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Article 
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4  Department of City and Regional Planning, King Fahd University of Petroleum and Minerals, KFUPM Box 

5053, Dhahran – 31261, Kingdom of Saudi Arabia 
*  Correspondence: shareful@gmx.com 

Abstract: The major industrial cities of Bangladesh are heavily experiencing air pollution‐related problems due 
to the increased trend of Particulate Matter (PM2.5) and other pollutants. This paper aimed to investigate and 
understand the relationship between PM2.5 and land use and climatic variables and to identify the riskiest area 
and population groups using a Geographic information system and regression analysis. The results show that 
about 41% of PM2.5 concentration  increased within 19 years (2002‐2021)  in the study area, while the highest 
concentration of PM2.5 was found from 2012 to 2021. The concentrations of PM2.5 were higher over barren lands, 
forests, croplands, and urban areas. About 64%, 62.7%, 57%, and 55% concentrations were increased annually 
over  barren  lands,  forests,  cropland,  and  urban  regions,  respectively,  from  2002‐2021.  The  highest 
concentration level of PM2.5 (84 mg m‐3) among other land use classes was found in urban areas in 2021. The 
regression analysis shows that air pressure (r2= ‐ 0.26), evaporation (r2= ‐ 0.01), humidity (r2= ‐ 0.22), rainfall 
(r2=  ‐  0.20),  and water  vapor  (r2=  ‐  0.03) were  negatively  correlated with  PM2.5. On  the  other  hand,  air 
temperature (r2= 0.24), ground heat (r2= 0.60), and wind speed (r2= 0.34) were positively correlated with PM2.5. 
More than 60 Upazilas were the most polluted areas, with 1,948,029 populations (ages 0‐5), 485,407 (ages 50‐
69), and a total population of 11,260,162 were in the high‐risk/hotspot zone. The government line department 
may use the main results paperʹs key results, policymakers, stainable development practitioners, academicians, 
and others  for  integrated  air pollution mitigation  and management  in Bangladesh and other geographical 
settings worldwide. 

Keywords: Bangladesh; Dhaka; climatic variables; land use; PM2.5; statistical relationship, 
 

1. Introduction 

Ambient air pollution is one of the biggest environmental threats to public health, resulting in 
around  4.2 million  global deaths  yearly  [1,2]. Rapid urbanization  and  swift  industrialization  are 
boosting the global economy, resulting in the cost of environmental pollution [3,4]. Infrastructural 
damage  to  ecological  imbalance  is  happening  at  an  alarming  rate  because  of  uncontrolled  air 
pollution worldwide, especially in South and East Asian cities. Besides, air pollution is accused of a 
significant amount and economic cost in developing countries [4,5]. Furthermore, air pollution is also 
the fifth leading risk factor for mortality worldwide, accounting for more deaths than many better‐
known  risk  factors such as malnutrition, drug addiction, and obesity  [6]. The average air quality 
index is very alarming in some major cities of Bangladesh [7–9]. The air pollution level in Dhaka and 
its adjacent areas are very severe as it is ranked second in the world’s most polluted cities [10–12]. 
Dhaka is also considered one of the most polluted urban cities in the world, where 82 μg/m3 annual 
average PM2.5 concentration from a wide variety of pollution sources [13–15].   

PM2.5  (particulate matter  aerodynamic  diameter  less  than  2.5  μm)  is  one  of  the major  air 
pollutants  in  the city area, which  is a significant  threat  to human health and all  living organisms 
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[16,17]. It is revealed that the key reasons for this upsetting air quality in Dhaka and its adjacent areas 
are mainly unplanned urbanization, industrialization, and motorization. A large share (almost 58% 
of total PM2.5) of Dhaka’s air pollutants is covered by the brick kiln operated in and around Dhaka 
and also followed by motor vehicles (10.4%), road dust (7.70%), fugitive Pb (7.63%), soil dust (7.57%), 
biomass burning (7.37%), and sea salt (1.33%) [7]. Furthermore, the fuel used by brick kilns operating 
in this area is mainly coal, while wood is used as a secondary fuel which ultimately contributes to the 
concentration of almost  two  third of PM2.5  found  in  the air of Dhaka  [7,18,19]. However, western 
countries suggest reducing the level of PM2.5 concentration on a both daily and annual basis [20]. In 
contrast, developing countries like Bangladesh still emit higher levels of PM2.5 concentration in the 
atmosphere. Moreover,  every  year more  than  1.59  billion  US  dollars,  equivalent  to  134  billion 
Bangladeshi takas the cost of the capital alone in terms of loss of human health and life [21].     

