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Abstract: Our research is in the tangent space of a point on a 4-dimensional Riemannian manifold.

Besides the positive definite metric, the manifold is endowed with a tensor structure of type (1, 1),

whose fourth power is minus the identity. Both structures are compatible and they define an indefinite

metric on the manifold. With the help of the indefinite metric we determine a circle in different

2-planes in the tangent space on the manifold, we also calculate the length and area of the circle. On a

smooth closed curve such as a circle, we define a vector force field. Further, we obtain the circulation

done by the vector force field along the curve, as well as the flux of the curl of this vector force field

across the curve. Finally, we find a relation between these two values, which is an analogue of the

well known Green’s formula in the Euclidean space.

Keywords: Riemannian manifold; indefinite metric tensor; length; area; Green’s formula

MSC: 53B30; 53A04; 26B15; 26B20

1. Introduction

If k is a simple closed curve in a plane, then it surrounds some region in the plane. Green’s

theorem transforms the line integral around k into a double integral over the region inside k. In physics,

it gives a relationship between the circulation C =
∮

k F.ds of the vector force field F around the path k

and the flux, done by curl F, across the region inside k.

Green’s theorem is a special case of Stokes’ theorem. Both theorems are widely used during the

study of electric and magnetic fields. The modern approach to these theorems on manifolds using

differential forms is exhibited, for example, in [2,3,9,12,13]. A theorem similar to the theorem of Green,

in a special 2-plane of the tangent space on a 3-dimensional Riemannian manifold with circulant

structures, is obtained in [5].

We consider a 4-dimensional Riemannian manifold M with an additional tensor field S of type

(1, 1), whose fourth power is minus the identity. The structure S is compatible with the metric g such

that an isometry is induced in every tangent space Tp M on M. Both structures g and S define an

indefinite metric g̃ [4]. The metric g̃ determines space-like, isotropic and time-like vectors in Tp M. In

special 2-planes βi of Tp M, constructed on space-like and time-like vectors, we consider circles ki with

respect to g̃. We calculate their length and area (with respect to g̃), which in some cases are imaginary

or negative numbers. It turns out that these measures are the same as in the Euclidean space. We note

that some problems related to circles, their length or area, considered in terms of indefinite metrics, are

given in [1,7,8,10,11]. Finally, we obtain analogues of Green’s theorem that give a relation between

circulation of the vector force field F around a closed curve (in particular a circle) ki in βi and the flux,

done by the curl of F, across the region inside ki.

The paper is organized as follows. In Section 2, we give some facts, definitions and statements,

which are necessary for the present considerations. Some of them are obtained in [4], [6] and [14].
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In Section 3, we introduce a special 2-plane β1 of Tp M and determine an equation of a circle k1 with

respect to g̃. In Subsections 3.1 and 3.2 we calculate the length and the area of k1. In Subsection 3.3, we

find the circulation of a vector force field F around smooth closed curve k1 and the flux, done by the

curl of F, across the region inside k1. In Section 4, we introduce a 2-plane β2 of Tp M and determine an

equation of a circle k2 with respect to g̃. Further we calculate the length and the area of k2. We get the

circulation of a vector force field F around a smooth closed curve k2 and the flux, done by the curl of F,

across the region inside k2. We find a relationship between the circulation and the flux in both cases.

All values obtained in Sections 3 and Sections 4 are calculated with respect to g̃.

2. Preliminaries

We consider a 4-dimensional Riemannian manifold M with an additional tensor structure S of

type (1, 1). In a local coordinate system (x1, x2, x3, x4) the coordinates of S form the following circulant

matrix:

S =




0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0


 .

Thus we have

S4 = −id. (1)

Let g be a positive definite metric on M, which satisfies the equality

g(Su, Sv) = g(u, v), u, v ∈ XM. (2)

Such a manifold (M, g, S) is introduced in [4].

Further u, v, w, e1, e2 will stand for arbitrary smooth vector fields on M or arbitrary vectors in the

tangent space Tp M, p ∈ M.

Let the vector u induce a basis of type {S3u, S2u, Su, u}. In [4] it is called an S-basis and the

following statements about the angles between the basis vectors are obtained.

