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Abstract: The globe and more particularly the economically developed regions of the world are currently in the 
era of the fourth Industrial revolution (4IR). Conversely; the economically developing regions in the world and 
more particularly the African continent have not yet even fully passed through the Third Industrial Revolution 
(3IR) wave and its economy is still heavily dependent on the agricultural field. On the other hand, the state of 
global food insecurity is worsening on an annual basis thanks to the exponential growth of the global human 
population which continuously heightens the food demand in both quantity and quality. This justifies the 
significance of the focus on digitizing agricultural practices to improve the farm yield to meet up with the steep 
food demand and stabilize the economy of the African continent and countries like India whose economy is 
mainly dependent on Agriculture. The tools we have at our disposal to utilize in the digitization of farming 
practices include space technology and Global Navigation and Satellite System (GNSS) in particular, Machine 
learning (ML), precision agriculture and communication systems such as the Internet of Things (IoT) and 
Information And Communication Technologies (ICT). The most pressing challenges in the farming field include 
the monitoring of diseases, pests, weeds and nutrient deficiencies in the crops as early detection translates to 
swift and timely correction actions and hence more yield at the end of a farming cycle. Vast opportunities in the 
field of precision agriculture still exist that can amount to further research studies such as the lack of real-time 
monitoring and real-time corrective action focus. 

Keywords: Fourth Industrial Revolution (4IR); Machine Learning (ML); Precision Agriculture; Space Vector 
Machine (SVM); Artificial Neural Network (ANN); k-Nearest Neighbour (k-NN); Fuzzy Classification; Global 
Navigation and Satellite System (GNSS) 
 

1. Introduction 
Over the last two decades, we have seen a significant increase in the discussion of the Fourth 

Industrial Revolution (4IR) among academics and policymakers in both developing and 
industrialized countries [1]. The 4IR critique is marked by the merging of the real and virtual worlds, 
and the collapse of almost all industries [1, 2]. For others, the assembling of cyber-physical systems, 
cloud technology, the internet of things, internet of services; integrating them, while interacting with 
humans in real-time to maximize the generation of value, is known as Fourth Industrial Revolution 
[3]. Some thinkers assert that some old jobs will vanish because of the alleged revolutionary power 
of 4IR, opening the door for a new array of jobs and markets that will necessitate the creation of new 
areas of expertise [1-3]. The word "fourth" typically implies that there have been three revolutions 
before industrial revolution 4.0 [3]. Through mechanization and steam engines, the first industrial 
revolution greatly increased the productivity of manufacturing methods. Because there was more 
electrical power available during the second, assembly lines and mass production became a reality[4, 
5]. The third industrial revolution saw the widespread adoption of computing and digitalization [6]. 
The 4IR is currently where we are and this era is dominated by the use of cyber-physical systems to 
improve life-sustaining processes such as production works, refer to figure 2. Growth in automation 
marked each shift from one revolution to the next [3]. Productivity rose by approximately fifty-fold 
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with each revolution, even if many jobs from the previous industrial age were rendered obsolete [7]. 
All revolutions, by their very nature, are disruptive, and the preceding three revolutions brought 
about significant modifications to the economic and social landscape [6, 7].   

In the 1970s, it was believed that automating repetitive tasks would liberate people, resulting in 
more free time and less working time [1]. Despite advancements in technology, this promise 
remained mostly unmet [1, 2]. Now, the Fourth Industrial Revolution, which builds on digitalization 
and information and communication technologies (ICT), is thought to revolutionize everything [6]. 
It is projected that new technologies, including artificial intelligence (AI), biotechnology, the Internet 
of Things (IoT), quantum computing, and nanotechnology, will alter how we interact with one 
another, perform our jobs, run our economies, and even "the mere meaning of being a human 
being"[7]. It should be noted that the definition of the Fourth Industrial Revolution employed in this 
paper brightens a technology-centric understanding of 4IR, however, one should bear in mind the 
other important factors including the implications for society, politics, law, and ethics. Even though 
4IR has been the topic of discussion on many international forums, there haven't been many 
systematic aĴempts to analyze the state of the art of this new industrial revolution wave [6]. This 
situation may be more apparent in Africa, where the third industrial revolution has mostly not even 
fully begun [1-3]. Therefore, African academics have expressed scepticism and caution over the 
alleged advantages of Information and Communications Technology (ICT) in African environments. 
Swaminathan[8] stated the following: 
“Such a dream of transforming an agro-based economy into an information society must either be a flight 
of fancy or thinking hardly informed by the industrial economic background of developed economies that 
are in transition to informational economies. For an economy with about half of its adult population 
engaged in the food production sector, and about 70% of its development budget sourced from donor 
support, any talk of transition into an information society sounds like a far-fetched dream [8]” 

Monzurul[9] argues that you cannot leap into the information age. Although African Leaders 
and officials have spoken out in support of 4IR's goals, most of the continent's nations continue to be 
heavily dependent on an agrarian economy [10]. Pachade [5] states that critics frequently compared 
community ICT projects that failed because of the technology-reality divide to driving Cadillacs in 
rural areas. While a Cadillac may be a luxurious car that many people admire and desire, its 
utilitarian value on dusty country roads would be far inferior to that of a tough pre-Second World 
War van. Africa has previously been described as a technological and digital wilderness [3, 10, 11]. It 
is evident that Africa still lags behind the rest of the international community regarding the 4th 
industrial revolution. This is due to several factors, such as poor infrastructure, and over-reliance on 
the primary sector - agriculture [6]. 

