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Abstract: Temperature is a critical factor that influences the proliferation of pathogens in hosts. The

impact of temperature on pathogens is commonly explored in controlled and constant temperatures.

Experiments under varying environmental temperature are becoming more frequent, however, testing

every temperature scenario à la carte is unachievable. One example of this is the human pathogen

Vibrio parahaemolyticus (Vp) in oysters. Here, a predictive model was developed for predicting the

growth of Vp in oysters under varying ambient temperature. The model was fitted and evaluated

against data from experiments studying growth and inactivation of Vp in oysters at eight constant

temperatures. Once evaluated, Vp dynamics in oysters were estimated at different post-harvest

varying temperature scenarios affected by water and air temperature, and different ice treatment

timing. The model performed adequately under varying temperature, reflecting that (i) increasing

temperature, particularly in hot summers, favors a rapid Vp growth in oysters, resulting in a very

high risk of gastroenteritis in humans after consumption of a serving of raw oysters, (ii) pathogen

inactivation due to day/night oscillations, and more evidently, due to ice treatments, (iii) ice treatment

is much more effective limiting risk of illness when applied immediately onboard compared to

dockside. The model results to be a promising tool for improving the understanding of the Vp-oyster

system and support studies on public health impact of pathogenic Vp associated with raw oyster

consumption. Although robust validation of the model predictions is needed, initial results and

evaluation show the potential of the model to be easily modified to match similar systems where the

temperature is a critical factor shaping the proliferation of pathogens in hosts.
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1. Introduction

Oysters, traditionally harvested for thousands of years, are a very important part of many diets

around the world [1], and increasing as aquaculture oyster demands surge [2]. Since 2009, the global

production has increased from 3 million to over 5.9 million tons [3]. This is an important factor

contributing to the increase in the number of cases of gastroenteritis caused by the human pathogen

Vibrio parahaemolyticus (Vp) [4,5], a bacteria endemic to marine environments and present in seafood

including oysters [6]. In addition to gastroenteritis, consuming oysters with high Vp concentrations

can lead to primary septicemia in individuals with underlying medical conditions such as chronic

diseases, liver disease, or immune disorders [7].

The first outbreak of Vp was reported in Osaka (Japan) in 1950 and since then, a continuing rise of

Vp infections has been reported in several countries over the past few decades [8–10]. Such Vp cases

increase is connected to an unknown occurrence of global Vibrio infections [11]. In 2020, around half a
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million Vp infection cases were estimated worldwide [10], being this pathogen the leading cause of

seafood-derived illnesses worldwide [12].

It is almost impossible to obtain seafood free of these bacteria due to the ubiquitous nature of

Vibrio species in marine and estuarine environments, particularly during warm, summer months [13]

and the accumulation of Vibrio by oysters through filter-feeding. Seawater temperature is a major

factor determining the concentration, distribution, and proliferation of Vp in the coastal environment

[13,14]. Higher densities of Vp in oysters have been detected in the spring and summer, and are

positively correlated with seawater temperature [13,15]. Vp is rarely detected during winter when

Vibrio survives in the marine sediment until temperatures rise again to 14ºC and it is released to

the seawater [2]. Oysters harvested in summer can be associated with Vp tissue concentrations

approaching 1000 CFU/g, while in winter this concentration decreases to less than 10 CFU/g [13,16].

Oysters are harvested, sacked, and left at ambient air temperature on the boat deck before being

dragged to shore. When the air temperature is very high in hot summer conditions, this exposure can

result in an important Vp growth in oysters up to 50 × 106 cells/g (7.7 log10 CFU/g) [17]. Regarding

disease risk, the probability of illness is relatively low in winter (≤ 0.00001) for consumption of a

serving of 12 oysters with 100 × 103 Vpcells (∼ 50 cells/g or 1.7 log10 CFU/g ) [18]. However, in

summer this probability can increase to ≥ 0.5 after the consumption of a serving with 100 × 106 Vpcells

(∼ 500 × 103 cells/g or 5.7 log10 CFU/g) [18]. In this context, raising temperature associated with

climate change is a factor of concern, due to the expected influence of prolonged exposure to seawater

temperatures supporting Vibrio proliferation and its impact on Vp distribution [10,11] and population

dynamics, and eventually the impact on human disease outcomes.

To address this risk, worldwide sanitation programs for shellfish control established

time-to-temperature regulations to limit the growth of Vp in post-harvest oysters [19]. An example

of this thermal process consists of cooling down the shellfish harvested for raw consumption to 10ºC

(50ºF) within 10, 12, or 36 hours when the average monthly air temperature is higher than 27ºC,

between 19 and 27ºC or lower than 18ºC, respectively [2]. An absence of refrigeration, non-rapid

refrigeration, or breaking the cold chain can lead to high temperatures during oyster warehousing

leading to Vp in vivo population increase. Resubmersion can also be considered a method for vibrio

control [20]

This effect of temperature on Vp has been commonly explored by experiments at different constant

temperatures [17,21,22]. However, inferring outcomes from constant-temperature experiments onto

realistic varying temperature regimes is complex and problematic [23]. Improving methods in this

regard is essential for the understanding of this and similar temperature-dependent host-pathogen

systems while supporting studies about the public health impact of pathogenic Vp associated with raw

seafood consumption [17,19,24].