Many researchers have completed research on the relationship between PM2.5 and land use. [22] 
conducted a sampling‐based study to determine the atmospheric PM2.5 concentration in the Gazipur 
and Mymensingh  districts  in  Bangladesh, where  they  found  an  increased  level  of  pollutants  in 
February  2019  because  of  different  factors  such  as  industrial  activities,  vehicular  emissions, 
construction, and others. The  studyʹs main  limitation was  that  it used a  small number of sample 
points that did not represent the whole study area. [23] conducted a spatiotemporal analysis of PM2.5 
concentration and quantified the relationship between vegetation cover and air pollution in greater 
Dhaka,  Bangladesh.  Their  results  showed  that  the  winter  season  experienced  the  highest 
concentration of PM2.5, and  the amount  increased over  time. His studies  revealed  that vegetation 
cover and PM2.5 concentration strongly correlate negatively (r = ‐0.75). The lack of proper land use 
information and the limited number of sample points did not give an appropriate relationship, which 
is  the opposite of our paper. On  the other hand,  [24] concluded research  that  found  that artificial 
surfaces and desert  land have positive effects on PM2.5 concentration, while  forest, grassland, and 
barren land have negative effects on PM2.5 concentration.         

Climatic  variables  have  an  important  role  in  assessing  PM2.5  in  rural  and  urban  areas.  [25] 
conducted research on the relationship between PM2.5 and seasonal meteorological factors in Dhaka, 
Bangladesh, where they found that rainfall and temperature had a negative association with PM2.5. 
Rainfall was also negative in Dhaka [11]. Long‐term PM2.5 links with temperature, surface pressure, 
and relative humidity were studied by [19] in Dhaka, Bangladesh using temporal air pollutant data 
from 2003‐2019. Their  results  show  that Pearson’s  correlations were  significantly  associated with 
surface  pressure  and  relative  humidity,  while  there  was  a  positive  correlation  with  surface 
temperature. Their key findings also revealed that vehicular emissions, road dust, soil dust, biomass 
burning, and industrial emissions contributed to PM2.5. Temperature, wind speed, and wind direction 
significantly predict PM2.5 in Dhaka, Bangladesh. [26] completed research to investigate the statistical 
relationship between PM2.5 and temperature, wind speed, and wind direction. They found that these 
factors accounted for 94% of the total variability.   

Based on the literature review above, most of the studies used a limited number of sample points 
of PM2.5 with a few climatic variables. In addition, most of the research used small geographic areas. 
As a  result,  the  relationship between PM2.5 with  land use and  several climatic variables  in  larger 
geographic areas is still unknown. To fill this knowledge gap, this paper has conducted this study 
using a series of multi‐date PM2.5 data, land use, and eight climatic variables in large geographic areas 
(6,043 square kilometers). Finally, this paper aims to investigate the relationship between PM2.5 and 
land  use  and  climatic  variables  and  to  identify  the  riskiest  areas  and  population  groups  using 
Geographic Information Systems and statistical analyses.     

2. Study Location   

The study area of this research is located in the Dhaka division covering its five major industrial 
districts (Dhaka, Narayanganj, Munshiganj, Narshingdi, and Gazipur) of Bangladesh. The entire area 
lies between 23°20ʹ00ʹʹN and 24°20ʹ00ʹʹN  latitudes and between 90°00ʹ0ʹʹE and 91°00ʹʹE  longitudes, 
which covers about 6,043 square kilometers, including 22,066,710 million populations [27] (Figure 1). 
Having  tropical  wet  and  dry  climate,  the  study  area  has  an  annual  average  rainfall  of  1,854 
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millimeters while the yearly average temperature of 250C. This study area was selected to conduct 
this study due to some pragmatic reasons: (a) colossal population pressure, (b) massive  industrial 
activities,  (c) higher  level of traffic concentration,  (d)  internal migration, and (e) unplanned urban 
activities, which are the key controlling factors for its local and regional atmospheric conditions [28–
31]. [32] mentioned  that this area has  the most significant density of  industrialization due  to well 
access to finance, enormous transportation, location‐based advantage, spatial context, and different 
management service.   

