Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Playing Algorithms: Finite State Machines with Datapath in
Music-Domain Visual Languages

Tiago Fernandes Tavares and José Fornari Novo Junior

ABSTRACT

Music-domain visual programming languages (VPLs) have shown to be Turing com-
plete. However, the common lack of built-in flow control structures can obstruct
using VPLs implementing general-purpose algorithms, which harms the direct use
of algorithms and algorithm theory in art creation processes using VPLs. In this
article, we show how to systematically implement general-purpose algorithms in
music-domain visual languages by using the Finite State Machines with Datapath
computation model. The results expose a finite state machine and a set of internal
state variables that walk paths whose speed can be controlled using a metronome
ticks and whose path depends on the initial conditions of the algorithm. These ele-
ments can be further mapped to music elements according to the musician’s inten-
tions. We demonstrate this technique by implementing Euclid’s Greatest Common
Divider algorithm and using it to control high-level music elements in an implemen-
tation of Terry Riley’s In C; and to control audio synthesis parameters in a FM
synthesizer.

1. Introduction

Visual programming languages (VPLs) such as Pure Data [1] and Max/MSP [2] are
domain-specific languages (DSLs) used for developing computer-based audio process-
ing. Also, they can provide audiovisual processing capabilities through libraries such
as Gem [3] and Jitter [4]. These languages have been used in live performances due to
their real-time visual operation, as well as in audio-related research for music analy-
sis [5], digital musical instruments [6], computer-assisted musical composition [7] and
academic courses on musical interactions.

VPLs enforce a programming paradigm based on connecting processing blocks. Each
block performs a transformation to its input, and some blocks can immediately be used
as a human-computer interface, similarly to physical multimedia equipment. This sim-
ilarity enables learning programming languages by association to other multimedia
processing environments, which facilitates using algorithms in real-time music compo-
sition.

Algorithms have been widely used in the music domain to systematically create
variations, as it is the case of the pre-XX Century Musikalisches Wiirfelspiel (Music
Dice Games) [8] (from which the one attributed to Mozart is the most famous) and
John Cage’s Music of Changes [9]. Also, they can be used as basis for musical com-
position, as in Xenaki’s Formalized Music [10]. More recently, Machine Learning [11]
algorithms have been used to generate models able to compose new music based on
patterns found on existing musical data. However, these algorithms generate musical

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202303.0182.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

X

£9 97

+ 3] *9
3 T
= 5=' + 10
= L
364.8 A9

Figure 1.: Example patch in Pure Data. Objects receive inputs in their inlets and
yield outputs in their outlets. Some objects can be used as buttons, sliders, toggles or
number visualizers.

sequences as a monolithic black box, and do not provide the human composer with
control regarding the automated composition [12].

Algorithms and other formal representations can help to analyze, clarify, and cre-
atively manipulate several aspects of musical structures [13]. However, they can be in-
sufficient to represent the various nuances that composers can embed into their pieces
based on their creative intentions [13], which leads composers to manually change the
algorithmic outcomes [14]. For this reason, algorithms are often used to generate short
excerpts within larger pieces [7], or as frameworks that can suggest musical elements
that are later changed by the composer [10, 15].

Arguably, there is a subtle limit between making music with algorithms and soni-
fying algorithms [16]. Making music is linked to a specific artistic intent, whereas
sonifying simply means proposing auditory displays. However, because there can be
some artistic intent in sonification, and some level of auditory display in making music,
both activities are often confused.

Some initiatives, for example, explore the sonification of computer language con-
structs with an aim on facilitating debugging [17, 18, 19]. As observed later, this same
concept can be further expanded to general-purpose sonifications [19]. Also, the soni-
fication of more complex software systems, like operating systems [20], can generate
musically interesting sounds, even if its initial intent is an auditory display.

This intersection between sonification, music composition and computer constructs
has also lead to the creation of Pulsed Melodic Affective Processing [21]. This technique
consists on manually mapping desired affective outcomes to music composition coun-
terparts using fuzzy logic gates. Hence, this mapping can be interpreted as memoryless
logic, that is, the constructs are similar to the logic gates used in digital design.

In this article, we analyze a seldom explored method to implement algorithms in
music-domain VPLs, namely the Finite State Machine with Datapath (FSMD) [22],
which is a well-known structure used in digital system design [23]. It allows the sys-
tematic and direct implementation of algorithms in VPLs, which in turn allows the
artistic exploitation of the Turing-completeness of exposed machines whose parts can
be mapped onto musical elements according to the musician’s intentions.

The Finite State Machines (FSMs) within the FSMDs can be musically used sim-
ilarly to the Markov Chains [10], that is, each state is mapped to a discrete event.
However, the path through the FSM while executing an algorithm is deterministic.
This makes it possible both to repeat the same path (by executing the same algorithm
with the same parameters) and to create variations (by changing the algorithm’s pa-
rameters).

Simultaneously, the FSMD’s inner variables can be mapped to musically-relevant

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

aspects. They can be used to control continuous elements such as gains, filters, and
other audio timbre parameters. The inner variables are intertwined with the FSMs,
and, likewise, their behavior is deterministic for each set of algorithm parameters.