In this study, a continuous-time model was developed for predicting the growth of Vp in oysters

under varying ambient temperatures. The model was constructed by numerically integrating an

ordinary differential equation system with temperature-dependent growth parameters. First, the

model was fitted, verified, and evaluated against previous experimental data of Vp concentrations

in Pacific oysters (Crassostrea gigas) at constant temperatures [17]. Once the model was verified and

evaluated, Vp dynamics in oysters were modeled at different post-harvest scenarios under varying

environmental temperatures for winter and summer initial conditions, and with and without dockside

ice and onboard ice treatments.

2. Materials and Methods

The predictive model developed in this study for exploring Vp growth in oysters under varying

environmental temperatures was parameterized with and evaluated against experimental data of Vp

concentrations in Pacific oysters obtained at different constant temperatures (see details in [17]). First,

linear and non-parametric regression models were obtained. Second, from the maximum slopes of
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these models, the inactivation and growth rates were estimated. Third, using these rates, our growth

model was constructed for predicting the growth of Vp in oysters under varying ambient temperatures:

2.1. OLS and LOESS Regression Models for Vp Growth and Inactivation Processes

Two models were applied to analyze the relationship of Vp concentration in oysters with time at

experimental constant temperatures [17]: the classic parametric Ordinary Least Squares regression

model (OLS) (Galton, 1886) and the non-parametric Locally Weighted Least Squares Regression

smoothing technique (LOESS) (Cleveland et al., 1988). As a non-parametric smoothing technique, the

LOESS can model the relationship between Vp and time more robustly and in a more flexible manner

than parametric models such as the OLS, potentially extracting information (e.g. ecological, biological)

from the data that more restrictive parametric models miss. For Vp inactivation, the goodness of fit of

the OLS and LOESS regression curves were assessed and compared by analyzing the percentage error

(PE); a lower PE meaning a better prediction accuracy. The PE was calculated based on the residual

standard error (RSE) as follows:

RSE =

√

∑
n
i=1(VPCi − V̂PCi)

n
(1)

PE(%) = 100 ·
RSE

VPC
(2)

Where VPCi and V̂PC are respectively the observed Vp and mean Vp counts in terms of colony

forming units (log10 CFU/g) and V̂PCi is the predicted counts by the OLS and LOESS models.

For Vp growth, the goodness of fit of the LOESS regression curve was assessed. The obtained

curves and the corresponding maximum slopes or growth rates were compared to the curves obtained

by model fitting in [17]. The PE was also calculated here based on the residual standard error.

Data analysis was conducted with R statistical software (R Core Team, 2018). The “ggplot2”

package was used to generate plots.

2.2. Growth and Inactivation Rates for the Model

For Vp growth, the classic square root model [25] was applied to describe the growth rate (r) as a

function of temperature as follows:

√
r = a · (T − Tmin). (3)

The model shows a linear relationship between temperature (T) and the
√

r, where the regression

coefficient is represented by a and Tmin is a hypothetical reference or threshold temperature between

growth and inactivation of Vp.

The Arrhenius equation was used for the estimation of the kinetic parameters for the effect of

temperature on bacterial inactivation as follows:

ln r = ln A −
Ea

R · T
(4)

where r is the reaction rate coefficient or constant, T is the absolute temperature, Ea is the activation

energy (i.e., the minimum amount of energy that must be provided to result in a reaction), R is the

universal gas constant, and A is the collision factor.
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2.3. The Model

2.3.1. Model Description, Mathematical Theory and Assumptions

The model developed here is a Vp growth model for Vp in oysters that accounts for the effect

of varying temperature on bacterial growth. It is a continuous-time model, which results from an

ordinary differential equation (ODE) system solved using a fourth-order Runge-Kutta method (RK4)

[26]. The numerical model for this ODE system is programmed in Matlab.

The model accounts for both bacterial growth and inactivation. Regarding bacterial growth, the

model is an extension of the Logistic model [27] which suggests that the rate of bacterial population

increase is limited. The logistic model combines the ecological processes of growth and competition.

Both processes depend on population density and their rates match the mass-action law [27]. Regarding

bacterial inactivation, the model is a linear decreasing model.

2.3.2. Model Equations

Vp growth and inactivation are described by the system and conditions defined by equations

(5) and (6), being N = N1 + N2 the total number of Vp counts per gram. That is, for having both Vp

growth and inactivation in the equation system for the variable Vp population in oysters is divided

into two classes N1 and N2. The following equations represent the change of these two classes with

time:

d N1

d t
= −γ µmax N1 (5)

d N2

d t
= γ µmax m N1 + µmax N2 (1 −

m (N1 + N2)

Nmax
, (6)

where µmax is the maximum growth rate of Vp population in oysters (cells/h). Nmax accounts

for substrate competition, that is, represents the carrying capacity or the maximum total counts,

corresponding to 5.5 log10 CFU/g for lower temperatures (T < 23◦C), 7.5 log10 CFU/g for

medium-high temperatures (23◦C ≤ T < 30◦C) and 6.75 log10 CFU/g for high temperatures

(T ≥ 30◦C) as observed by [17]. The parameter m can be 1 or 0, depending on the temperature

(see equations (7) and (8)).