 

Figure 1. The location map of the study area shows topographic and population information. 

3. Materials and Methods 

The main methodological  steps which were  followed a  systematic  framework  (Figure  2)  for 
completing this study are described below: 
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Figure 2. Major methodological steps of this research work. 

Multi‐date  data  of  PM2.5,  the main  dependent  variable  of  the  study,  from  2002‐2021 were 
collected from two sources (Table 1). Nine diverse types of variables were used in this paper, which 
were  collected  from  several  satellite  sensors  (Table  1).  Land  use,  air  pressure,  air  temperature, 
evaporation, ground heat, humidity, rainfall, water vapor, and wind speed were downloaded from 
2021. Raster‐based population data, ranging from 0‐5, 50‐69, and total population, was used to map 
the most  affected  people  and  areas, which was  collected  from  the WorldPop  [33].  The  variable 
characteristics of both dependent and independent variables are described in Table 1. 

Table 1. The variable names, sources, and the characteristics of independent and dependent variables 
used in the paper. 

Theme  Name  Unit  Source 
Time of 
Data 

collection 

Independent 
variables (Air 
pollutants) 

Air Pressure  hPa  https://disc.gsfc.nasa.gov/datasets/M2TMNXSLV_5.12.4/summary  2021 
Air   

Temperature 
k  https://disc.gsfc.nasa.gov/datasets/NCALDAS_NOAH0125_D_2.0/summary 2021 

Evaporation kg m‐2  https://disc.gsfc.nasa.gov/datasets/M2TMNXLND_5.12.4/summary  2021 
Ground 
Heat 

W m‐2  https://disc.gsfc.nasa.gov/datasets/NLDAS_NOAH0125_M_2.0/summary  2021 

Humidity  kg m‐2  https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_2.0/summary  2021 
Rainfall  mm/hr  https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary  2021 

Water Vapor kg m‐2  https://disc.gsfc.nasa.gov/datasets/AIRX3STM_7.0/summary  2021 
Wind Speed  m s‐1  https://disc.gsfc.nasa.gov/datasets/M2TMNXFLX_5.12.4/summary  2021 
Land Use  Class  http://www.globallandcover.com/  Nov 2022 

Dependent 
variables 

PM2.5 
mg m‐

3 
https://ads.atmosphere.copernicus.eu/ 

https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_5.12.4/summary 
2002‐2021 

3.1. Image Processing and Data Analysis   

After  collecting  all  the  raster‐based  databases,  data  masking,  resizing,  and  other  image‐
processing tasks were done. These tasks were needed to prepare the final output of each variable for 
next‐level spatial analysis [34,35]. Due to different data characteristics and patterns, this paper used 
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the Z‐Score Normalization process  for databases used  in this paper  [36]. The equation below was 
used to normalize the whole dataset.      𝑥new  ൌ 𝑥 െ 𝜇𝜎   (1)

where Xnew= data vector after scaling, x= original data, μ= mean of  the data vector, σ= standard 
deviation of the data vector.           

3.2. PM2.5 Analysis 

The temporal analysis of PM2.5 was done in ArcGIS 10.8 version. Each of the yearly data of PM2.5 
was transferred to an excel data format to find the mean, minimum, and maximum values. Finally, a 
graph was prepared to differentiate the temporal variations of PM2.5.         

