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Featured Application: We propose the PrivacyGLUE benchmark to compare and contrast NLP

models’ general language understanding in the privacy language domain. This will help

practitioners in selecting understanding models for applications within the privacy language

domain.

Abstract: Benchmarks for general language understanding have been rapidly developing in

recent years of NLP research, particularly because of their utility in choosing strong-performing

models for practical downstream applications. While benchmarks have been proposed in the legal

language domain, virtually no such benchmarks exist for privacy policies despite their increasing

importance in modern digital life. This could be explained by privacy policies falling under the legal

language domain, but we find evidence to the contrary that motivates a separate benchmark for

privacy policies. Consequently, we propose PrivacyGLUE as the first comprehensive benchmark of

relevant and high-quality privacy tasks for measuring general language understanding in the privacy

language domain. Furthermore, we release performances from multiple transformer language models

and perform model-pair agreement analysis to detect tasks where models benefited from domain

specialization. Our findings show the importance of in-domain pretraining for privacy policies. We

believe PrivacyGLUE can accelerate NLP research and improve general language understanding

for humans and AI algorithms in the privacy language domain, thus supporting the adoption and

acceptance rates of solutions based on it.

Keywords: Privacy Policies; NLP; benchmark; general language understanding; domain

specialization and generalization

1. Introduction

Data privacy is evolving into a critical aspect of modern life with the United Nations (UN)

describing it as a human right in the digital age [1]. Despite its importance, several studies have

demonstrated high barriers to the understanding of privacy policies [2] and estimate that an average

person would require ∼200 hours annually to read through all privacy policies encountered in their

daily life [3]. To address this, studies such as Wilson et al. [4] recommend training Artificial Intelligence

(AI) algorithms on appropriate benchmark datasets to assist humans in understanding privacy policies.

In recent years, benchmarks have been gaining popularity in Machine Learning and Natural

Language Processing (NLP) communities because of their ability to holistically evaluate model

performance over a variety of representative tasks, thus allowing practitioners to compare and

contrast different models on multiple tasks relevant for the specific application domain. GLUE

[5] and SuperGLUE [6] are examples of popular NLP benchmarks which measure the natural language

understanding capabilities of SOTA models. NLP benchmarks are also developing rapidly in language
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domains, with LexGLUE [7] being an example of a recent benchmark hosting several difficult tasks

in the legal language domain. Interestingly, we do not find similar NLP benchmarks in the privacy

language domain for privacy policies. While this could be explained by privacy policies falling under

the legal language domain due to their formal and jargon-heavy nature, we claim that privacy policies

fall under a distinct language domain and cannot be subsumed under any other specialized NLP

benchmark such as LexGLUE.

To investigate this claim, we gather documents from Wikipedia [8], European Legislation

(EURLEX; Chalkidis et al.[9]) and company privacy policies [10], with each corpus truncated to

2.5M tokens. Next, we feed these documents into BERT and gather contextualized embeddings,

which are then projected to 2-dimensional space using UMAP [11]. In Figure 1, we observe that

the three domain corpora cluster independently, providing evidence that privacy policies lie in a

distinct language domain from both legal and wikipedia documents. With this motivation, we propose

PrivacyGLUE as the first comprehensive benchmark for measuring general language understanding

in the privacy language domain. Our main contributions are threefold:

1. Composition of seven high-quality and relevant PrivacyGLUE tasks, specifically OPP-115,

PI-Extract, Policy-Detection, PolicyIE-A, PolicyIE-B, PolicyQA and PrivacyQA.
2. Benchmark performances of five transformer language models on all aforementioned tasks,

specifically BERT, RoBERTa, Legal-BERT, Legal-RoBERTa and PrivBERT.
3. Model agreement analysis to detect PrivacyGLUE task examples where models benefited from

domain specialization.

Figure 1. UMAP visualization of BERT embeddings from Wikipedia, European Legislation (EURLEX)

and company privacy policy documents with a total of 2.5M tokens per corpus
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We release PrivacyGLUE as a fully configurable benchmark suite for straight-forward

reproducibility and production of new results in our public GitHub repository1. Our findings show

that PrivBERT, the only model pretrained on privacy policies, outperforms other models by an average

of 2 − 3% over all PrivacyGLUE tasks, shedding light on the importance of in-domain pretraining for

privacy policies. Our model-pair agreement analysis explores specific examples where PrivBERT’s

privacy-domain pretraining provided both competitive advantage and disadvantage. By benchmarking

holistic model performances, we believe PrivacyGLUE can accelerate NLP research into the privacy

language domain and ultimately improve general language understanding of privacy policies for both

humans and AI algorithms.