Exposing both the inner variables and the FSM allows jointly exploring both of these
sources for music control. This exploration is further facilitated by having the whole
structure within a single VPL, instead of importing external constructs. Henceforth,
although FSMD implementation can have a difficult learning curve, this structure can
foster a broad diversity of musical explorations.

This bridges a gap between the visual and imperative programming paradigms and
allows the use of use algorithms and algorithm theory in the process of producing
art with VPLs. Although imperative algorithms have been previously implemented in
VPLs [24], the approach described in this work is systematic, can be easily applied to
all algorithms expressed in the imperative paradigm, and, additionally, allows loops
and iterations to be synchronized with musical elements.

As discussed in Section 2, this method is based on changing the implicit synchro-
nization method in VPLs (using “hot” and “cold” inlets) to an explicit synchroniza-
tion method (using “bang” messages similarly to the “clock” border trigger in digital
circuits). This allows the creation of patches that operate upon request. They are com-
bined to generate finite state machines (FSMs) whose states change synchronously to
the input “bang” messages. Their behavior is similar to sequential logic blocks used in
digital design [23]. In addition, we extensively use the muz and demuz objects, which
can be found in the Zexy Pure Data library.

The FSM states control the data flow in a separate memory space, which is called
datapath. Likewise, the memory states are taken into account when changing the FSM
states. All of these structures are exposed and can be mapped to sound-related ele-
ments, thus leading to music composition based on the literal inner workings of these
algorithms. Although there are some FSM implementations that can be found online!,
we show how to implement the FSM directly in the VPL environment, which reduces
the dependency of externals.

We implemented the well-known Euclid’s Greatest Common Divider algorithm using
the FSMD and used it in two musical proposals, which are shown in Section 3. In the
first proposal, we control high-level musical structures in a minimalistic composition
[25]. In the second one, we control parameters in a FM synthesizer [26] in order to
generate different timbres.

The paradigm shift discussed in this article is a formally correct method to imple-
ment algorithms and it facilitates artistic applications of computer science theory. It
exposes the inner workings of the algorithm, which allows using both the the calcu-
lation processes and the final results as material for music making. This is especially
important in experimental algorithmic music and live coding, as it gives access to vast
exploration possibilities. These remarks are detailed in Section 4.

2. Implementing FSMDs

Previous work by Kraemer and Poepel [24] presented an analysis of the implementation
of Euclid’s Greatest Common Divider (GCD) algorithm in Pure Data. Their imple-
mentation yielded correct results, but resulted in a deep refactoring of the algorithm
aimed at transforming it to the data flow paradigm. They argue that this re-factoring

1For example, https://github.com/tiagosr/pdfsm.

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

was necessary due to paradigm translation difficulties related to the visual language.

First, Kraemer and Poepel [24] observe that the order of operations is related to
their visual position on screen, which can lead to inconsistencies that can be hard to
detect. Second, they state that variable value assignments have no immediate correlate
in Pure Data. In addition to that, we note the absence of explicit branch and loop
structures as another problem in VPLs.

In this section, we discuss a visual data flow programming techniques that aims to
overcome these problems. It is based in FSMD design tools and methods [22, 23]. The
remainder of this section is organized as follows. Subsection 2.1 presents a description
of the VSL blocks that can be used to overcome the problems pointed by Kraemer and
Poepel. After that, subsections 2.2 and 2.3 respectively discuss how to systematically
implement a finite state machine and a datapath. Lastly, Subsection 2.4 demonstrates
the paradigm shifting procedure using an implementation of Euclid’s GCD algorithm.

2.1. Elementary blocks

The programming paradigm problems pointed by Kraemer and Poepel [24] can be
solved using native Pure Data techniques. The problem related to the order of opera-
tions can be solved using the native Pure Data trigger object. The problem of variable
assignment is solved using the float object, which behaves similarly to D-type registers
[23]. They are both described in the remainder of this subsection.

2.1.1. Ezplicit Operation Precedence

Pure Data implements event-reactive objects, that is, objects that yield outputs upon
receiving an input. The output of an object can be routed to the input of another
one, as shown in Figure 1. Routing an output to two or more objects implicitly causes
parallel objects to be executed sequentially, in the same sequence that the connectors
were added.

Multiple-input Pure Data objects commonly use inlets with two different behaviors,
namely hot inlets and cold inlets. Hot inlets are those that trigger the output of an
object, and cold inlets only cause changes in the object’s inner state, storing it without
changing its output. Typically, the first (leftmost) inlet is hot while the others are cold.

This can lead to ambiguous situations, as the one shown in Figure 2. In this sit-
uation, the bang signal simultaneously triggers number messages, which means they
are executed according to their order of creation. This means that patches that look
strictly equal can have different outputs due to the hot-cold inlet behaviors.

N

3 3

F L7

INFT 4+ TN
I+ N

Figure 2.: Problem with using implicit order of operations in Pure Data. Changing
object creation order can change precedence and cause different behavior in the output.

Pure Data implements an object that solves this issue. The object is called trigger,

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

or simply t. It sequentially yields outputs in its outlets from right to left. Hence, the
precedence problem can be solved using the structure shown in Figure 3.

