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Abstract: Due to its built-up chemoresistance after prolonged usage, the demand for replacing 
platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer 
therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no 
significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, 
but the chemoresistance problem raised by platinum remains unresolved. This motivates us to 
elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. 
Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy 
are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions 
in their structures that are involved in anti-chemoresistance properties. Through this review, it is 
rational to discuss their ligands’ roles as biosensors in drug delivery systems. Hereafter, an in-depth 
understanding of their redox and photoactive function relationships is provided. The disadvantage 
is that the other functions of biosensors cannot be elaborated on here. As a result, this review is 
being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this 
advancement intends to solve the major chemoresistance obstacle towards clinical efficacy. 

Keywords: metal-based drugs; CuZn; anti-chemoresistance; osteosarcoma therapy; ligand 
biosensors. 

 

1. Introduction 

Nowadays, the importance of metal-based drugs (MBD) in medical applications and commercial 
markets is increased by the advancement of nanotechnology [1,2]. The antiquity MBD, which is 
composed of elements such as iron, lithium, vanadium, gold, magnesium, and bismuth, has long 
been used to treat ailments such as anemia, bipolar disorder, diabetes, rheumatoid arthritis, stroke, 
and ulcers, respectively [3]. Among them, the most well-known is platinum-based drugs (PBD) such 
as cisplatin, carboplatin, and oxaliplatin, which are the most commonly used to treat cancer [4]. PBD 
in general or cisplatin in particular was approved in 1978, and it is the most preferable drug candidate 
[5] for a wide range of human diseases in chemotherapeutic applications [6,7]. As a result, this 
triumph has had a large impact on cancer treatment regimens [8] and influenced the discovery of a 
new MBD [9]. In this perspective, the current clinical trials are limited to several putative compounds 
and mechanisms of action in the development of cancer drugs [10] and diagnostic agents [1]. This is 
not a good sign for drug development [11]. Alternative potencies, such as copper and zinc (CuZn) 
compounds, should be explored to bring new action mechanisms and chemotherapeutic approaches 
[12,13]. Without doubt, copper-based drugs (CBD) [14] and zinc-based drugs (ZBD) [15] have active 
metabolic and physiological functions to develop into the most promising pharmacological non-
steroidal anti-inflammatory drugs (NSAID) [12,16]. In addition, zinc stimulates bone formation and 
mineralization and improves osteoblast differentiation [17]. Combining copper with zinc will avoid 
genetic disorders and release oncogenic enzymes to regulate and restore homeostasis [18] [19]. A 
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better understanding of their combination and how they play important roles in physiological 
functions will enhance OS drug development [20]. This will alter MBD’s perspectives and generate 
new drug discovery insight maps [21]. In modern medicine, the understanding of metal-ion functions 
[22] and diagnosis at the molecular level [23] have become inevitable consequences of delivering new 
MBD in medicinal bioinorganic chemistry [24,25]. There is still inadequate effort devoted at 
mechanistic levels [26] towards providing an alternative, targeted, and rational approach [27] to 
supplement screening of novel chemical entities for biological activity [21]. 

Chemoresistance in OS immunotherapy [28] is the main problem in MBD in general and PBD in 
particular [29]. This problem increases after long-term treatments due to its acquired and 
accumulated nature [30,31]. It becomes more complicated after including tumorigenesis, metastasis, 
and immune evasion, as stated in our previous paper [32]. Chemoresistance develops over time, 
limiting clinical application and raising concerns about efficacy and systemic toxicity [33,34]. Many 
attempts intend to solve this problem, but none combines CuZn into a biosensor to stimulate drug 
release for OS therapy [30][35]. In our previous paper, we presented some evidence of combinational 
and targeted biosensors to trigger and stimulate drug release [36]. Our efforts to develop a 
multifunctional biosensor for OS therapy (OST), however, will be insufficient unless we investigate 
the physiological functions of CuZn [37]. On the contrary, not much research on CuZn has 
successfully provided details of multifunctional biosensors for balancing and controlling drug release 
during cancer invasion [34]. Despite this, their chelation structures [38], aromatic organic solvents 
[39], and donor atoms of ligands [18] remain unclear, making structural strength [40] the primary 
barrier to therapeutic efficacy. Thus, more recent approaches are needed to elucidate them and 
further intensify their degradation factors and functions [41,42]. 

In this review, the therapeutic efficacy and anti-chemoresistance of OS are discussed but not the 
OS pathology [36]. It is prudent to discuss the physiological functions of copper and zinc elements in 
OST but not their general chemotherapeutic potencies. Notably, there are too many papers discussing 
them; therefore, this paper will reconstruct their combination to elaborate on anti-chemoresistance 
and OST precisely. First of all, their ions serve as chelators for their structures, such as chelating and 
metal–organic frameworks (MOF), which influence their anti-chemoresistance. Secondly, the 
structures of the main organic solvents, such as planar aromatic, Schiff-based, and Schiff-paired, also 
influence their anti-chemoresistance. Thirdly, their ligand degradation factors are discussed 
individually to enrich our understanding. The basic functions of their ligands are expected to serve 
as biosensors, which are clearly elucidated through this review. That is to say, the key biosensor 
functions, such as redox and photo, serve as guidance for the next-generation OST biosensors [43]. In 
fact, it is important to design an enzymatic stimulation biosensor for OST. The reality is that this and 
other functions of biosensors could not be elaborated due to space limitations. As a result, those 
interested can find more information in our papers [36,37]. This is the rationale for developing a 
biosensor with sustained efficacy and minimal adverse effects. There are some remaining unclear 
problems resulting in a major obstacle towards clinical translation, which will be discussed later. 

