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Abstract: Malaria is a critical fevered illness caused by Plasmodium parasites transmitted among

people through the bites of infected female Anopheles mosquitoes. Public awareness about the

disease is vital for control of the disease. This article proposes a mathematical model to study the

dynamics of malaria disease transmission with the impact of awareness-based control measures.

Some basic mathematical properties of the proposed model, such as nonnegativity and boundedness

of solutions, the feasibility of the equilibrium points, and their stability properties, have been studied.

The proposed model possesses two equilibria, explicitly the disease-free and endemic equilibrium.

Disease-free equilibrium is stable globally if basic reproduction number (R0) is less than unity (R0 <

1). Finally, optimal control theory is applied to minimize the cost of disease control and solve the

optimal control problem by formulating Hamiltonian functional. Numerical simulations have been

provided for the confirmation of the analytical results. The optimal profiles of the treatment process,

organizing awareness campaigns, and insecticide uses are determined for the cost-effectiveness of

Malaria management. It can be concluded that media awareness with optimal control approach is

best for cost-effective malaria disease management.

Keywords: media campaign; disease awareness; mathematical model; basic reproduction number

(R0); global stability; optimal control

1. Introduction

Malaria is a mosquito-borne human disease. It binges through the bites of infected female

Anopheles mosquitoes. Five parasite species cause Malaria in humans, and two of these species - P.

falciparum and P. vivax - pose the greatest threat. Among the parasites, P. falciparum is the deadliest

for malaria infection and P. vivax is the most dominant malaria parasite in most countries outside of

sub-Saharan Africa(WHO). The World Health Organization (WHO), in 2020, reported approximately

241 million malaria cases were seen worldwide, whereas the number of malaria deaths was estimated

as 627 000 in 2020 [1,2]. In 2020, Africa was the leading region to face 95% of malaria cases with 96% of

malaria deaths. Among the total casualties, 80% were the children under the age of five years in that

area [3]. Despite decades of global eradication and control efforts, the disease is re-emerging in areas

where control efforts were once effective and emerging in areas thought free of the disease [4].

Media letters have been used to promote insecticide-treated net (ITN)/bed net usage to influence

malaria inhibition [5]. The efforts to relate ITN messages to the public are instrumental in increasing the

use of mosquito nets and having multiple ways of reaching the public and enhancing their effects [6].

The most meaningful result can be seen when a health worker or a volunteer bears malaria-related

news to the people [7,8].

Mathematical models have played important parts in the growth of the epidemiology of the

disease. Mathematical models for malaria transmission dynamics offer a better knowledge of the

disease, preparation for the future, and see appropriate control actions. In the past years, several

numbers of mathematical models on the transmission dynamics of Malaria have been observed.
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Following the simple S − I − R malaria model, many researchers have elaborated these models by

incorporating different features associated with malaria transmission dynamics and its control [9–

17]. These articles did not reflect the bearing of awareness movements for malaria disease control.

Awareness movements are substantial in malaria control [18–20]. Misra et al. [21] have proposed

a mathematical model projected to measure the impact of making awareness by the media on the

blowout of vector-borne diseases. Moreover, the human population was separated into three groups,

susceptible, infected, and aware people. A dispersed population M(t), representing the number of

media crusades, was measured to square the importance of media campaigns considering a constant

disease transmission rate.

To the extent of our familiarity, there needs to be more model-based research on malaria disease

dynamics with the influence of awareness campaigns [12,22,23]. In [23], a mathematical model for

malaria disease was proposed to avoid the illness by separating the infected population into two

groups, unaware and aware infected individuals. Authors further assumed that the growth rate of

awareness programs impacting the population is proportional to the unaware infected individuals.

Besides the effect of the awareness campaign, the aware infected individuals avoid contact with

mosquitoes. Authors in [22] resulting a mathematical model for reviewing the dynamics of malaria

disease and the influence of awareness-based interventions for control of the same, that depend

on ‘level of awareness’. They supposed that the disease spread rates, from vector to human and

from human to vector, as declining functions of ‘level of awareness’. Moreover, malaria disease

transmission charges were implicated as a function of ‘level of awareness’. The control measures were

supposed to increase awareness of tempted and drenched functions, and the ‘level of awareness’ was

expected as a model population. In [12], authors have anticipated a mathematical model by dividing

the susceptible population into two sub-population: aware and unaware human populations. They

assumed a constant awareness rate and assumed that a portion of unaware susceptible humans joins

aware susceptible aware humans and also pragmatic optimal control theory for vector control and cost

of awareness.

In this article, a deterministic mathematical model is proposed to study the dynamics of malaria

disease. The impacts of intrusions, such as mosquito nets, spewing insecticides, etc., contingent on

the disease’s consciousness, are analyzed using the proposed model. Awareness is considered as a

secluded model variable that vagaries with time. The susceptible human is divided into the aware

and the unaware human classes. Aware people can become unaware, but the rate declines with

awareness. Besides, recovery depends on awareness-based treatments. Lastly, three time-dependent

control functions are included in the model for the cost of treatment, the cost of insecticides, and the

cost of an awareness movement via social media, to reduce the cost of malaria management.