2. Related work

NLP benchmarks have been gaining popularity in recent years because of their ability to

holistically evaluate model performance over a variety of representative tasks. GLUE [5] and

SuperGLUE [6] are examples of benchmarks that evaluate SOTA models on a range of natural

language understanding tasks. The GEM benchmark [12] looks beyond text classification and

measures performance in Natural Language Generation tasks such as summarization and data-to-text

conversion. The XTREME [13] and XTREME-R [14] benchmarks specialize in measuring cross-lingual

transfer learning on 40-50 typologically diverse languages and corresponding tasks. Popular NLP

benchmarks often host public leaderboards with SOTA scores on supported tasks, thereby encouraging

the community to apply new approaches for surpassing top scores.

While the aforementioned benchmarks focus on problem types such as natural language

understanding and generation, other benchmarks focus on language domains. The LexGLUE

benchmark [7] is an example of a benchmark that evaluates models on tasks from the legal language

domain. LexGLUE consists of seven English-language tasks that are representative of the legal

language domain and chosen based on size and legal specialization. Chalkidis et al. [7] benchmarked

several models such as BERT [15] and Legal-BERT [16], where Legal-BERT has a similar architecture to

BERT but was pretrained on diverse legal corpora. A key finding of LexGLUE was that Legal-BERT

outperformed other models which were not pretrained on legal corpora. In other words, they found

that an in-domain pretrained model outperformed models that were pretrained out-of-domain.

In the privacy language domain, we tend to find isolated datasets from specialized studies.

Zimmeck et al. [17], Wilson et al. [4], Bui et al. [18] and Ahmad et al. [19] are examples of studies

that introduce annotated corpora for privacy-practice sequence and token classification tasks, while

Ravichander et al. [20] and Ahmad et al. [21] release annotated corpora for privacy-practice question

answering. Amos et al. [22] is another recent study that released an annotated corpus of privacy policies.

As of writing, no comprehensive NLP benchmark exists for general language understanding in privacy

policies, making PrivacyGLUE the first consolidated NLP benchmark in the privacy language domain.

3. Datasets and Tasks

The PrivacyGLUE benchmark consists of seven natural language understanding tasks originating

from six datasets in the privacy language domain. Summary statistics, detailed label information and

representative examples are shown in Table 1, Table A1 (Appendix B) and Table A2 (Appendix C)

respectively.

OPP-115

Wilson et al. [4] was the first study to release a large annotated corpus of privacy policies. A

total of 115 privacy policies were selected based on their corresponding company’s popularity on

1 Repository will be made public post-acceptance. Anonymous repository: https://anonymous.4open.science/r/
f4293357886f671347fa69fae3650543
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Google Trends. The selected privacy policies were annotated with 12 data privacy practices on a

paragraph-segment level by experts in the privacy domain. As noted by Mousavi Nejad et al. [23], one

limitation of Wilson et al. [4] was the lack of publicly released training and test data splits which are

essential for machine learning and benchmarking. To address this, Mousavi Nejad et al. [23] released

their own training, validation and test data splits for researchers to easily reproduce OPP-115 results.

PrivacyGLUE utilizes the "Majority" variant of data splits released by Mousavi Nejad et al. [23] to

compose the OPP-115 task. Given an input paragraph segment of a privacy policy, the goal of OPP-115

is to predict one or more data practice categories.

Table 1. Summary statistics of PrivacyGLUE benchmark tasks; † PI-Extract and PolicyIE-B consist of

four and two subtasks respectively and the number of BIO token classes per subtask are separated by a

forward slash character

Task Source Task Type Train/Dev/Test Instances # Classes

OPP-115 Wilson et al. [4] Multi-label sequence classification 2,185/550/697 12

PI-Extract Bui et al. [18] Multi-task token classification 2,579/456/1,029 3/3/3/3†

Policy-Detection Amos et al. [22] Binary sequence classification 773/137/391 2
PolicyIE-A Ahmad et al. [19] Multi-class sequence classification 4,109/100/1,041 5

PolicyIE-B Ahmad et al. [19] Multi-task token classification 4,109/100/1,041 29/9†

PolicyQA Ahmad et al. [21] Reading comprehension 17,056/3,809/4,152 –
PrivacyQA Ravichander et al. [20] Binary sequence classification 157,420/27,780/62,150 2

PI-Extract

Bui et al. [18] focuses on enhanced data practice extraction and presentation to help users better

understand privacy policies. As part of their study, they released the PI-Extract dataset consisting of

4.1K sentences (97K tokens) and 2.6K expert-annotated data practices from 30 privacy policies in the

OPP-115 dataset. Expert annotations were performed on a token-level for all sentences of selected

privacy policies. PI-Extract is broken into four subtasks, where spans of tokens are independently

tagged using the BIO scheme commonly used in Named Entity Recognition (NER). Subtasks I, II, III

and IV require the classification of token spans for data-related entities that are collected, not collected,

not shared and shared respectively. In the interest of diversifying tasks in PrivacyGLUE, we composed

PI-Extract as a multi-task token classification problem where all four PI-Extract subtasks are to be

jointly learned.