From equations (3) and (4), the following growth rates (µmax) were obtained:

if T > Tmin, µmax = a2 (T − Tmin) and m=1 (7)

if T ≤ Tmin, µmax = eln A− Ea
R·T and m=0 (8)

The growth rate µmax and m depend on temperature (T) representing growth or inactivation of

Vp in oysters. That is, when T is higher than 13.37◦C, Vp population growth is defined by equation

(7), being m=1 so that the first term in both equations (5) and (6) are annulled. In these conditions,

the model studies the change in total Vp population N = N1 + N2 or bacterial growth by the second

term in equation (6), µmax N2 (1 − m (N1+N2)
Nmax

). While if T is lower or equal to 13.37◦C, the growth

rate µmax is defined by equation (8), being m=0. In this conditions, the change in total Vp population

(N = N1 + N2 or inactivation is only defined by −γ µmax N1 in equation (5). The rest of the terms are

annulled when m = 0 and the initial number of N2 = 0.
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2.3.3. Model Verification and Evaluation

The probability of illness is relatively low (< 0.001 percent) for consumption of 10 × 103 cells/g Vp

cells/serving [18], being a serving of 12 oysters or approximately 16 grams of meat. This is equivalent

to about 50 cells/oyster meat gram; that is, 800 cells/serving. These concentrations are equivalent to

winter CFU/g values [13]. However, the probability of disease increases to 50 percent for consumption

of about 100 × 106 Vpcells/serving. This corresponds to 8000 × 103 cells/oyster [18], which are body

burdens of the same order of magnitude as those found in oysters harvested in summer [13].

Model verification consisted of showing that the model is correct, complete, and coherent by

means of (i) static tests involving a structured examination of the formulas, algorithms, and code used

to implement the model, and (ii) dynamic tests, where the computer program was run under different

conditions to ensure that results produced were correct, according to the conceptual model, and

consistent with expectations of reviewers experts in oyster pathology, Vp and population dynamics.

The parameter values used for model verification were those obtained by fitting the model growth

and inactivation rate equations (Equations 5 and 6). The model was run for a series of 100/150-hour

simulations for growth scenarios and 300/500-hour simulations for inactivation scenarios. This

simulation time span was chosen (i) to detect pathogen proliferation and inactivation events, and (ii) to

evaluate the model against growth and inactivation experimental data along the same time span [17].

Thus, eight realistic (experimental) scenarios were simulated to verify and evaluate the performance of

the model regarding the dynamics of Vp population (Table 1) [17]. Figures 3 and 4 illustrate the results

of these verification/evaluation cases (simulations 1-8).

2.3.4. Modelling Scenarios

Different simulations were run representing both (i) realistic environmental (air) temperatures for

regions with hot summers and mild winters as in south Europe [? ] and south US [? ], and (ii) realistic

oyster processing temperature scenarios in terms of refrigeration by ice treatment from harvesting to

consumption, in both summer and winter (simulations 9-17). For each season, simulated scenarios

were differentiated by the ice treatment applied to oysters: non-iced (NI), dockside ice storage (DS),

on-board ice storage (OB). In the NI scenario, there is not any type of pre-consumption treatment in

terms of refrigeration. In the DS scenario, ice treatment started 10 hours after harvesting. In the OB

scenario, ice treatment starts onboard right after harvesting.

Table 1. Simulations for model verification and evaluation against experimental data of Vp growth at

constant temperatures from laboratory tests [17].

Simulation Scenario(Initial Conditions) Expected Results Figure

Simulation 1 T=18.4ºC,Vp=3.4 log10CFU/g Logistic (extension)3.4 to 5.5 log10CFU/g 3A
Simulation 2 T=20ºC,Vp=3.4 log10CFU/g Logistic (extension)3.4 to 5.5 log10CFU/g 3B
Simulation 3 T=25.7ºC,Vp=3.4 log10CFU/g Logistic (extension)3.4 to 7.5 log10CFU/g 3C
Simulation 4 T=30.4ºC,Vp=3.4 log10CFU/g Logistic (extension)3.4 to 6.75 log10CFU/g 3D
Simulation 5 T=3.6ºC,Vp=5.8 log10CFU/g Linear5.8 to 3.0 log10CFU/g 4A
Simulation 6 T=6.2ºCVp=5.5 log10CFU/g Linear5.5 to 4.0 log10CFU/g 4B
Simulation 7 T=9.6ºCVp=5.1 log10CFU/g Linear5.1 to 3.0 log10CFU/g 4C
Simulation 8 T=12.6ºCVp=5.3 log10CFU/g Linear5.3 to 4.0 log10CFU/g 4D

Other four realistic scenarios of interest were run in order to explore Vp how Vp growth would

behave in an event of a potential break in the cold chain (simulations 18-21) referring to dockside and

on-board situations in both winter and summer. Last simulation represent Vp inactivation scenario

in the long term. The characteristics of this set of modeling scenarios are summarized in Table 2 and

results showed in Figures 5–10.
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Table 2. Realistic scenarios for exploring Vp dynamics in oysters under varying temperature in terms

of water and air temperature, ice treatment and initial Vp number per oyster gram. Ice treatments are

as follows: NI (non-iced), DS (ice treatment on dockside), OB (on-board ice treatment), Breaking cold

chain (BCC). Water temperature (W), Air temperature (A).