(i) The angle ϕ, determined by ϕ = ∠(u, Su), satisfies inequalities

π

4
< ϕ <

3π

4
.

(ii) For the angles between the basis vectors we have

∠(u, Su) = ∠(Su, S2u) = ∠(S2u, S3u) = ϕ,

∠(S3u, u) = π − ϕ, ∠(u, S2u) = ∠(Su, S3u) = π
2 . (3)

The associated metric g̃ on (M, g, S), determined by

g̃(u, v) = g(u, Sv) + g(Su, v), (4)

is necessary indefinite ([4]). Consequently, for an arbitrary vector v it is valid:

g̃(v, v) = 2g(v, Sv) = R2, R2 ∈ R. (5)

The norm of every vector u and the cosine of ϕ are given by the following equalities:

‖u‖ =
√

g(u, u), cos ϕ =
g(u, Su)

g(u, u)
. (6)
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In rest of this paper, we assume that ‖u‖ = 1 and using (6) we have

cos ϕ = g(u, Su). (7)

Due to (2), (4), (6) and (7) we state that the normal basis {S3u, S2u, Su, u} satisfies the following

equalities:

g̃(u, u) = g̃(Su, Su) = g̃(S2u, S2u) = g̃(S3u, S3u) = 2 cos ϕ,

g̃(u, Su) = g̃(Su, S2u) = g̃(S2u, S3u) = −g̃(S3u, u) = 1.

g̃(u, S2u) = g̃(Su, S3u) = 0.

(8)

A circle k in a 2-plane of Tp M of a radius R centered at the origin p ∈ Tp M, with respect to the

associated metric g̃ on (M, g, S), is determined by (5), where v is the radius vector of an arbitrary point

on k.

Farther, we consider circles k1 and k2, and the regions D1 and D2 inside them, in two different

subspaces β1 and β2, spanned by 2-planes {u, S2u} and {u, Su}, respectively.

3. Circles in the 2-plane β1

Because of (3), it is true that the vectors u and S2u form an orthonormal basis of β1. The coordinate

system pxy on β1, such that u is on the axis px and S2u is on the axis py, is an orthonormal coordinate

system of β1.

A circle k1 in β1 centered at the origin p, with respect to g̃ on (M, g, S), is defined by (5). The

equation of k1 with respect to pxy is obtained by the following

Theorem 1. [6] Let g̃ be the associated metric on (M, g, S) and let β1 be a 2-plane in Tp M with a basis

{u, S2u}. If pxy is a coordinate system such that u ∈ px, S2u ∈ py, then the equation of the circle (5) in β1 is

given by

2 cos ϕx2 + 2 cos ϕy2 = R2. (9)

The curve k1, determined by (9), is a circle in terms of g if:

Case (A) ϕ ∈
(

π
4 , π

2

)
and R2

> 0;
Case (B) ϕ ∈

(
π
2 , 3π

4

)
and R2

< 0.

3.1. Length of a circle with respect to g̃

Firstly, we consider Case (A). The circle (5) has a radius R > 0 and ϕ satisfies

π

4
< ϕ <

π

2
. (10)

Theorem 2. The circle k1 with (10) and a radius R > 0 has a length

L = 2πR. (11)

Proof. Let v = xu + yS2u be a radius vector of an arbitrary point on the circle k1. Then dv =

dxu + dyS2u is a tangent vector on k1. The length L of k1 with respect to g̃ is determined as usual by

dL =
√

g̃(dv, dv).

Then, using (8) and (9), we obtain

L =
∮

k1

√
2 cos ϕdx2 + 2 cos ϕdy2. (12)
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We substitute

x =
R√

2 cos ϕ
cos t, y =

R√
2 cos ϕ

sin t, t ∈ [0, 2π],

into (12) and find (11).

Now, we consider Case (B). The circle k1 has a radius R = ri, r > 0, i2 = −1 and ϕ satisfies

π

2
< ϕ <

3π

4
. (13)

Therefore, the equation (9) transforms into

2 cos ϕx2 + 2 cos ϕy2 = −r2. (14)

By calculations similar to Case (A), but considering that R is an imaginary number, we obtain that the

circle k1 with (13) has an imaginary length (11).