2. Physiological Functions of Copper and Zinc Elements 

Copper and zinc both regulate each other’s levels in our bodies’ metabolism [44]. Chronic high 
zinc consumption is toxic, as is myeloneuropathy [45], and inhibits copper absorption, causing in 
copper deficiency or hypocupremia [46,47]. Additional zinc was added to oral D-penicillamine [48] 
in Wilson disease therapy [49], which found efficacy in decreasing unnecessary copper absorption 
and chelation, resulting in side effects [50]. As a result, copper deficiency and excess are negatively 
related to zinc excess and deficiency [51,52]. Consequently, CuZn is used in therapies in our bodies, 
and their toxicity should be minimised and their use regulated to improve efficacy [13]. 

Copper is the third most abundant metal-tracing element in our bodies [53]. It is an 
indispensable microelement for the development and replication of all eukaryotes [54]. It is also 
required for the growth of biological functions and energy generation in the mitochondrial 
respiratory chain [55]. Its efficiency uptakes and transports zinc that is bound to chaperone proteins 
to regulate homeostasis and avoid genetic disorders [19,56]. The copper oxidative states of Cu1+ and 
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Cu2+ are critical catalytic cofactors for enzyme functions in the chemistry of redox proteins [57]. 
Copper is present in our bodies in an average amount of 100 mg [58]. A copper deficiency stops cell 
proliferation and spreading, but exceeding cellular needs will damage cell membranes, proteins, and 
nucleic acids [52]. This excessive copper will induce cyclins and cyclin-dependent kinase (CDK)-2 in 
intracellular cells [59]. Thus, copper deficiency and excess cause the copper-transporting P-type 
ATPase (ATP)-7A and ATP7B gene mutations, resulting in Menkes’ and Wilson’s diseases, 
respectively [60]. 

Zinc is the second most abundant and indispensable metal-tracing element after iron in our 
bodies [61,62]. It is found in thousands of proteins and enzymes, including 85% of muscle and bone, 
11% of skin and liver, and residue in other tissues [63]. It participates in their structure, catalysis, and 
intracellular regulation of lymphocyte apoptosis [57]. Besides, it plays a significant role in growth 
and various biological functions of the immune system [17]. It also plays the roles of immune 
mediator and neuromodulator in the immune system, integrating enzymes, thymic peptides, 
cytokines, and neurons [64]. As a result, a zinc deficiency causes immune cell suppression, cellular 
growth retardation, and homeostasis disruption, all of which contribute to the development of 
diseases and cancer [56]. In contrast, excessive Zn2+ inhibits electron delivery to uncoupled 
mitochondria and suppresses cytocompatibility [65]. Meanwhile, Zn2+ has biphasic effects on cell 
proliferation, adhesion, and viability [66,67]. 

3. Copper and Zinc for Anti-Chemoresistance in Osteosarcoma Therapies 

MBD is traditionally referred to as a PBD, which is the most commonly used therapy in the 
treatment of hard tumours [29]. Cisplatin, oxaliplatin, and carboplatin are the commercially available 
PBDs, which are effective chemotherapy approaches for anti-cancer drugs [4]. However, their use is 
discouraged by their intrinsic and acquired chemoresistance [5]. CuZn is used as a chelating agent in 
cellular trafficking to overcome PBD chemoresistance [68]. Even though CuZn can overcome this 
chemoresistance, the copper level is critical in our bodies and must be carefully regulated [69]. The 
problem of copper levels must be solved before producing MBD made of CuZn [70]. However, both 
copper and zinc are important metal-tracing elements and should not be neglected in cancer therapies 
[51]. Further studies on them should be widely conducted to replace the more toxic PBD. 

CBD is popularly used for anti-cancer [58] due to its anti-chemoresistance, redox, and 
biocompatibility properties [71,72]. For instance, the common oral administrations used for Wilson 
disease are d-penicillamine, tetrathiomolybdate, and triethylene tetramine [73]. In this therapy, the 
copper chelator binds the excess copper to maintain genetic homeostasis [74]. Because of the urine 
and biliary excretions, the outcomes of this therapy are low toxicity, fewer side effects, and easy 
diagnosis [73,75]. As a result, this chelator modulates homeostasis by regulating the expression of 
high-affinity copper uptake protein (CTR)-1 [76]. Thus, this causes the cisplatin chemoresistance to 
be removed by the invasive tumours that actively consume copper delivery in ATPase7A and 
ATPase7B to release the oncogenic enzymes and increase therapeutic efficacy [77]. As a result, the 
activity and trafficking of the ATP7A and ATP7B expressions are primarily used to assess the efficacy 
of PBDs [78]. For instance, the gene miR-148a-3p is used to inhibit ATP7A expression and increase 
therapeutic efficacy [79]. For ATP7B expression, Tranilast, Tremisaltan, and Amphotericin B are used 
to inhibit and increase therapeutic efficacy by inducing DNA damage [80,81]. Furthermore, 
increasing CTR1 expression and cytosolic Cu chaperone antioxidant protein 1 (ATOX1) levels 
reduced cisplatin chemoresistance [77] [82]. Thus, the regulations of ATP7A, ATP7B, CTR1, and 
ATOX1 are vital and involved in the chain of cisplatin transportation [76].  