3.3. Risk Modeling using Hotspot Area 

To  identify  the most risk areas, a hotspot analysis was done  in  the paper using the  temporal 
PM2.5 database. It is a widely used tool to analyze the most concentrated areas in PM2.5 or air pollution 
research [37–40]. The main calculation of a hotspot is described below:   𝐺௜∗ ൌ ∑ 𝑤௜,௝𝑥௝ െ 𝑋ത ∑ 𝑤௜,௝௡௝ୀଵ௡௝ୀଵඨቂ𝑛∑ 𝑤௜,௝ଶ௡௝ୀ௜ െ ൫∑ 𝑤௜,௝௡௝ୀଵ ൯ଶቃ𝑛 െ 1

ೞ  
(2)

where, xj is the value of j, wi,j is the spatial weight between feature i and j, n is equal to the number of 

features,  𝑋ത ൌ  
∑ ௫ೕ೙ೕసభ௡ ,  and  𝑠 ൌ  ට∑ ௫ೕమ೙ೕసభ௡ െ ሺ𝑋തሻଶ. A Getis–Ord Gi* produces z‐scores and p‐value. A 

higher z‐score and a small p‐value of a cluster signify the hottest spot while a negative z‐score and a 
small p‐value present the coldest area [41]. 

3.4. Regression Analysis   

A  leaner  regression was used  in  this paper  to  find out  the  internal  relationships among  the 
different variables. A correlation is the most helpful tool in understanding the positive and negative 
correlated variables among air pollutants and other factors [38,42]. 

    𝑦 ൌ 𝑚𝑥 ൅ 𝑏  (3)

where y= dependent variable (PM2.5), m= regression slope, x= independent variable, b= constant [43].       

3.5. Raster Overlay Analysis   

The final risk map of PM2.5 was overlaid with the population data to determine the number of 
most affected age groups in the study area.   

4. Results 

4.1. Descriptive Analysis of PM2.5   

Figure 3  represents an overall descriptive statistical analysis of PM2.5  from 2002  to 2021.  It  is 
estimated that about 41% of PM2.5 has increased within 19 years in the study area. The annual trend 
of PM2.5 from 2002 to 2006 was 4.58%, while 0.82% was from 2007‐2011, 4.03% was from 2012‐2016, 
and 3.47% was from 2017‐2021. The minimum values of PM2.5 from 2012 to 2021 changed from 55% 
to  78%, while  the maximum  values  showed  significant  variation  from  2002‐2021  (Figure  3). The 
highest values of PM2.5 was found from 2012 to 2021. In addition, an upward trend in the mean values 
of PM2.5 was observed from 2007 to 2016. These statistical values exceeded the annual standard limit 
of WHO’s 15 μg/m3 of Bangladesh. 
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Figure 3. Temporal analysis of minimum, maximum, and mean of PM2.5 from 2002‐2021. 

4.2. Relationship Between PM2.5 and Land Use   

The spatial and statistical relationship between different  land use classes and  temporal PM2.5 
data is shown in Figure 4. This table shows that the temporal variations of PM2.5 were significant in 
barren  lands,  forests,  croplands,  and  urban  areas  (Figure  4).  In  barren  lands,  about  64%  of  the 
concentration has  increased  from 2002‐2021, which also  revealed an  incremental change  from  the 
base year (2002) to the final year (2021). Nearly 62.75% of the concentration of PM2.5 has increased 
from 2002‐2021 in forestry areas in the study area. A large increase was found from 2007‐2011, 2012‐
2016, and 2017‐2021. In the largest land use class in the study area (croplands), about 57.70% of the 
PM2.5 concentration has increased from 2002 to 2021. In the study area, urban land is dominant due 
to different economic and urban functionalities. Figure 4 shows that about 55.6% of the concentration 
level increased from 2002 to 2021. In addition, the highest concentration level of PM2.5 (84 mg m‐3) 
among other land use classes was found in urban land in 2021. 