)

(o
(o

wr %
wr

IgnH ¢ AT+
T N1~

Figure 3.: Solution for the execution precedence problem using explicit operation prece-
dence.

2.1.2. Clock-Synchronous Variable Assignment

Values in Pure Data and Max/MSP can be used for audio and music control. They dif-
fer from a variable because changing them immediately changes the behavior of objects
further ahead in the processing chain. This can be a problem when implementing al-
gorithms because variables are often used to store intermediate values, hence changing
their behavior incurs in deep changes in the implementation, as observer by Kraemer
and Poepel [24].

This problem can be solved by using the float object? for synchronization. A float
object can receive values in its right inlet, but they only propagate to the output
when a bang message is received in the left inlet. This behavior is similar to a D-Flip-
Flop register in which the data bus corresponds to the right inlet and the clock input
corresponds to the left inlet [23].

The float object can be used to explicitly synchronize operations to a bang signal.
For such, the end of the operation chain is connected to the float object right inlet and
a bang signal is connected to its left inlet, as shown in the patch depicted in Figure 4.

inlet inlet |inlet
t bbb
0 0
I gr“jp
float
outlet

Figure 4.: Clock-synchronous operation for subtraction.

The patch shown in Figure 4 receives numbers as inputs in the second and third
inlets, which are stored as internal patch values. Upon receiving a bang message in the

20ther objects, such as int, can also be used for the same purpose.

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

first inlet, both numbers are propagated further, which updates the native Pure Data
subtraction operator. After these operations, the trigger object sends a bang message
to the float object, finally propagating the result to the outlet.

The techniques shown in this section allow both variable assignment and operation
execution to be synchronized to an external source of control. As a consequence, they
can be synchronized to a finite-state machine, as discussed in the next section.

2.2. Finite State Machines

A finite-state machine (FSM) is a computational model in which the computing ma-
chine has a finite number of states and only one of them is active at each time. A
synchronous FSM changes its state upon receiving a specific signal. The next state
(i.e., the state to which the machine will switch) is calculated as function of the current
state and the inputs of the machine, as shown in Figure 5.

Input

— |

Combinational Logic

lNext state

Current State

l

Output

Figure 5.: Functional blocks of a FSM.

FSMs can be displayed using a bubble diagram, as shown in Figure 6. This repre-
sentation highlights the inputs related to the transitions between states. For example,
in the bubble diagram shown in Figure 6, a clock signal in state SO with input 0 would
cause a change to state S2.

Another convenient representation for the FSM is a state transition table, as shown
in Table 1. This representation explicitly shows a function that calculates the next
state using the current state and the input.

The FSM can be implemented in Pure Data, as shown in Figure 7. For such, a float
object can be used as a state register. This memoryless logic can use separate branches
to implement each state’s behavior and a demultiplexer to select between them.

Figure 6.: Bubble diagram for a FSM.

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

Table 1.: Transition table for a FSM.

Current state | Input || Next state
S0 0 S2
S0 1 S1
S1 0 S0
S1 1 S2
S2 0 S1
S2 1 S0
State Register Combinational Logic (FSM control)
Clock r $0-fsm clock
tbb tbb r $0-curr state
s $0-fsm clock demux 0 1 2 Select state
r $0-next state
float State register SO S1 S2
% r $0-in r $0-in r $0-in
Iz
s $0-curr_state i1_§15 TL_§§5 TL‘—‘Ta
demux 0 1 demux G} Zdlemux ;
2 1 0 2 1 0
Input
input :L
float
s $0-in

s $0-next state

Figure 7.: Pure Data implementation of the FSM, showing the state register (light
gray), the input control (orange), and the transition implementation (blue).

In this implementation, a clock signal (in the top of the light gray box) triggers
the calculation of the next state. This calculation starts by using the a demultiplexer
(shown in white, commented as “select state”) to route the clock signal into the objects
related to the current state. After that, the next state is calculated using the manual
input and then routed to the state register inlet. Finally, the state register’s clock inlet
is dispatched and its value is updated.

The input signal can be used as a synchronous reset control by changing all state
transitions so that an input equal to 1 always makes the next state equal to the
machine’s initial state. This means that a reset signal equal to 1 forces the next state
to the initial one, whereas a 0 signal allows the machine to execute normally. In
addition to simply restarting, the synchronous reset device allows halting the FSM at
the initial state, which can be useful for musical control.

The FSM cannot store intermediate values, which prevents it from universally cal-
culating algorithms. This capability can be provided by using a set of structures called

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

datapath, as discussed in the next section.

2.3. Datapath

A datapath is a set of structures that allows logic and arithmetic operations to be
executed and their results stored. As shown in Figure 8, it consists of three layers. The
first one is an initial layer of operators, whose results are stored in the registers that
are in the second layer. The third layer takes values from the register and performs
operations whose results are yielded to the FSM control.

Select operation

— 1

Operators (data)

|

Registers

|

Operators (output)

l

Output

Figure 8.: Functional blocks of a datapath.