Policy-Detection

Amos et al. [22] developed a crawler for automated collection and curation of privacy policies.

An important aspect of their system is the automated classification of documents into privacy policies

and non-privacy-policy documents encountered during web crawling. To train such a privacy policy

classifier, Amos et al. [22] performed expert annotations of commonly encountered documents during

web crawls and classified them into the aforementioned categories. The Policy-Detection dataset was

released with a total of 1.3K annotated documents and is utilized in PrivacyGLUE as a binary sequence

classification task.

PolicyIE

Inspired by Wilson et al. [4] and Bui et al. [18], Ahmad et al. [19] created PolicyIE, an English corpus

composed by 5.3K sentence-level and 11.8K token-level data practice annotations over 31 privacy

policies from websites and mobile applications. PolicyIE was designed to be used for machine learning

in NLP, to ultimately make data privacy concepts easier for users to understand. We split the PolicyIE

corpus into two tasks, namely PolicyIE-A and PolicyIE-B. Given an input sentence, PolicyIE-A entails

multi-class data practice classification while PolicyIE-B entails multi-task token classification over

distinct subtasks I and II, which require the classification of token spans for entities that participate in
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privacy practices and their conditions/purposes respectively. The motivation for composing PolicyIE-B

as a multi-task problem is similar to that of PI-Extract.

PolicyQA

Ahmad et al. [21] argue in favour of short-span answers to user questions for long privacy policies.

They release PolicyQA, a dataset of 25k reading comprehension examples curated from the OPP-115

corpus from Wilson et al. [4]. Furthermore, they provide 714 human-written questions optimized for a

wide range of privacy policies. The final question-answer annotations follow the SQuAD-1.0 format

[24], which improves the ease of adaptation into NLP pipelines. We utilize PolicyQA as PrivacyGLUE’s

reading comprehension task.

PrivacyQA

Similar to Ahmad et al. [21], Ravichander et al. [20] argue in favour of annotated

question-answering data for training NLP models to answer user questions about privacy policies.

They correspondingly released PrivacyQA, a corpus composed by 1.75K questions and more than 3.5K

expert annotated answers. Unlike PolicyQA, PrivacyQA proposes a binary sequence classification task

where a question-answer pair is classified as either relevant or irrelevant. Correspondingly, we treat

PrivacyQA as a binary sequence classification task in PrivacyGLUE.

4. Experimental setup

The PrivacyGLUE benchmark was tested using the BERT, RoBERTa, Legal-BERT, Legal-RoBERTa

and PrivBERT models which are summarized in Table 2. We describe the models used and task-specific

approaches, and provide details on our benchmark configuration in Appendix A.

Table 2. Summary of models used in the PrivacyGLUE benchmark; all models used are base-sized

variants of BERT/RoBERTa architectures; † BC = BookCorpus, CC-News = CommonCrawl-News,

OWT = OpenWebText; ‡ models were initialized with the pretrained RoBERTa model

Model Source # Params Vocab. Size Pretraining corpora†

BERT Devlin et al. [15] 110M 30K Wikipedia, BC (16 GB)
RoBERTa Liu et al. [25] 125M 50K Wikipedia, BC, CC-News, OWT (160 GB)
Legal-BERT Chalkidis et al. [16] 110M 30K Legislation, Court Cases, Contracts (12 GB)

Legal-RoBERTa‡ Geng et al. [26] 125M 50K Patents, Court Cases (5 GB)

PrivBERT‡ Srinath et al. [27] 125M 50K Privacy policies (17 GB)

4.1. Models

BERT

Proposed by Devlin et al. [15], BERT is perhaps the most well-known transformer language model.

BERT utilizes the WordPiece tokenizer [28] and is case-insensitive. It is pretrained with the Masked

Language Model (MLM) and Next Sentence Prediction (NSP) tasks on the Wikipedia and BookCorpus

corpora.

RoBERTa

Liu et al. [25] proposed RoBERTa as an improvement to BERT. RoBERTa uses dynamic token

masking and eliminates the NSP task during pretraining. Furthermore, it uses a case sensitive byte-level

Byte-Pair Encoding [29] tokenizer and is pretrained on larger corpora. Liu et al. [25] reported improved

results on various benchmarks using RoBERTa over BERT.
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Legal-BERT

Chalkidis et al. [16] proposed Legal-BERT by pretraining BERT from scratch on legal corpora

consisting of legislation, court cases and contracts. The sub-word vocabulary of Legal-BERT is learned

from scratch using the SentencePiece [30] tokenizer to better support legal terminology. Legal-BERT

was the best overall performing model in the LexGLUE benchmark as reported in Chalkidis et al. [7].

Legal-RoBERTa

Inspired by Legal-BERT, Geng et al. [26] proposed Legal-RoBERTa by further pretraining RoBERTa

on legal corpora, specifically patents and court cases. Legal-RoBERTa is pretrained on less legal data

than Legal-BERT while producing similar results on downstream fine-tuning legal domain tasks.