Agriculture remains the backbone of the African continent, and it is a crucial part of the global 
economy and plays an important role in providing food for the rapidly growing population and 
hence its heightened food demand [8, 10]. According to the United Nations, the world's population 
is anticipated to reach over 10 billion people by 2050, virtually doubling global food consumption [3]. 
Therefore, global, agricultural productivity will need to rise by 1.75% each year to meet the resulting 
food demand [3, 11]. The Global Harvest Initiative (GHI) estimates that productivity is currently 
increasing at a rate of 1.63% annually since the farmers are already being assisted by precision 
agriculture and advanced technologies like automation, machine learning, computer vision and 
artificial intelligence in keeping up with the food demand [5]. Global Navigation Satellite System 
(GNSS) is playing a particularly significant role as an enabler in the transformation of the agricultural 
sector through precision agriculture. Prashar[12] defines precision agriculture as a smart form of farm 
governance using digital systems, sensors, microcontrollers, actuators, robotics, and communication 
systems to achieve the goals of sustainability, revenue, and environmental conservation. 
Swaminathan[8] defines it as the integration of different computer tools into conventional 
agricultural methods to maximize the farm harvest and achieve self-sufficiency in farming operations. 
Precision agriculture (also known as digital farming or intelligent agriculture) includes, but is not 
limited to, the following: pest detection, weed detection, plant disease detection, morphology, 
irrigation monitoring and control, soil monitoring, air monitoring, humidity monitoring, and 
harvesting to name a few [4, 6-8, 12]. This paper aims to study in detail the recent research trends in 
precision agriculture, particularly in the disease/pest/weed detection area to comprehend the 
Artificial Intelligence (AI) tools and scientific background required to implement these Machine 
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Learning (ML) based precision agriculture systems. The disease/pest/weed detection system was 
chosen in particular because it possesses a multi-purpose architecture that can be applied for several 
and diverse applications in a farm with only amendments effected in the software and limited 
changes to the hardware. For example, a disease, weed, pest, nutrient deficiency, or morphological 
feature, and detection systems all have similar working principles where a high-quality picture is 
acquired from a farm specimen and an ML algorithm is then fed with that picture, after processing, 
to make a classification of what it sees on the given picture. Therefore, these systems can have similar 
prototypic architectures and a farmer can have one universal robotic system that has a few change-
parts (such as: cameras, sensors.) and different software that are specific to different activities. This 
paper aims to present and summarize the recent research trends in precision agriculture, particularly 
in the disease/pest/weed detection area to identify the opportunities for further research. Its gereral 
architecture can be seen in figure 1. The following research questions are addressed in this study: 
 What are the recent precision agriculture research developments particularly on the 

disease/pest/weed detection systems? 
 What are the found limitations and gaps in the literature review? 
 Lastly, what are the arising opportunities for further research?   
 What topological amendments can be made to the traditional precision agricultural systems to 

make them more economical to employ in rural farms and make them more accessible? 

 

Figure 1. The general structure of this review paper 
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Figure 2. A historical perspective of the Changing Global Environment [DUT Inaugural Lecture – IED]. 

2. Literature Review: Precision Agriculture Research Developments 
Disease, pest and weed monitoring and early identification are imperative in an effective 

farming operation [1]. In conventional agricultural practices, farmers rely upon visual observations 
of specimens to identify diseased leaves, fruits, roots and other parts of crops[4, 6]. However, this 
method is faced with several challenges ranging from the need for continuous checking and 
observation of specimens which is tedious and expensive for large farms but most importantly, very 
much less accurate [1, 2, 11]. Badage[1] asserts that agriculturalists often consult experts for the 
identification of infections on their crops which incur even more costs and have longer turnaround 
times. The earlier-stated limitations of classical farming methods coupled with the pressure to keep 
up with an exponentially growing demand for food both in quantity and quality have served as the 
push factors for researchers to devise new strategies and tools to digitize the agricultural field with 
the prime objective of increasing the farm yields and produce [13]. The coming subsection discusses 
the general plant disease detection system, and one should note that the same general topology can 
be used to monitor pests, weeds, morphological features and similar. 

2.1. Plant Disease Detection System Basic Principles 
Disease, pest or weed detection is achieved by utilizing machine learning (ML)[3, 5, 6, 11, 12]. 

Shruthi [3] Defines ML as an intelligent technique where a machine is capacitated to recognize a 
paĴern, recall historical information, and train itself without being commanded to do so. Both 
supervised and unsupervised training strategies can be utilized for machine training [8]. While there 
are distinct training and assessment data sets for supervised training, there is no such distinction for 
unsupervised training data sets [12]. The author, Prashar [12], further states that since ML is an 
evolving procedure, the machine's performance becomes beĴer with time. As soon as the machine 
has finished learning or training, it may classify the data, make predictions, and even generate fresh 
test data from which its re-trains itself and the process goes on and on [8]. Adekar[4] defines ML as a 
decision-making tool capable of visualizing the potentially complicated inter-relationships between 
important parameters in a farm and making educated predictions and/or decisions. 
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Figure 3. Format of precision agriculture system [4]. 

The author further makes an illustration of ML application in precision agriculture as seen in 
figure 1. In the three-level precision agricultural layout shown, the 1st level, which is the physical 
layer, represents all the field equipment such as sensors, trackers, actuators, and probes, to count a 
few, that is in physical connection with the farm environment collecting data for further processing 
[4]. In the second level, the edge layer is where the processing of the data collected in level 1 is taking 
place to convert the raw data into useful information which is used to inform the decision-making. 
Decision-making takes place at this level through computational tools like computers, 
microcontrollers, microprocessors, and similar [4]. In the third level, the cloud layer, the storage of 
data for iterative training of the machine takes place [4]. Therefore, the plant disease detection system 
is made up of two main sub-systems viz., the image processing system and the classification system. 
The image processing is further subdivided into 4 steps while there are also 4 most cited different 
classification protocols summarized in table 1. 

Table 1. Table showing the summary of image processing steps and different classification techniques in plant 
disease detection. 

A typical general plant disease detection system 
Summary of image processing steps Different classification techniques 

Image processing: 
Image acquisition 
Image pre-processing 
Image segmentation 
Feature extraction 
Machine learning classification 

SVM Classifier 
ANN Classifier 
KNN Classifier 

FUZZY Classifier 

Latest studies of phenomics and high-throughput picture data gathering are available however, 
most of the research on image interpretation and processing can be found in textbooks that dive into 
extensive detail into the methodologies [14]. Figure 2 summarizes the latest techniques for image 
acquisition and processing. 
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Figure 4. Steps of image processing [5]. 