3.2. Area of a circle with respect g̃

For Case (A) we state the following

Theorem 3. The area A of the circle k1 with (10) and a radius R > 0 is

A = πR2. (15)

Proof. We denote by c̃os∠(u, S2u) and s̃in∠(u, S2u) the cosine and the sine of the angle ∠(u, S2u) with

respect to g̃. Considering g̃(u, S2u) = 0 (presented in (8)), we have

c̃os∠(u, S2u) = 0,

and hence

s̃in∠(u, S2u) = 1. (16)

In the coordinate plane pxy, we construct a parallelogram with locus vectors dxu and dySu. For

its area A with respect to g̃ we get

dA =
√

g̃(dxu, dxu)
√

g̃(dySu, dySu)s̃in∠(u, S2u).

We apply (8) and (16) in the latter equality and find

dA = 2 cos ϕdxdy. (17)

We integrate (17) over the region D1 inside k1 and calculate

A = 2 cos ϕ

∫ ∫

D1

dxdy, (18)

with

D1 : 2 cos ϕx2 + 2 cos ϕy2 ≤ R2.

We substitute

x =
R√

2 cos ϕ
ρ cos t, y =

R√
2 cos ϕ

ρ sin t, t ∈ [0, 2π], ρ ∈ [0, 1],

and Jacobian △ = R2

2 cos ϕ ρ into the integral (18) and obtain (15).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2023                   doi:10.20944/preprints202303.0223.v1

https://doi.org/10.20944/preprints202303.0223.v1


5 of 10

Now, we consider Case (B). The circle k1 has an equation (14) with conditions (13) and a radius

R = ri, r > 0, i2 = −1. By calculations similar to Case (A), we find that the area of k1 is given by (15).

In this case, A has a negative value.

3.3. Circulation and flux with respect to the metric g̃

We consider a closed curve k1 in β1, given by

x = x(t), y = y(t), t ∈ [α, β], (19)

where x(α) = x(β), y(α) = y(β).

Let

F(x, y) = P(x, y)u + Q(x, y)S2u (20)

be a vector force field on the curve k1.

For the circulation C of a vector field F along a curve k we assume the following definition

C =
∮

k
g̃(F, dv), (21)

where v is the radius vector of a point on k.

We denote by D1 the region inside k1. For both cases (A) and (B) of the circle (9) the following

statements are valid.

Theorem 4. The circulation C, done by the force (20) along the curve (19), is expressed by

C = 2 cos ϕ

∮

k1

(P(x, y)dx + Q(x, y)dy), (22)

where ϕ ∈
(

π
4 , π

2

)
∪
(

π
2 , 3π

4

)
.

Proof. Let v = xu + yS2u be the radius vector of a point on k1. By virtue of (8) and (20), and bearing

in mind dv = dxu + dyS2u, we obtain

g̃(F, dv) = 2 cos ϕ (P(x, y)dx + Q(x, y)dy) . (23)

Evidently (22) follows from (19), (21) and (23).

We determine a vector w in Tp M by the equality

w =
1√

1 − 2 cos2 ϕ

(
cos ϕu − Su + cos ϕS2u

)
, (24)

where ϕ ∈
(

π
4 , π

2

)
∪
(

π
2 , 3π

4

)
. By using (1), (2) and (7) it is easy to verify that

g(w, u) = g(w, S2u) = 0, g(w, w) = 1.

We construct an orthonormal coordinate system Oxyz, such that u ∈ Ox, S2u ∈ Oy, w ∈ Oz.

We suppose that the curl of F, determined by (20), with respect to Oxyz is

curlF = (Qx − Py)w.

The flux T of the vector field curl F across the region D1 inside the curve k1 is given by

T =
∫ ∫

D1

g̃(curlF, w)dA. (25)
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With the help of (8) and (24) we get g̃(w, w) = −2 cos ϕ. Then from (17) and (25) we state the following

Theorem 5. The flux T of the vector field curlF across the region D1 inside (19) is expressed by

T = −4 cos2 ϕ

∫ ∫

D1

(Qx − Py)dxdy, (26)

where ϕ ∈
(

π
4 , π

2

)
∪
(

π
2 , 3π

4

)
.

On the other hand, due to Green’s formula, we have

∫ ∫

D
(Qx − Py)dxdy =

∮

k
(Pdx + Qdy).