PrivBERT

Due to the scarcity of large corpora in the privacy domain, Srinath et al. [27] proposed PrivaSeer,

a novel corpus of 1M English language website privacy policies crawled from the web. They

subsequently proposed PrivBERT by further pretraining RoBERTa on the PrivaSeer corpus.

4.2. Task-specific approaches

Given the aforementioned models and tasks, we now describe our task-specific fine-tuning and

evaluation approaches. Given an input sequence s = {w1, w2, . . . , wN} consisting of N sequential

sub-word tokens, we feed s into a transformer encoder and obtain a contextual representation

{h0, h1, . . . , hN} where hi ∈ R
D and D is the output dimensionality of the transformer encoder.

Here, h0 refers to the contextual embedding for the starting token which is [CLS] for BERT-derived

models and <s> for RoBERTa-derived models. For PolicyQA and PrivacyQA, the input sequence s is

composed by concatenating the question and context/answer pairs respectively. The concatenated

sequences are separated by a separator token, which is [SEP] for BERT-derived models and </s> for

RoBERTa-derived models.

4.2.1. Sequence classification

The h0 embedding is fed into a class-wise sigmoid classifier (1) and softmax classifier (2) for

multi-label and binary/multi-class tasks respectively. The classifier has weights W ∈ R
D×C and bias

b ∈ R
C and is used to predict the probability vector y ∈ R

C, where C refers to the number of output

classes. We fine-tune models end-to-end by minimizing the binary cross-entropy loss and cross-entropy

loss for multi-label and binary/multi-class tasks respectively.

y = sigmoid
(

W⊤h0 + b
)

(1)

y = softmax
(

W⊤h0 + b
)

(2)

We report the macro and micro-average F1 scores for all sequence classification tasks since the

former ignores class imbalance while the latter takes it into account.

4.2.2. Multi-task token classification

Each hi ∈ {h1, h2, . . . , hN} token embedding is fed into J independent softmax classifiers with

weights Wj ∈ R
D×Cj and bias bj ∈ R

Cj to predict the token probability vector yij ∈ R
Cj , where Cj refers

to the number of output BIO classes per subtask j ∈ {1, 2, . . . , J} . We fine-tune models end-to-end by

minimizing the cross-entropy loss across all tokens and subtasks.

yij = softmax
(

W⊤
j hi + bj

)

(3)
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We report the macro and micro-average F1 scores for all multi-task token classification tasks by

averaging the respective metrics for each subtask. Furthermore, we ignore cases where B or I prefixes

are mismatched as long as the main token class is correct.

4.2.3. Reading comprehension

Each hi ∈ {h1, h2, . . . , hN} token embedding is fed into two independent linear layers with weights

Wj ∈ R
D and bias bj ∈ R where j ∈ {1, 2}. These linear outputs are then concatenated per layer

and a softmax function is applied to form a probability vector yj across all tokens for answer-start

and answer-end token probabilities respectively. We fine-tune models end-to-end by minimizing the

cross-entropy loss on the gold answer-start and answer-end indices.

yj = softmax
( [

Wj · h1 + bj . . . Wj · hN + bj

] )

(4)

Similar to SQuAD [24], we report the sample F1 and exact match accuracy for our reading

comprehension task. It is worth noting that Rajpurkar et al. [24] refer to their reported F1 score as a

macro-average, whereas we refer to it as the sample-average as we believe this is a more accurate term.

5. Results

After running the PrivacyGLUE benchmark with 10 random seeds, we collect results on the

test-sets of all tasks. Figure 2 shows the respective results in a graphical form while Table A4 in

Appendix E shows the numerical results in a tabular form. In terms of absolute metrics, we observe

that PrivBERT outperforms other models for all PrivacyGLUE tasks. We apply the Mann-Whitney

U-test [31] over random seed metric distributions and find that PrivBERT significantly outperforms

other models on six out of seven PrivacyGLUE tasks with p <= 0.05, where Policy-Detection was the

task where the significance threshold was not met. We utilize the Mann-Whitney U-test because it does

not require a normal distribution for test-set metrics, an assumption which has not been extensively

validated for deep neural networks [32].

