during cycles




- A steady-state
- A during cycles



- ΦPSII steady-state
- ΦPSII after cycles

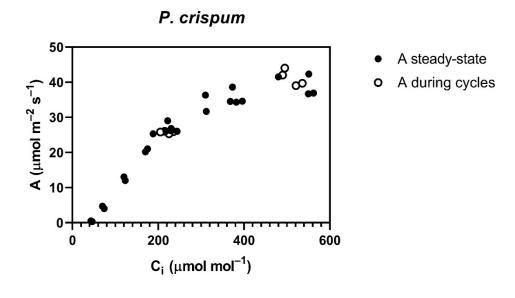


Figure 1. Responses of CO_2 assimilation rate (A) and PSII efficiency (Φ PSII) as a function of substomatal CO_2 (C_i) before (steady-state) and during cycling of ambient CO_2 in four species. See text for details.

P. crispum, in contrast to the other 4 species, had no reduction in the A vs. C_i curve, or in Φ PSII after the cycling of CO_2 (Fig. 2), and no change in stomatal conductance with CO_2 (Table 1).

Figure 2. Responses of CO₂ assimilation rate (A) and PSII efficiency (ΦPSII) as a function of substomatal CO₂ (C_i) before (steady-state) and during cycling of ambient CO₂ in *P. crispum*. See text for details.

Stomatal conductance before cycling of CO₂ was lower at 800 than at 400 μ mol mol⁻¹ CO₂ in all species except *P. crispum* (Table 1). Stomatal conductance during CO₂ cycling was reduced in all species, except *P. crispum* (Table 1). Ten minutes after cycling ended, stomatal conductance remained lower than before cycling in all species, except *P. crispum*, in which stomatal conductance was unchanged by all treatments (Table 1).

Table 1. Mean values of stomatal conductance measured at 400 and 800 μmol mol⁻¹ CO₂ before, during, and 10 minutes after cycling of CO₂ between 400 and 800 μmol mol⁻¹, with a full cycle length of 2 minutes, for a total of 10 minutes, in five species. Within rows, numbers followed by different letters are different at P = 0.05, using repeated measures ANOVA.

Species	Stomatal	l Conductan	ce (mmol mol ⁻¹)		
	Before Cycling	5	During Cycling	After Cy	cling
CO ₂ (μm	nol mol ⁻¹): 400	800	both CO2s	400	800
 G. тах	1643a	1465b	1168c	956d	808e
L. purpureus	652a	437b	269c	280c	240d
L. tulipifera	205a	183b	159c	152c	144c
S. lycopersicum	797a	638b	493c	537c	531c
P. crispum	313a	310a	315a	322a	316a

Table 2. Means values of A and ΦPSII at 600 μmol mol⁻¹ CO₂ before and 10 minutes after the end of cycling of CO₂ between 400 and 800 μmol mol⁻¹ CO₂ for 10 minutes. Within rows, numbers followed by different letters are different at P = 0.05, using repeated measures ANOVA.

Species	A (μmol	A (μmol m ⁻² s ⁻¹)		
	Before	After	Before	After
G. max	37.1a	36.5a	0.333a	0.313a
L. purpureus	22.9a	21.7a	0.175a	0.165a
L. tulipifera	16.3a	15.2a	0.095a	0.094a
S. lycopersicum	34.5a	33.7a	0.310a	0.308a
P. crispum	35.1a	35.3a	0.255a	0.257a

3. Discussion

All of these species had fairly typical A vs. C_i curves for C_3 species, with no decreases in A at the highest C_i values, which would be clear evidence of limitation by triose phosphate utilization (TPU) [17]. However, all species had some decrease in Φ PSII at the highest C_i values, which McClain et al. [18] suggest is indicative of TPU limitation. A premature leveling off of A vs. C_i curves is more difficult to discern than reductions in Φ PSII, as indicators of TPU limitation.

The reductions in the photochemical efficiency of PSII (ΦPSII) at 400 μmol mol⁻¹ external CO₂ levels caused by the cycling of CO₂ concentration, which occurred in four of the five species examined, provide a new explanation of reduced photosynthesis rates for a given sub-stomatal CO₂ concentration, which has frequently been reported in CO₂ fluctuation experiments [12-15]. Prior suggestions that reduced photosynthesis might be the result of "patchy" stomatal closure [13,15] admittedly could not account for the lack of reduction in photosynthesis at elevated measurement CO₂ [15]. In the current experiments, the reduction in ΦPSII which occurred at the lower measurement CO₂ did not occur at the higher measurement CO₂. At the higher measurement CO₂, photosynthesis was also not inhibited by the cycling of CO₂ in these experiments, despite the continued lower stomatal conductance. The lack of decrease in A despite lower stomatal conductance is to be expected at nearly saturating values of CO₂. Similar to the results presented here, in

long-term cyclic CO₂ exposures in open top chambers, reductions in photosynthesis in cotton were much larger for measurements made at the lower than at the higher external CO₂ of the cycles [13].