Simulation Scenario (Initial Conditions) Figure

Simulation 9 NI, Summer, W= 30◦C, A= 40◦C, Vp=3 log10CFU/g 5A
Simulation 10 DS, Summer, W= 30◦C, A= 40◦C, Vp=3 log10CFU/g 5B
Simulation 11 OB, Summer, W= 30◦C, A= 40◦C , Vp=3 log10CFU/g 5C
Simulation 12 NI, Summer, W= 25◦C, A= 30◦C, Vp= 3 log10CFU/g 6A
Simulation 13 DS, Summer, W= 25◦C, A= 30◦C, Vp= 3 log10CFU/g 6B
Simulation 14 OB, Summer, W= 25◦C, A= 30◦C , Vp= 3 log10CFU/g 6C
Simulation 15 NI, Winter, W= 15◦C, A= 13◦C, Vp= 1 log10CFU/g, 7A
Simulation 16 DS, Winter, W= 15◦C, A= 13◦C, Vp= 1 log10CFU/g, 7B
Simulation 17 OB, Winter, W= 15◦C, A= 13◦C, Vp= 1 log10CFU/g, 7C
Simulation 18 DS, BCC Summer, W= 30◦C, A= 40◦C, Vp= 3 log10CFU/g 8A
Simulation 19 OB, BCC, Summer, W= 30◦C, A= 40◦C, Vp= 3 log10CFU/g 8B
Simulation 20 DS, BCC, Winter, W= 15◦C, A= 13◦C, Vp= 1 log10CFU/g 9A
Simulation 21 OB, BCC, Winter, W= 15◦C, A= 13◦C, Vp= 1 log10CFU/g 9B
Simulation 22 DS, Summer, W= 25◦C, A= 30◦C, Vp= 3 log10CFU/g 10A

2.4. Risk of Illness

The model results are discussed in terms of the probability of illness. For this, risk of illness was

estimated in Table 3 by adapting previous dose-response model results [18].

Table 3. Probability and risk of gastroenteritis ((P(G) and R(G), respectively) and septicemia (P(S) and

R(S), respectively) as a function of Vp dose per oyster serving (12 oysters) and per oyster gram in a

serving. Adapted and estimated from results of the Beta-Poisson Dose-Response model by [18].

CFUPer Serving Log CFU/g P (G) Risk (G) P (S) Risk (S)

104 1.72 1.0 · 10−4 Extremelylow 2.5 · 10−7 Extremelylow
105 2.72 1.0 · 10−3 Verylow 2.5 · 10−6 Extremelylow
106 3.72 1.0 · 10−2 Low 2.5 · 10−5 Extremelylow

107 4.72 1.0 · 10−1 Moderate 2.5 · 10−4 Extremelylow

108 5.72 5.0 · 10−1 High 1.3 · 10−3 Verylow

109 6.72 9.0 · 10−1 Veryhigh 2.3 · 10−3 Verylow

1010 7.72 9.6 · 10−1 Extremelyhigh 2.4 · 10−3 Verylow

1011 8.72 9.9 · 10−1 Extremelyhigh 2.5 · 10−3 Verylow

Note that U.S. Food and Drug Administration [18], for example, predicts about 2800 Vp illnesses

from oyster consumption each year. Of infected individuals, approximately 7 cases of gastroenteritis

will progress to septicemia each year for the total population, of which 2 individuals would be from

the healthy sub-population and 5 would be from the immunocompromised sub-population [18].

2.5. Model Limitations

The ODE system here was solved using the RK4 method. RK4 methods are easy to implement,

very stable, and self-starting; that is, unlike multi-step methods, there is no need to treat the first few

steps taken by a single-step integration method as special cases. However, the primary disadvantages

of RK4 methods are (i) the requirement of significantly more computation time than multi-step methods

of comparable accuracy, and (ii) the fact that they do not easily yield good global estimates of the

truncation error. However, for straightforward dynamical systems such as the one investigated by

this model, the advantage of the relative simplicity and ease of use of RK4 methods far outweighs the

disadvantage of their relatively high computational cost.
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The growth and inactivation rate for the model was obtained by integrating the information

obtained by regression models exploring the change in Vp concentrations with time at only eight

constant temperatures. This is a simplification of reality and may result in a relative underestimation of

Vp growth and consequently is an underestimation of the risk of getting gastroenteritis and septicemia.

Finally, when modeling realistic scenarios caution is required to interpret the results in quantitative

terms; since the model is dealing with multiple dimensions, latent covariates, and data coming from

laboratory experiments could result in some situations that are not entirely realistic.

3. Results

3.1. OLS and LOESS Regression Models for Vp Growth and Inactivation

For Vp growth, at higher temperatures (18.4◦C, 20.0◦C, 25.7◦C and 30.4◦C), the LOESS model

expresses the Vp growth in a more flexible manner than that obtained by the Baranyi model [17]. The

maximum Vp count level beyond which the Vp counts remain constant in the Baranyi model [17]

is not that clear and constant for the LOESS model here, showing some increasing patterns beyond

that level (Figure 1, A-D). Nevertheless, comparing maximum growth rates (initial slopes) in terms of

log10CFU/h there are no differences.