2.1.1. Image Acquisition.  
Image collection is the first step of a system for detecting plant diseases [6, 8, 12]. image sensors, 

scanners, and unmanned aerial vehicles (UAVs) can all be used to capture photos of plants [3]. The 
commonly utilized image acquisition tools are a charge-coupled device (CCD) and complementary 
metal oxide semiconductor (CMOS) [15]. Both these camera technology converts light signals and 
protons to digital data, which is then further transformed into a picture[15, 16]. However, their 
methods of turning the light signals into image data vary [16]. In a CCD camera, the light signals are 
transferred through a series of adjacent pixels before being amplified and converted into image data 
at the end of these pixel strings [17, 18]. This enables the CCD cameras to possess minimal 
degradation during the image acquisition process [19]. The CCD cameras generate sharp pictures 
with reduced distortion [18]. Contrarily, in CMOS cameras the light signals are collected, amplified, 
and converted at each pixel of the image sensor [15]. This enables the CMOS devices to generate 
images faster than CCD devices since each pixel can convert light signals into an image locally [17]. 
CMOS devices are normally preferred in projects that are low budget since they are cheap compared 
to CCD devices, have lower power consumption and can acquire high-quality images faster than their 
CCD counterparts[17-19]. Figure 3 shows the serial versus localized pixel image conversion of CCD 
and CMOS image sensors respectively. 

 
Figure 5. CCD vs. CMOS image conversion [15]. 

An imaging acquisition tactic known as time delay and integration (TDI) can be combined with 
either CCD or CMOS technology to drastically improve their image acquisition capabilities [20]. 
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Applications involving fast-moving objects, requiring high precision and the capacity to function in 
extremely dim lighting environments use TDI [20, 21]. Refer to figure 3 for an example of a high-
speed application of TDI technology where a high-velocity train was captured with a normal and 
TDI-featured camera on the left and right pictures respectively. When the camera was operated in 
normal mode the image of the train was a blur due to its high velocity and dim lighting conditions, 
however, the incorporation of a TDI mode counted these challenges and produce a clear detailed 
picture of a train. 

 
Figure 6. Steps of image processing [5]. 

After an image has been captured with a CCD or CMOS device with or without TDI technology 
incorporated, a captured image should proceed to the following step of the image processing which 
is normally image segmentation [3, 5, 11, 12, 16]. The segmentation of an image is a process whereby 
the features of interest are extracted from the rest of the image and irrelevant features are masked 
[10].  The features of interest are referred to as the foreground while the irrelevant ones are referred 
to as the background [16]. The creation of the foreground versus background is dependent on picture 
properties like colour, spectrum brightness, edge detection, and neighbour resemblance, to count a 
few [17]. However, image pre-processing may occasionally be necessary before an effective image 
segmentation can take place [3, 8, 11, 22]. 

2.1.2. Image Pre-processing.  
This is a crucial step in the ML-based disease detection system [14].  Pre-processing of an image 

deals with the correct seĴing of image contrast and filtration of interference signals resulting in noise 
and hence blurry images [18, 19]. This procedure can greatly enhance the precision of feature 
extraction and the correct disease detection in general [15]. Preprocessing typically involves 
straightforward treatments like image cuĴing, clipping, cropping, filtering, trimming, and deblurring; 
to name a few [3]. Wang[23] explained a typical image preprocessing procedure that is generally 
employed in image-based detection systems shown in figure 5. 
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Figure 7. General preprocessing procedure for plant-based feature detection systems [23]. 

The first step in the procedure illustrated in figure 5 involves the transformation of a coloured 
image into a grey image [23]. This conversion stage into a grey image may be omiĴed in applications 
where colour features are of relevance otherwise, this step is crucial because it is much simpler and 
faster to process an image in a grey colour format [17]. The second stage involves the denoising of a 
specimen image as in most cases, images are not without interference with the noise signal which 
affects the visibility of the features in the specimen images [23]. The third step then includes image 
segmentation which will be explained more broader in 2.1.3. The last step involves the forming of an 
outline image which can be achieved by masking the leafstalk as well as holes while keeping the outer 
connected region [15, 23]. Wakhare[24] proposed a similar procedure to that illustrated in figure 5 for 
plant-leaf feature identification applications under real-life varying lighting conditions. This 
procedure involves the conversion of a specimen image into grayscale, noise suppression as well as 
smoothing, and formation of the image outline through edge filtering. In a comparative study 
conducted by Ekka[25], a histogram equalization method was proven to be the most effective form 
of image enhancement of the grey images that were originally colour images. Conversely, 
Kolhalkar[26] found that Red-Green-Blue (RGB) camera images offer more valuable image 
enhancement compared to those converted to greyscale in the context of identifying diseases on the 
plant leaves. Therefore, this study cannot conclude which image preprocessing techniqueis beĴer 
than the other, rather the application in which the image is used, and thing kind of image involved 
in that application shall be considered in the selection of an appropriate preprocessing technique. 

2.1.3. . Image Segmentation 
Image segmentation is a pivotal part of image-based plant feature identification and 

phenotyping systems [23]. Segmentation of an image involves the separation between the foreground 
and the background [15], that is, the isolation of the feature of interest and masking of the irrelevant 
part from the image [24-26]. The features of interest are normally identified by comparing adjacent 
pixels for similarity by looking at the three main parameters, viz. the texture, colour, and shape [15, 
17]. Table 2 shows a list of free data libraries available to the public for use in the image segmentation 
process. 

Table 2. Table showing a list of image segmentation ML libraries 

Software language 
of implementation Library Description Open source 

R 
 

Kern-Lab 
Mechanisms for segmentation, modelling, grouping, uniqueness 

identification, and feature matching using kernel-based deep 
learning [27].  

https://cran.r-
project.org/ 

 
MICE 

 

This method can deal with data sets with missing data by 
computing estimates and filling in the missing data values [28]. 

e1071 
 

Programming package containing functions for types of statistical 
methods, i.e., probability and statistics [29]. 

CA-RET 
Offers a wide range of tools for creating forecasting analytics 

utilizing R's extensive model library. it contains techniques for the 
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pre-processing learning algorithm, determining the relevance of 
parameters, and presenting networks [30]. 

Rweka 
Data pre-processing, categorization, analysis, grouping, 

clustering algorithms, and image processing methods for all Java-
based machine learning methods [31]. 

ROCR 
A tool for assessing and displaying the accuracy of rating 

classifiers [32]. 
KlaR various categorization and display functions [33]. 

Earth 
 

Utilize the methods from Friedman's publications "Multivariate 
Adaptive Regression Splines" and "Fast MARS" to create a 

prediction model [34]. 
TREE A library containing functions designated to work with trees [35]. 

R, C Igraph Contains functions manipulating large graphs, and displaying 
[34]. 