Figure 2. Test-set results of the PrivacyGLUE benchmark where points indicate mean performance

and error bars indicate standard deviation over 10 random seeds; *** implies p <= 0.001 , ** implies

0.001 < p <= 0.01, * implies 0.01 < p <= 0.05 given an alternative hypothesis that PrivBERT has a

greater performance metric than all other models in a task using the Mann-Whitney U-test

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 March 2023                   doi:10.20944/preprints202303.0046.v1

https://doi.org/10.20944/preprints202303.0046.v1


8 of 17

In Figure 2, we observe large differences between the two representative metrics for OPP-115,

Policy-Detection, PolicyIE-A, PrivacyQA and PolicyQA. For the first four of the aforementioned tasks,

this is because of data imbalance resulting in the micro-average F1 being significantly higher since it

can be skewed by the metric of the majority class. For PolicyQA, this occurs because the EM metric

requires exact matches and is therefore much stricter than the sample F1 metric. Furthermore, we

observe an exceptionally large standard deviation on PI-Extract metrics compared to other tasks. This

can be attributed to data imbalance between the four subtasks of PI-Extract, with the NOT_COLLECT and

NOT_SHARE subtasks having less than 100 total examples each.

We apply the arithmetic, geometric and harmonic means to aggregated metric means and standard

deviations as shown in Table 3. With this, we observe the following general ranking of models from

best to worst: PrivBERT, RoBERTa, Legal-RoBERTa, Legal-BERT and BERT. Interestingly, models

derived from RoBERTa generally outperformed models derived from BERT. Using the arithmetic mean

for simplicity, we observe that PrivBERT outperforms all other models by 2 − 3%.

Table 3. Macro-aggregation of means (µ) and standard deviations (σ) per model using the arithmetic

mean (A-Mean), geometric mean (G-Mean) and harmonic mean (H-Mean)

Model A-Mean G-Mean H-Mean
µ σ µ σ µ σ

BERT 67.5 1.1 64.6 0.9 61.1 0.6
RoBERTa 69.0 1.2 66.4 0.7 63.2 0.3
Legal-BERT 67.9 1.1 64.9 0.8 61.2 0.4
Legal-RoBERTa 68.5 1.3 65.7 0.8 62.3 0.4
PrivBERT 70.8 1.2 68.3 0.8 65.2 0.5

6. Discussion

With the PrivacyGLUE benchmark results, we revisit our privacy vs. legal language domain

claim from Section 1 and discuss our model-pair agreement analysis for detecting PrivacyGLUE task

examples where models benefited from domain specialization.

6.1. Privacy vs. legal language domain

We initially provided evidence from Figure 1 suggesting that the privacy language domain is

distinct from the legal language domain. We believe that our PrivacyGLUE results further support

this initial claim. If the privacy language domain was subsumed under the legal language domain,

we could have observed Legal-RoBERTa and Legal-BERT performing competitively with PrivBERT.

Instead, we observed that the legal models underperformed compared to both PrivBERT and RoBERTa,

further indicating that the privacy language domain is distinct and requires its own NLP benchmark.

6.2. Model-pair agreement analysis

PrivBERT, the top performing model, differentiates itself from other models by its in-domain

pretraining on the PrivaSeer corpus [27]. Therefore, we can infer that PrivBERT incorporated knowledge

of privacy policies through its pretraining and became specialized for fine-tuning tasks in the privacy

language domain. We investigate this specialization using model-pair agreement analysis to detect

examples where PrivBERT had a competitive advantage over other models. Consequently, we detect

examples where PrivBERT was disadvantaged due to its in-domain pretraining.

We compare 10 × 10 = 100 random seed combinations for all test-set pairs between PrivBERT

and other models. Each prediction-pair can be classified into one of four mutually exclusive categories

(B, P, O and N) shown below. Categories B and N represent examples that are either not challenging

or too challenging for both PrivBERT and the other model respectively. Categories P and O are more

interesting for us since they indicate examples where PrivBERT had a competitive advantage and

disadvantage over the other model respectively. Therefore, we focus on categories P and O in our
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analysis. We classify examples over all random seed combinations and take the majority occurrence

for each category within its distribution.

Category B: Both PrivBERT and the other model were correct, i.e. (PrivBERT, Other Model)
Category P: PrivBERT was correct and the other model was wrong, i.e. (PrivBERT, ¬ Other Model)
Category O: Other model was correct and PrivBERT was wrong, i.e. (¬ PrivBERT, Other Model)
Category N: Neither PrivBERT nor the other model was correct, i.e. (¬ PrivBERT, ¬ Other Model)

Figure 3 shows a relative distribution of majority categories across model-pairs and PrivacyGLUE

tasks. We observe that category P is always greater than category O, which correlates with PrivBERT

outperforming all other models. We also observe that category P is often the greatest when compared

against BERT, implying that PrivBERT has the most competitive advantage over BERT. Surprisingly,

we also observe category O is often the greatest when compared against BERT, implying that BERT

has the highest absolute advantage over PrivBERT. This is an insightful observation since we would

have expected BERT to have the least competitive advantage given its lowest overall PrivacyGLUE

performance.