 

Figure 4. Relationship between temporal PM2.5 and different land use classes. 
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4.3. Relationship Between PM2.5 and Climatic Variables     

A spatial relationship between the estimated PM2.5 and climatic variables was conducted using 
a linear regression model. The regression analysis showed that air pressure (r2= ‐ 0.26, Figure 5a) and 
evaporation (r2= ‐ 0.01, Figure 5c) were negatively correlated with PM2.5 (Figure 5). On the other hand, 
air temperature (r2= 0.24, Figure 5b) and ground heat (r2= 0.60, Figure 5d) were correlated positively 
with PM2.5. It means that if air pressure is higher and evaporation is higher, these two factors may 
contribute to generating less PM2.5. On the other hand, higher air temperature and ground heat may 
generate higher PM2.5.           

 
Figure 5. Regression between PM2.5 and climatic variables, (a) air pressure, (b) air temperature, (c) 
evaporation, and (d) ground heat. 

The regression analysis (Figure 6) also revealed that humidity (r2= ‐ 0.22, Figure 6a), rainfall (r2= 
‐ 0.20, Figure 6b), and water vapor (r2= ‐ 0.03, Figure 6c) were correlated negatively with PM2.5, while 
wind speed correlated positively  (r2= 0.34, Figure 6d).  It means  if  the humidity  is high, rainfall  is 
higher, and water vapor is higher; these factors may contribute to generating less PM2.5. On the other 
hand, higher wind speed may cause higher PM2.5.     
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Figure 6. Regression between PM2.5 and climatic variables, (a) humidity, (b) rainfall, (c) wind vapor, 
and (d) wind speed. 

4.4. Hotspot Zoning   

The average annual values of PM2.5 from 2002‐2021 were used to identify the most pollutant and 
affected areas  in  the  study area  (Figure 7). From  the analysis,  it was observed  that  five districts, 
including 60 Upazilas were the most polluted areas. The annual PM2.5 values in Dhaka were 65 to 67 
μg/m3,  while  62‐65  and  60‐66  μg/m3  were  in  Narayanganj  and  Gazipur  districts,  respectively. 
Likewise, Narshingdi and Munshiganj were from 61 and 64 μg/m3. However, all of the values exceed 
the standard WHO’s value of 15 μg/m3. Dhaka, the central part of the study area had more signs of 
air  pollution  than  other  parts.  The  southern  part  is  affected  due  to  substantial  industrial  and 
development  activities,  while  the  northern  part  is  to  be  concentrated  slowly  because  of  less 
commercial and industrial activities than other parts of the study area (Figure 7). 
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Figure 7. The average concentration of PM2.5  from 2002‐2021. Red  is  the most affected area, while 
green is significantly less. 

4.5. Affected Population due to PM2.5   

The  resultant  hotspot map,  created using  all  the mean  values  from  2002‐2021, was used  to 
demarcate vulnerable people  in  the  study area. The hotspot map was  crossed with Upazila‐wise 
population data to estimate vulnerable people considering 0‐5 and 50‐69 ages. Table 2 shows  that 
1,948,029 and 485,407 populations of 0‐5 and 50‐69, respectively, are living in the high spot area. It is 
also  found  that most of  the high hotspot areas are  located  in urban areas with higher population 
densities.  In  the medium  hotspot  areas,  22%  and  7%  of  0‐5  and  50‐69  aged  people were  found 
respectively, while 523,128 and 181,445 populations of 0‐5 and 50‐69 aged respectively found in low 
spot areas.       

Table 2. Spatial correlation between population and hotspot areas. 

PM2.5 (Annual)  0‐5 age  50‐69 ageTotal Population
High spot area (65 μg/m3)  1,948,029 485,407  11,260,162 

Medium spot area (50 μg/m3) 1,231,066 370,124  5,720,467 
Low spot area (45 μg/m3)  523,128  181,445  2,343,643 

