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Abstract: Our research is in the tangent space of a point on a 4-dimensional Riemannian manifold. 1

Besides the positive definite metric, the manifold is endowed with a tensor structure of type (1, 1), 2

whose fourth power is minus the identity. Both structures are compatible and they define an indefinite 3

metric on the manifold. With the help of the indefinite metric we determine a circle in different 4

2-planes in the tangent space on the manifold, we also calculate the length and area of the circle. On a 5

smooth closed curve such as a circle, we define a vector force field. Further, we obtain the circulation 6

done by the vector force field along the curve, as well as the flux of the curl of this vector force field 7

across the curve. Finally, we find a relation between these two values, which is an analogue of the 8

well known Green’s formula in the Euclidean space. 9
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1. Introduction 12

If k is a simple closed curve in a plane, then it surrounds some region in the plane. 13

Green’s theorem transforms the line integral around k into a double integral over the region 14

inside k. In physics, it gives a relationship between the circulation C =
∮

k F.ds of the vector 15

force field F around the path k and the flux, done by curl F, across the region inside k. 16

Green’s theorem is a special case of Stokes’ theorem. Both theorems are widely used 17

during the study of electric and magnetic fields. The modern approach to these theorems 18

on manifolds using differential forms is exhibited, for example, in [2,3,9,12,13]. A theorem 19

similar to the theorem of Green, in a special 2-plane of the tangent space on a 3-dimensional 20

Riemannian manifold with circulant structures, is obtained in [5]. 21

We consider a 4-dimensional Riemannian manifold M with an additional tensor field 22

S of type (1, 1), whose fourth power is minus the identity. The structure S is compatible 23

with the metric g such that an isometry is induced in every tangent space Tp M on M. Both 24

structures g and S define an indefinite metric g̃ [4]. The metric g̃ determines space-like, 25

isotropic and time-like vectors in Tp M. In special 2-planes βi of Tp M, constructed on 26

space-like and time-like vectors, we consider circles ki with respect to g̃. We calculate 27

their length and area (with respect to g̃), which in some cases are imaginary or negative 28

numbers. It turns out that these measures are the same as in the Euclidean space. We note 29

that some problems related to circles, their length or area, considered in terms of indefinite 30

metrics, are given in [1,7,8,10,11]. Finally, we obtain analogues of Green’s theorem that give 31

a relation between circulation of the vector force field F around a closed curve (in particular 32

a circle) ki in βi and the flux, done by the curl of F, across the region inside ki. 33
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The paper is organized as follows. In Section 2, we give some facts, definitions and 34

statements, which are necessary for the present considerations. Some of them are obtained 35

in [4], [6] and [14]. In Section 3, we introduce a special 2-plane β1 of Tp M and determine an 36

equation of a circle k1 with respect to g̃. In Subsections 3.1 and 3.2 we calculate the length 37

and the area of k1. In Subsection 3.3, we find the circulation of a vector force field F around 38

smooth closed curve k1 and the flux, done by the curl of F, across the region inside k1. In 39

Section 4, we introduce a 2-plane β2 of Tp M and determine an equation of a circle k2 with 40

respect to g̃. Further we calculate the length and the area of k2. We get the circulation of a 41

vector force field F around a smooth closed curve k2 and the flux, done by the curl of F, 42

across the region inside k2. We find a relationship between the circulation and the flux in 43

both cases. All values obtained in Sections 3 and Sections 4 are calculated with respect to g̃. 44

2. Preliminaries 45

We consider a 4-dimensional Riemannian manifold M with an additional tensor
structure S of type (1, 1). In a local coordinate system (x1, x2, x3, x4) the coordinates of S
form the following circulant matrix:

S =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

.

Thus we have 46

S4 = −id. (1)

Let g be a positive definite metric on M, which satisfies the equality 47

g(Su, Sv) = g(u, v), u, v ∈ XM. (2)

Such a manifold (M, g, S) is introduced in [4]. 48

Further u, v, w, e1, e2 will stand for arbitrary smooth vector fields on M or arbitrary 49

vectors in the tangent space Tp M, p ∈ M. 50

Let the vector u induce a basis of type {S3u, S2u, Su, u}. In [4] it is called an S-basis 51

and the following statements about the angles between the basis vectors are obtained. 52

(i) The angle φ, determined by φ = ∠(u, Su), satisfies inequalities

π

4
< φ <

3π

4
.