The operators are implemented as memoryless logic in low-level digital design be-
cause, in this context, the clock signal related to the state changes is responsible for the
machine synchronization. However, the Pure Data implementation requires updating
each layer of the dataset in the correct order, that is, first the data operators, then the
data registers and last, the output operators. This results in implementations similar
to that shown in Figure 9.

The Pure Data implementation uses a float object to implement the memory reg-
isters, and clock-synchronous operations to implement the operators. The datapath
operators are divided into the data operators, highlighted in dark gray, and the out-
put operators, highlighted in black. All operators can receive data register values as
inputs. The data operators update the internal memory values, whereas the output
operators simply yield binary (1 or 0) values.

As highlighted in the light gray box in Figure 9, the clock signal is routed first to the
data operators, then to the memory register and, after that, to the output operations.
This ensures that all operations are executed in the correct order

A multiplexer is responsible for selecting the operation result that is yielded to the
memory register’s data inlet. This structure allows using pre-fixed assignments for
reset or pre-set operations. Last, the multiplexer can have empty inlets to represent
no-operation, i.e., an operation that does not change the memory register’s value.

The datapath must be especially designed for each algorithm. It must comprise one
register (with a corresponding multiplexer) for each variable in the algorithm, and a
specific implementation for each required operation.

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

Clock Routing

Q clock

tbb
s $0-opclk to operations

s $0-fclk to memory

Datapath

operations
reset decrement
r $0-opclk r $0-mem

loadbang
100 r $0-opclk | =
1

s $0-o0p0 =
sub

s $0-opl

r $0-op0 r $0-opl operation select
reset
decrement

no operation

mux 0 1 2
float X
0

s $0-mem

Figure 9.: Pure Data implementation of a datapath, highlighting the clock routing
schema (light gray), and the datapath (yellow) containing the operation implementa-
tions, the operation selection schema and the memory that stores the output variable
X.

A datapath can be integrated with a FSM. For such, the results of the output
operators are used as inputs in the FSM, and the FSM’s state register is used to
control the operator selection multiplexer in the datapath. This leads to the system
structure shown in Figure 10.

Although low-level digital FSMD design allows using a single clock signal to all
registers in a circuit, the Pure Data implementation requires a more careful process
for clock routing. This routing accounts for the facts that the calculation of the next
state requires estimating conditions in the FSM, that these conditions depend on
the datapath register values, and that the datapath register values depend on the

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023

Input

— 1 |

Combinational Logic

l

Current State P Datapath

l

Output

Figure 10.: Finite State Machine with Datapath.

operator results. For this reason, the clock signal must be routed first to the datapath
operators, then to the datapath registers, then to the FSM estimation and, last, to
the state register clock, as shown in Figure 11.

9 clock
t

bbb

bbb
I Is $0-opclk to operations
s $0-fclk to datapath registers
s

$0-fsmclk to FSM

s $0-stateclk to state register

Figure 11.: Clock routing for each of the functional parts of the FSMD.

The Finite State Machine with Datapath is Turing-complete in relation to its com-
putational power [23]. It can be used to implement algorithms written in imperative
languages, as shown in the next section.

2.4. Demonstration

In this section, we demonstrate an implementation of Euclid’s Greatest Common Di-
vider (GCD) algorithm using an FSMD programmed in Pure Data. The GCD algo-
rithm is shown in Algorithm 1.

The algorithm can be converted to a flowchart, as shown in Figure 12a. The flowchart
can be immediatelly converted to Finite State Machine (FSM) blocks and datapath
elements, as shown in Figure 12b. This representation highlights that the algorithm
requires six states (SO to S5), two variables (X and Y'), and operations to subtract
(X —Y and Y — X) and to evaluate if X =Y and if X < Y.

The subtraction operation can be implemented using the patch shown in Figure 4,
which was named sub. The value comparison between X and Y require implementing a
comparator, shown in Figure 13. Similarly to the subtractor, the comparator object has
one “clock” and two “data” inlets, X and Y. The three outlets respectively correspond
to the Boolean results of X <Y, X =Y, and to X > Y.

10

d0i:10.20944/preprints202303.0182.v1

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

Algorithm 1: Euclid’s Greatest Common Divider algorithm.
Data: two greater-than-zero integers Xy and Yy
Result: XY = GCD(Xy, Yo)
X + Xo, Xo € ZT;
Y « Yy, Yo € ZT,;
while X #Y do
if X <Y then
| Y+« Y-X
else
‘ X+ X-Y
end

© 00 N O ok W N =

end
end;

=
o

Flowchart FSM Datapath

Ax=v
@
| x<v
&
0
s3
Ty
Ly «v - x7H
=x
@-

(a) Flowchart representation of Eu- (b) FSM and datapath components
clid’s GCD algorithm. for Euclid’s GCD algorithm.

Figure 12.: Flowchart for Euclid’s GCD algorithm and corresponding FSMD. States
from the FSM are juxtaposed to the corresponding flowchart blocks. Datapath com-
ponents are shown in yellow.

After this, the GCD algorithm can be immediately implemented using the FSMD
strategy as shown in Figure 14. The implementation contains a FSM, a Datapath, a
State Register, a Clock Routing structure and an Input selector.