Python, R Scikit-learn 

Offers a standardized interface for putting the machine into 
learning algorithms practice. It comprises various auxiliary tasks 

like data preprocessing operations, information resampling 
methods, assessment criteria, and search portals for adjusting and 

performance optimization of methods [36]. 

Python 

NuPIC 
Software for artificial intelligence that supports Hypertext 

Markup Language (HTML) learning models purely based on the 
neocortex's neurobiology [37]. 

http://nument
a.org/ 

Caffe 
Deep learning framework that prioritizes modularity, 

performance, and expression [38] 

http://caffe.be
rkeleyvision.

org/ 

Theano 
A toolkit and processor that is optimized for working with and 
assessing equations, particularly those using array value [39]. 

http://deeplea
rning.net/soft
ware/theano 

Tensorflow 
Toolkit for quick computation of numbers in artificial intelligence 

and machine learning [40]. 

https://www.
tensorflow.or

g/ 

PyBrain 
A versatile, powerful, and user-friendly machine learning library 
which offers algorithms that may be used for a range of machine 

learning tasks [41]. 

http://pybrai
n.org/ 

Pylearn2 
A specially created library for machine learning to make learning 
much easier for developers. It is quick and gives a researcher a lot 

of versatility [42]. 

http://deeplea
rning.net/soft
ware/pylearn

2 

Java 

Java-ML 

A collection of machine learning and data mining techniques that 
aim to offer a simple-to-use and extendable API. Algorithms 

rigorously adhere to their respective interfaces, which are 
maintained basic for each type of algorithm's interface [43]. 

http://java-
ml.sourceforg

e.net/ 

ELKI 
A data mining software that intends to make it possible to create 

and evaluate sophisticated data mining algorithms and study 
how they interact with database search architecture [44]. 

http://elki.dbs
.ifi.lmu.de/ 

JSAT 

A library designed to fill the need for a general-purpose, 
reasonably high-efficiency, and versatile library in the Java 

ecosystem that is not sufficiently satisfied by Weka and Java-ML 
[45]. 

https://github
.com/Edward

Raff/JSAT 

Mallet 
Toolkit for information extraction, text categorization, grouping, 
quantitative natural language processing, as well as other deep 

learning uses to text [46]. 

    
http://mallet.c
s.umass.edu/                                  

Spark 

Offers a variety of machine learning techniques such as grouping, 
categorization, extrapolation, and data aggregation, along with 

auxiliary features like simulation assessment and data acquisition 
[47]. 

http://spark.a
pache.org/ 

Weka 
Provides instruments for categorizing, forecasting, clustering, 
classification techniques, and visualization of information [48]. 

http://www.c
s.waikato.ac.
nz/ml/weka/ 

C#, C++, C 
 

Shark 
Includes approach for neural networks, both linear and nonlinear 

programming, kernel-based learning algorithms, and other 
methods for machine learning [49]. 

http://image.
diku.dk/shar

k/ 

mlpack 
Gives the data processing techniques as simplified control scripts, 

Python bindings, and C++ objects that can be used in more 
extensive machine learning solutions [50]. 

http://mlpack
.org/ 
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LibSVM 

 
A Support Vector Machines (SVM) library [51]. 

http://www.c
sie.ntu.edu.tcj

lin/libsvm/ 

Shogun 
Provides a wide range of data types and techniques for deep 

learning issues. It utilizes SWIG to provide interfaces for Octave, 
Python, R, Java, Lua, Ruby, and C# [52]. 

http://shogun
-toolbox.org/ 

Multiboot 
offers a quick C++ solution for enhancing methods for many 

classes, labels, and tasks[53]. 

http://www.
multiboost.or

g/ 

MLC++ 
Supervised machine learning methods and functions in a C++ 

ecosystem [52]. 

http://www.s
gi.com/tech/

mlc/source.ht
ml 

Accord 
Fully C#-written machine learning platform with audio and 

picture analysis libraries [54]. 

http://accord-
framework.n

et/ 

A most straightforward example of an image segmentation technique is thresholding [55]. 
Threshold segmentation is a process of converting a colour or grey scale image into a binary image 
with the sole purpose of making feature classification easier [55, 56]. The output binary images consist 
of black and white coloured pixels which correspond to the background and foreground respectively 
or vice versa[26, 55, 56]. 

 
Figure 8. Example of thresholding image segmentation [26]. 

Threshold segmentation is mathematically defined as follows, where T refers to a certain 
threshold intensity, g is the black or white pixel of a binary image and f is the grey level of the input 
picture [56]: ݃(ݔ, (ݕ = ൜0, ,ݔ)݂ ݂݅ ,ݔ)݂ ݂݅ 1ܶ ˂  (ݕ ܶ ˃  (ݕ  (1)

Threshold segmentation is subdivided into three, global, local, and adaptive thresholding [15, 
57]. Global thresholding is applied in scenarios where the is enough distribution between the 
intensity distribution of the foreground compared to the background [15]. Hence a single threshold 
value is selected and used to distinguish between the features of significance and the background [15, 
55]. Local thresholding is applied in cases where there is no distinct difference in intensity 
distribution between the background and the foreground and hence not conducive to selecting a 
single threshold value [55]. In such a case, an image is partitioned into smaller images and select 
different threshold values for each partitioned picture [15]. Adaptive thresholding is also appropriate 
for images with uneven intensity distribution where a threshold value is calculated for each pixel [57]. 
The Otsu thresholding method is another thresholding technique used for image segmentation [15]. 
In this technique, a measure of spread for the pixel intensity levels on either side of the threshold is 
listed by looping through all the reasonable threshold values [58]. The intent is to decide the threshold 
value where the summation of foreground and background escalates is at its minimum [15, 58]. The 
fundamental characteristic of the Otsu thresholding method is the fact that it implements the 
threshold values automatically instead of it being preselected by the user [58]. (2) the mathematical 
definition for the thresholding in the Otsu method. 
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Another segmentation method application in image processing is watershed transformation [59]. 
A grayscale image undergoes a transition called a watershed[59, 60]. In a metaphorical sense, the 
name alludes to a geologic catchment or drainage split that divides parallel catchments [59]. The 
watershed conversion locates the lines that follow the tops of ridges by treating the image it operates 
upon as a topographic map, with the luminosity of each pixel denoting its elevation [60]. Figure 5 is 
an example of a watershed-segmented image where the black pixels denote the background, the grey 
pixels denote the features to be extracted and the white pixels correspond to watershed lines [61]. 