The paper is organized as follows: Section 2, a mathematical model for awareness movement

in governing malaria disease has been projected. Some preliminary results, namely non-negativity,

boundedness, the existence of equilibria points, and characteristic equation of the model, have been

provided in Section 3. Stability analysis of equilibria has been carried out, with the possible occurrence

of bifurcation, using qualitative theory in Section 4. Optimal control analysis is presented in Section 5.

In Section 6, numerical simulations confirm analytical results. In Section 7, A comparison between the

present work with the published articles and then the significance of the obtained results is discussed.

Finally, a conclusion in Section 8 finishes the paper.

2. Mathematical model derivation

In this section, the mathematical model is proposed for malaria transmission dynamics using the

following assumptions.

The host population is separated into three compartments, unaware (Hu), aware Ha and infected

(Hi), with a total population (N) given by N = Hu + Ha + Hi. Analogously, the vector population is

divided into two compartments, susceptible (Vs) and infected (Vi). All newborns are supposed to be

susceptible, and no infected individuals are assumed to come from outside the community. The ‘level
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of awareness’, M(t), is considered as a separate population. Figure 1 shows Interactions between the

model populations.

Figure 1. Schematic diagram of the model: interaction between model populations is shown.

An S − I − S type mathematical model is used to capture malaria transmission dynamics in a

human population, as immunity to Malaria, is not fully attained and declines with time. Without

new contacts, individuals may drop immune memory and become susceptible again. For a mosquito

population, an S − I type model is taken, assuming that the mosquito does not mend from malaria

parasites and neither does the malaria parasites harm the mosquito population nor recover from

infection.

Let Πh be the constant growth of the human population either by birth or immigration. The

whole human population is subject to natural mortality with a constant rate dh; Πv is the constant

growth rate of the susceptible mosquito population. The force of infections for susceptible humans is

(λi, i = 1, 2), and that of susceptible vectors is (β).

All awareness-induced intrusions affect the spread of Malaria from being aware that this disease

is actually upsetting people. It is assumed that by being aware, people will take all essential protections

for personal defense and fruitfully outflow the chances of getting infected. Aware people may be

unaware at a rate g, but the rate is lessening with the level of awareness M(t) [24]. The model captures

this fact with the term
gHa

1+M .

In the modeling development, it is assumed that media movements increase the level of awareness

concerning personal protection and the way of controlling mosquito population [22].

Here, The level of awareness among people rises at a rate ω from roughly global sources such as

radio and TV campaigns, and it declines at a rate θ due to falling(fading) of memory [25].

Knowing the disease and control measures by awareness movement, people will use insecticides

to execute mosquitoes at a rate γ, modeled via the term γMVs and γMVi, where γ is the rate of

insecticide usage.
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Moreover, the constants r and δ signify the human population’s repossession(recovery) rate and

disease-induced death rate. For the mosquito population, µ denotes the natural death rate. The

recovery of infected humans will rest-on on the awareness campaign.

With the above assumptions, the following mathematical model is derived:

dHu

dt
=Πh − αHu M −

λ1HuVi

N
− dhHu +

gHa

1 + M
,

dHa

dt
=αHu M − dhHa + rHi M −

λ2HaVi

N
−

gHa

1 + M
,

dHi

dt
=

λ1HuVi

N
+

λ2HaVi

N
− rHi M − (dh + δ)Hi, (1)

dVs

dt
=Πv −

βHiVs

N
− µVs − γVs M,

dVi

dt
=

βHiVs

N
− µVi − γVi M,

dM

dt
=ω + σHi − θM.

Subjected to the initial conditions

Hu(0) = Hu0 ≥ 0, Ha(0) = Ha0 ≥ 0, Hi(0) = Hi0 ≥ 0, (2)

Vs(0) = Vs0 ≥ 0, Vi(0) = Vi0 ≥ 0, M(0) = M0 ≥ 0.

3. Basic Properties of the model

3.1. Positivity and boundedness of the solutions

The Hu, Ha, Hi, Vs, Vi, M for the effect of awareness on the transmission dynamics of malaria will

be analyzed in a biologically and mathematically viable region as follows. This region should be

feasible for both the human population and mosquito populations. Hereafter, the following proposition

is established.

Proposition 1. All solutions of system (1) with initial conditions in (2) are non-negative for all t > 0.

Proof. Let

T1 = sup {t > 0 : Hu(t) > 0, Ha(t) > 0, Hi(t) > 0, Vs(t) > 0, Vi(t) > 0, M(t) > 0} .

Since Hu(0) > 0, Ha(0) > 0, Hi(0) > 0, Vs(0) > 0, Vi(0) > 0, and M(0) > 0, then T1 > 0. If T1 < ∞,

then Hu, Ha, Hi, Vs, Vi, M are all equal to zero at T1.

It follows from the first equation of the system (1), that

dHu

dt
= Πh − αHu M −

λ1HuVi

N
− dhHu +

gHa

1 + M
.