An important feature for FSMD control is the possibility of resetting it to the
initial (or another required) state. This capability is provided by the synchronous
reset strategy, which forces the FSM to its initial state upon receiving a clock signal.
It can be implemented by adding a special condition to each of the states, but a more
compact implementation can be achieved by introducing a multiplexer prior to the

11

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

inlet inlet inlet

thbbb

?Ioat float float
outlet outlet outlet

Figure 13.: Clock-synchronous comparator using Pure Data.

FSM multiplexer, as highlighted in green in Figure 14.

In this implementation, if the reset toggle is activated, then the machine resets
to state SO, which loads the the values of the resetX and resetY faders to the state
registers X and Y. This allows to restart the algorithm with new values to calculate
the GCD.

It is important to carefully configure the clock routing order. First, the pre-register
operations (subtractions) must be calculated. Then, the register values are updated.
After that, the operations that depend on new register values (post-register operations,
which correspond to the comparator) are calculated. Subsequently, the FSM next state
is calculated and, finally, the state register is updated.

3. Demonstrations

The FSMDs discussed in this article can foster a diversity of musical explorations.
Because their structures are completely exposed, they can be yielded to further algo-
rithmic processes. Also, we note that the FSM and the Datapath draw intertwined
dynamics that can be respectively used to control sequences of discrete events and to
generate complicated envelopes.

The demonstrations discussed in this section use the GCD as implemented in Section
3. The GCD algorithm receives two numbers (X and Yp) as inputs. They are stored
in internal variables X and Y that progressively decrease until the algorithm stops.
The initial conditions define a path through the corresponding FSM. The FSMD’s
real-time speed can be increased or decreased by changing the clock period.

To demonstrate the use of this method for musical purposes, we present here two
implementations, one in the musical macro-structural time domain and another in the
micro-structural time domain. The macro-structural time domain deals with acoustic
structures that convey musical context. For that, they ought to occur in a time window
larger than the specious present, a concept already treated by the famous XIX century
psychologist William James, which refers to the conscious perception of “now”. It is a

12

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023

Clock Routing

Input

reset

metro 256:' s $0-reset

$0-fsmclk to FSM

$0-stateclk to state register

Datapath

State Register

r $0-stateclk

r $0-next_state

s $0-opsel

Pre-Register Operations

d0i:10.20944/preprints202303.0182.v1

Combinational Logic (FSM control)

r $0-fsmclk

Synchronous Reset

tbbbbb float r $0-reset
I Zs $0-preopclk to pre-operations 0 demux 0 1
s $0-fclk to memory $0-curr_state %
s $0-posopclk to post-operations zs $0-next_state
s
s

r $0-curr_state

demux © 12 3 4 5 Select state

resetX resetY rEY e &?Y
r $0-rX r $0-rY demux 0 1 demux 0
r $0-preopclk r $0-preopclk =
5 3 4 1 1 5]
r $0-preopclk r $0-ry r $0-preopclk r $0-rX
int, int H I H
L L
0 o Sub Sub
L 0 o
s $0-opX0 s $0-opY0®
SR0=0pXY, s $0-0pYx s $0-next state
Registers Post-Register Operations
r $0-opX0 r $0-opY0 r $0-posopclk
r $0-opXy r $0-opYx r $0-rX
zr $0-opsel I r $0-opsel r$0-rY
r$o-fclk Tux 012345 r$o-felk 1233 SZ
L comparator
float X float Y
s $0-XgrY
] 9 s $0-XeqY
s $0-rX s $0-rY
s $0-X1tY

Figure 14.: Complete Pure Data implementation of the GCD algorithm using a FSMD.

time window within which events are still perceived as simultaneous (like a chord) or
grouped together (like an arpeggio), even if they are not physically simultaneous. This
experienced moment is being studied by many [27, 28, 29] and helps to understand
the interplay between perception and cognition.

Above the specious present, the listener can retrieve information of identification
(“what is it”) and emotional content (“what it means”, or “how I feel about it”). The
time window related to the specious present has been empirically described as being
about 1 to 3 seconds [30].

In music, one second of sound is usually sufficient duration for many listeners to be
able to identify several musical features, such as melodic phrases, harmonic cadences,
voices and musical instruments, rhythm, time, key, etc. Above three seconds, most
listeners can appraise the emotional content of a musical excerpt.

The micro-structural domain deals with an even smaller time window than the
specious present. It is normally agreed that the human auditory system is able on
average to perceive sound frequencies from 20 to 20.000Hz. Although this depends on
the sound intensity of each frequency and the fact that we rapidly and increasingly
lose the perceptions of higher frequencies as we become older, the perception of lower
frequencies remains mostly unchanged in many listeners. Because 20Hz is the theo-

13

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

retical lowest frequency we perceive, this points to an important auditory perceptual
frontier between counting repeated events, that is, a train of pulses, and perceiving a
pitch. Below 20Hz, a listener is able to perceive non contextual information related to
each one of the events, such as loudness (perception of intensity), pitch (perception of
fundamental frequency) and timbre (dynamic spectral distribution, among other mea-
surable features). Above this threshold, the listener perceives a single acoustic event.
These are the main objects of study of psychoacoustics, a branch of psychophysics that
studies the perception of sound, especially in music. This field was initially developed
from the works of Gustav Fechner, Lord Rayleigh and Hermann von Helmholtz.