(ii) For the angles between the basis vectors we have 53

∠(u, Su) = ∠(Su, S2u) = ∠(S2u, S3u) = φ,

∠(S3u, u) = π − φ, ∠(u, S2u) = ∠(Su, S3u) = π
2 . (3)

The associated metric g̃ on (M, g, S), determined by 54

g̃(u, v) = g(u, Sv) + g(Su, v), (4)

is necessary indefinite ([4]). Consequently, for an arbitrary vector v it is valid: 55

g̃(v, v) = 2g(v, Sv) = R2, R2 ∈ R. (5)

The norm of every vector u and the cosine of φ are given by the following equalities: 56

∥u∥ =
√

g(u, u), cos φ =
g(u, Su)
g(u, u)

. (6)
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In rest of this paper, we assume that ∥u∥ = 1 and using (6) we have 57

cos φ = g(u, Su). (7)

Due to (2), (4), (6) and (7) we state that the normal basis {S3u, S2u, Su, u} satisfies the 58

following equalities: 59

g̃(u, u) = g̃(Su, Su) = g̃(S2u, S2u) = g̃(S3u, S3u) = 2 cos φ,

g̃(u, Su) = g̃(Su, S2u) = g̃(S2u, S3u) = −g̃(S3u, u) = 1.

g̃(u, S2u) = g̃(Su, S3u) = 0.

(8)

A circle k in a 2-plane of Tp M of a radius R centered at the origin p ∈ Tp M, with 60

respect to the associated metric g̃ on (M, g, S), is determined by (5), where v is the radius 61

vector of an arbitrary point on k. 62

Farther, we consider circles k1 and k2, and the regions D1 and D2 inside them, in two 63

different subspaces β1 and β2, spanned by 2-planes {u, S2u} and {u, Su}, respectively. 64

3. Circles in the 2-plane β1 65

Because of (3), it is true that the vectors u and S2u form an orthonormal basis of β1. 66

The coordinate system pxy on β1, such that u is on the axis px and S2u is on the axis py, is 67

an orthonormal coordinate system of β1. 68

A circle k1 in β1 centered at the origin p, with respect to g̃ on (M, g, S), is defined by 69

(5). The equation of k1 with respect to pxy is obtained by the following 70

Theorem 1. [6] Let g̃ be the associated metric on (M, g, S) and let β1 be a 2-plane in Tp M with a 71

basis {u, S2u}. If pxy is a coordinate system such that u ∈ px, S2u ∈ py, then the equation of the 72

circle (5) in β1 is given by 73

2 cos φx2 + 2 cos φy2 = R2. (9)

The curve k1, determined by (9), is a circle in terms of g if: 74

Case (A) φ ∈
(

π
4 , π

2
)

and R2 > 0; 75

Case (B) φ ∈
(

π
2 , 3π

4
)

and R2 < 0. 76

3.1. Length of a circle with respect to g̃ 77

Firstly, we consider Case (A). The circle (5) has a radius R > 0 and φ satisfies 78

π

4
< φ <

π

2
. (10)

Theorem 2. The circle k1 with (10) and a radius R > 0 has a length 79

L = 2πR. (11)

Proof. Let v = xu + yS2u be a radius vector of an arbitrary point on the circle k1. Then
dv = dxu + dyS2u is a tangent vector on k1. The length L of k1 with respect to g̃ is
determined as usual by

dL =
√

g̃(dv, dv).

Then, using (8) and (9), we obtain 80

L =
∮

k1

√
2 cos φdx2 + 2 cos φdy2. (12)

We substitute
x =

R√
2 cos φ

cos t, y =
R√

2 cos φ
sin t, t ∈ [0, 2π],
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into (12) and find (11). 81

Now, we consider Case (B). The circle k1 has a radius R = ri, r > 0, i2 = −1 and φ 82

satisfies 83
π

2
< φ <

3π

4
. (13)

Therefore, the equation (9) transforms into 84

2 cos φx2 + 2 cos φy2 = −r2. (14)

By calculations similar to Case (A), but considering that R is an imaginary number, we 85

obtain that the circle k1 with (13) has an imaginary length (11). 86

3.2. Area of a circle with respect g̃ 87

For Case (A) we state the following 88

Theorem 3. The area A of the circle k1 with (10) and a radius R > 0 is 89

A = πR2. (15)

Proof. We denote by c̃os∠(u, S2u) and s̃in∠(u, S2u) the cosine and the sine of the angle
∠(u, S2u) with respect to g̃. Considering g̃(u, S2u) = 0 (presented in (8)), we have

c̃os∠(u, S2u) = 0,

and hence 90

s̃in∠(u, S2u) = 1. (16)

In the coordinate plane pxy, we construct a parallelogram with locus vectors dxu and
dySu. For its area A with respect to g̃ we get

dA =
√

g̃(dxu, dxu)
√

g̃(dySu, dySu)s̃in∠(u, S2u).