 
Figure 9. Watershed image segmentation example [61]. 

On the other hand, Grabcut is a very popular and innovative segmentation technique that takes 
into consideration the textural and boundary conditions of an image [62]. This segmentation method 
is based on the iterative graph-cut method where a mathematical function is derived to implement 
the background as well as the foreground [63]. Each pixel in an image is then assessed to decide 
whether it falls in the background or the foreground [62, 63]. The Grab-cut segmentation method is 
preferred in most applications because of minimal user interference in the operation of this technique 
however it is not without its drawbacks [62]. The Grab-cut sequence cycles take a long to implement 
because of the complexity of the thresholding equation [63]. The segmentation is also poor in 
scenarios where the background is complex and minimal distinction between the features of interest 
and the background [64]. Several distinct segmentation methods and algorithms exist in the literature. 
The suitability of one method is based on a particular application and hence this study is not in a 
position to rule out certain segmentation methods or merit the ones outperforming the others. 

2.1.4. . Feature Extraction 
One of the foundational elements of computer vision-based image recognition is the extraction 

of features [65]. A feature is a data that is utilized to solve a particular computer vision problem and 
is A constituting part of a raw image [64]. The feature vectors include the features that have been 
retrieved from an image [66]. An extensive range of techniques is used to identify the items in an 
image while creating feature vectors [62]. Edges, image pixel intensity, geometry, texture, image 
modifications like Fourier, Wavelet, or permutations of pixels from various colour images are the 
primary features[46, 66]. A set of classifiers and machine learning algorithms are what feature 
extraction is ultimately used for [66]. The feature extraction in plant leaf disease monitoring systems 
is subdivided into three spheres which include texture, colour and shape [20, 21, 46, 65]. 

2.1.4.1. Shape Features 
The shape is a basic characteristic of a leaf used in feature extraction of leaf images during image 

processing [66]. The primary shape parameters include the length (L) which is the displacement 
between the two points in the longest axis, the width (W) which denotes the displacement between 
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the shortest axis, the diameter (D) denoting the maximum distance between the points, the area (A) 
which denotes the surface area of all the pixels found within the margin of a leaf picture and the 
perimeter (P) which denotes the accumulative length of the pixels around the margin of a leaf picture 
[55, 58, 62, 64]. From the 5 defined primary characteristics of shape features, 11 distinct secondary 
features are formed by mathematical definitions involving two or more primary variables [59]. These 
11 features are called morphological features of a plant. The morphological features are as follows: 
 Circularity (C) – A feature defining the degree to which a leaf conforms to a perfect circle. It is 

defined as [60]:   ࡯ = ૝࣊ࡼ࡭  (3)

 Rectangularity (R) – A feature defining the degree to which a leaf conforms to a rectangle. It is 
defined as [55]: ܴ = ௅ௐ஺  (4) 

 Aspect Ratio (AS) – Ratio of width to length of a leaf. It is defined as [55]:  ࡿ࡭ = ࡸࢃ  (5)

 Smooth factor (SF) – Ratio of leaf picture area when a 5x5 and 2x2 regular smoothing filters have 
been used [58].  

 Perimeter to diameter ratio (PDr) – Ratio of the perimeter to the diameter of a leaf. It is defined 
as [64]:  ࢘ࡰࡼ = (6) ࡰࡼ

 Perimeter to length plus width ratio (PLWr) – Ratio of the perimeter to length plus width of a 
leaf. It is defined as [64]:  ࢘ࢃࡸࡼ = ࡸࡼ + (7) ࢃ

 Narrow factor (NFr) – Ratio of diameter to length of a leaf [60]: 
 Area convexity (ACr) – Area ratio between the area of a leaf and the area of its convex hull [59]. 
 Perimeter convexity (ACr) – The ratio between the perimeter of a leaf to that of its convex hull 

[60]. 
 Eccentricity (Ar) – The degree to which a leaf shape is a centroid [64]. 
 Irregularity (Ir) – Ratio of the diameters of an inscribed to the circumscribed circles on the image 

of a leaf [59]. 

2.1.4.2. Colour Features 
Other researchers and scholars chose to implement the colour features as the pivotal features 

during the extraction process [67]. The colour features normally cited in the literature on leaves 
feature extraction include the following: ࢘ࡲࡺ = ࡸࡰ  (8)

 Colour standard deviation (σ) – A major of how much the different colours found in an image 
match one another or are rather different from one another [60]. Say an image is differentiated 
into an array of its basic building blocks, the pixels, then i is a pointer moving across the rows of 
pixels in an array from the origin to the very last row M  while j is a pointer moving across the 
columns of pixels in an array from the origin to the very last column N. At any point, a pixel 
colour intensity is defined by p(i, j) where i and j denote the coordinate position of a pixel in an 
image array. Therefore, the colour standard deviation is mathematically defined as follows: σ = ଵெே ට∑ ∑ ,݅)݌ ݆)ே௝ୀଵெ௜ୀଵ  (9) 

 Colour mean (µ) – A major to identify a dominant colour in a leaf image. This feature is normally 
used to identify the leaf type [63]. It is mathematically defined as follows: 
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μ = ଵெே ∑ ∑ ,݅)݌ ݆)ே௝ୀଵெ௜ୀଵ  (10) 
 Colour skewness (φ) – A major to identify a colour symmetry in a leaf image [21, 46]:  φ = ݔ = ∑ ∑ [௣(௜,௝)ିஜ]యೕಿసభಾ೔సభ ெே஢య  (11) 
 Colour Kurtosis (φ) – A major to identify a colour shape dispersion in a leaf image [65]: φ = ݔ = ∑ ∑ [௣(௜,௝)ିஜ]రೕಿసభಾ೔సభ ெே஢ర  (12) 

2.1.4.3. Texture Features 
There are also several textural features referenced by authors such as Singh [68], Martsepp[69] 

and Ponce[70]. Using the same assumption of an image partitioned into pixels in section 2.1.4.2, the 
following are the textural features used for feature extraction in plant leaves: 
 Entropy (Entr) – This is a measure of how complex and uniforms a texture of a leaf image [68]: Entr = ଵெே ∑ ∑ ,݅)݌ ݆)ே௝ୀଵெ௜ୀଵ logଶ ,݅)݌ ݆) (13) 
 Contrast (Con) – This is a measure of how clear the features are in a leaf image, it is also referred 

to as the moment of inertia[69, 70]:  Cont = ଵெே ∑ ∑ (݅ − ݆)ଶ݌(݅, ݆)ே௝ୀଵெ௜ୀଵ  (14) 
 Energy (En) – This is a major of the degree of how the uniform is a grey image. It is also called 

the second moment [69]: En = ଵெே ∑ ∑ ,݅)ଶ݌ ݆)ே௝ୀଵெ௜ୀଵ  (15) 
 Correlation (Cor) – This is a major of whether there is a similar element in a sample picture, 

which corresponds to the re-occurrence of a similar matrix within a large array of pixels [68]. 