3.1. Music structure control

The first demonstration explores the macro-structural aspects of deterministic com-
position of the FSMD algorithm described above and depicted in Figure 11. For this,
the goal is to create a whole musical performance using a worldwide famous piece of
contemporary music, named In C. This one is a precursory piece of the minimalist
music movement, composed in 1964 by Terry Riley [25].

In C’s formal structure is made of 53 melodic excerpts in symbolic (musical) nota-
tion. They vary in size, from half beat to up to 32 beats. Each pattern is written in
its own bar.

Figure 15 shows the first 11 patterns used in the composition. Some of them are
very similar (for example, 2 and 3, or 4 and 5) and change only by a time shift.

=== @N’T :
b1 b s T
b o 5’2" "

0
7%@%#&
[J)

8 9

@W

Figure 15.: The first 11 musical excerpts of In C, by Terry Riley.

PO
—

<
N
|
g
'

The initial idea of Riley was for the musicians to play the excerpts ad libitum (as the
musicians pleased, i.e., without a synchronous beat) but that turned out to make the
time shifted similar excerpts, like the ones mentioned above, to sound indistinguish-
able. For that, Steven Reich, another famous composer and personal friend of Riley,
suggested that he introduce a time pulse for In C, where the musicians would play the

14

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

excerpt within a regular pulsation, thus making the difference between time shifted
excerpts perceivable as well as generating a rhythmic pattern to the composition.

According to Riley’s original instructions, a group of any number of musicians play
53 excerpts in order, and are free to skip or repeat excerpts. In Riley’s instructions, a
musician that reaches the last pattern must play it repeatedly until the music slowly
fades out. There is no fixed time for a performance, and the piece ends according to
the group’s decision.

In this demonstration, we used the FSMD structure to generate computer perfor-
mances of In C. For such, we preserved the piece’s core idea of playing patterns,
but slightly changed the interaction rules to allow repeating excerpts. This change
removes the piece’s “stop condition”, which is originally related to reaching the last
excerpt, and, instead, we used the algorithm’s final state a the simulated musician’s
stop condition.

Each of the simulated musician is linked to an accumulator, which starts at zero and
is used to select the next excerpt to be played. When the state receives a clock pulse
and reaches a new state, the new state’s number is added to the accumulator, and this
leads to choosing the next excerpt to be played. Each of these additions is followed by
a mod-53 operation that prevents the musician to choose an invalid excerpt.

All excerpts are played using a marimba timbre, and at 120 bpm. The excerpts are
repeated 4 times. This number was intentionally programmed so that each excerpt’s
musical identity is more easily recognized.

This behavior is repeated until the state machine reaches state 5, which is related
to the end of the algorithm’s execution. At this point, the musician stops choosing
new excerpts. Henceforth, this means that each execution has a defined end.

The simulated musicians’ FSMDs are initialized either with random or pre-defined
numbers. Each different initialization leads to a different execution of the piece; hence-
forth, it is possible to repeat the same execution by using the same initial conditions.

It is important to highlight that musical control using state machines is a common
practice, in special in the probabilistic

3.2. Sound parameter control

Modern audio synthesizers are able to produce many sound variations according to
their parameters. Many of them allow continuously changing the parameters while
playing, which facilitates building sounds that change in time. Commonly, parameter
variations either follow a pre-defined path or a random number generator.

The pre-defined paths can be generated using techniques such as linear interpola-
tion and a low-frequency oscillator (LFO), or simply by following a manually drawn
curve. They are often easy to control, but can quickly become repetitive and, as a
consequence, uninteresting. In contrast, random number generators can create uncor-
related white noise or paths through Markov Chains, which are non-repetitive, but
cannot generate repeatable structures.

The FSMDs enables the design of control paths that allow both the exploration
and repetition of sound variations, which has the advantages both of the causal and
the random control structures. This exploration highly relies on particular character-
istics of the implemented algorithm. In this discussion, we use the GCD algorithm
implemented in Section 2.

One possible sound control idea using the algorithm’s properties is to map the in-
ternal variables X and Y to synthesizer parameters corresponding to sound properties

15

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

that change from one point to another using paths that can be explored by the mu-
sician. In addition, particular FSM states can be mapped to events that repeat along
time. Hence, we simultaneously exploit the internal variables’ tendency to converge
and the FSM’s repeating nature.

In this paper, we used this idea to control a simple FM synthesizer followed by a
bandpass filter. The FM synthesizer implements the equation:

y(t) = ac(t) cos(2m(f + am(t) cos(2mB ft)t)), (1)

where a.(t) is a time-domain envelope, f is the waveform frequency (usually related
to its pitch), a,,(t) is a time-domain envelope for the modulating waveform, and (3
(usually an integer) is the ratio between the modulating and the carrier waveform
frequencies.