McClain et al. [18] also reported reductions in Φ PSII in response to a large step increase is CO₂, which they proposed was related to triose-phosphate limitation of photosynthesis at high CO₂. They provided no information on stomatal conductance response to their treatments. However, in the fluctuating CO₂ experiments reported here, reduced Φ PSII only occurred at limiting CO₂ concentrations, not at elevated CO₂. This difference in plant response might be related to the much shorter duration of exposure to high CO₂, and lower elevated CO₂ concentrations in the present experiment (800 µmol mol⁻¹) compared with those of McClain et al. (1500 µmol mol⁻¹).

I speculate that *P. crispum* had a qualitatively different photosynthetic response to the cyclic CO₂ treatment than the other four species studied here, because it had no response at all of stomatal conductance to CO₂ in the range of 400 to 800 µmol mol⁻¹, in contrast to all of the other species. Similar results for more species with stomates unresponsive to changes in CO₂ would be required to confirm this correlation. *L. tulipifera* was chosen for these experiments based on the generally smaller response of stomatal conductance to CO₂ in tree species [19, 20]. It did have a smaller relative response than the other three herbaceous species, but not a zero response, as occurred in *P. crispum*. It remains unclear how the presence or absence of changes in stomatal conductance during fluctuations in CO₂ could influence the photochemical limitations on photosynthesis at low CO₂.

The results presented here provide a new mechanism by which fluctuations in CO₂ around leaves can inhibit photosynthesis. The extent to which this decrease in ΦPSII at low CO₂ occurs in experiments exposing plants to long-term elevation of CO₂, for example in FACE experiments, has not been determined. It is interesting to consider that reduced photosynthesis in FACE systems may primarily occur during those periods in which CO₂ fluctuations bring CO₂ levels down to near ambient CO₂ levels. Most measurements of photosynthesis in FACE systems have been conducted at the targeted elevated CO₂ concentration, not at lower CO₂ concentrations. The only experiment to date which directly compared photosynthesis in plants grown simultaneously at elevated CO₂ in open top chambers and in FACE systems only measured leaf gas exchange at the elevated CO₂ [21], in the plants grown at elevated CO₂, and thus would have missed photosynthetic responses resembling those presented here.

4. Materials and Methods

Leaf gas exchange and chlorophyll fluorescence measurements were conducted on four species of herbaceous plants and one tree species grown outdoors at ambient CO₂. Species studied were *Glycine max* L. Merr. cv. Clark, *Lablab purpureus* L. Sweet, *Petroselinum crispum* Mill. Fuss var. *neopolitanum, Solanum lycopersicum* L. cv. Better Boy, and *Lireodendron tulipifera* L. The four herbaceous species were grown in Annapolis, Maryland in an unshaded plot with a sandy loam soil. Plants were grown from seed, planted in late April, 2020. The plot was fertilized with a complete fertilizer containing 12% N, 4% P, and 8% K at 200g of fertilizer per m², and did not experience soil water stress. The *L. tulipifera* trees sampled were saplings, about 6 years old, growing at a south-facing forest edge in Annapolis, on a sandy loam soil. Leaf gas exchange and chlorophyll fluorescence measurements were conducted from mid-June through the end of June, 2020. The mean temperature in Annapolis in May, 2020 was 16.0 °C, slightly below the long-term mean of 17.7 °C, and in June 2020 it was 23.3 °C, which equals the long-term mean temperature.

All leaf gas exchange and chlorophyll fluorescence measurements were conducted at 27 °C leaf temperature, 1500 µmol m⁻² s⁻¹ PPFD, with a leaf to air water vapor pressure difference of 1 to 1.5 kPa, using a Ciras-3 portable photosynthesis system with a PLC3 leaf chamber/fluorometer. The "stored differential balance" function of the instrument was used, to correct measurements for changes in calibration with back-ground CO₂. During

the mornings of sunny days, a fully expanded upper canopy leaf was selected for measurement. Steady-state responses of stomatal conductance, photosynthesis, and PS II chlorophyll fluorescence at CO2 concentrations of 400, 600, and 800 μmol mol-1 were determined on a leaf, allowing sufficient time for stomatal conductance to adjust to each CO2 level. The efficiency of PSII was assessed using multipulse fluorescence measurements at each CO₂ level. The CO₂ concentration was then returned to 400 μmol mol⁻¹, and cycles of CO₂ from 400 to 800 µmol mol⁻¹ with a total cycle length of 2 minutes were then applied for 10 minutes. Photosynthesis, stomatal conductance and PSII efficiency were recorded at the end of each half-cycle. At the end of the cyclic CO2 treatment, CO2 was returned to 400 μmol mol⁻¹, and beginning ten minutes after the end of the CO₂ cycling, photosynthesis, stomatal conductance and PSII efficiency were measured at 400, 600, and 800 µmol mol⁻¹ CO₂. These measurements were made on at least four different plants of each species. On a few different leaves of each species, responses of stomatal conductance, photosynthesis, and PS II chlorophyll fluorescence to CO₂ concentrations from 100 to 1200 µmol mol⁻¹ were determined. There were nine steps of CO₂ (400, 300, 200, 100, 400, 600, 800, 1000, 1200 µmol mol⁻¹). Leaves were kept at each step of CO₂ for three to four minutes, waiting for photosynthesis, but not necessarily stomatal conductance, to stabilize, before measuring the photochemical efficiency of PSII using a multipulse measurement at each step in CO₂.