Bearing in mind the above formula we obtain the following statement.

Theorem 6. The relation between the circulation (22) and the flux (26) is determined by

T = −2 cos ϕC.

Corollary 1. The relation between the circulation C and the flux T is

a) T = −C, in case ϕ = π
3 ;

b) T = C, in case ϕ = 2π
3 .

4. Circles in the 2-plane β2

Lemma 1. [6] Let β2 be the 2-plane spanned by unit vectors u and Su. The system of vectors {e1, e2},

determined by the equalities

e1 =
1√

2(1 + cos ϕ)
(u + Su), e2 =

1√
2(1 − cos ϕ)

(−u + Su), (27)

is an orthonormal basis of β2 with respect to g.

The coordinate system pxy on β2, such that e1 is on the axis px and e2 is on the axis py, is

orthonormal. Due to (8) we obtain that the system {e1, e2} satisfies the following equalities:

g̃(e1, e1) =
2 cos ϕ + 1

1 + cos ϕ
, g̃(e2, e2) =

2 cos ϕ − 1

1 − cos ϕ
, g̃(e1, e2) = 0. (28)

A circle k2 in β2 centered at the origin p, with respect to g̃ on (M, g, S), is defined by (5). The

equation of k2 with respect to pxy is obtained in the following

Theorem 7. [6] Let g̃ be the associated metric on (M, g, S) and let β2 = {u, Su} be a 2-plane in Tp M with an

orthonormal basis (27). If pxy is a coordinate system such that e1 ∈ px, e2 ∈ py, then the equation of the circle

(5) in β2 is given by
2 cos ϕ + 1

1 + cos ϕ
x2 +

2 cos ϕ − 1

1 − cos ϕ
y2 = R2. (29)

The curve k2, determined by (29), is an ellipse in terms of g if:

Case (A) ϕ ∈
(

π
4 , π

3

)
and R2

> 0;
Case (B) ϕ ∈

(
2π
3 , 3π

4

)
and R2

< 0.

Firstly, we consider Case (A). The circle (5) has a radius R > 0 and ϕ satisfies

π

4
< ϕ <

π

3
. (30)
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Theorem 8. The circle k2 with (30) and a radius R > 0 has a length

L = 2πR. (31)

Proof. The radius vector v of an arbitrary point on the curve k2 is v = xe1 + ye2. Then dv = dxe1 +dye2

is a tangent vector on k2. The length L of k2 with respect to g̃ is

dL =
√

g̃(dv, dv).

From (28) we find

g̃(dv, dv) =

√
2 cos ϕ + 1

1 + cos ϕ
dx2 +

2 cos ϕ − 1

1 − cos ϕ
dy2.

Then we obtain

L =
∮

k2

√
2 cos ϕ + 1

1 + cos ϕ
dx2 +

2 cos ϕ − 1

1 − cos ϕ
dy2. (32)

We substitute

x = R

√
1 + cos ϕ

2 cos ϕ + 1
cos t, y = R

√
1 − cos ϕ

2 cos ϕ − 1
sin t, t ∈ [0, 2π]

into (32) and get

L =
∫ 2π

0

√
R2 sin2 t + R2 cos2 tdt,

which implies (31).

Now, we consider Case (B). The circle k2 has a radius R = ri, r > 0, i2 = −1 and ϕ satisfies

2π

3
< ϕ <

3π

4
. (33)

By calculations similar to Case (A), but taking into account that R is an imaginary number, we find

that the circle k2 with (33) has an imaginary length (31).

4.1. Area of a circle with respect g̃

For Case (A) we state the following

Theorem 9. The area A of the circle k2 with (30) and radius R > 0 is

A = πR2. (34)

Proof. Let us denote θ = ∠(e1, e2). The cosine of θ with respect to g̃ is

c̃osθ =
g̃(e1, e2)√

g̃(e1, e1)
√

g̃(e2, e2)
.