ZBD is commonly used for immunological effects, which prevent disease infections in cancer 
treatments [83]. Its advantages are low toxicity generally, fewer side effects, and a lack of redox 
activity [84]. This unique chemical feature of being redox-inactive creates an antioxidant protection 
system [85]. This divalent zinc ion Zn2+ has an electron affinity that is similar to but not identical to 
that of the copper ion Cu2+, which eliminates the possibility of free radical reactions [86,87]. Despite 
the wide range of ZBD therapies, OSTs are highlighted [67]. In particular, zinc maintains normal 
endothelial integrity by using basic fibroblast growth factor to stimulate endothelial cell proliferation 
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[67]. Many studies show zinc can stimulate bone formation and mineralization, interact with vial 
hormones for bone growth, and improve osteoblast differentiation [66]. Zinc also promotes the genes 
for bone markers [88] such as alkaline phosphatase, collagen type I, osteocalcin, and osteopontin [66]. 
In comparison, the zinc cation is unique because it has an apparent inhibitory effect on osteoclastic 
bone resorption at a concentration as low as 10-14 M [89,90]. In conclusion, CBD and ZBD have 
excellent anti-chemoresistance in OST and great potential to replace cisplatin. 

4. Copper, Zinc, and CuZn Structures in Anti-Chemoresistance 

Recent efforts have been made to modify the chelating and MOF structures of CuZn in order to 
overcome chemoresistance [91,92]. These modifications aim to restore the main mechanisms of 
trigger signals that induce the organic compound reactions in cell apoptosis [92,93]. As previously 
stated, copper and zinc are necessary for metabolic and immune functions, respectively [44,84]. Both 
their excess and deficiency harm our bodies [54,59]. Thus, the chelation and MOF approaches can 
also be used for balancing and controlling their dosage release during cancer invasion [33,94]. In fact, 
these approaches use different chelators and MOFs, which are supported by the bulk of the evidence 
[95,96]. Both copper and zinc use the appropriate chelators and MOFs to remove their excess and 
ionophore compounds [97] to increase their concentration [98]. As a result, chelation and MOF 
therapies with donor atoms have emerged as the primary cancer therapy strategies in tumoral 
pathologies [99]. An illustration was drawn to elucidate metal chelators binding with aromatic rings 
at C, N, O, and S donor atoms with bi-, tri-, tetra-, penta- [100], hexa- [101], and octa-dentate ligands 
[102], as shown in Figure 1. 

 

Figure 1. Copper, zinc, and CuZn ions as metal chelators bind with aromatic rings at C, N, O, and S 
donor atoms with bi-, tri-, tetra-, penta- [100], hexa- [101], and octa-dentate ligands [102]. Reprinted 
with permission. 

4.1. Copper and Zinc in Chelating Structures 

Copper chelating structures have cuprous Cu1+ (copper (I)) and cupric Cu2+ (copper (II)) that 
mainly bond with C, N, O, or S donor atoms [103,104]. This is because of the Jan-Teller effect in their 
d-orbitals, copper ions exist in two coordination redox states [22]. Their ligands are cysteine and 
methionine for S donor atoms [105] and histidine, glutamic acid, and aspartic acid for N or O donor 
atoms [106]. Because of their copper (I) and copper (II) redox states, they have a higher IC50 value and 
inhibitory activity, resulting in greater potency, clinical effectiveness, and less toxicity than other anti-
proliferative drugs [56] [107]. These different oxidation states increase thermal stability and ease the 
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formation of CBDs during catalytic processes, resulting in their widespread use [108–110]. However, 
the chelating mechanisms of copper (I) and copper (II) are complex and intertwined [107]. For 
instance, the 6-transmembrane epithelial antigen of prostate reductase (STEAP) converts copper into 
copper (I) in serum [25]. In the tissue cell copper uptake mechanism, CTR1 transports copper (I) but 
not copper (II) [111]. For the same mechanism, CTR1 only works with Cu (II) in conjunction with a 
metalloreductase [112]. As a result, both the copper uptake mechanisms of transporter and reductase 
can regulate intracellular copper levels in cancer cells [113]. Despite the fact that CTR1, ATOX1, 
ATP7A, and ATP7B are involved in cisplatin transportation, as previously stated, they are also 
involved in copper uptake, distribution, and efflux in cancer [76]. According to some proteomic 
studies, high expression of ATP7A and ATOX1 is associated with poor survival [79,114]. However, 
the higher expression of ATOX1 with CTR1 to deliver copper showed reduced cisplatin 
chemoresistance [11]. As a result, the ligand functions as a regulator factor in copper uptake 
mechanisms, lowering cisplatin chemoresistance [115]. 