We apply (8) and (16) in the latter equality and find 91

dA = 2 cos φdxdy. (17)

We integrate (17) over the region D1 inside k1 and calculate 92

A = 2 cos φ
∫ ∫

D1

dxdy, (18)

with
D1 : 2 cos φx2 + 2 cos φy2 ≤ R2.

We substitute

x =
R√

2 cos φ
ρ cos t, y =

R√
2 cos φ

ρ sin t, t ∈ [0, 2π], ρ ∈ [0, 1],

and Jacobian △ = R2

2 cos φ ρ into the integral (18) and obtain (15). 93

Now, we consider Case (B). The circle k1 has an equation (14) with conditions (13) and 94

a radius R = ri, r > 0, i2 = −1. By calculations similar to Case (A), we find that the area 95

of k1 is given by (15). In this case, A has a negative value. 96
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3.3. Circulation and flux with respect to the metric g̃ 97

We consider a closed curve k1 in β1, given by 98

x = x(t), y = y(t), t ∈ [α, β], (19)

where x(α) = x(β), y(α) = y(β). 99

Let 100

F(x, y) = P(x, y)u + Q(x, y)S2u (20)

be a vector force field on the curve k1. 101

For the circulation C of a vector field F along a curve k we assume the following 102

definition 103

C =
∮

k
g̃(F, dv), (21)

where v is the radius vector of a point on k. 104

We denote by D1 the region inside k1. For both cases (A) and (B) of the circle (9) the 105

following statements are valid. 106

Theorem 4. The circulation C, done by the force (20) along the curve (19), is expressed by 107

C = 2 cos φ
∮

k1

(P(x, y)dx + Q(x, y)dy), (22)

where φ ∈
(

π
4 , π

2
)
∪
(

π
2 , 3π

4
)
. 108

Proof. Let v = xu + yS2u be the radius vector of a point on k1. By virtue of (8) and (20), 109

and bearing in mind dv = dxu + dyS2u, we obtain 110

g̃(F, dv) = 2 cos φ(P(x, y)dx + Q(x, y)dy). (23)

Evidently (22) follows from (19), (21) and (23). 111

We determine a vector w in Tp M by the equality 112

w =
1√

1 − 2 cos2 φ

(
cos φu − Su + cos φS2u

)
, (24)

where φ ∈
(

π
4 , π

2
)
∪
(

π
2 , 3π

4
)
. By using (1), (2) and (7) it is easy to verify that

g(w, u) = g(w, S2u) = 0, g(w, w) = 1.

We construct an orthonormal coordinate system Oxyz, such that u ∈ Ox, S2u ∈ Oy, w ∈ Oz. 113

We suppose that the curl of F, determined by (20), with respect to Oxyz is

curlF = (Qx − Py)w.

The flux T of the vector field curl F across the region D1 inside the curve k1 is given by 114

T =
∫ ∫

D1

g̃(curlF, w)dA. (25)

With the help of (8) and (24) we get g̃(w, w) = −2 cos φ. Then from (17) and (25) we state 115

the following 116

Theorem 5. The flux T of the vector field curlF across the region D1 inside (19) is expressed by 117

T = −4 cos2 φ
∫ ∫

D1

(Qx − Py)dxdy, (26)
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where φ ∈
(

π
4 , π

2
)
∪
(

π
2 , 3π

4
)
. 118

On the other hand, due to Green’s formula, we have∫ ∫
D
(Qx − Py)dxdy =

∮
k
(Pdx + Qdy).

Bearing in mind the above formula we obtain the following statement. 119

Theorem 6. The relation between the circulation (22) and the flux (26) is determined by

T = −2 cos φC.