That is
dHu

dt
+

(

dh + αM +
λ1 Vi

N

)

Hu = Πh +
gHa

1 + M

Thus,

dHu

dt

{

Hu(t) exp

[(

dh + αM +
λ1Vi

N

)

t

]}

=

(

Πh +
gHa

1 + M

)

exp

[(

d + αM +
λ1Vi

N

)

t

]
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Hence,

Hu(T1) exp

[(

dh + αM +
λ1Vi

N

)

t

]

− Hu(0)

=
∫ T1

0

{(

Πh +
gHa

1 + M

)

exp

[(

dh + αM +
λ1Vi

N

)

t

]}

dv

So that,

Hu(T1) = Hu(0) exp

[(

dh + αM +
λ1Vi

N

)

t

]

+ exp

[(

dh + αM +
λ1Vi

N

)

t

]

×
∫ T1

0

{(

Πh +
gHa

1 + M

)

exp

[(

d + αM +
λ1Vi

N

)

t

]}

dv > 0

From the second equation of system (1), we can write

dHa

dt
= αHu M − dh Ha + rHi M −

λ2HaVi

N
−

gHa

1 + M

That is
dHa

dt
+

(

dh +
λ2 Vi

N
+

g

1 + M

)

Ha = αHu M + rHi M

Thus,

dHa

dt

{

Ha(t) exp

[(

dh +
λ2 Vi

N
+

g

1 + M

)

t

]}

= (αHu M + rHi M) exp

[(

dh +
λ2 Vi

N
+

g

1 + M

)

t

]

Hence,

Ha(T1) exp

[(

dh +
λ2 Vi

N
+

g

1 + M

)

t

]

− Ha(0)

=
∫ T1

0
(αHu M + rHi M) exp

[(

dh +
λ2 Vi

N
+

g

1 + M

)

t

]

dv

So that,

Ha(T1) = Ha(0) exp

[(

dh +
λ2 Vi

N
+

g

1 + M

)

t

]

+ exp

[(

dh +
λ2 Vi

N
+

g

1 + M

)

t

]

×
∫ T1

0
(αHu M + rHi M) exp

[(

dh +
λ2 Vi

N
+

g

1 + M

)

t

]

dv > 0

Following the same procedure, it can be shown that Hi > 0, Vi > 0 and M > 0 for all t > 0.

Proposition 2. Every solution of system (1) are uniformly bounded, in the region

Ω = Ωh ∪ Ωv ∪ Ωm ⊂ R
3
+ ×R

2
+ ×R+

Ωh =

{

(Hu, Ha, Hi) ∈ R
3
+ : 0 ≤ Hu + Ha + Hi ≤

Πh

dh

}

,

Ωv =

{

(Vs, Vi) ∈ R
2
+ : 0 ≤ Vs + Vi ≤

Πv

µ

}
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and

Ωm =

{

M ∈ R+ : 0 ≤ M ≤
ωµ + σΠv

µθ

}

Proof. At any time t, N = Hu + Ha + Hi, then the time derivative of N along the solution of system

(1) is given by
dN

dt
= Πh−αHu M −

λ1HuVi

N
− dhHu +

gHa

1 + M

+ αHu M − dh Ha + rHi M −
λ2HaVi

N
−

gHa

1 + M

+
λ1HuVi

N
+

λ2HaVi

N
− rHi M − (dh + δ)Hi

= Πh−dh Hu − dhHa − (dh + δ)Hi

= Πh−dh(Hu + Ha + Hi)− δHi

= Πh−dhN − δHi

≤ Πh−dhN

Then, from the above, we have
dN

dt
≤ Πh − dhN.

That is
dN

dt
+ dhN ≤ Πh

N(t) ≤
Πh

dh

(

1 − e−dht
)

+ Nh0e−dht

So that

lim sup
t→∞

N(t) ≤
Πh

dh

That means

0 ≤ Hu + Ha + Hi ≤
Πh

dh

Similarly any time t, if we let Nv = Vs + Vi, then the time derivative of Nv along the solution of system

(1) is given by
dNv

dt
= Πv−

βHiVs

N
− µVs − γVs M

+
βHiVs

N
− µVi − γVi M

= Πv−µVs − µVi − γ(Vs + Vi)M

= Πv−µ(Vs + Vi)− γ(Vs + Vi)M

= Πv−µNv − γ(Vs + Vi)M

≤ Πv−µNv

Thus the above calculation gives
dNv

dt
≤ Πv − µNv.

That is
dNv

dt
+ µNv ≤ Πv

Nv(t) ≤
Πv

µ

(

1 − e−µt
)

+ Nv0e−µt

So that

lim sup
t→∞

Nv(t) ≤
Πv

µ
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This gives

0 ≤ Vs + Vi ≤
Πv

µ

Finally from the last equation of system (1), one can get

dM

dt
= ω + σVi − θM

dM

dt
+ θM ≤ ω + σVi

dM

dt
+ θM ≤ ω + σ

(

Πh

µ

)

dM

dt
+ θM ≤

ωµ + σΠv

µ

On solving this linear differential inequality, we obtain

M(t) ≤
ωµ + σΠv

µθ

(

1 − e−θt
)

+ M0e−θt

So that

lim sup
t→∞

M(t) ≤
ωµ + σΠv

µθ

Hence,

0 ≤ M(t) ≤
ωµ + σΠv

µθ

As a result, the region Ω is positively invariant. Therefore, it is adequate to contemplate the dynamics

of the movement produced by (1) in Ω. In this region, the model can be well-thought-out to be

biologicaly and mathematically well posed. Hence, all solutions of the model (1) with initial conditions

in Ω remain in Ω for all t > 0.