5. Discussion 

Estimating  the spatiotemporal concentration of PM2.5  is a critical  issue  for  local and  regional 
atmospheric  pollution  research  and  public  health  concern.  This  study  used  a  set  of  PM2.5 
concentration data to map a hotspot area and analyze the statistical relationship between land use 
and eight climatic variables. In addition, the derived PM2.5 data was used to find out the most affected 
people and areas. Due to a similar urbanization pattern between China and Bangladesh, the average 
PM2.5 value in 2021 was 82 μg/m3 and 77 μg/m3 in China and Bangladesh, respectively. In Bangladesh 
and  its mega‐cities,  about  35% of  ambient PM10  and  15% of PM2.5  are generated  from brick kiln 
emissions and  transportation  systems  [8,44,45]. Even  emissions  from diverse kinds of diesel  and 
petrol  vehicles  and  poorly  maintained  automobiles  are  generating  air  pollution  due  to  PM2.5 
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pollutants  in  urban  areas  of  Bangladesh  [46,47].  The  concentration  of  PM2.5  in  the  atmosphere 
depends on  several anthropogenic  factors  such as  transportation  (vehicle movements),  industrial 
(manufacturing plants and mining), cooking and heating activities  [48], and some meteorological 
factors like wind speed, air relative humidity, cloud cover, and ambient temperature [49]. The result 
of  this  study  revealed  that  the  areas,  i.e., Dhaka, Narayanganj,  and Gazipur districts have more 
anthropogenic sources  like manufacturing factories, high traffic congestion, and other combustion 
activities, ultimately leading these districts with relatively higher annual PM2.5 concentration, which 
is similar with the PM2.5 concentration in India, Tanzania, and Iran [50–52]. In contrast, the other two 
study  areas,  Narshingdi  and  Munshiganj,  have  a  relatively  lower  level  of  PM2.5  concentration 
regarding their pollution sources than in Europe [53]. However, the incorporation of meteorological 
factors and seasonal variations could give more precise information about the concentration of PM2.5 
fluctuation  instead  of  depending  on  annual  average  concentration,  which  could  sometimes  be 
misleading in describing short‐term anthropogenic activities or weather conditions [54].   

Land use has an  important  role  in changing  the nature and pattern of PM2.5. This paper has 
explored that the highest level of PM2.5 concentration and their annual pattern has been increased 
over barren  lands,  forests, cropland, and urban areas between 2002‐2021 because of urbanization, 
huge  construction  sites,  road  networks,  industrial  activities,  agricultural  practices,  huge  traffic 
movement,  impervious  surface,  and  permeable  pavement.  The  relationship  between  PM2.5  and 
different  land use patterns  is complex, comprehensive, and dynamic.  [22] mentioned  that vehicle 
emissions, brick kilns emissions, and industrial smoke are the main key factors for environmental 
problems and public health risks, particularly PM2.5 pollution in Ghazipur and Mymensingh districts 
in Bangladesh. [55] also indicated that the dominant factor affecting PM2.5 pollution was the traffic 
condition found using a land use regression (LUR) model and statistical analysis to explore the effect 
of land use on PM2.5 pollution in the Nanchang urban area, China. Urban areas are more vulnerable 
to atmospheric inversion, which may trap different air pollutants close to the ground and increase 
their  density  or  concentration  over  time.  The  combination  of  these  factors,  the  high  population 
density, and their energy consumption are the vital triggering factors for influencing PM2.5 in many 
ways. On the other hand, forest/vegetation can play a crucial role in producing and reducing PM2.5 
in  the  local  atmosphere.  Some  specific  trees  or  vegetation  can  directly  absorb  PM2.5  and  other 
particulate matter, even if they filter the air naturally by releasing good air. Often trees and vegetation 
reduce  wind  direction  which  can  help  the  circulation  of  PM2.5  from  one  area  to  another.  [23] 
mentioned that the vegetation cover and PM2.5 concentration have a strong negative correlation (r2 = 
‐0.75). It means that the higher vegetation will reduce the level of PM2.5 concentration in Bangladesh. 
This is also observed by [56] that the forest experienced PM2.5 of 35–50 μgm−3 (lower than other land 
cover types), likely due to the potential filtering and absorption function of the forests and vegetation.   