The FM synthesizer’s envelopes a,,(t) and a.(t) are controlled using non-linear,
monotonic transformations of the ratios X/ X0 and Y/Y 0. The transformations used
in this work are shown in Figure 16, and are decided according to aesthetic options.
Because of the way the GDC algorithm works, both of those ratios start at 1 and con-
verge to lower values. This allows creating a progression of sound qualities changing
from more complex and louder to simpler and quieter throughout time. This progres-
sion’s dynamics depends on the algorithm’s starting conditions, its clock frequency,
and the transformation applied while mapping.

Envelope generators

r X I XO r Y r YO
expr ($f1/$f2)*100 expr ($f1/$f2)*100
L 0 ITransformations
dbtorms =
| fbtorms |

* 10 =20,

8.507 iow G.Zfo =
pack f f pack f f

Z

$1 $2 $1 $2 Smoothing
lli:ﬁe? Envelope 1 el Envelope 2

am(t) ac(t)

Figure 16.: Transformations applied to X/X0 and Y/Y0 to generate modulation
(am(t)) and magnitude (a.(t)) envelopes for the FM synthesizer. The envelopes can
be smoothed using the horizontal sliders.

The output of the FM synthesizer is yielded to a bandpass filter. The filter’s center
frequency is controlled by the algorithm’s FSM so that reaching states 1, 3, or 4
leads to shifting the center frequency to pre-defined values. These states were chosen
because, in each algorithm’s iteration, state 1 is reached once, followed by either state
3 or 4, that is, these states allow creating repeating patterns along time. The center
frequencies changes are smoothed by linear interpolation.

This mapping is summarized in Table 2 and is demonstrated in Figure 17. It shows

16

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

the modulation and magnitude envelopes, as well as the filter center frequencies,
throughout time. This specific behavior was generated using X0=265, Y0=61, filter
center frequencies for states 1, 3, and 4 respectivelly equal to 280 Hz, 990 Hz, and 460
Hz, and a metronome (clock) period of 400 ms.

] Parameters \ Meaning \ Behavior ‘
f Fundamental frequency (pitch) Fixed
B Harmonicity and timbre Fixed

Mapping (X/X0) — a. Sound intensity along time Progressions
Mapping (Y/Y0) — a,, | Timbre complexity along time | Progressions
Filter center frequencies | Timbre variations along time Patterns
FSMD clock frequency Envelope speed Fixed

Table 2.: Relationships between the synthesizer’s parameters, their auditory/musical
meanings, and their typical behavior in time.

10—1 4
&
©
10—3 4
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
(a) Modulation envelope.
10°
<
107! - - - - r - - -
0.0 255 5.0 75 10.0 12.5 15.0 17.5 20.0

(b) Magnitude envelope.

e o &
o ® o
L

o
IS
L

Filter center frequency (Hz)

25 5.0 7.5 10.0 12.5 15.0 17.5 20.0

o
S

(c) Filter center frequency.

Figure 17.: Demonstration of mapping from FSMD elements to FM synthesizer pa-
rameters.

As we can see, this mapping strategy displays two different behaviors: the continuous
progression towards a final value, and the creation of cycles. These variations are
entirely controlled by the musician by changing the initial conditions Xy and Yj,
which means that the same behavior can be strictly repeated in different executions of
the algorithm. Also, we highlight that the progressions have larger and smaller steps,
which is hard to create using simple LFOs or linear envelopes. Such mapping is greatly

17

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023

facilitated by exposing the algorithm’s state machine and its internal variables.

4. Conclusion

This article demonstrates how to use music-domain visual languages to implement
algorithms written under the imperative paradigm. Our demonstration uses Pure Data,
but the same concepts are immediately portable to Max/MSP. These implementations
allow to systematically shift algorithms from the imperative paradigm into the visual
paradigm.

The resulting structure consists of a finite state machine coupled with data process-
ing blocks, that is, a Finite State Machine with Datapath (FSMD). Within this struc-
ture, the algorithm’s operation can be synchronized with musically-relevant events,
such as metronome ticks. This allows its use both to execute the algorithm itself and
as controls for algorithmic music.

The advantage of using this type of reasoning is that it can create a large amount
of variability and, at the same time, has a predictable behavior during composition.
The FSMDs share structures with State Machines that can be used to organize events,
and the datapath can be used to generate numbers.

We show two artistic applications for the FSMD. In the first application, the FSMD
controls macro-structures of a musical piece as to create several variations based on
Terry Riley’s “In C”. In the second one, the FSMD provides intertwined datapath
and state-machine changes that allow creating unique sound variations with a FM
synthesizer.

Implementing FSMDs in VPLs such as Pure Data an Max/MSP allows effectively
exploring a creative space that is deterministic, but complex enough that it does
not become uninteresting. As we show, the VPL implementations FSMD structures
can either be immediately mapped to musical controls or yielded to further process-
ing stages, which is easily performed with VPLs such as Pure Data and Max/MSP.
Henceforth, the structures discussed in this article can foster the exploration of diverse
novel musical possibilities and foster a myriad of future artistic work.

References

[1] M Puckette. Pure data. In Proceedings, International Computer Music Confer-
ence, 1996.

[2] M. Puckette. Combining event and signal processing in the max graphical pro-
gramming environment. Computer Music Journal, 15(3):68-77, 1991.