4. The disease-free equilibrium point and its stability

The model system (1) has a Disease-Free Equilibrium attained by vanishing right-hand sides of the
equations in the model and solving at Hi = Vi = 0. Thus, the disease-free equilibrium is specified by

E0 = (H0
u, H0

a , H0
i , V0

s , V0
i , M0)

=

(

θ Πh (gθ + ω dh + θ dh)

dh (α ω2 + θ (α + dh)ω + (g + dh) θ2)
,

Πhα ω (θ + ω)

dh (α ω2 + θ (α + dh)ω + (g + dh) θ2)
, 0,

Πvθ

γ ω + µ θ
, 0,

ω

θ

)

4.1. The basic reproduction Number

Basic reproduction number in general denoted by R0 and is often considered as the threshold quantity that

determines the dynamic behavior of the model [26].

The method as used by Heffernan et al. in [27] has been followed for determining the basic reproduction

number R0.

Here, the next generation matrix is denoted by G. It comprises two matrices, namely F and V, where

F =

(

0 λ1k1+λ2k2
k3 N0

βΠvθ
(rω+µθ)N0

0

)

, V =

(

rω
θ + dh + σ 0

0 µ − rω
θ

)

It follows that, the reproduction number is given by R0 = ρ(FV−1), where ρ is the dominant eigenvalue of the

matrix G = FV−1.

Hence,

R0 =
βθ3(λ1k1 + λ2k2)Πv

(µθ − rω)(rω + µθ)(rω + θdh + σθ)k3N2
0
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where, k1 = θ Πh (gθ + ω dh + θ dh) , k2 = Πhα ω (θ + ω) , k3 = dh

(

α ω2 + θ (α + dh)ω + (g + dh) θ2
)

and N0 =

H0
u + H0

i .

4.2. Local Stability Analysis of the disease free equilibrium point (DFE)

The following theorem analyses the local stability of DFE.

Theorem 1. The DFE of the model equation (1), given by E0, is locally asymptotically stable (LAS) if R0 < 1, and unstable

if R0 > 1.

Proof. At the disease free equilibrium point E0, the Jacobian matrix J(E0) is





































− α ω
θ + dh −

θ g
α ω+θ 0 0 λ1k1

k3 N0

α k1
k3 N0

+
θ2gk2

k3(α ω+θ)2

− α2ω
θ −dh −

θ g
α ω+θ − rα ω

θ 0 λ2k2
k3 N0

− α k1
k3 N0

−
θ2gk2

k3(α ω+θ)2

0 0 − rα ω
θ − δ − dh 0 − λ1k1

k3 N0
− λ2k2

k3 N0
0

0 0
β Πvθ

(γ ω+µ θ)N0
−µ − γ α ω

θ 0
γ β Πvθ

(γ ω+µ θ)N0

0 0 −
β Πvθ

(γ ω+µ θ)N0
0 −µ − γ α ω

θ 0

0 0 0 0 −σ −θ





































.

The characteristic equation to J(E0) in x is,

F(x) = (x + µ +
γαω

θ
)(x + θ)(x2 + l1x + l2)(x2 + m1x + m2) = 0, (3)

The coefficients of (3) are given in Appendix A.

Two eigenvalues, −(µ + γαω
θ ) and −θ, are negative. Since, l1 and m1 are positive. Thus, according to

Routh-Hurwitz criteria, rest of the eigenvalues are negative if l2 > 0 and m2 > 0. This conditions are satisfied

when R0 < 1.

Therefore, R0 < 1. Hence the disease free equilibrium of the Malaria Model (1) is locally Asymptotically

stable.

Remark 1. From epidemological point of view, malaria can be eliminated from the community when R0 < 1. If R0 < 1

then, average of an infected individual produce less than one new infected individual over the period of its infectious period

and the infection dies out. But if R0 > 1, then each infected individual produce an average of more than one infection and the

disease persist and invade the population.

4.3. Global Stability of the Disease–Free Equilibrium Point

Theorem 2. The disease-free equilibrium, E0 is globally asymptotically stable if R0 ≤ 1.