For Vp inactivation, OLS regression models from experiments [17] showed significant (p<0.05)

negative linear relationships of Vp counts (CFU/g) with time for different constant temperatures

between 3.6◦C and 12.6◦C (Figure 2 A-D, left). The Pearson correlation coefficient squared was high in

all cases (R2 between 0.769 and 0.913). The LOESS regression curves showed that the response variable

Vp counts exhibited a progressive inactivation (decrease) with time (Figure 2 A-D, right). Particularly,

for 6.2◦C and 12.6◦C, this inactivation showed two phases: the inactivation in the first phase was

faster than that in the second phase. These LOESS curves adapted in a more flexible manner to data,

however, the differences in PE were not significant and inactivation rates in terms of log10CFU/h can

be considered similar. The OLS and LOESS showed similar PE, 3.36-8.6% and 3.24-8.89%, respectively.

Regarding the goodness of fit, all studied models were well-fitting regression models (PE<10%).
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Figure 1. LOESS regression model for 18.4, 20.0, 25.7, and 30.4ºC. Regression curves are represented

by solid lines with smoothing based on 95% confidence intervals (shaded areas).
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Figure 2. OLS and LOESS regression models for 3.6, 6.2, 9.6, and 12.6ºC. Regression curves are

represented by solid lines with smoothing based on 95% confidence intervals (shaded areas).

The results of this comparative analysis between both the OLS and Baranyi models applied in

[17] and the LOESS models here, suggest to use similar maximum growth rate values (slopes) for each

temperature as in [17] in order to formulate the equations (models) for growth and inactivation rates

needed for the Vp growth model in oysters developed here.

3.2. Growth and Inactivation Rates for the Model

From OLS and LOESS regression models (slopes) maximum growth and inactivation rates for Vp

were obtained as in [17]. These rates were -0.006, -0.004, -0.005, -0.003, 0.030, 0.075, 0.095, and 0.282

log10CFU/h at 3.6, 6.2, 9.6, 12.6, 18.4, 20.0, 25.7, and 30.4ºC, respectively. Fitting these rates vs different

temperatures, the following parameter values for equations 1 and 2 were obtained: Tmin=13.37ºC, as an
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intrinsic property of the Pacific oyster, and a = 0.04, A = 4.81 · 10−9, Ea = 4131.2, R = T + 273.5. Thus,

the growth and inactivation rate models as a function of temperature were formulated as follows:

For Vp growth, the classic square root model [25] applied to describe the growth rate is formulated

as:

√
r = 0.04 · (T − 13.37). (9)

The model for growth shows a linear relationship between temperature (T) and the
√

r, where the

regression coefficient is represented by a, and Tmin is a hypothetical reference or threshold temperature

between growth and inactivation of Vp. As an intrinsic property of the Pacific oyster, this temperature

is Tmin = 13.37◦C [17].

The Arrhenius equation was used for the estimation of the kinetic parameters for the effect of

temperature on bacterial inactivation. The equation used was as follows:

ln r = Ln(4.81 · 10−9 + 4131.2 · (
1

T + 273.5
), (10)

where r is the rate constant, T is the absolute temperature, Ea is the activation energy, R is the universal

gas constant, and A is the collision factor.

3.3. Model Verification and Evaluation

Simulations at constant temperatures for model verification and evaluation (Figures 3 and 4) were

run with initial conditions described in Table 1 and model parameter values defined in Sections 2.3.3

and 3.2.

For growth scenarios (Simulations 1-4) results conform to expectations (Table 2.1) and thus, are

consistent with real experimental data from [17] using identical initial conditions and temperatures.

Increasing temperature from Figure 3A–C leads to more rapid initial growth and eventually in a higher

maximum growth rate conforming to expectations (Table 1). Overall, Regarding model evaluation, the

model has a very good fit to the experimental data both for the maximum growth and the Vp values at

the maximum of the curve (Table 1 and [17]).
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A B

C D

Figure 3. Simulations 1-4 from Table 2.1 (A-D) for model verification and evaluation using constant

temperatures as in [17].
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Figure 4. Simulations 5-8 from Table 2.1 (A-D) for model verification and evaluation using constant

temperatures as in inactivation experiments conducted by [17].
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Results of model verification for inactivation scenarios conform to expectations, being also

consistent experimental data from [17]. In this case, the opposite trend to growth is observed: the

lower the temperature, the faster the inactivation of the pathogen conforms to the expected final values.

Regarding model evaluation, the model has a very good fit to the experimental data for the entire

inactivation pattern (Table 1 and [17]).

3.4. Modelling Scenarios under Varying Temperature

Once the model was verified and evaluated against real data [17], a series of theoretical scenarios

were simulated, trying to mirror realistic scenarios. The results obtained for each scenario tested are

described and shown in Table 2 and Figures 5–10.

3.4.1. Simulations 9–11. Summer. Water 30◦C, Air 40◦C

In the NI scenario (Simulation 9, Figure 5A, left) the initial Vp concentration is 1000 CFU/g (3

log10CFU/g) as found by [13] in summer. The post-harvest air temperature oscillates between 18 and

40◦C mirroring day/night temperature fluctuations. Given these varying temperature conditions, a

gradual increase in Vp counts is observed with a maximum of 7.5 log10CFU/g (Simulation 9, Figure

5A, right). Relatively low temperatures in this simulation lead to a slower growth rate. The risk of

illness is high beyond hour 20 and very high beyond hour 23.