Figure 3. Model-pair agreement analysis of PrivBERT against other models over all PrivacyGLUE

tasks; bars represent proportions of examples per model-pair and task which fell into categories P and

O; all models on the x-axis are compared against PrivBERT

To investigate PrivBERT’s competitive advantage and disadvantage against BERT, we extract

several examples from categories P and O in the PrivacyQA task for brevity. Two interesting examples

are listed in Table 4 and additional examples can be found in Table A3 in Appendix D. From Table 4, we

speculate that PrivBERT specializes in example 1978 because it contains several privacy-specific terms

such as "third parties" and "explicit consent". On the other hand, we speculate that BERT specializes in

example 33237 since it contains more generic information regarding encryption and SSL, which also

happens to be a topic in BERT’s Wikipedia pretraining corpus as seen in Figure 1 and Table 2.

Looking at further examples in Table A3, we can also observe that all sampled category P examples

have the Relevant label while many sampled category O examples have the Irrelevant label. On

further analysis of the PrivacyQA test-set, we find that 71% of category P examples have the Relevant

label and 61% of category O samples have the Irrelevant label. We can infer that PrivBERT specializes

in the minority Relevant label while BERT specializes in the majority Irrelevant label as the former

label could require more privacy knowledge than the latter.
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Table 4. Test-set examples from PrivacyQA that fall under categories P and O for PrivBERT vs. BERT

Category P Category O

ID: 1978
Question: Who can see my information?
Answer: We do not sell or rent your personal information
to third parties for their marketing purposes without
your explicit consent.
Label: Relevant

ID: 33237
Question: Could the wordscapes app contain malware?
Answer: We encrypt the transmission of all information
using secure socket layer technology (SSL).
Label: Relevant

7. Conclusions and further work

In this paper, we describe the importance of data privacy in modern digital life and observe the

lack of an NLP benchmark in the privacy language domain despite its distinctness. To address this,

we propose PrivacyGLUE as the first comprehensive benchmark for measuring general language

understanding in the privacy language domain. We release benchmark performances from the

BERT, RoBERTa, Legal-BERT, Legal-RoBERTa and PrivBERT transformer language models. Our

findings show that PrivBERT outperforms other models by an average of 2− 3% over all PrivacyGLUE

tasks, shedding light on the importance of in-domain pretraining for privacy policies. We apply

model-pair agreement analysis to detect PrivacyGLUE examples where PrivBERT’s pretraining

provides competitive advantage and disadvantage. By benchmarking holistic model performances, we

believe PrivacyGLUE can accelerate NLP research into the privacy language domain and ultimately

improve general language understanding of privacy policies for both humans and AI algorithms.

Ultimately, this will support practitioners in the practical adoption of NLP models within the privacy

domain, for example in assisting consumers with the comprehension of privacy policies in their daily

digital lives.

Looking forward, we envision several ways to further enhance our study. Firstly, we intend to

apply deep-learning explainability techniques such as Integrated Gradients [33] on examples from

Table 4, to explore PrivBERT’s and BERT’s token-level attention attributions for categories P and O.

Additionally, we intend to benchmark large prompt-based transformer language models such as T5 [34]

and T0 [35], as they incorporate large amounts of knowledge from the various sequence-to-sequence

tasks that they were trained on. Finally, we plan to continue maintaining our PrivacyGLUE GitHub

repository and host new model results from the community.

Limitations

To the best of our knowledge, our study has two main limitations. While we provide performances

from transformer language models, our study does not provide human expert performances on

PrivacyGLUE. This would have been a valuable contribution to judge how competitive language

models are against human expertise. However, this limitation can be challenging to address due to the

difficulty in finding experts and high costs for their services. Additionally, our study only focuses on

English language privacy tasks and omits multilingual scenarios. Multilingual tasks would have been

very interesting and relevant to explore, but also involve significant complexity since privacy experts

for non-English languages may be harder to find.

Ethics Statement

Original work attribution

All datasets used to compose PrivacyGLUE are publicly available and originate from previous

studies. We cite these studies in our paper and include references for them in our GitHub repository.

Furthermore, we clearly illustrate how these datasets were used to form the PrivacyGLUE benchmark.
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Social impact

PrivacyGLUE could be used to produce fine-tuned transformer language models, which could

then be utilized in downstream applications to help users understand privacy policies and/or answer

questions regarding them. We believe this could have a positive social impact as it would empower

users to better understand lengthy and complex privacy policies. That being said, application

developers should perform appropriate risk analyses when using fine-tuned transformer language

models. Important points to consider include the varying performance ranges on PrivacyGLUE tasks

and known examples of implicit bias, such as gender and racial bias, that transformer language models

incorporate through their large-scale pretraining [36].