Proof. The Lyapunov function is defined as

L(t) =
1

2
(Hu − H̄u)

2 +
1

2
(Ha − H̄a)

2 +
1

2
(Hi − H̄i)

2

+
1

2
(Vs − V̄s)

2 +
1

2
(Vi − V̄i)

2 +
1

2
(M − M̄)

2
.
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Differentiating the Lyapunov function, L with respect to t, we get

dL

dt
=Πh(Hu − H̄u) +

(

α(M − M̄) +
λ1

N0
(Vi − V̄i) + dh

)

H̄u(Hu − H̄u)

+
g

1 + M − M̄
(Ha − H̄a)(Hu − H̄u)

+ (α(Hu − H̄u) + r(Hi − H̄i)(M − M̄)) (Ha − H̄a) +

(

dh +
λ2(Vi − V̄i)

N0
+

g

1 + M − M̄

)

H̄a(Ha − H̄a)

+

(

λ1(Hu − H̄u) + λ2(Ha − H̄a)

N0

)

(Vi − V̄i)(Hi − H̄i) + (r(M − M̄) + dh + δ) H̄i(Hi − H̄i)

+ Πv(Vs − V̄s) +

(

β(Hi − H̄i)

N0
+ µ + γ(M − M̄)

)

V̄s(Vs − V̄s)

+
β(Hi − H̄i)(Vs − V̄s)

N0
(Vi − V̄i) + (µ + γ(M − M̄))V̄i(Vi − V̄i)

+ ω(M − M̄) + σ(Hi − H̄i)(M − M̄) + θM̄(M − M̄)

−

(

α(M − M̄) +
λ1

N0
(Vi − V̄i) + dh

)

Hu(Hu − H̄u)

−

(

dh +
λ2(Vi − V̄i)

N0
+

g

1 + M − M̄

)

Ha(Ha − H̄a)

− (r(M − M̄) + dh + δ) Hi(Hi − H̄i)

−

(

β(Hi − H̄i)

N0
+ µ + γ(M − M̄)

)

Vs(Vs − V̄s)

− (µ + γ(M − M̄))Vi(Vi − V̄i)− θM(M − M̄)

Then by collecting positive and negative terms together, we obtain

dL

dt
= A − B

where,

A =Πh(Hu − H̄u) +

(

α(M − M̄) +
λ1

N0
(Vi − V̄i) + dh

)

H̄u(Hu − H̄u)

+
g

1 + M − M̄
(Ha − H̄a)(Hu − H̄u)

+ (α(Hu − H̄u) + r(Hi − H̄i)(M − M̄)) (Ha − H̄a) +

(

dh +
λ2(Vi − V̄i)

N0
+

g

1 + M − M̄

)

H̄a(Ha − H̄a)

+

(

λ1(Hu − H̄u) + λ2(Ha − H̄a)

N0

)

(Vi − V̄i)(Hi − H̄i) + (r(M − M̄) + dh + δ) H̄i(Hi − H̄i)

+ Πv(Vs − V̄s) +

(

β(Hi − H̄i)

N0
+ µ + γ(M − M̄)

)

V̄s(Vs − V̄s)

+
β(Hi − H̄i)(Vs − V̄s)

N0
(Vi − V̄i) + (µ + γ(M − M̄))V̄i(Vi − V̄i)

and

B =

(

α(M − M̄) +
λ1

N0
(Vi − V̄i) + dh

)

Hu(Hu − H̄u)

+

(

dh +
λ2(Vi − V̄i)

N0
+

g

1 + M − M̄

)

Ha(Ha − H̄a)

+ (r(M − M̄) + dh + δ) Hi(Hi − H̄i)

+

(

β(Hi − H̄i)

N0
+ µ + γ(M − M̄)

)

Vs(Vs − V̄s)

+ (µ + γ(M − M̄))Vi(Vi − V̄i) + θM(M − M̄)

We observe that A − B ≤ 0 if and only if Hu > H̄u, Ha > H̄a, Hi > H̄i, Vs > V̄s, Vi > V̄i, M > M̄ where

H̄u, H̄a, H̄i, V̄s, V̄i, M̄ are the disease free equilibrium points. Also, dL
dt = 0 only at the disease free equilibrium

point E0. Thus by Lasalle’s principle, E0 is globally asymptotically stable if A < B.
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4.4. Existence of endemic equilibrium point (EEP)

Here, we describe the conceivable equilibria of the model and found the situations for the existence of an

equilibrium for which malaria is endemic in the population. The infection equilibria of the malaria model (1)

represented as E1 = (H∗
u , H∗

a , H∗
i , V∗

s , V∗
i , M∗) is obtained by equating the right-hand side of the equations in (1)

to zero and solve it simultaneously. Therefore, the endemic equilibria are given as

H∗
u =

Πh N
(

(

dh + g
)

N + V∗
i

λ2

)

θ2 + N
(

σ H∗
i
+ ω

) (

NgrH∗
i
+ Πh Ndh + ΠhV∗

i
λ2

)

θ

(

Ndh + V∗
i

λ1

) (

(

dh + g
)

N + V∗
i

λ2

)

θ2 +
(

(

dh + α
)

N + V∗
i

λ1

) (

Ndh + V∗
i

λ2

) (

σ H∗
i
+ ω

)

θ + α
(

σ H∗
i
+ ω

)2
N
(

Ndh + V∗
i

λ2

)

H∗
a =

N
(

σ H∗
i
+ ω

) (

r
(

Ndh + V∗
i

λ1

)