Then, using (28), we get c̃osθ = 0, which implies

s̃inθ = 1. (35)

In the coordinate plane pxy, we construct a parallelogram with locus vectors dxe1 and dye2. For

its area A with respect to g̃ we get

dA =
√

g̃(dxe1, dxe1)
√

g̃(dye2, dye2)s̃inθ.
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We apply (28) and (35) in the above equality and get

dA =

√
4 cos2 ϕ − 1

sin ϕ
dxdy. (36)

We integrate (36) over the region D2 inside k2 and calculate

A =

√
4 cos2 ϕ − 1

sin ϕ

∫ ∫

D2

dxdy, (37)

with

D2 :
2 cos ϕ + 1

1 + cos ϕ
x2 +

2 cos ϕ − 1

1 − cos ϕ
y2 ≤ R2.

We substitute

x =

√
1 + cos ϕ

2 cos ϕ + 1
Rρ cos t, y =

√
1 − cos ϕ

2 cos ϕ − 1
Rρ sin t, t ∈ [0, 2π], ρ ∈ [0, 1],

and Jacobian △ =
sin ϕ√

4 cos2 ϕ − 1
R2ρ into (37). Finally we get (34).

Now, we consider Case (B). The circle k2 has an equation (29) with conditions (33) and a radius

R = ri, r > 0, i2 = −1. By calculations analogous to the previous case, we obtain that the area of k2 is

given in (34). This area A has a negative value.

4.2. Circulation and flux

We consider a closed curve k2 in β2, given by

x = x(t), y = y(t), t ∈ [α, β], (38)

where x(α) = x(β), y(α) = y(β).

Let

F(x, y) = P(x, y)e1 + Q(x, y)e2 (39)

be a vector force field on the curve k2.

We denote by D2 the region inside k2. For both cases (A) and (B) of the ellipse (29) the following

statements are valid.

Theorem 10. The circulation C done by the force (39) along the curve (38) is expressed by

C =
∮

k2

(
2 cos ϕ + 1

1 + cos ϕ
P(x, y)dx +

2 cos ϕ − 1

1 − cos ϕ
Q(x, y)dy

)
, (40)

where ϕ ∈
(

π
3 , π

4

)
∪
(

2π
3 , 3π

4

)
.

Proof. For the circulation C of a vector force field F acting along the curve (38) we use (21), where

v = xe1 + ye2 is the radius vector of a point on k2. Therefore we have

C =
∮

k2

g̃(F, dv), (41)

with a tangent vector dv = dxe1 + dye2 on k2. Then, by virtue of (28) and (39), we obtain

g̃(F, dv) =

(
2 cos ϕ + 1

1 + cos ϕ
P(x, y)dx +

2 cos ϕ − 1

1 − cos ϕ
Q(x, y)dy

)
. (42)
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Hence (38), (41) and (42) imply (40).

Theorem 11. The flux T of the vector field curlF across the region D2 inside the curve (38) is expressed by

T = −2 cot3 ϕ
√

4 cos2 ϕ − 1
∫ ∫

D2

(Qx − Py)dxdy, (43)

where ϕ ∈
(

π
3 , π

4

)
∪
(

2π
3 , 3π

4

)
.

Proof. We determine a vector w in Tp M by the equality

w =
1

sin ϕ
√

1 − 2 cos2 ϕ

(
cos2 ϕu − (cos ϕ)Su + sin2 ϕS2u

)
, (44)

where ϕ ∈
(

π
3 , π

4

)
∪
(

2π
3 , 3π

4

)
. Using (1), (2), (7) and (27) we verify that

g(w, e1) = g(w, e2) = 0, g(w, w) = 1.

The coordinate system Oxyz, such that e1 ∈ Ox, e2 ∈ Oy, w ∈ Oz is orthonormal.

We obtain the curl of F, determined by (39), using the equality curlF = (Qx − Py)w. For the flux

T of the vector field curl F across the region D2 inside the curve (38) we have

T =
∫ ∫

D2

g̃(curlF, w)dA. (45)

With the help of (28) and (44) we calculate

g̃(w, w) = −
2 cos3 ϕ

sin2 ϕ
.

Then, from (36) and (45), it follows (43).

Now, we introduce the following notations:

c1 =
2 cos ϕ + 1

1 + cos ϕ

∮

k2

Pdx, c2 =
2 cos ϕ − 1

1 − cos ϕ

∮

k2

Qdy. (46)

On the other hand, due to Green’s formula, we have

∫ ∫

D
Pydxdy = −

∮

k
Pdx,

∫ ∫

D
Qxdxdy =

∮

k
Qdy.