The dispersion and transportation of PM2.5 are affected by local, and regional climatic factors. 
The  local and regional climatic  factors such as air pressure, air  temperature, evaporation, ground 
heat, humidity, rainfall, water vapor, and wind speed have a daily, monthly, and annual contribution 
in reducing or increasing PM2.5. [26] mentioned that wind speed and direction did not significantly 
influence PM2.5, although other wind parameters have the highest variability, which is opposite to 
our paper. Our paper found that wind speed has a positive correlation (r2=0.34) while air pressure 
has a negative (r2=‐0.24) correlation. [25] found that the Pearson correlation coefficient (r) between 
the PM2.5 and meteorological variables was negative with rainfall (r2=‐ 0.62) and humidity r2= (‐ 0.82) 
but positive with wind speed (r2=0.09) and temperature (r2=‐ 0.73) in Dhaka, Bangladesh. In addition, 
a Pearson  correlation  revealed  a  significant  association  among  the pollutants, while a  significant 
correlation was observed between PM2.5 and surface  temperature, which  is similar  to our paper’s 
result. [19] mentioned that surface temperature is signified because of vehicular emissions, road/soil 
dust,  biomass  burning,  and  industrial  emissions  in  Dhaka,  Bangladesh.  [57]  also  argued  that 
meteorology  parameters  such  as  temperature,  relative  humidity  (RH),  and  precipitation  are 
important predictors for PM2.5 variability all over the USA.   

The higher concentration of PM2.5 and its adverse effects on urban communities and inhabitants 
are exposed as a common public health problem  in Bangladesh. Most public health concerns are 
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pulmonary, cardiovascular, cancer, diabetics, chronic respiratory, low birth weight, and premature 
death [58]. In this study, a huge number of populations ages 0‐5 (1,948,029) and 50‐69 (485,407) are at 
risk due to the higher level of PM2.5. In China, 341,701 and 67,325 premature deaths were recorded 
due to stroke and lower respiratory infection, respectively [59]. Even about 25 million populations 
are  at  air  pollution  risk  in  Delhi,  India,  due  to  different  human,  societal,  developmental,  and 
industrial reasons [60]. These reasons are identified as similar problems for this study area too.       

6. Conclusions 

This  paper  aimed  to  investigate  the  relationship  between  PM2.5  and  land  use  and  climatic 
variables and  to  identify  the  riskiest areas and population groups using Geographic  information 
systems and statistical analyses. Finally, the results derived from the study show that land use and 
climatic variables are significantly associated with PM2.5 in the study area. A proper mitigation plan 
considering the main outcomes of the paper is suggested to reduce the over‐concentration of PM2.5. 
However, the critical summaries of the paper are as follows:   
 About 41% of PM2.5 was increased within 19 years (2002‐2021) in the study area 
 The highest concentration of PM2.5 was found from 2012 to 2021 
 The concentrations of PM2.5 were higher over barren lands, forests, croplands, and urban areas. 

About 64%, 62.7%, 57%, and 55% concentrations were increased over barren lands, forests, 
cropland, and urban areas, respectively, from 2002‐2021.   

 The highest concentration level of PM2.5 (84 mg m‐3) was found in urban land in 2021. 
 The regression analysis has shown that air pressure (r2= ‐ 0.26), evaporation (r2= ‐ 0.01), 

humidity (r2= ‐ 0.22), rainfall (r2= ‐ 0.20), and water vapor (r2= ‐ 0.03) were negatively correlated 
with PM2.5. 

 On the other hand, air temperature (r2= 0.24, ground heat (r2= 0.60, Figure 5d), and wind speed 
(r2= 0.34) were positively correlated with PM2.5. 

 More than 60 Upazilas were found to be the most polluted areas, where 1,948,029 populations 
(ages 0‐5), 485,407 (ages 50‐69), and a total population of 11,260,162 were in the high‐
risk/hotspot zone. 
The  outcomes  and  gained  knowledge  of  this  study  will  be  useful  for  local  and  regional 

governments, United Nations,  and  International Non‐government Organizations  for making  any 
health and environmental policy and action plans. The maps and data derived from this study could 
be used for taking location‐based interventions to reduce PM2.5 in the study area. Organizations and 
people who will work on this specific issue can use these results as baseline information, due to the 
lack of pixel‐based PM2.5 data, in their new project formation and relevant intervention design. Future 
studies will consider multi‐dimension sessional data of PM2.5 and other topographic and metrological 
variables to mitigate PM2.5 pollution. 
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