H∗
i
+ Nα Πh

)

θ + N
(

σ H∗
i
+ ω

) (

r
(

(

dh + α
)

N + V∗
i

λ1

)

H∗
i
+ Nα Πh

)

(

Ndh + V∗
i

λ1

) (

(

dh + g
)

N + V∗
i

λ2

)

θ2 +
(

(

dh + α
)

N + V∗
i

λ1

) (

Ndh + Vi∗ λ2

) (

σ H∗
i
+ ω

)

θ + α
(

σ H∗
i
+ ω

)2
N
(

Ndh + V∗
i

λ2

)

H∗
i =

λ1 H∗
a + λ2 H∗

u
(δ + dh + rM∗ )N

V∗
i

V∗
s =

Πv N

βH∗
i + N + rM∗ , V∗

i =
βH∗

i V∗
s

µ + rM∗ , M∗ =
ω + σH∗

i

θ
.

The epidemic equilibrium satisfies the following third degree polynomial

F(H∗
i ) = A(H∗

i )
3 + B(H∗

i )
2 + C(H∗

i ) (4)

The coefficients of (4) are given in Appendix B.

The condition H∗
i = 0 resembles to disease free equilibrium point which we have previously established and

F(H∗
i ) = 0 corresponds to a particular condition when the disease continues. In the case of backward bifurcation,

several endemic equilibria must exist. This suggests that the equation F(H∗
i ) = 0 specifies that there are three

cases we have to consider for F(H∗
i ) = 0 based on the signs of B and C since A is always positive. That is;

1. If B < 0 and C = 0 or B2 − 4AC = 0, then the equations H∗
i = 0 and F(H∗

i ) = 0 has a sole endemic

equilibrium point (only one positive root) and no backward bifurcation exists.
2. If C > 0, B > 0 and B2 − 4AC = 0, the equations H∗

i = 0 and F(H∗
i ) = 0 have two endemic equilibria i.e,

two possible roots, and therefore there is possibility of backward bifurcation to occur.
3. If neither condition 1 nor condition 2 above holds, there does not exist any endemic equilibrium.

It is imperative to note that C is always positive if R0 < 1 and negative if R0 > 1. Hence our argument fallouts to

the following outcome

Theorem 3. For the model system (1) we have

(a) A unique endemic equilibrium if C < 0 ⇔ R0 > 1
(b) Exactly one unique endemic equilibrium if B < 0 and C = 0 or B2 − 4AC = 0
(c) Only two endemic equilibria if C > 0, B < 0 and B2 − 4AC > 0
(d) There does not exist any endemic equilibrium then.

5. The optimal control problem

In this section, the model system (1) is reformulated by incorporating three time dependent control functions,

C1(t), C2(t) and C3(t), with the first control C1(t) as controlling cost of treatment, the second control C2(t) as

controlling cost of insecticides, and the third control C3(t) as a control cost of consciousness movement. At this

point the goal is to reduce the price of control. That means the goal here is to discover the optimal strictures C∗
1 (t),

C∗
2 (t) and C∗

3 (t) using the Pontryagin minimum principle methods assumed in [28].

Therefore, our system (1) is improved to the tempted state nonlinear dynamics given by:















































































dHu

dt
=Πh − αHu M −

λ1HuVi

N
− dh Hu +

gHa

1 + M
,

dHa

dt
=αHu M − dh Ha + C1rHi M −

λ2HaVi

N
−

gHa

1 + M
,

dHi

dt
=

λ1HuVi

N
− (dh + δ)Hi − C1rHi M +

λ2HaVi

N
,

dVs

dt
=Πv −

βHiVs

N
− µVs − C2γVs M,

dVi

dt
=

βHiVs

N
− µVi − C2γVi M,

dM

dt
=C3ω + σHi − θM.

(5)
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with the initial conditions

Hu(0) = Hu0, Ha(0) = Ha0, Hi(0) = Hi0, Vs(0) = Vs0, Vi(0) = Vi0 and M(0) = M0

The cost function for the minimization problem is proposed as

J(C1(t), C2(t), C3(t)) =
∫ t f

0
[A1C1(t)

2 + A2C2(t)
2 + A3C3(t)

2 + P1Hi − P2H2
a ]dt

Where the quantities A1, A2 and A3 are the positive weight constants on the advantage of the cost, while the

terms P1 and P2 are the penalty multipliers.

A quadratic cost functional on the controls is assumed as an approximation for nonlinear function depending

on the assumption that the cost take nonlinear form and also to prevent the bang bang or singular optimal control

cases[29]. The control set is defined on [t0, t f ] subject to the conditions 0 < Ci(t) < 1, i = 1, 2, 3, where t0 and

t f are initial and final time of giving control, respectively. The intention here is to find the optimal profile of

C1(t), C2(t) and C3(t), denoted respectively as Ci
∗(t), i = 1, 2, 3, so that J(C1, C2, C3) is smallest, that means,

J(C∗
1 (t), C∗

2 (t), C∗
3 (t)) = min(J (C1(t), C2(t), C3(t)) : (C1, C2, C3) ∈ U ), (6)

subject to the state system (5), where,

U =

{

u = (C1, C2, C3) /0 ≤ C1min ≤ C1(t) ≤ C1max ≤ 1, 0 ≤ C2min ≤ C2(t) ≤ C2max ≤ 1,

0 ≤ C3min ≤ C3(t) ≤ C3max ≤ 1, t ∈ [0, t f ]

}
(7)

is an admissible control set.