Funding: This research received no external funding.

Data Availability Statement: Data are available from the author upon request.

Conflicts of Interest: The author declares no conflict of interest.

References

- Global Monitoring Laboratory Carbon Cycle Greenhouse Gases (noaa.gov) https://gml.noaa.gov/ccgg/trends. Accessed on 3/12/2023.
- 2. Poorter, H.; Knopf, O.; Wright, I.J.; Temme, A.A.; Hogewoning, S.W.; Graf, A.; Cernusak, L.A.; Pons, T.L. A meta-analysis of responses of C₃ plants to atmospheric CO₂: dose-response curves for 85 traits ranging from the molecular to the whole-plant level. *New Phytol.* **2021**, doi: 10.1111/nph.17802.
- Kimball, B.A.; Kobayashi, K.; Bindi, M. Responses of agricultural crops to free-air CO₂ enrichment. Adv. Agron. 2002, 77, 293

 368.
- 4. Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: implication for crop production. *Agron. J.* **2011**, 103, 351–370.
- 5. Kimball, B.A. Lessons from FACE: CO2 effects and interactions with water, nitrogen and temperature. In: Hillel, D., Rosenzweig, C. (Eds.), *Handbook of Climate Change and Agroecosystems: Impacts, Adaptation, and Mitigation*. Imperial College Press, London, **2011**, pp. 87–107.
- 6. Hendrey, G.R.; Miglietta, F. FACE technology: past, present, and future. Ecol. Stud. 2006, 187: 15–46.
- 7. Hendrey, G.R.; Ellsworth, D.S.; Lewin, K.F.; Nagy, J. A free air enrichment systems for exposing tall forest vegetation to elevated atmospheric CO2. *Global Change Biol.* **1999**, 5: 293-309.
- 8. Okada, M.; Lieffering, H.; Nakamura, H.; Yoshimoto, M.; Kim, H.Y.; Kobayashi, K. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. *New Phytol.* **2001**, 150: 251-260.
- 9. Bunce, J.A. Performance characteristics of an area distributed free air carbon dioxide enrichment (FACE) system. *Agric. Forest Meteorol.* **2011**, 151: 1152-1157.
- 10. Allen, L.H.; Kimball, B.A.; Bunce, J.A.; Yoshimoto, M.; Harazono, Y.; Baker, J.T.; Boote, K.J.; White, J.W. Fluctuations of CO2 in Free-Air CO2 Enrichment (FACE) depress plant photosynthesis, growth, and yield. *Agric. For. Meteorol.* **2020**, 284, 10899.
- 11. Hendrey, G.R.; Long, S.P.; McKee, I.F.; Baker, N.R. Can photosynthesis respond to short-term fluctuations in atmospheric carbon dioxide? *Photosynth. Res.* 51, **1997**, 179-184.
- 12. Holtum, J.A.M.; Winter, K. Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2 . *Planta* **2003**, 218, 152–158.
- 13. Bunce, J.A. Responses of cotton and wheat photosynthesis and growth to cyclic variation in carbon dioxide concentration. *Photosynthetica* **2012**, 50, 395–400.
- 14. Bunce, J.A. Effects of pulses of elevated carbon dioxide concentration on stomatal conductance and photosynthesis in wheat and rice. *Physiol. Plant.* **2013**, 149, 214–221.
- 15. Bunce, J. Normal Cyclic Variation in CO2 Concentration in Indoor Chambers Decreases Leaf Gas Exchange and Plant Growth. *Plants* **2020**, 9: 663.

- 16. Buckley, T.N.; Farquhar, G.D.; Mott, K.A. Qualitative effects of patchy stomatal conductance distribution features on gas-exchange calculations. *Plant Cell Environ.* **1997**, 20, 867–880.
- 17. Sharkey T.D.; Stitt M.; Heineke D.; Gerhardt R.; Raschke K; Heldt H.W. Limitation of photosynthesis by carbon metabolism II. O2-insensitive CO2 uptake results from limitation of triose phosphate utilization. *Plant Physiol.* **1986**, 81, 1123–1129.
- 18. McClain, A.M.; Cruz, J.A.; Kramer, D.M.; Sharkey, T.D. The time course of acclimation to the stress of triose phosphate use limitation. *Plant, Cell and Environ.*, **2023**, 46: 64-75.
- 19. Bunce, J.A. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions. *Oecol.* **2004**, 140: 1-10.
- 20. Mathias, J.M.; Thomas, R.B. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. *Proc. Nat. Acad. Sci.*, **2021**, 118, 7 e2014286118.
- Bunce, J.A. Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems. Field Crops Res. 186, 2016, 78-85.