Software licensing

We release source code for PrivacyGLUE under version 3 of the GNU General Public License

(GPL-3.0). We chose GPL-3.0 as it is a strong copyleft license that protects user freedoms such as the

freedom to use, modify and distribute software.
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Abbreviations

The following abbreviations are used in this manuscript:

UN United Nations

AI Artificial Intelligence

NLP Natural Language Processing

GLUE General Language Understanding Evaluation benchmark

SuperGLUE Super General Language Understanding Evaluation benchmark

SOTA State of the Art

LexGLUE Legal General Language Understanding Evaluation benchmark

EURLEX Access to European Union law

BERT Bidirectional Encoder Representations from Transformers

UMAP Uniform Manifold Approximation and Projection

PrivacyGLUE Privacy General Language Understanding Evaluation benchmark

OPP-115 Online Privacy Policies, set of 115

PI-Extract Personal Information Extraction

PolicyIE Policy Intent Extraction

PolicyQA Policy Questions and Answers

PrivacyQA Privacy Questions and Answers

RoBERTa Robustly Optimized BERT Pretraining Approach

GEM Natural Language Generation benchmark Metrics

XTREME Cross-Lingual Transfer Evaluation of Multilingual Encoders

XTREME-R XTREME Revisited

NER Named Entity Recognition

SQuAD Stanford Question Answering Dataset

T5 Text-To-Text Transfer Transformer

T0 T5 for zero-shot
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Appendix A. Benchmark configuration

We run PrivacyGLUE benchmark tasks with the following configuration:

• We train all models for 20 epochs with a batch size of 16. We utilize a linear learning rate scheduler

with a warmup ratio of 0.1 and peak learning rate of 3 × 10−5. We utilize AdamW [37] as our

optimizer. Finally, we monitor respective metrics on the validation datasets and utilize early

stopping if the validation metric does not improve for 5 epochs.
• We use Python v3.8.13, CUDA v11.7, PyTorch v1.12.1 [38] and Transformers

v4.19.4 [39] as our core software dependencies.
• We use the following HuggingFace model tags: bert-base-uncased, roberta-base,

nlpaueb/legal-bert-base-uncased, saibo/legal-roberta-base, mukund/privbert for BERT,

RoBERTa, Legal-BERT, Legal-RoBERTa and PrivBERT respectively.
• We use 10 random seeds for each benchmark run, i.e. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This provides a

distribution of results that can be used for statistical significance testing.
• We run the PrivacyGLUE benchmark on a Lambda workstation with 4 × NVIDIA RTX A4000 (16

GB VRAM) GPUs for ∼180 hours.
• We use Weights and Biases v0.13.3 [40] to monitor model metrics during training and for

intermediate report generation.

Appendix B. Detailed label information

Table A1. Breakdown of labels for each PrivacyGLUE task; PolicyQA is omitted from this table since it

is a reading comprehension task and does not have explicit labels like other tasks

Task Labels

OPP-115 Data Retention, Data Security, Do Not Track, First Party Collection/Use,

International and Specific Audiences Introductory/Generic, Policy

Change, Practice not covered, Privacy contact information, Third Party

Sharing/Collection, User Access, Edit and Deletion, User Choice/Control

PI-Extract Subtask-I: {B,I}-COLLECT, O

Subtask-II: {B,I}-NOT_COLLECT, O

Subtask-III: {B,I}-NOT_SHARE, O

Subtask-IV: {B,I}-SHARE, O

Policy-Detection Not Policy, Policy

PolicyIE-A Other, data-collection-usage, data-security-protection,

data-sharing-disclosure, data-storage-retention-deletion

PolicyIE-B Subtask-I: {B,I}-data-protector, {B,I}-data-protected,

{B,I}-data-collector, {B,I}-data-collected, {B,I}-data-receiver,

{B,I}-data-retained, {B,I}-data-holder, {B,I}-data-provider,

{B,I}-data-sharer, {B,I}-data-shared, storage-place,

{B,I}-retention-period, {B,I}-protect-against, {B,I}-action, O

Subtask-II: {B,I}-purpose-argument, {B,I}-polarity, {B,I}-method,

{B,I}-condition-argument, O

PrivacyQA Irrelevant, Relevant
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Appendix C. PrivacyGLUE task examples

Table A2. Representative examples of each PrivacyGLUE benchmark task

Task Input Target

OPP-115 Revision Date: March 24th 2015 Introductory/Generic,

Policy Change

PI-Extract We may collect and share your IP address
but not your email address with our
business partners .

Subtask-I: O O O O O B-COLLECT

I-COLLECT I-COLLECT O O O O O O O O

O O

Subtask-II: O O O O O O O O O

O B-NOT_COLLECT I-NOT_COLLECT

I-NOT_COLLECT O O O O O

Subtask-II: O O O O O O O O O O

B-NOT_SHARE I-NOT_SHARE I-NOT_SHARE

O O O O O

Subtask-IV: O O O O O B-SHARE I-SHARE

I-SHARE O O O O O O O O O O

Policy-Detection Log in through another service:
* Facebook * Google

Not Policy

PolicyIE-A To backup and restore your Pocket AC
camera log

data-collection-usage

PolicyIE-B Access to your personal information is
restricted .