Cor = ܰܯ1 ∑ ∑ ,݅)݌݆݅ ݆) − ܽଵே௝ୀଵெ௜ୀଵ ܽଶ ܾଵଶܾଶଶ  

Where: 

ܽଵ = ෍ ,݅)݌݅ ݆)ே
௜ୀଵ  

ܽଶ = ෍ ,݅)݌݆ ݆)ே
௝ୀଵ  

ܾଵଶ = ෍(݅ − ܽଵ)ଶே
௜ୀଵ ෍ ,݅)݌ ݆)ே

௝ୀଵ  

ܾଶଶ = ∑ (݆ − ܽଶ)ଶே௝ୀଵ ∑ ,݅)݌ ݆)ே௝ୀଵ  

(16) 

 Difference moment inverse (DMI) – This is a major of the degree of how homogenous an image 
[69]: DMI = ∑ ∑ ௣(௜,௝)ଵା(௜ି௝)మே௝ୀଵெ௜ୀଵ  (17) 

Other textural features include the maximum probability, which is the highest response to 
correlation, the standard deviation and/or variance which is the aggregate texture observed in a leaf 
picture and the average illuminance which is the average light distribution across the leaf when an 
image was captured, to name a few [66, 68-70]. The selection of whether to use which colour, shape 
or textural feature strictly depends on the application of the system being designed. 
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2.1.5. Feature Classification Through Machine Learning Algorithms 
The classification techniques are the machine learning algorithms that are used to categorize 

input sample data into different classes or groups of belonging or membership [3, 5, 11, 56]. These 
classifiers may employ supervised learning, unsupervised learning and reinforcement learning 
methods during their training [39]. Supervised learning occurs when a person is a trainer of the model 
and may use pre-formed data sets to do the training [39, 53]. Unsupervised learning occurs when 
there is no training data available hence the algorithm must train itself and improve its classification 
efficiency by iteratively adjuting itself [5, 39, 53]. Reinforcement learning occurs when the algorithm 
makes classification rulings based on the feedback applied by the environment to it [12, 39].  In the 
case of vision-based plant disease monitoring systems, the most cited classification algorithms 
include Space Vector Machines (SVM), Artificial Neural Networks, k-Nearest Neighbor machines and 
Fuzzy machines. The coming subsections discuss these classification techniques. 

2.1.5.1. SVM Classifier 
Support Vector Machine, sometimes known as SVM, is a predictive model used to solve both 

regression and classification tasks [3]. It is a supervised learning model that works well for numerous 
practical problems and can solve both linear and non-linear tasks [3, 71]. The SVM concept is 
straightforward; a vector or a hyperplane that splits the data into groups is generated by this 
technique [72]. 

 
Figure 10. SVM classification algorithm [72]. 

In figure 6, the optimal hyperplane is used to separate the two classes of data (the blue squares 
and green circles). The two planes (dashed lines) parallel to the optimal hyperplane are called the 
positive and negative imaginary planes which are the planes passing through the closest data points 
to either side of an optimal hyperplane [72]. These closest points to the optimal hyperplane are called 
the support vectors and are used to determine the exact position of an optimal hyperplane [73]. There 
might be several possible hyperplanes but the optimal hyperplane is the one with the maximum 
marginal distance, which is the distance between the two marginal planes [72, 73]. The maximized 
margin results in a more generalized solution compared to smaller margins and should the training 
data change, the algorithm with a smaller margin will have accuracy challenges [73]. In some cases, 
data classes are not always easily separable with a straight light or place as in the case of figure 6. 
Therefore when data classes show a property of non-linearity, transforming a space in which these 
data classes occur from a low dimension (often 2-dimensional) into a high-dimension a space (often 
3-dimensional) space using the Kernel method. The Kernel method is a computation of a dot product 
of the dimensions in the new high-dimension space [72-74]. (18) gives the general solution of a 
hyperplane where ሬ࢞ሬ⃗  is any data point or support vector, ሬ࣓ሬሬ⃗  is the weight vector that applies the bias 
of the support vectors and ࣓૙ is the constant [74]. 
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g(⃗ݔ) = ሬ߱ሬ⃗ ݔ⃗ + ߱଴   (18) 

 ܽ݊݀ g(⃗ݔ) = ൜ 1, ,1− ݏݎ݋ݐܿ݁ݒ 1 ݏݏ݈ܽܥ ݎ݋݂    ݏݎ݋ݐܿ݁ݒ 2 ݏݏ݈ܽܥ ݎ݋݂ 

2.1.5.2. ANN Classifier 
An ANN is a supervised learning model that is a collection of interlinked input and output nodes 

in which each link has an associated bias value called a weight [75]. A single input layer, one or 
perhaps more intermediate layers which are normally called hidden layers, and one or more output 
layers make up the structure of an ANN [75, 76]. The weight of each connection is modulated as the 
network operates to facilitate neural network learning [76]. The performance of the network is 
enhanced by adjusting the weight continuously [75]. ANN can be divided into two groups based on 
connection types: feed-forward networks and recurrent networks [33]. In contrast to recurrent neural 
networks, feed-forward neural networks do not have cycle-forming connections between units [76]. 
The architecture, transfer function, and learning rule all have an impact on how a neural network 
behaves[49, 76]. The weighted total of input triggers the activation of neural network neurons [75]. 
Figure 7 shows a generalized model of an ANN model with the input layer, the hidden intermediate 
layer (purple layer) and the output layer. 