In the DS scenario (Simulation 10, Figure 5B, left), under the same initial conditions, the

temperature represents an ice treatment in the dockside some hours after the harvest of oysters on

board and transport to the dockside. Here, the ice treatment leads to a drastic decrease in temperature;

4 hours are necessary for the oysters at high temperature to reach a low temperature (7.2◦C) [13]. Given

these temperature conditions, a gradual Vp increase is observed at the beginning of the curve, but

temperatures during cold storage resulted in a slow inactivation process, reaching a maximum of 6.25

log10CFU/g Vp counts (Simulation 10, Figure 5 B, right). The risk of illness is high beyond hour 10 but

thanks to the DS ice treatment this risk does not continue increasing and slowly decreases to hour 50.
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Very High Risk High Risk

Moderate Risk Low Risk

Figure 5. Simulations 9 - 11. Summer Non-Ice (NI), Dockside (DS) and On Board (OB) post-harvest ice

treatment scenarios. Water temperature of 30◦ and Air temperature of 40◦C, and initial Vp concentration

of 1000 CFU/g.

Finally, in the OB scenario (Simulation 11, Figure 5C, left), repeating the aforementioned initial

conditions, oysters are stored on ice within two hours after harvesting. Therefore, considering that

oysters stored on ice reach 7.2◦C in 4 hours, beyond hour 6 of this simulation the temperature is

constant. Under these temperature conditions, a slight increase in Vp counts is observed up to hour 4,

after which counts start gradually to decrease, with a final total count of 3.5 log10CFU/g (Simulation

11, Figure 5C, right). The risk of illness in this scenario was low after the drastic inactivation caused by

OB ice treatment.

3.4.2. Simulations 12–14. Summer. Water 25◦C, Air 30◦C

In the non-ice scenario (Simulation 12, Figure 6A, left) the initial Vp concentration is 1000 CFU/g

(3 log10CFU/g) as found by [13] in summer. The post-harvest air temperature oscillates between 13

and 32◦C mirroring day/night temperature fluctuations. Given these varying temperature conditions,
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a gradual increase in Vp counts is observed with a maximum of around 6.8 log10CFU/g (Simulation 12,

Figure 6A, right). Minimum temperatures result in slower inactivation. The risk of illness is moderate

approximately beyond hour 25, high beyond hour 42, reaching the very high-risk of illness at hour 49.

Very High Risk High Risk

Moderate Risk Low Risk

Figure 6. Simulations 12 - 14. Summer Non-Ice (NI), Dockside (DS) and On Board (OB) post-harvest ice

treatment scenarios. Water temeprature of 25◦ and Air temperature of 30◦C, and initial Vp concentration

of 1000 CFU/g.

The DS scenario (Simulation 13, Figure 6B, left) was performed under the same initial conditions

aforesaid. In this scenario, oysters are initially exposed to temperatures oscillating between 25 and

32◦C. Then the temperature changes drastically by storing oysters on ice on DS for 10 hours after

harvesting. 4 hours are necessary for the oysters on ice to reach a temperature of 7.2◦C, which was

maintained to the end of the simulation. Temperatures during ice storage resulted in a halt in the

growth, showing a final value of 4.1 log10CFU/g (Simulation 13, Figure 6B, right). The risk of illness

increases to low risk by hour 5 and stays, with a descending pattern, in that risk zone until the end of

the simulation.
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Referring to the OB scenario (Simulation 14, Figure 6C, left), under identical initial conditions,

after harvesting, it took 2 hours for the oysters to be stored on ice. Therefore, after cooling them down,

a constant temperature was maintained from hour 6 to the end of the simulation (hour 50). A small

increase of the Vp counts is observed up to hour 4, after which Vp counts start gradually to decrease,

with a final total count of 3.1 log10CFU/g (Simulation 14, Figure 6C, right). The risk of illness in this

simulation was never higher than low.

3.4.3. Simulations 15–17. Winter. Water 15◦C

First, alluding to the NI scenario (Simulation 15, Figure 7A, left) the initial Vp concentration

value is 10 CFU/g (3 log10CFU/g) as found by [13] in winter. The post-harvest air temperature

oscillates between 4 and 17◦C. Given these varying temperature conditions, a gradual decrease in Vp

concentration is observed with 0.85 log10CFU/g at the end of the simulation (Simulation 15, Figure

7A, right). As temperature do not exceed 17◦C, there is no Vp growth in this scenario, so the risk of

illness is very low throughout the simulation.

Continuing with the DS scenario (Simulation 16, Figure 7B, left), a similar trend is observed

despite the storage on ice being 10 hours after harvesting. A slightly higher Vp inactivation than

that observed in NI scenario can be noticed here, with a final Vp concentration of 0.8 log10CFU/g

(Simulation 16, Figure 7B, right). The risk of disease also remained very low throughout the scenario.