Zinc chelating structures have a versatile chemistry of donor atoms with different coordination 
numbers and geometries [104]. The donor atoms are C, N, O, S, or P that form tetrahedron, 
pentahedron, and hexahedron geometries in cysteine, glutamate, aspartate, and histidine [70,116]. If 
the donor atom is a water donor molecules, there are tetrahedral, pyramidal, and octahedral 
coordination geometries [117]. According to Zn’s hard acid nature, the donor atoms O or N are 
coordinated in the first row rather than S or P in the second row [118]. For instance, the N-donor atom 
is the primary category with homoleptic and heteroleptic ligands [119]. Due to these varieties, it 
accesses various arrangements, such as a great assortment of frameworks, from monodentate to 
hexadentate chelates [120]. As a result, it forms ligands with multiple zinc clusters containing two to 
four ions in the metal intra-sphere binding geometry [121] and frequently forms dimeric or polymeric 
species [64]. Their stereochemistry dominates, with octahedrons in solutions, tetrahedrons in 
proteins, and a few distorted trigonal bipyramidon examples [122]. Due to its unique chemical 
features for promoting ligand exchanges, it coordinates into different geometries, resulting in the 
ubiquitous presence of thousands of proteins and enzymes [123]. This is because of its ability to 
undergo Lewis activation and nucleophile formation [124]. This catalyst makes it possible to use 
hydrolytic reactions for DNA cleavage in designing anti-tumour drug activities [125]. 

4.2. Copper and Zinc Ions in Metal–Organic Framework Structures 

The copper and zinc ions in MOF interact with organic ligands while remaining physiologically 
active [95,126]. Despite hydrogen and other bondings, van der Waal and π-π electrostatic interactions 
load anti-cancer agents or drugs [96]. Copper and zinc ions are endogenously non-toxic transition-
metal cations [127]. The common organic ligands are benzene 1,3,5-tricarboxylate (BTC) and tetrakis 
(4-carboxyphenyl) porphyrin (TCPP) for copper and zeolitic imidazolate (ZIF) for zinc [117]. ZIF may 
have different formations of ZIF-74 and ZIF-8 and coatings of alginate (Alg) and hyaluronic acid (HA) 
for different drugs like ibuprofen [128], metformin [129], and tetracycline [130]. The appropriate 
combination of them contributed higher efficiencies, such as 80 wt% ibuprofen and 83.5% metformin 
loadings and a 98% tetracycline clearance rate as shown in Table 1. Cu3-(BTC)2 and Cu-TCPP may 
include iron oxide nanoparticles and grapheme oxide for magnetic and photo biosensors, 
respectively, to trigger doxorubicin release [131]. The electrical biosensor combined with either the 
magnetic or photo biosensor contributed higher efficiencies, such as 40.5 wt % or 45.7 wt % 
adsorptions and 85.5% or 98.9% release, respectively, as shown in Table 1. As a result, copper and 
zinc in MOF loading with drugs have different drug performances [94]. This is due to differences in 
MOF porosities in the physiological setting during host-guest types of interactions [132]. 

Table 1. Copper and zinc in metal–organic framework loading with drugs and their performances. 

Drug Carrier Drug Efficiency Ref. 

ZIF-74 Ibuprofen 80 wt% loading efficiency [128] 
ZIF-8/Alg Metformin 83.5% loading efficiency, and 6.68 wt.% payload. [129] 
ZIF-8/HA Tetracycline 98% clearance rate under acidic conditions and pH-responsive. [130] 
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Cu3-(BTC)2/IONP 
Doxorubicin 

Adsorbed 40.5% and released 85.5% at pH 5 
[131] 

Cu-TCPP/GO Adsorbed 45.7 wt.% and released 98.9% at pH 5. 

Despite CuZn being an electrical biosensor, it uses an endogenous enzymatic biosensor to 
stimulate drug release [37]. Thus, both biosensors have been identified as an alternative use of MBD 
compared to cisplatin [133]. As a result, CuZn in MOF directly integrates drugs to ease production 
without side effects while remaining biocompatible [94]. 

5. Copper, Zinc, and CuZn in Organic Solvent Formation Structures 

Ligand biosensors link organic solvents and metal chelators such as copper, zinc, and CuZn 
[134]. The organic solvents are mainly classified into imidazole, pyridine, quinolone [135], 
phenanthroline-phenazine [107], thiosemicarbazone [2,136], and porphyrin or phthalocyanine [137]. 
The relationship between their formation structures and derivatives is described in Figure 2. For 
instance, the imidazole and pyridine groups [138] have their derivatives of imidazolate, diimine, 
benzimidazole, and Ambaf; and bipyridine, terpyridine, and Apyepy, respectively [117]. Both groups 
are combined to form a derivative of 4-butyloxy-2,6-bis(1-methyl-2-benzimidazolyl) pyridine. 
Furthermore, both quinolone and phenanthroline-phenazine groups are combined to form a 
derivative of N2,N3-bis(3-nitrophenyl)quinoxaline-2,3-diamine. For the thiosemicarbazone group, 
their derivatives are 4,6-dichloropyrimidine-5-carboxaldehyde, 4-(2-aminoethyl)morpholine and 
BTC. Lastly, the porphyrin or phthalocyanine group has photoactivable properties with the TCPP 
derivative. 

 

Figure 2. Various organic solvent groups and their derivatives combine metal chelators via ligand 
biosensors. 