Subtask-I: O O B-data-provider

B-data-protected I-data-protected O

B-action O

Subtask-II: B-method O O O O O O O

PolicyQA Question: How do they secure my data?
Context: Users can visit our site
anonymously

Answer: Users can visit our site
anonymously

PrivacyQA Question: What information will you
collect about my usage?
Answer: Location information

Relevant

Appendix D. Additional PrivacyQA examples from categories P and O

Table A3. Additional test-set examples from PrivacyQA that fall under categories P and O for PrivBERT

vs. BERT; note that these examples are not paired and can therefore be compared in any order between

categories

Category P Category O

ID: 9227
Question: Will the app use my data for marketing
purposes?
Answer: We will never share with or sell the
information gained through the use of Apple
HealthKit, such as age, weight and heart rate
data, to advertisers or other agencies without your
authorization.
Label: Relevant

ID: 8749
Question: Will my fitness coach share my
information with others?
Answer: Develop new services.
Label: Irrelevant

ID: 10858
Question: What information will this app have access
to of mine?
Answer: Information you make available to us when
you open a Keep account, as set out above;
Label: Relevant

ID: 47271
Question: Who will have access to my medical
information?
Answer: 23andMe may share summary statistics,
which do not identify any particular individual
or contain individual-level information, with our
qualified research collaborators.
Label: Irrelevant
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Table A3. Cont.

Category P Category O

ID: 18704
Question: Does it share my personal information
with others?
Answer: We may also disclose Non-Identifiable
Information:
Label: Relevant

ID: 54904
Question: What data do you keep and for how long?
Answer: We may keep activity data on a
non-identifiable basis to improve our services.
Label: Irrelevant

ID: 45935
Question: Will my test results be shared with any
third party entities?
Answer: 23andMe may share summary statistics,
which do not identify any particular individual
or contain individual-level information, with our
qualified research collaborators.
Label: Relevant

ID: 57239
Question: Do you sell any of our data?
Answer: (c) Advertising partners: to enable the
limited advertisements on our service, we may
share a unique advertising identifier that is not
attributable to you, with our third party advertising
partners, and advertising service providers, along
with certain technical data about you (your language
preference, country, city, and device data), based on
our legitimate interest.
Label: Relevant

ID: 50467
Question: Can I delete my personally identifying
information?
Answer: (Account Deletion), we allow our customers
to delete their accounts at any time.
Label: Relevant

ID: 59334
Question: Does the app protect my account details
from being accessed by other people?
Answer: Note that chats with bots and Public
Accounts, and communities are not end-to-end
encrypted, but we do encrypt such messages when
sent to the Viber servers and when sent from the Viber
servers to the third party (the Public Account owner
and/or additional third party tool (eg CRM solution)
integrated by such owner).
Label: Irrelevant

Appendix E. PrivacyGLUE benchmark results

Table A4. Test-set results of the PrivacyGLUE benchmark; † m-F1 refers to macro-average F1, ¯-F1

refers to the micro-average F1, s refers to sample-average F1, EM refers to the exact match accuracy,

metrics are reported as percentages with the following format: mean±standard deviation

Task Metric† BERT RoBERTa Legal-BERT Legal-RoBERTa PrivBERT

OPP-115
m-F1 78.4±0.6 79.5±1.1 79.6±1.0 79.1±0.7 82.1±0.5

¯-F1 84.0±0.5 85.4±0.5 84.3±0.7 84.7±0.3 87.2±0.4

PI-Extract
m-F1 60.0±2.7 62.4±4.4 59.5±3.0 60.5±3.9 66.4±3.4

¯-F1 60.0±2.7 62.4±4.4 59.5±3.0 60.5±3.9 66.4±3.4

Policy-Detection
m-F1 85.3±1.8 86.9±1.3 86.6±1.0 86.4±2.0 87.3±1.1

¯-F1 92.1±1.2 92.7±0.8 92.7±0.5 92.4±1.3 92.9±0.8

PolicyIE-A
m-F1 72.9±1.7 73.2±1.6 73.2±1.5 73.5±1.5 75.3±2.2

¯-F1 84.7±1.0 84.8±0.6 84.7±0.5 84.8±0.3 86.2±1.0

PolicyIE-B
m-F1 50.3±0.7 52.8±0.6 51.5±0.7 53.5±0.5 55.4±0.7

¯-F1 50.3±0.5 54.5±0.7 52.2±1.0 53.6±0.9 55.7±1.3

PolicyQA
s-F1 55.7±0.5 57.4±0.4 55.3±0.7 56.3±0.6 59.3±0.5

EM 28.0±0.9 30.0±0.5 27.5±0.6 28.6±0.9 31.4±0.6

PrivacyQA
m-F1 53.6±0.8 54.4±0.3 53.6±0.8 54.4±0.5 55.3±0.6

¯-F1 90.0±0.1 90.2±0.0 90.0±0.1 90.2±0.1 90.2±0.1
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