 
Figure 11. ANN model architecture [77]. 

2.1.5.3. kNN Classifier 
The k Nearest Neighbors algorithm, sometimes known as kNN, is the most straightforward 

machine learning technique [77]. It is a non-parametric technique used for problems involving 
regression and classification [74, 77]. Non-parametric implies that no dataset for initial training is 
necessary [77]. Therefore, kNN does not require the use of any presumptions [78]. The k-closest 
training examples in the feature space provide the input for classification and regression tasks, 
respectively [77]. Whether kNN is applied for classification or regression determines the results [78]. 
The outcome of the kNN classifier is a class of belonging[74, 77, 78]. Based on the predominant kind 
of its neighbourhood, the given data point is classed [78]. The input point is awarded to the category 
that has the highest frequency among its k closest neighbours [77]. In most cases, k is a liĴle positive 
integer such as 1. The result of a kNN regression is just a value of the property for the aĴribute. The 
aggregate of the variables of the k closest neighbours constitutes this number [78]. 
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Figure 12: Classification principle of a kNN model [79]. 

Figure 10 shows a space with numerous data points or vectors that can be classified into two 
classes: the red class and the green class. Now, assume there exists a data point at any location in the 
space shown in figure 8 that is unknown whether it belongs to either the red or green class. The kNN 
will then go through the following computational steps to assign that point a class of belonging: 
 Take the uncategorized data point as input to a model 
 Measure the spatial distance between this unclassified point to all the other already classified 

points. The distance can be computed via Euclidean, Minkowski or ManhaĴan formulae [79]. 
 Check the points with the shortest displacement from the unknown data point to be classified 

for a certain K value (K is defined by the supervisor of the algorithm) and separate these points 
by class of belonging [79]. 

 Select the correct class of membership as the one with the most frequent vectors as the 
neighbours of the unknown data point [79]. 
The most cited method of computing the spatial distance between the data point p to be classified 

and its neighbours qn is the Euclidean formulae (19) [74, 79]: 

d(p, q) = d(q, p) = ඥ(ݍଵ − ଵ)ଶ݌ + ଶݍ) − ଶ)ଶ݌ + ⋯ + ௡ݍ) − ௡)ଶ݌ = ඩ෍(ݍ௜ − ௜)ଶ௡݌
௜ୀଵ  (18)

2.1.5.4. FUZZY Classifier 
The fuzzy classifier system is a supervised learning model that enables computational variables, 

outputs, and inputs to assume a spectrum of values over predetermined bands [80]. By developing 
fuzzy rules that connect the values of the input variables to internal or output variables, the fuzzy 
classifier system is trained [81]. It has mechanisms for credit assignment and conflict resolution that 
combine elements of typical fuzzy classifier systems [80]. A genetic algorithm is used by the fuzzy 
classifier system to develop suitable fuzzy rules [82]. 
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Figure 13. Example of FUZZY sets for classification [82]. 

As shown in figure 12, fuzzy sets display a continuous membership, and a data point 
membership classification can be ruled as the extent (µ) to which it belongs to a certain fuzzy set. For 
example, 690 mm in figure 9 has a degree of membership µ(960) on the close fuzzy set that is 0.7. It 
can also be seen from figure 9 that a data point can belong to multiple fuzzy sets, and the degrees of 
membership to each set may or may not (in the intersection points) differ, since some fuzzy sets 
overlap with each other. Table 3 summarizes the advantages and disadvantages of all the 
classification techniques discussed in this section. 

Table 3. Table showing PRO & CONS of different classification methods 

PROS & CONS OF DIFFERENT CLASSIFICATION METHODS MOST USED IN PLANT 
PHENOMICS AND DISEASE MONITORING 

1. Support Vector Machine (SVM) 
Advantages Disadvantages 

Works very accurately when there is a 
clear formation of a hyperplane [74]. 

Accuracy difficulties with a large amount of 
training data [71]. 

Works more accurately on high-
dimension spaces like 3-D and 4-D [51]. 

Susceptibility to noise and overlapping data 
classes [75]. 

Saves memory space [71]. 
The number of characteristics for a single data set 
must not exceed the number of data points in the 

training set [74]. 
2. Artificial Neural Network (ANN) 

Capable of multitasking [76]. Complex programming algorithms [75]. 

The machine is learning continuously, and 
the accuracy is improving iterable [50]. 

Accuracy is data dependent; more training data 
translate to more accurate classification and the 

opposite is true [75]. 
Have many applications (e.g., mining, 

agriculture, medicine, and engineering) 
[59]. 

Hardware reliance (cost, complexity and 
maintenance) [33]. 

3. k-Nearest Neighbor (kNN) 

No initial training period [74]. Accuracy difficulties with a large amount of 
training data [78]. 

Simple to add new data to the model to 
extend its scope [79]. 

Not suitable for high-dimensional space [79]. 

Relatively easy to implement with only 
the two parameters to work out, the k 

value and the geometric distance between 
the points [77]. 

Susceptibility to noise and outliers [74]. 

4. Fuzzy classifier 
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Unclear, distorted, degraded or vague 
input data is accommodated by the model 

[80]. 

Depending on people’s experience and expertise 
[81]. 

More flexibility and ease to change the 
rules [82]. 

Require excessive supervision in a form of testing 
and validation [81]. 

Robust in applications with no exact input 
format [81]. 

The is no universal approach to implementing 
fuzzy classification models which adds to their 

inaccuracy [82]. 

2.2. Literature Survey: Plant Disease/Nutrient Deficiency Monitoring Systems 
Many authors in the literature have proposed plant disease/pest/weed detection systems that 

employ the above-described general format. Table 4 summarizes a literature survey on these systems. 