5.1. CuZn in Planar Aromatic Structures 

The planar aromatic structures with 2,20-bipyridine, quinoline, and 1,10-phenanthroline are 
popular choices for medicinal chemists [139]. This discovery demonstrated the ability of CuZn to be 
linked together using phenanthroline ligands to form an NSAID [16] [140]. For instance, NSAIDs 
such as naproxen, ibuprofen, and mefenamic acid have exhibited synergistic anti-proliferative and 
anti-cancer effects [141]. In particular, zinc with DNA ligands has always demonstrated remarkable 
anti-inflammatory properties [142]. For instance, zinc (II) compounded with a 1,10-phenanthroline-
5,6-dione ligand had similar anti-tumour activity to copper (II) compounded with a phenanthroline-
phenazine ligand, as stated previously. Furthermore, CuZn interacts with DNA in the 
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phenanthroline ligand via bidentate chelates in aromatic rings, resulting in anti-proliferative 
activities [143]. For instance, zinc compounds showed cytotoxic activity and lower IC50 values that 
indicated the cyclooxygenase pathway was inhibited for anti-inflammatory activity [144]. The 
cytotoxic activities of zinc compounds also showed better resistance than cisplatin. 

These CuZn structures intercalate DNA without causing intrinsic toxicity compared to diimines 
[70]. Besides, imidazolyl derivatives are the most commonly used N-donor ligands conjugated to 
active moieties [18]. This is because of their different hapticities and excellent coordination abilities, 
which are mainly accessible through phenyl ring substitution [145]. The benzimidazole derivatives 
are their representatives, which consist of 61% (22 of 36 Zn ZBD) [146]. The Cu and Zn compounds 
with the benzimidazole-pyridine-quinoline ligand were synthesised and found to have good anti-
tumour activity [147]. Furthermore, the anti-tumour activity of tetrahedral copper derivatives 
(average IC50 of 18.91 μM at 72 h) is better than that of zinc derivatives (average IC50 of 57.25 μM at 
72 h) [147]. Another benzimidazole example, 4-butyloxy-2,6-bis(1-methyl-2-benzimidazolyl) 
pyridine, was also synthesised with CuZn to form six-coordinated tridentate complexes with 
distorted octahedral configurations [148]. Their anti-tumour activity findings are that copper (II) 
derivatives (IC50 = 26.09 μM) outperform zinc (II) derivatives (IC50 = 46.13 μM), followed by cisplatin 
(IC50 = 43.99 μM) [149]. These copper (II) complexes undergo irreversible redox processes, 
demonstrating the importance of metal nature in biological activity [150]. Additional Schiff-based for 
ligands, 4,6-dichloropyrimidine-5-carboxaldehyde and 4-(2-aminoethyl) morpholine, were 
synthesised with CuZn again, which have the same anti-tumour activity findings that copper (II) 
outperforms zinc (II), followed by cisplatin [149] 

5.2. CuZn in Schiff-Based and Schiff-Paired Structures 

Schiff-based MBDs are one of the most representative classes of ligands, mainly due to their ease 
of synthesis and versatility in terms of pharmacological properties [151]. These ligands are tridentate 
Schiff-based, which gives them high flexibility to coordinate O and N donor atoms [152]. The 
promising pharmacologically active metal compound is MBD with N-donor atom and Schiff-based 
[151]. This is because it has different hapticities to link with CuZn acceptors [62]. The fascinating 
interests of biosensors are generated as cleavage agents, potential DNA-targeted anti-tumour drugs, 
and cancer chemotherapeutic agents while conjugating with the DNA gene in catalysis and bio-
inorganic systems [57]. Their common pharmacological properties are anticancer, antibacterial, and 
urease inhibitory activities, resulting in DNA molecule cleavage and DNA duplex cross-linking after 
interacting with DNA [125]. This MBD has been extensively studied because it has a great impact on 
cytotoxic activities against various malignant tumours [153]. 

Either copper or zinc was used to synthesise with either 2-[N-(1H-benzimidazol-2-
ylmethyl)ethanimidoyl]-aniline (Ambaf) or 2-(pyridin-2-yl)-N-[1-(pyridin-2-yl)ethylidene]-
ethanamine (Apyepy) [154]. Their products are [Cu(Ambaf)H2O]2+, [Zn(Ambaf)H2O]2+, 
[Cu(Apyepy)OH]+, and [Zn(Apyepy)OH]+. They are intercalated with the phosphate groups in DNA 
[155] to pair electrostatically [156]. In non-tumorigenic P4 fibroblast tests on anti-proliferative activity 
against human sarcoma cancer cells, the [Zn(Apyepy)OH]+ complex with IC50 > 140 μM was found 
to be less cytotoxic than the [Zn(Ambaf)H2O]2+ complex with a range of 47 to 71 μM [154]. 
Furthermore, copper (II) analogous complexes have been discovered to be less cytotoxic than those 
of zinc (II) complexes [157]. The higher cytotoxicity of the zinc (II) complexes may be due to their 
photochemical properties [158], as a significant fluorescence increase was observed by interaction 
with calf thymus DNA [159]. As a result, there is a good correlation between cytotoxicity in anti-
proliferative action and cellular metal uptake. 

Further investigation revealed that zinc (II) compounds with two benzimidazole-derived pair 
ligands were synthesised to interact with human serum albumin and DNA, and significant binding 
propensity was found [160]. Furthermore, their nuclease activities were analysed for pBR322 DNA 
in order to confirm their potential to cleave DNA [161]. Their IC50 values were discovered to be higher 
than those of PBD and CBD, indicating the lowest cytotoxicity [160]. In another investigation, a CuZn 
octahedron with different N2,N3-bis(3-nitrophenyl)quinoxaline-2,3-diamine ligands was 
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synthesised to intercalate in DNA [162]. These findings demonstrated that CuZn had more effective 
DNA cleavage and anticancer activity in HeLa cell lines than free ligands. However, further study is 
needed to find out whether zinc (II) complexes have lower cytotoxicity than copper (II) complexes. 