Finally, with regard to the use of ice OB, the decreasing pattern is also similar to the previous two

scenarios; the use of ice after harvesting causes a decrease in the Vp counts, reaching 0.76 log10CFU/g

(Simulation 17, Figure 7C, right). The risk of illness also remains at a very low level during the

simulation time.
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Very High Risk High Risk

Moderate Risk Low Risk

Figure 7. Simulations 15 - 17. Winter Non-Ice (NI), Dockside (DS) and On Board (OB) post-harvest ice

treatment scenarios. Water temperature of 15◦C, and initial Vp concentration of 10 CFU/g.

3.4.4. Other Simulations of inter-est. Simulations 18–22

In figure 8, two previously simulated summer scenarios (DS & OB, Water 25◦C, Air 30◦C) are

simulated but in this case, occurring a hypothetical break in the cold chain. Simulations 18 and 19

(Figure 8A,B, left) reproduce two cold chain break events: the first event describes oysters moved from

a market to consumer (hour 24, 32◦C), and the second event, at the end of the simulation, refers to

the movement of oysters from a market to a consumption site (hour 50, 29◦C). The model shows an

increase in the final concentration of Vp counts, resulting in Vp concentrations of 4.7 log10CFU/g for

the DS scenario (Figure 8A, right) and 3.7 log10CFU/g for the OB scenario (Figure 8B, right). The risk

of illness is moderate for the DS scenario and remained low throughout the OB scenario.
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Very High Risk High Risk

Moderate Risk Low Risk

Figure 8. Simulations 18 - 19. Summer Dockside (DS) and On Board (OB) post-harvest ice treatment

scenarios, breaking cold chain. Water temperature of 25◦C and Air temperature od 30◦C and initial Vp

concentration of 1000 CFU/g.

Such breaks in cold storage were also tested in winter scenarios (Simulation 20 (DS) & Simulation

21 (OB), Water 10◦C, Air 15◦C). Although a slight rise in temperature in hours 24 and 50 was simulated

due to those breaks in the cold chain (Figure 9A,B, left), here, the sudden increase in temperature led

to a slight increase in Vp not compromising consumer´s health, as the risk of disease remained below

the low-risk zone to the end of the simulation. (Figure 9A,B, right)

Finally, Figure 10 (DS in summer, Air 40◦C) shows how long the use of ice was necessary to reduce

the risk of illness to the low-risk zone for gastroenteritis and extremely low for septicemia (Table 3).

This simulation is the same as Simulation 10, (Figure 5A, right) but here applying a more prolonged

ice treatment. In this simulation 22 (Figure 10A, left), oysters were subjected to cooling at 2◦C after

the first 10 hours of harvesting on DS. Referring to [13], and remembering the above mentioned, the

temperature scenario is constructed as follows: oysters in ice can take an average of 4 hours in summer

to descend to temperatures equal to 7.2◦C, which is why a temperature equal to 2◦C is reached in hour

18. This temperature is maintained until the end of the simulation (hour 300). A gradual inactivation is

observed in this simulation, ending with a Vp concentration of 4.5log10CFU/g, implying a decrease

from a high-risk zone to a low-risk zone.
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Very High Risk High Risk

Moderate Risk Low Risk

Figure 9. Simulations 20 - 21. Winter Dockside (DS) and On Board (OB) post-harvest ice treatment

scenarios, breaking cold chain. Water temperature of 15◦C and initial Vp concentration of 10 CFU/g.

Very High Risk High Risk

Moderate Risk Low Risk

Figure 10. Summer Dockside (DS) post-harvest ice treatment scenario, 300-hour duration. Water

temperature of 30◦ and Air temperature of 40◦C, and initial Vp concentration of 1000 CFU/g.

4. Discussion

Varying temperatures critically shape Vp proliferation dynamics of oysters [18,28]. However,

empirically testing all possible varying temperature scenarios for a comprehensive study of their

effects on Vp proliferation is unachievable. Modeling Vp growth under varying temperature mirroring

ambient temperatures and the effect of ice treatments is crucial to both predict the magnitude of human

illnesses and identify the temperature-related dynamics that are most important, particularly in the

face of environmental change [10,29].
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Our model generalizing from constant to time-varying temperatures was fed by growth and

inactivation rate equations, both being temperature-dependent functions. These equations were

obtained by means of analyzing the slope of regression models of the relationship between Vp counts

and time under different constant temperatures obtained in previous experiments [17]. The slope for

inactivation was identical to that obtained by [17] as the same linear model was applied. The slope

for the growth rate (maximum slope) obtained by the nonparametric LOESS regression model was

very similar to that obtained by Baranyi models in [17]. However, the LOESS curve adapted in a more

flexible manner to the data and has the potential to extract more information from it than the Baranyi

model. That is, the main advantage of using these types of models is the flexibility and the ease of

interpretation of the smoothing function [30]. Although further biological/ecological analysis of these

non-parametric curves is required, non-parametric curves seem to provide valuable information to

study the dynamics of bacterial growth in oysters in detail.

The model verification results conform to expectations of mathematical theory, behavior, and

population dynamics. Moreover, the model evaluation against real experimental data shows

a favorable match with particularly well-documented growth and inactivation dynamics from

constant-temperature experiments [17]. Once the model was verified and successfully evaluated, it can

be considered for simulating different scenarios with the objective of improving the understanding of

the Vp-oyster system to support studies about the public health impact of pathogenic Vp associated

with raw oyster consumption. More broadly, this predictive initiative has the purpose to support

identifying options for managing diseases caused by the consumption of any type of seafood. In

addition, the model has also space to be adapted to and provide insights into other pathogen systems

responding to varying temperatures e.g., [31].