2.2.1. Tabulated summary of Plant Disease/Nutrient Deficiency Monitoring Systems publications 

Table 4. Table summarizing a literature survey on the plant disease/pest/weed detection systems 

Classification 
Method Plant/Crop Reference 

Number of 
diseases Disease Results 

SVM Classification 

Maize [83] 1 Not Specified 79% accuracy 
Grapefruit, Lemon, 

lime [84] 2 
Canker And 

Anthracnose Diseases 
95% accuracy for 

both 

Grape [85] 2 Downy Mildew And 
Powdery Mildew 

88.89% accuracy 
for both 

Oil palm [3] 2 Chimaera And 
Anthracnose 

97% and 95% 
accuracy 

respectively 

Potato [86] 4 
Late Blight And Early 

Blight 95% for both 

Grape [10] 3 Black Rot, Esca And 
Leaf Blight 

Not specified 

Tea [87] 3 Not Specified 90% accuracy 

Soybean [84] 3 
Downy Mildew, Frog 

Eye, And Septories Leaf 
90% accuracy 

average 
Tomato [88] 6 Not Specified 96% accuracy 

Rice [89] 
Not 

specified Pests Diseases 92% accuracy 

Soybean [90] 1 Charcoal Rot 90% accuracy 
Cucumber [91] 1 Downy Mildew Not specified 

Rice [92] 1 Rice Blast 93% accuracy 
Rice [93] 1 Rice Blight 80% accuracy 
Tea [94] 1 Not Specified 90% accuracy 

ANN Classification

zucchini [95] 1 Soft-Rot Not specified 

Not specified [96] 4 

Alternaria Alternata, 
Anthracnose, Bacterial 
Blight, Cercospora Leaf 

Spot 

96% accuracy 
average 

Grapefruit [97] 3 
Grape-Black Rot, 
Powdery Mildew, 
Downy Mildew 

94% accuracy 
average 

Apple [98] 3 Apple Scab, Apple Rot, 
Apple Blotch 

81% accuracy 
average 

Pomegranate [99] 3 
Bacterial Blight, 

Aspergillus Fruit Rot, 
Gray Mold 

99% accuracy 
average 
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Not specified [100] 4 
Early Scorch, Cottony 
Mould, Late Scorch, 

Tiny Whiteness 

93% accuracy 
average 

Cucumber [101] 2 
Downy Mildew, 
Powdery Mildew 

99% accuracy 
average 

Pomegranate [102] 4 
Leaf Spot, Bacterial 

Blight, Fruit Spot, Fruit 
Rot 

 
90% accuracy 

average 
Groundnut [103]  1 Cercospora 97% accuracy 

Pomegranate [104] 1 Not Specified 90% accuracy 
Cucumber [105] 1 Downy Mildew 80% accuracy 

Rice [106] 3 
Bacterial Leaf Blight, 

Brown Spot, Leaf Smut 
96% accuracy 

average 

Citrus [107] 5 
Anthracnose, Black 
Spot, Canker, Citrus 

Scab, Melanose 

90% accuracy 
average 

Wheat [108] 4 

Powdery Mildew, Rust 
Puccinia Triticina, Leaf 

Blight, Puccinia 
Striifomus 

Not specified 

k-NN 
Classification 

Not specified [109] 5 

(YS) the yellow spotted, 
(WS) white spotted, (RS) 
red spotted, (N) Normal 

and (D) discoloured 
spotted 

86% Accuracy 

Groundnut [77] 5 
Early leaf spot, Late leaf 
spot, Rust, early and late 

spot Bud Necrosis 
96% Accuracy 

Tomato, Corn, 
Potato [110] 

Not 
Specified 

No disease: Leaf 
Recognition 

94% Accuracy 
(Corn) 

86% Accuracy 
(Potato) 

80% Accuracy  

Tomato [111] 3 
Rust, early and late spot 

Bud Necrosis 
95% Accuracy 

Banana  [112] 2 bunchy top, sigatoka 99% Accuracy 

Tomato [113] 3 
Rust, early and late spot 

Bud Necrosis 97% Accuracy 

Rice  4 
Bacterial Blight of rice,  

Rice Blast disease,  Rice 
Tungro,  False smut 

88% Accuracy 
Average 

Fuzzy 
Classification 

Mango [82] 3 
Powdery Mildew, 

Phoma blight,  Bacterial 
canker 

90% Accuracy 
Average 

strawberry [114] 1 
 

Iron deficiency 97% Accuracy 

Cotton, Wheat [115] 18 

Bacterial blight, Leaf 
Curl, Root Rot, 

Verticillium wilt,  
Anthracnose, 

Seed rot, 
Tobacco streak virus,  

Tropical rust,  
Fusarium wilt,  Black 
stem rust,  leaf rust,  
stripe rust,  Loose 
smut,  Flag smut,  

99%  Accuracy 
Average 
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complete bunt, partial 
bunt,  Ear_cockle, 

Tundo   
Soybean [19] 1 Foliar 96% Accuracy 

Cotton   3 
Bacteria blight, Foliar, 

Alternaria 
95% Accuracy 

Average 

2.2.2. Research Opportunities Identified 
During the literature survey presented in the earlier presented sections, the following 

opportunities which the author of this paper believes has seen liĴle or no interest from the researchers 
are as follows: 
 LiĴle or no literature discussed the real-time monitoring of the onset signs of diseases before 

they spread throughout the whole plant part. 
 Few papers discussed real-time monitoring and real-time mitigation measures such as actuation 

operations, spraying pesticides, and spraying fertilizers, to name a few examples. 
 Very liĴle research discusses the combination of these monitoring and phenotyping tasks into 1 

system to reduce costs and improve technology availability to farmers and add convenience. 

3. Conclusion 
This paper has presented the background for the research in precision agriculture. The most 

pressing challenge in precision agriculture was identified as the monitoring of 
disease/pest/weed/nutrient deficiency in crops, backed by the literature trends. The basing principles 
of a disease/pest/weed/nutrient deficiency monitoring system were discussed. This covered the 
image processing steps viz., image acquisition, image pre-processing, image segmentation and 
feature extraction; and the different classification algorithms most cited in literature viz., the SVM, 
the ANN, k-NN and Fuzzy classifiers. The summary of a literature survey regarding the 
disease/pest/weed/nutrient deficiency monitoring systems was presented. The main opportunities 
observed during a literature survey were then presented. 

A literature survey reveals that this field of precision agriculture is a relatively new research field 
and that considerable research focus and hence progress has been observed over the past two decades. 
It is also apparent that there still exists an array of opportunities that still require to be filled with 
further research such as those presented in 2.2.2. Much more can still be done to further improve the 
accuracy levels of some monitoring systems presented in table 4 such as increasing the amount of 
training data. This study is already serving as a foundation for a Doctor of Philosophy research which 
seeks to explore one of the research opportunities presented in this paper. 
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