Corollary 1. The relation between the circulation C and the flux T is 120

a) T = −C, in case φ = π
3 ; 121

b) T = C, in case φ = 2π
3 . 122

4. Circles in the 2-plane β2 123

Lemma 1. [6] Let β2 be the 2-plane spanned by unit vectors u and Su. The system of vectors 124

{e1, e2}, determined by the equalities 125

e1 =
1√

2(1 + cos φ)
(u + Su), e2 =

1√
2(1 − cos φ)

(−u + Su), (27)

is an orthonormal basis of β2 with respect to g. 126

The coordinate system pxy on β2, such that e1 is on the axis px and e2 is on the axis 127

py, is orthonormal. Due to (8) we obtain that the system {e1, e2} satisfies the following 128

equalities: 129

g̃(e1, e1) =
2 cos φ + 1
1 + cos φ

, g̃(e2, e2) =
2 cos φ − 1
1 − cos φ

, g̃(e1, e2) = 0. (28)

A circle k2 in β2 centered at the origin p, with respect to g̃ on (M, g, S), is defined by 130

(5). The equation of k2 with respect to pxy is obtained in the following 131

Theorem 7. [6] Let g̃ be the associated metric on (M, g, S) and let β2 = {u, Su} be a 2-plane in 132

Tp M with an orthonormal basis (27). If pxy is a coordinate system such that e1 ∈ px, e2 ∈ py, then 133

the equation of the circle (5) in β2 is given by 134

2 cos φ + 1
1 + cos φ

x2 +
2 cos φ − 1
1 − cos φ

y2 = R2. (29)

The curve k2, determined by (29), is an ellipse in terms of g if: 135

Case (A) φ ∈
(

π
4 , π

3
)

and R2 > 0; 136

Case (B) φ ∈
( 2π

3 , 3π
4
)

and R2 < 0. 137

Firstly, we consider Case (A). The circle (5) has a radius R > 0 and φ satisfies 138

π

4
< φ <

π

3
. (30)

Theorem 8. The circle k2 with (30) and a radius R > 0 has a length 139

L = 2πR. (31)
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Proof. The radius vector v of an arbitrary point on the curve k2 is v = xe1 + ye2. Then
dv = dxe1 + dye2 is a tangent vector on k2. The length L of k2 with respect to g̃ is

dL =
√

g̃(dv, dv).

From (28) we find

g̃(dv, dv) =

√
2 cos φ + 1
1 + cos φ

dx2 +
2 cos φ − 1
1 − cos φ

dy2.

Then we obtain 140

L =
∮

k2

√
2 cos φ + 1
1 + cos φ

dx2 +
2 cos φ − 1
1 − cos φ

dy2. (32)

We substitute

x = R

√
1 + cos φ

2 cos φ + 1
cos t, y = R

√
1 − cos φ

2 cos φ − 1
sin t, t ∈ [0, 2π]

into (32) and get

L =
∫ 2π

0

√
R2 sin2 t + R2 cos2 tdt,

which implies (31). 141

Now, we consider Case (B). The circle k2 has a radius R = ri, r > 0, i2 = −1 and φ 142

satisfies 143
2π

3
< φ <

3π

4
. (33)

By calculations similar to Case (A), but taking into account that R is an imaginary number, 144

we find that the circle k2 with (33) has an imaginary length (31). 145

4.1. Area of a circle with respect g̃ 146

For Case (A) we state the following 147

Theorem 9. The area A of the circle k2 with (30) and radius R > 0 is 148

A = πR2. (34)

Proof. Let us denote θ = ∠(e1, e2). The cosine of θ with respect to g̃ is

c̃osθ =
g̃(e1, e2)√

g̃(e1, e1)
√

g̃(e2, e2)
.

Then, using (28), we get c̃osθ = 0, which implies 149

s̃inθ = 1. (35)

In the coordinate plane pxy, we construct a parallelogram with locus vectors dxe1 and
dye2. For its area A with respect to g̃ we get

dA =
√

g̃(dxe1, dxe1)
√

g̃(dye2, dye2)s̃inθ.

We apply (28) and (35) in the above equality and get 150

dA =

√
4 cos2 φ − 1

sin φ
dxdy. (36)
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We integrate (36) over the region D2 inside k2 and calculate 151

A =

√
4 cos2 φ − 1

sin φ

∫ ∫
D2

dxdy, (37)

with
D2 :

2 cos φ + 1
1 + cos φ

x2 +
2 cos φ − 1
1 − cos φ

y2 ≤ R2.