5.1. Existence of the optimal control triple

Theorem 4. Given the objective functional

J(C1(t), C2(t), C3(t)) =
∫ t f

0

[

A1C1
2 + A2 C2

2 + A3C3
2 + P1 Hi − P2Ha

2

]

dt

where

U = {(C1(t), C2(t), C3)(t) : Ci(t) is Lebesgue measurable and 0 ≤ Ci(t) ≤ 1, t ∈ [0, t f ]}

subject to the system (5) with the initial their conditions. Then there exists an optimal control triple (C1
∗, C∗

2 , C∗
3 ) and

corresponding state solution Hu
∗, Ha

∗, Hi
∗, Vs

∗, Vi
∗, M∗ such that

J(C∗
1 (t), C∗

2 (t), C∗
3 (t)) = min

U
J (C1(t), C2(t), C3(t)) if the following conditions are met

(i) The set of solutions to the system (5) with control variables in (7) are non-empty.
(ii) The control set U is convex and closed

(iii) Each right hand side of the state system(5) is continuous, is bounded above by a sum of the bounded control and the

state, and can be written as a linear function of u with coefficients depending on time and the state.
(iv) The integrand function of the objective functional is convex on U
(v) There exist positive numbers ℓ1, ℓ2, ℓ3, ℓ4 and a constant ℓ > 1 such that

J(C1(t), C2(t), C3(t)) ≥ −ℓ1 + ℓ2|C1|
ℓ + ℓ3|C2|

ℓ + ℓ4|C3|
ℓ

Proof. A detail proof of this Theorem can be obtained in [30] or [29].
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5.2. Characterization of the optimal control

The objective function J denotes the total cost achieved as a result of the application of control plans and the

burden of the disease.

H =A1C1
2 + A2 C2

2 + A3C3
2 + P1 Hi − P2Ha

2

+ ξ1

(

Πh − αHu M −
λ1HuVi

N
− dh Hu +

gHa

1 + M

)

+ ξ2

(

αHu M − dh Ha + C1rHi M −
λ2HaVi

N
−

gHa

1 + M

)

+ ξ3

(

λ1HuVi

N
− (dh + δ)Hi − C1rHi M +

λ2HaVi

N

)

+ ξ4

(

Πv −
βHiVs

N
− µVs − C2γVs M

)

+ ξ5

(

βHiVs

N
− µVi − C2γVi M

)

+ ξ6 (C3ω + σHi − θM)

where ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 are adjoints variable or co–state variables. The system of equations is obtained by

considering the partial derivatives of the Hamiltonian H with respect to the linked state variable by using

Pontryagin’s Maximum Principle.

Theorem 5. Given the optimal controls (C1(t)
∗, C2(t)

∗, C3(t)
∗) and the solutions Hu

∗, Ha
∗, Hi

∗, Vs
∗, Vi

∗, M∗ of the

corresponding state system (5), then there exist adjoint variables ξ1, ξ2, ξ3, ξ4, ξ5, ξ6 satisfying the following system of

equations



















































































dξ1

dt
=

(

αM +
λ1Vi

N
+ dh

)

ξ1 − αMξ2 −
λ1Vi

N
ξ3,

dξ2

dt
= −2 P2 Ha −

g

1 + M
ξ1 +

(

dh +
λ2Vi

N
+

g

1 + M

)

ξ2 −
λ2Vi

N
ξ3,

dξ3

dt
= −P1 − C1rMξ2 + (C1rM + dh + δ)ξ3 +

βVs

N
ξ4 −

βVs

N
ξ5 − σξ6,

dξ4

dt
=

(

βHi

N
+ µ + C2γM

)

ξ4 −
βHi

N
ξ5,

dξ5

dt
=

λ1

N
Huξ1 +

λ2

N
Haξ2 −

λ1Hu + λ2Ha

N
ξ3 + (µ + C2γM)ξ5,

dξ6

dt
=

(

αHu +
gHa

(1 + M)2

)

ξ1 −

(

αHu + C1rHi +
gHa

(1 + M)2

)

ξ2 + C1rHiξ3 + C2γVsξ4 + C2γViξ5 + θξ6,

(8)

with transversality conditions

ξ1(t f ) =ξ2(t f ) = ξ3(t f ) = ξ4(t f ) = ξ5(t f ) = ξ6(t f ) = 0 (9)

Furthermore for t ∈ [0, t f ], the optimal controls C∗
1 , C∗

2 and C∗
3 are characterized by

C1
∗ = max

{

0, min

{

1,
(ξ2 − ξ3)rHi M

2A1

}}

,

C2
∗ = max

{

0, min

{

1,
(Vsξ4 − Viξ5)γM

2A2

}}

,

C3
∗ = max

{

0, min

{

1,−
ωξ6

2A3

}}

.