6. Ligand Degradation Properties in Anti-Chemoresistance 

Hydrolysis and autophagy are the two main processes of ligand degradation [163] in the copper, 
zinc, and CuZn complexes. The relationship between the two degradation mechanisms of hydrolysis 
and autophagy and both lipophilic and hydrophilic ligand biosensors is elaborated in Figure 3. Their 
induced and cleaved processes for drug release via the mitochondrial and rat sarcoma virus (RAS)-
rapidly accelerated fibrosarcoma (RAF)-MEK-extracellular signal-regulated kinase (ERK) signalling 
pathways [41] are highlighted. The copper (II) ions are used to bind with mitogen-activated protein 
kinases (MAPK) such as RAS and RAF, resulting in no ion for Unc-51-like kinase (ULK)-1/2 bonding. 

 
Figure 3. Hydrolysis and autophagy degradation mechanisms of lipophilic or hydrophilic ligand 
biosensors [41,164–167]. Reprinted with permission. 

Hydrolysis is one of the ligand degradation processes used to overcome PBD chemoresistance 
[168]. For a drug candidate, its stability, solubility, and permeability are determined by the ligand 
hydrolysis [169]. Their hydrolytic properties are determined by first degrading to either lipophilic or 
hydrophilic ligands with lipids or water [170]. After MBD is hydrolyzed, the metal compound and 
drug are released. For instance, NSAID and MBD are developed for anti-cancer activities using 
conventional approaches such as their organic motifs, frameworks, and donor atom sets [16,140]. 
Another instance is that copper (II) compounds with either thiosemicarbazone or phenanthroline-
phenazine ligand [171,172] exhibit superior anti-tumour activity when compared to metallodrugs or 
cisplatin [173]. This is mediated by hydrolytic mitochondrial pathways [7] that cleave DNA by 
oxidatively inducing intrinsic reactive oxygen species (ROS) [174]. Thiosemicarbazone ligands are 
tridentate [175] structures that comprise many compounds of R1R2 C=N-NH-(C=S)-N R3R4 [58]. This 
copper (II) in CBD has an active centre in the coordination of Schiff-based ligands [176,177] for a large 
number of metalloproteins [178]. In order to protect against this oxidative stress, caveolin-1 [179] 
stabilises ATP7A in vascular tissue to activate superoxide dismutase (SOD)-3 delivery for endothelial 
function [180]. Furthermore, copper (II) compounded with carbazone inhibited S-phase cell cycle 
proliferation, which led to cyclin or CDK suppressions and lower IC50 values [181]. As a result, the 
characteristic of this ligand class in copper complexes is its low solubility in water [182]. Their IC50 
values, which range between 2 and 80 μmol.L-1, are vital for drug design to circumvent cisplatin 
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resistance [183]. According to the findings, these complexes showed a lower range of IC50, from 0.001 
to 0.5 μmol.L-1 in HeLa cells, compared to cisplatin’s 18 μmol.L-1 [184,185]. This resulted in a greater 
spread of damage action on all organelles as well as apoptotic death signalling [186]. 

Another process of ligand degradation is autophagy [187], which copper and zinc complexes 
use to overcome PBD chemoresistance [188]. For instance, copper binding with ULK1 [164,165] and 
ULK2 [166] can modulate autophagy activities. The copper-induced mutation of the binding motif 
ULK-1 and ULK2 (ULK1/2) [167] impairs the ULK1/2-dependent signalling pathway [189]. The amino 
acid sequence of ULK1/2 is similar to that of serine/tyrosine/threonine kinases (MEK)-1 [105], which 
comprises high-affinity copper (II) binding with histidine (H)-188, methionine (M)-230, and H-239 
[190]. MEK1 induces ERK phosphorylation [191] that will activate MAPK in tumours such as RAS 
and RAF. As a result, copper binding activates MAPK to communicate in the RAS-RAF-MEK-ERK 
signalling pathway [190]. These protein kinases with copper-binding activity induce cell proliferation 
[192]. However, these copper-binding activities will decrease copper availability, resulting in copper 
deficiency [25]. Conversely, the increase in copper availability will enhance ULK1/2 activities and 
autophagy functions [189]. Thus, copper modulates autophagy functions [193] in tumour-associated 
macrophages (TAM) and bone marrow myeloid precursor recruitment [194] that promote changes in 
the tumour microenvironment to reduce tumours indirectly. 

7. Ligands’ Functions as Biosensors for Osteosarcoma Therapy 

7.1. CuZn Ligands for Redox Biosensor Functions 

The copper (I) in CBD modulates its redox potency through its imidazole-like imine ligands to 
treat cancer [195]. Besides, zinc is a redox-inert substance in biology and an antioxidant used in cancer 
treatments [196]. During the catalysis of endogenous substrates, CuZn releases ions and generates 
ROS [197]. This ROS triggers oxidative stress by attacking the Cu-Zn SOD in extracellular form [198]. 
As a result, without taking zinc’s pleiotropic functions into account, it is not true that oxidative stress 
decreases in response to zinc deficiency or a lack of antioxidant mechanisms [196]. This is because 
zinc complexes interfere with mitochondrial metabolism’s ability to generate ROS and transport it 
through its special cell incubation medium [199]. This oxidative stress is amplified by CuZn 
reactivity, resulting in partial or total damage to bilayer lipid membranes, protein alterations, and 
gene DNA functions [200,201]. For instance, complexes of zinc penta-coordinated with binuclear 
ligands are more active than complexes of zinc hexa-coordinated with mononuclear ligands [202]. 
This is due to ROS overproduction triggering DNA damage, resulting in good DNA accumulation 
and cellular uptake via intrinsic pathway-dependent apoptosis [203]. Thus, the unbound CuZn ions 
or free radicals eventually interfere with the cell cycle at different levels, resulting in cell disorders, 
necrosis, and apoptosis [203]. 