We substitute

x =

√
1 + cos φ

2 cos φ + 1
Rρ cos t, y =

√
1 − cos φ

2 cos φ − 1
Rρ sin t, t ∈ [0, 2π], ρ ∈ [0, 1],

and Jacobian △ =
sin φ√

4 cos2 φ − 1
R2ρ into (37). Finally we get (34). 152

Now, we consider Case (B). The circle k2 has an equation (29) with conditions (33) and 153

a radius R = ri, r > 0, i2 = −1. By calculations analogous to the previous case, we obtain 154

that the area of k2 is given in (34). This area A has a negative value. 155

4.2. Circulation and flux 156

We consider a closed curve k2 in β2, given by 157

x = x(t), y = y(t), t ∈ [α, β], (38)

where x(α) = x(β), y(α) = y(β). 158

Let 159

F(x, y) = P(x, y)e1 + Q(x, y)e2 (39)

be a vector force field on the curve k2. 160

We denote by D2 the region inside k2. For both cases (A) and (B) of the ellipse (29) the 161

following statements are valid. 162

Theorem 10. The circulation C done by the force (39) along the curve (38) is expressed by 163

C =
∮

k2

(
2 cos φ + 1
1 + cos φ

P(x, y)dx +
2 cos φ − 1
1 − cos φ

Q(x, y)dy
)

, (40)

where φ ∈
(

π
3 , π

4
)
∪
( 2π

3 , 3π
4
)
. 164

Proof. For the circulation C of a vector force field F acting along the curve (38) we use (21), 165

where v = xe1 + ye2 is the radius vector of a point on k2. Therefore we have 166

C =
∮

k2

g̃(F, dv), (41)

with a tangent vector dv = dxe1 + dye2 on k2. Then, by virtue of (28) and (39), we obtain 167

g̃(F, dv) =
(

2 cos φ + 1
1 + cos φ

P(x, y)dx +
2 cos φ − 1
1 − cos φ

Q(x, y)dy
)

. (42)

Hence (38), (41) and (42) imply (40). 168

Theorem 11. The flux T of the vector field curlF across the region D2 inside the curve (38) is 169

expressed by 170

T = −2 cot3 φ
√

4 cos2 φ − 1
∫ ∫

D2

(Qx − Py)dxdy, (43)
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where φ ∈
(

π
3 , π

4
)
∪
( 2π

3 , 3π
4
)
. 171

Proof. We determine a vector w in Tp M by the equality 172

w =
1

sin φ
√

1 − 2 cos2 φ

(
cos2 φu − (cos φ)Su + sin2 φS2u

)
, (44)

where φ ∈
(

π
3 , π

4
)
∪
( 2π

3 , 3π
4
)
. Using (1), (2), (7) and (27) we verify that

g(w, e1) = g(w, e2) = 0, g(w, w) = 1.

The coordinate system Oxyz, such that e1 ∈ Ox, e2 ∈ Oy, w ∈ Oz is orthonormal. 173

We obtain the curl of F, determined by (39), using the equality curlF = (Qx − Py)w. 174

For the flux T of the vector field curl F across the region D2 inside the curve (38) we have 175

T =
∫ ∫

D2

g̃(curlF, w)dA. (45)

With the help of (28) and (44) we calculate

g̃(w, w) = −2 cos3 φ

sin2 φ
.

Then, from (36) and (45), it follows (43). 176

Now, we introduce the following notations: 177

c1 =
2 cos φ + 1
1 + cos φ

∮
k2

Pdx, c2 =
2 cos φ − 1
1 − cos φ

∮
k2

Qdy. (46)

On the other hand, due to Green’s formula, we have∫ ∫
D

Pydxdy = −
∮

k
Pdx,

∫ ∫
D

Qxdxdy =
∮

k
Qdy.

Bearing in mind the latter equalities we obtain the following statement. 178

Theorem 12. The relation between the circulation (40) and the flux (43) is determined by

T = −2 cot3 φ
(
(1 + cos φ)

√
2 cos φ − 1
2 cos φ + 1

c1 + (1 − cos φ)

√
2 cos φ + 1
2 cos φ − 1

c2

)
,

where c1 and c2 are given in (46). 179
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