[3] Mark Danks. The graphics environment for max. In Proceedings of the Interna-
tional Computer Music Conference, 1996.

[4] Vincent J. Manzo. Max/MSP/Jitter for music: A practical guide to developing
interactive music systems for education and more. Oxford University Press, 2016.

[5] M. Puckette, T. Apel, and D. Zicarelli. Real-time audio analysis tools for pd and
msp. In Proceedings, International Computer Music Conference, 1998.

[6] Baptiste Caramiaux, Alessandro Altavilla, Scott G. Pobiner, and Atau Tanaka.
Form follows sound. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems - CHI 15. ACM Press, 2015.

[7] Daniele Ghisi and Andrea Agostini. Extending bach: A family of libraries for

18

d0i:10.20944/preprints202303.0182.v1

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

real-time computer-assisted composition in max. Journal of New Music Research,
46(1):34-53, 2017.

[8] Stephen A. Hedges. Dice music in the eighteenth century. Music & Letters,
59(2):180-187, 1978.

[9] John Cage. Silence : lectures and writings, chapter Composition as Process I:
Changes, pages 18-34. Wesleyan University Press, 1951.

[10] Iannis Xenakis. Formalized Music: Thoughts in Mathematics and Composition.
Pendragon, 1963.

[11] Roger T. Dean and Jamie Forth. Towards a deep improviser: a prototype deep
learning post-tonal free music generator. Neural Computing and Applications,
32(4):969-979, oct 2018.

[12] Jean-Pierre Briot and Frangois Pachet. Deep learning for music generation: chal-
lenges and directions. Neural Computing and Applications, 32(4):981-993, oct
2018.

[13] Curtis Roads and Paul Wieneke. Grammars as representations for music. Com-
puter Music Journal, 3(1):48, mar 1979.

[14] Frédérick Duhautpas, Renaud Meric, and Makis Solomos. Expressiveness and
meaning in the electroacoustic music of iannis xenakis. the case of la légende
d’eer. In Proceedings of the Electroacoustic Music Studies Network Conference
Meaning and Meaningfulness in Electroacoustic Music, 2012.

[15] Dimitri Bouche, Jérome Nika, Alex Chechile, and Jean Bresson. Computer-aided
composition of musical processes. Journal of New Music Research, 46(1):3-14,
2017.

[16] Paul Vickers. Sonification and Music, Music and Sonification. In The Routledge
Companion to Sounding Art. Routledge, 2016.

[17] Paul Vickers and James L. Alty. CAITLIN: A Musical Program Auralisation
Tool to Assist Novice Programmers with Debugging. In Proceedings of ICAD 96
International Conference of Auditory Display, 1996.

[18] Paul Vickers and James L. Alty. When bugs sing. Interacting with Computers,
14(6):793-819, December 2002. Publisher: Oxford Academic.

[19] D.H. Jameson. Building real-time music tools visually with Sonnet. In Proceedings
Real-Time Technology and Applications, pages 11-18, June 1996.

[20] Andy M. Sarrof, Phillip Hermans, and Sergey Bratus. SOS: Sonify Your Oper-
ating System. In Proc. of the 10th International Symposium on Computer Music
Multidisciplinary Research, Marseille, France, 2013.

[21] Alexis Kirke and Eduardo Miranda. Pulsed Melodic Affective Processing: Musical
structures for increasing transparency in emotional computation. SIMULATION,
90(5):606-622, May 2014. Publisher: SAGE Publications Ltd STM.

[22] R. Camposano and W. Rosenstiel. Synthesizing circuits from behavioural descrip-
tions. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 8(2):171-180, Feb 1989.

[23] Frank Vahid. Digital Design with RTL Design, Verilog and VHDL. Wiley Pub-
lishing, 2nd edition, 2010.

[24] Robert Kraemer and Cornelius Poepel. On transformations between paradigms
in audio programming. In Proceedings of the Audio Mostly 2018 on Sound in
Immersion and Emotion, AM’18, pages 23:1-23:4, New York, NY, USA, 2018.
ACM.

[25] Robert Carl. Terry Riley’s in C. Oxford University Press, 2009.

[26] John Chowning. The synthesis of complex audio spectra by means of frequency
modulation. Journal of the Audio Engineering Society, pages J. Audio Eng. Soc.

19

https://doi.org/10.20944/preprints202303.0182.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 March 2023 d0i:10.20944/preprints202303.0182.v1

21 (7), 526-534., 1973.

[27) W. James. The Principles of Psychology. MacMillan, 1980.

[28] Szelag E., Kanabus M., Kolodziejczyk 1., Kowalska J., and Szuchnik J. Individual
differences in temporal information processing in humans. Acta Neurobiol, 64:349—
366, 2004.

[29] Marc Wittmann. Moments in time. Frontiers in integrative neuroscience, 5(66),
2011.

[30] Eibl-Eibesfeldt Feldhiitter I, Schleidt M. Moving in the beat of seconds: analysis
of the time structure of human action. Ethol Sociobiol, 11:1-10, 1990.

20

https://doi.org/10.20944/preprints202303.0182.v1