For instance, STEAP converts copper into copper (I) that binds the cytochrome C oxidase (Cox) 
copper chaperone [19]. This results in activation of the Cox17 gene for SOD1 delivery [204]. SOD1 is 
a cytoplasmic protein and also a transcription factor that regulates oxidative stress in the nucleus 
[205]. ATOX1 is a metallochaperone protein and a protective agent against oxidative stress that binds 
copper to indirectly modulate cell proliferation and nucleus migration [206]. In the trans-Golgi 
network, ATPase7A and ATPase7B proteins donate copper ions to ATOX1 to secrete cuproenzymes 
such as lysyl oxidase (LOX) and ceruloplasmin [207]. In cancer cell lines, LOX activity is inhibited by 
silencing the ATP7A gene, which reduces tumour growth and metastatic potential [208]. However, 
the loss of function of ATP7A in cell proliferation showed toxicity due to copper excess [40]. Another 
instance of converting copper (I) to copper (II) by STEAP4, which is a metalloreductase, induces the 
inflammatory cytokine interleukin (IL)-17 for CTR1 transportation [111]. This will increase copper 
uptake and activate the cytoplasmic X-linked inhibitor of apoptosis protein (XIAP) [209]. XIAP 
suppresses caspase-3 function with an ubiquitin E3 ligase activity that impairs apoptosis, thus 
allowing cell proliferation [111]. As a result, copper also regulates the activities of cancer cell 
proliferation and apoptosis. 
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7.2. CuZn Ligands for Photo-Biosensor Functions 

The photoluminescence and photosensitive properties are demonstrated by the CuZn ligands 
such as terpyridine [210], BTC [211], TCPP, porphyrins, and phthalocyanines [145]. This is because 
of photoactivable N-donor ligands in pyridine-based and porphyrin-Schiff-based systems [210]. Both 
ligand systems with CuZn intercalate into DNA compounds and wall interactions, thus improving 
photocytotoxic activity against microorganisms [212]. For instance, zinc-phthalocyanine complexes 
used in photodynamic therapy (PDT) demonstrated photo-activable N-donor ligands, low dark 
cytotoxicity, and tumour cell inhibitory effects [213]. This is a good photochemical stability product 
without photoreaction toxicity, as evidenced by its extremely high IC50 values [214]. 

8. Conclusions 

Copper and zinc ions are used as metal chelators to bind with an O, N, S, or P donor atom in 
MOF, planar aromatic, Schiff-based, and Schiff-paired structures. The popular planar aromatic 
structures are diimine, phenanthroline-phenazine, terpyridine, BTC, TCPP, and phthalocyanine. The 
metals bond with aromatic rings by using either bi-, tri-, tetra-, penta-, or hexadentate ligands. If the 
structure is Schiff-paired, they can be extended to octadentate ligands. Schiff-based and MOF 
structures are easily bonded with CuZn acceptors in different coordination numbers and geometries. 
Their ligands intercalate with the DNA phosphate groups using hydrogen and other bonding, van 
der Waal, π-π, and electrostatic interactions. Due to their ability to directly integrate drug synthesis 
and maintain their active metabolic and physiological functions, CBD and ZBD are the most 
promising pharmacological NSAIDs. This active metal chelation formation enables zinc to bind 
excess copper, which avoids genetic disorders and releases oncogenic enzymes, such as ATP7A, 
ATP7B, CTR1, and ATOX1, to regulate homeostasis. These changes restore the balancing and 
controlling mechanisms of trigger signals to release dosage in cellular trafficking during cancer 
invasion. Therefore, copper (II) had better anti-tumour activity findings than zinc (II), followed by 
cisplatin. Besides, their binding with DNA intercalation properties is mainly accessible through 
phenyl ring substitutions that have proven not to cause any intrinsic toxicity. In addition, zinc can 
stimulate bone formation and mineralization, interact with vial hormones for bone growth, and 
improve osteoblast differentiation. As a result of overcoming cisplatin chemoresistance and having 
additional low toxicity and fewer side effects, which has emerged as the primary OST strategy in 
tumoral pathologies. 