Bearing in mind the latter equalities we obtain the following statement.

Theorem 12. The relation between the circulation (40) and the flux (43) is determined by

T = −2 cot3 ϕ
(
(1 + cos ϕ)

√
2 cos ϕ − 1

2 cos ϕ + 1
c1 + (1 − cos ϕ)

√
2 cos ϕ + 1

2 cos ϕ − 1
c2

)
,

where c1 and c2 are given in (46).

Author Contributions: “Conceptualization, Razpopov, D.; Dzhelepov, G.; Dokuzova, I.; methodology, Razpopov,
D.; Dzhelepov, G.; Dokuzova, I.; investigation, Razpopov, D.; Dzhelepov, G.; Dokuzova, I.; writing—original draft
preparation, Razpopov, D.; Dzhelepov, G.; Dokuzova, I.; writing—review and editing, Razpopov, D.; Dzhelepov,
G.; Dokuzova, I.; funding acquisition, Razpopov, D.; Dzhelepov, G. All authors have read and agreed to the
published version of the manuscript.”.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2023                   doi:10.20944/preprints202303.0223.v1

https://doi.org/10.20944/preprints202303.0223.v1


10 of 10

Funding: This research was partially funded by project 17-12 ”Support for publishing activities”, Agricultural
University of Plovdiv, Bulgaria

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: MDPI Research Data Policies at https://www.mdpi.com/ethics.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Abe N.; Nakanishi, Y.; Yamaguchi, S. Circles and spheres in pseudo-Riemannian geometry, Aequationes Math.

1990, 39, 134–145.

2. Boothby, W. M. An Introduction to Differentiable Manifolds and Riemannian Geometry, Second edition, Pure and

Applied Mathematics, 120. Academic Press, Inc., Orlando FL, 1986.

3. do Carmo, M. P. Differential Forms and Applications. Integration on Manifolds, Universitext, Springer:

Berlin/Heidelberg, 2012.

4. Dokuzova, I.; Razpopov, D. Four-dimensional almost Einstein manifolds with skew-circulant structures, J.

Geom. 2020, 111, Paper No. 9, 18 pp.

5. Dzhelepov G., On an indefinite metric on a 3-dimensional Riemannian manifold, Int J. Geom. 2022, 11, 12–19.

6. Dzhelepov, G.; Dokuzova I.; Razpopov D. Spheres and circles with respect to an

indefinite metric of a 4-dimensional Riemannian manifold with skew-circulant structures,

https://doi.org/10.48550/arXiv.2301.03675.

7. Holmes, R. D.; Thompson, A. N-dimensional area and content in Minkowski spaces, Pacific J. Math. 1979, 85,

77–110.

8. Ikawa, T. On curves and submanifolds in an indefinite-Riemannian manifold, Tsukuba J. Math. 1985, 9,

353–371.

9. Gupta, V. G.; Sharma, P. Differential forms and its application, Int. J. Math. Anal. (Ruse) 2008, 2, 1051–1060.

10. Lopez, R. Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom.

2014, 7, 44–107.

11. Mustafaev, Z. The ratio of the length of the unit circle to the area of the unit disk in Minkowski planes, Proc.

American Math. Soc. 2005, 133, 1231–1237.

12. Parkinson, Ch. The elegance of differential forms in vector calculus and electromagnetics, MSc Thesis,

University of Chester, United Kingdom, 2014.

13. Petrello, R. Stokes’ theorem, MSc Thesis, California State University, USA, 1998.

14. Razpopov, D.; Dokuzova, I. A Riemannian manifold with skew-circulant structures and an associated locally

conformal Kähler manifold, Novi Sad J. Math. 2023 (accepted).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2023                   doi:10.20944/preprints202303.0223.v1

https://www.mdpi.com/ethics
https://doi.org/10.20944/preprints202303.0223.v1

	Introduction
	Preliminaries
	Circles in the 2-plane 1
	Length of a circle with respect to 
	Area of a circle with respect 
	Circulation and flux with respect to the metric 

	Circles in the 2-plane 2
	Area of a circle with respect 
	Circulation and flux

	References