The model here is able to incorporate varying temperature conditions and day/night temperature

oscillations to reproduce their effect on the temporal dynamics of Vp. In this study, model initial

conditions mirror realistic summer/winter Vp concentrations in oysters [13], with summer Vp counts

well above those in winter as high-temperatures favor Vp proliferation, causing a higher number of

bacteria at the time of collection. Model results are discussed here in terms of realistic air temperatures

for zones with hot summers and mild winters as in south Europe [? ] and south US [? ]. Increasing

ambient temperature in summer favor Vp growth in oysters from 3 log10CFU/g up to 7.5 log10CFU/g,

resulting in a very high risk of gastroenteritis after consumption of a serving (12 oysters), particularly

in hot summers reaching 40◦C (Simulation 9). The model also reflects pathogen inactivation due

to day/night oscillations, particularly, due to ice treatments. Ice treatment is much more effective

in limiting the risk of illness when this is applied on board compared to dockside. On board, the

gastroenteritis risk decreases to the low-risk zone (Simulation 11) corresponding to an extremely low

risk for sepsis (Table 3). Whilst, for dockside ice treatment, the risk of illness after a raw oyster serving

consumption remains high for gastroenteritis and extremely high for septicemia. These results can

be extrapolated to milder summers (30◦C) in terms of dynamic patterns (Simulations 12-14) showing

a rapid increase of Vp followed by a maximum plateau. However, in this case, both on-board and

dockside ice treatments limit the disease risk to the low-risk zone.

The model results are realistic; consuming raw oysters during hot summer months is inherently

risky and requires onboard icing, while in mild summers dockside ice can be an acceptable control

measure. The benefit of ice in hot summer scenarios is clear in our model results, but it should be

emphasized that late cooling of oysters can be fatal and may not sufficiently inactivate the Vp generated

in the first few hours for guaranteeing a save consumption. These model results are consistent with

oyster industry criteria [18] and previous experimental studies [32,33].

For mild winter scenarios (Simulations 15-17), the model shows Vp counts starting from 1

log10CFU/g and remaining consistently below the low-risk zone throughout the tested simulations.

The effect of ice on inactivation is slight by hour 50. Here, the model detects tiny variations of each

scenario; the final concentration of Vp is slightly higher in the non-ice scenario than that observed for

the Dockside ice treatment scenario and relatively higher when compared to the on-board ice treatment
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scenario. The model also reproduces the effect of the cold chain breaking in summer (Simulations

18-19) showing an oscillating pattern with Vp growth and inactivation events. This effect is negligible

in winter (Simulations 20-21).

A longer preservation time is essential to explore the real extent of cooling oysters down to

minimize Vp concentrations. For this, Simulation 22 was performed with initial conditions as in

Simulation 10, but running the model for 300 hours (almost 13 days) instead of 50 hours (2 days).

The model reproduces a cooling down on dockside decreasing oyster temperatures to 2◦C. In this

long-term simulation, the risk of gastroenteritis decreases from high risk to low risk by hour 300. Even

if the prolonged ice treatment effect seems to work best for treating oysters for raw consumption, the

ice treatment duration needs to be applied with caution. Very long ice treatments risk the marketability

of harvested oysters; they may collapse and eventually open, influencing product placement and sales,

and limiting their consumption, [34]. Consequently, conclusions from this simulation result need to be

balanced in terms of market quality. In winter, for example, prolonged and strong ice treatments may

have little impact on inactivation compared to a non-ice scenario, while the performance of oysters can

be jeopardizing sales.

This obviously cannot be extrapolated to higher temperature scenarios, where it is necessary

to assess the most appropriate ice treatment timing (on-board or dockside) without posing a

risk to human health. In this context, research on new treatments that minimize human health

risks is essential. However, achieving this goal will not be an easy task as climatic anomalies are

becoming more common, with long summer and winter seasons, thus increasing the seasonal risk

of seafood illness. Under such circumstances, it is necessary to consider adjustments in industry

practices and regulatory policy, especially for shellfish consumed raw, such as bivalve mollusks [35].

Modeling approaches such as the one presented, verified, and evaluated here can be valuable tools

with the necessary adjustments for simulating near-future scenarios under both varying ambient

temperatures and the umbrella of climate change [36,37]. In addition, this modeling tool can support

predictive studies under irregular and occasional temperature regimes, caused by weather events or

thermoregulatory behaviors of organisms [31]. Overall, this approach will help not only to improve

our predictions of how organisms perform in varying temperature environments but also gain

understanding of how temperature impacts organisms.

5. Conclusions

The model for exploring Vp dynamics performed satisfactorily under varying ambient

temperatures. The effect of seasons, day/night, and ice treatment-associated temperature oscillations

on Vp growth patterns was adequately detected and reproduced by the model. Thus, the predictive tool

here can serve (i) to improve the understanding of Vp-oyster system and to provide insights into similar

marine and terrestrial systems, for which temperature is crucial, and (ii) to support studies about the

impact of pathogenic Vp associated with raw oyster consumption on public health, particularly in the

face of global change.
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