Copper and zinc are important metal-tracing elements in our bodies’ metabolism. Both can be 
regulated by ligand degradation processes such as hydrolysis and autophagy to release their 
compounds. CBD and ZBD are widely determined by their ligand types (lipophilic and hydrophilic), 
followed by their thermal stability, solubility, and permeability, as well as their ease of formation. 
Both thiosemicarbazone and phenanthroline-phenazine ligands exhibit superior anti-tumour activity 
when compared to metallodrugs or cisplatin. This is because DNA is hydrolytically cleaved by 
oxidatively induced intrinsic ROS via mitochondrial pathways. For instance, imidazole-like imine 
organic solvents are commonly used in conjunction with this redox function. While ROS attacks SOD, 
redox functions are generated, and oxidative stress is amplified by copper and zinc free radicals’ 
reactivity. This stress damages bilayer lipid membranes and DNA, causing DNA accumulation and 
cellular uptake and resulting in cell disorders, necrosis, and apoptosis. For instance, copper exists in 
two coordination redox states, such as copper (I) and copper (II), which are converted by STEAP and 
STEAP4, respectively, for CTR1 transportation. Copper (I) is activated by the Cox17 gene to donate 
ions to ATOX1 via the ATPase7A and ATPase7B proteins, resulting in ATOX1 secreting LOX for 
SOD1 delivery. Thus, LOX activities are silenced by the ATP7A gene to inhibit tumour growth and 
metastatic potential in cancer cell lines. The inflammatory cytokine IL-17 activates copper (II), 
followed by the cytoplasmic XIAP, by increasing intracellular copper uptake. XIAP impairs apoptosis 
and allows cell proliferation via suppressing ubiquitin E3 ligase activity in caspase-3 function. For 
instance, autophagy is modulated by copper binding, which activates MAPK to impair the ULK1/2-
dependent RAS-RAF-MEK-ERK signalling pathway and induce cell proliferation. This promotes 
changes in TAM and myeloid precursor recruitment in the tumour microenvironment and reduces 
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tumours indirectly. As a result, the CTR1 transporter and STEAP4 reductase mechanisms can 
regulate the copper levels in cancer cells. Nonteheless, CuZn has significant chemotherapeutic 
potential, especially as biosensors in drug delivery systems. These compounds bonded with 
terpyridine, BTC, TCPP, and phthalocyanine organic solvents with photo-activable N-donor ligands 
that demonstrated photoluminescence and photosensitive properties, low dark cytotoxicity, and 
inhibitory tumour cell effects. 

9. Challenges and Future 

CuZn demonstrated more cytotoxicity against tumour cells than normal cells in chemodynamic 
therapy (CDT) [4,215]. They are commonly used to endogenously catalyse hydrogen peroxide 
(H2O2) into hydroxyl radicals (•OH) by Fenton-like reactions [112,216]. This •OH generation of 
redox reacts with copper (I) to release zinc protoporphyrin IX, which strongly inhibits the activity of 
the typical enzymatic antioxidant heme oxygenase-1 [217]. As a result, ROS generation inhibits 
tumour growth and causes serious oxidative damage to cellular constituents, resulting in cell death 
without adverse side effects [71]. However, SOD1 was found to respond differently to two proteins, 
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein (YWHA)-zeta and 
YWHA-epsilon, depending on its redox status in terms of structural dependences, protein 
degradation, and metabolic implications, [218]. This is a new unorthodox role of SOD1 as a major 
redox enzyme in scavenging superoxide radicals (O2-) that creates different perspectives of insight 
diagnosis to map protein binding domains in co-crystalline structures [43,203]. Further research 
should be conducted to characterise molecular mechanisms and their metabolic relevance in 
physiological conditions [30]. 

Photodynamic therapy (PDT) is a light-required therapy [219] that produces oxygen and ROS to 
reduce antioxidant enzymes such as catalase and SOD [220]. An antimicrobial PDT trial using CuZn 
compounds synthesised with SOD found the highest bacterial concentrations with 1.2 μg/mL 
reductions in 30 minutes of inhibition time [221]. These findings in two mediums, 
diethydithiocarbamate and methylene blue, indicated a new possibility for an antimicrobial PDT 
study [222]. Because OST is a long-term treatment, more research into its microbial and bacteria-
curing mechanisms is needed. Another PDT and CDT consist of dual-activated Zn-TCPP and Cu-
diethyldithiocarbamate (DTC)2 biosensors, respectively, which have antitumor activity and prevent 
systemic toxicity [94]. ROS are stimulate to cleave the hyaluronic acid-conjugated Cu(DTC)2 prodrug 
by photo-trigger reactions on Zn-TCPP [223]. This will release DTC and Cu to re-induce ROS [224]. 
This method avoids administering Cu-(DTC)2 directly, which causes severe systemic toxicity [225]. 
In contrast, insufficient endogenous copper can severely limit the antitumor activity of Cu(DTC)2 
and disulfiram generation. 

Both drug carriers, gelatin/chitosan/hydroxyapatite [226] and folate-decorated 
alginate/polydopamine/paclitaxel (FA-Alg/PDA/Ptx) [227], used CuZn as biosensors in targeted 
therapy that demonstrated pH sensitivity and precise delivery of antitumor efficacy [228]. This FA-
Alg/PDA/Ptx drug carrier had good encapsulation, loading, and IC50 efficiencies of 75.2 ± 1.54 %, 
18.54 ± 2.31 %, and 150 ± 2.58 μg/mL, respectively, indicating remarkable efficiency and drug potency 
[227]. Despite having a ȥ-potential of −31.4 ± 1.54 mV [227], the electrical biosensor potency has not 
been studied. As a result, PDT, CDT, and pH are being studied for mitochondrial membrane targeted 
therapy in cancer, with less off-target toxicity and more desirable therapeutic effects [229]. 
Nonetheless, the challenges of CuZn in overcoming MBD and PBD chemoresistance should be 
investigated further because a contrary study found that zinc (II) complexes have lower cytotoxicity 
than copper (II) complexes [162]. This is a critical caution because the amount of copper in our bodies 
is critical and must be carefully regulated. 
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