(10)

6. Numerical simulations

In this section, numerical results are achieved on the basis of analytical calculations. The values of the

parameters used in numerical simulations are listed in Table 1.
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Table 1. Biological meanings of variables, parameters used in the model (1) and Values of the

parameters used for numerical simulations [22,31].

Variables/Parameters Descriptions Values

Hu(t) Number of unaware human —
Ha(t) Number of aware human —
Hi(t) Number of infected human —
Vs(t) Number of susceptible mosquito —
Vi(t) Number of infective mosquito —
M(t) Level of awareness on due to media campaign —

λ1 Disease transmission from 0.02
infected mosquito to unaware human

α Rate of awareness by media campaign 0.001
λ2 Disease transmission from 0.002

infected mosquito to aware humans
β Infection rate of vector 0.25

infected human to susceptible mosquito
Πh Recruitment rate of susceptible human 400
Πv Recruitment rate of susceptible mosquito 10000
µ Natural death rate of mosquito 0.12
r Recovery rate of infected human due to medication 0.001

dh Natural death rate of human 0.002
δ Disease-induced death rate for human population 0.01
γ Efficacy of insecticide 0.003
θ fading of memory 0.01

Figure 2, forward bifurcation of R0 is sketched. For R0 < 1, the disease-free equilibrium E0 is stable and

unstable otherwise. Consequently, transcritical bifurcation has occurred at R0 = 1. This shows the existence of a

unique endemic equilibrium E∗.

1 2 3 4 5 6
R0

0

5000

10000

15000
(a)

1 2 3 4 5 6

R0

0

2

4

6
×10

4 (b)

Hi

Vi

Figure 2. Forward transcritical bifurcation: equilibrium values of infected human and infective vectors

are plotted with respect to the basic reproduction number R0. The parameter β is varied and rest of

the parameters’ values are taken from Table 1.
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In Figure 3a–f, the numerical solution of the proposed model system is plotted with two different values of

awareness rates. This figure confirms that the influence of consciousness over media has an important role in

monitoring malaria disease transmission. Figure 4 shows that the endemic equilibrium point E∗, when it exists, is

nonlinearly stable i.e., all the phase portraits converge to the same endemic equilibrium for different initial values.
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Figure 3. Numerical solution of the system 1 with and without the impact of awareness.
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Figure 4. Phase portrait is plotted in Hu − Ha − Hi phase space. Parameters values are same as in

Figure 3.
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In Figure 5a–f, the equilibrium values of the infected human population are plotted concerning local

awareness rate σ. Infection condensed significantly due to the effect of the local awareness campaign. So, local

health centers should organize consciousness movements about the disease. We also plotted the steady state

values of the infected human population with respect to global awareness ω. A rapid decrease in the infected

population is observed in Figure 6. Hence through global media (radio, TV, etc.), awareness about the disease is

suggested.

In Figure 7, the instantaneous effect of local and global responsiveness movement is revealed on the infected

human population in ω − σ − H∗
I space. Infection condensed due to the impact of both consciousness movements.
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Figure 5. Effect of local awareness is shown varying the parameter σ.
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Figure 6. Effect of global awareness is shown varying the parameter ω. Other parameters values are as

taken in figure 3.

Figure 7. Combined effects of local and global awareness on infected population is shown.

6.1. Numerical solution of the Optimal control problem

Here, the results from the numerical simulations are presented to the optimality system (1) with the help of

MATLAB.

The optimal control problem deals with the control’s effect on the development of malaria disease and

also improves the cost sustained in their implementation numerically. The optimal solution is obtained by

explaining the optimality system, consisting of six Ordinary Differential Equations (ODEs) from the state and

adjoint equations. An iterative structure is used for solving the state equations with an initial guess for the

control functions over the pretended time using the fourth-order Runge–Kutta Scheme. Due to the transversality
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condition (9), the adjoint equations are solved backward in time using the current iteration solutions of the state

equations. Then the control functions will be updated by using a convex combination of the preceding control

functions and the values from the characterization. This process endures until the change between the values of

unknowns at the earlier iteration and that of the current iteration is negligible [32].

Numerical simulations of the optimal control problem are plotted in Figure 8 and 9. Figure 8 compares

the system with and without optimal control. It is found that optimal control has a substantial protagonist in

monitoring the system. The corresponding optimal profiles of the control variables are plotted in Figure 9. The

optimal profiles of the controlling agents indicate that an extra quantity of insecticide spraying is essential.
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Figure 8. Comparison between the system with and without optimal control.
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Figure 9. The profiles of optimal controls are plotted as function of time.

7. Discussion

This article uses a mathematical model to analyze media campaigns’ influence on Malaria’s dynamics. To

our knowledge, a few articles are available on the impact of malaria disease dynamics and media campaigns.

Before discussing the main results, a comparison between the proposed model with the existing mathematical

models is made.

Al Basir et al., 2020 [22] have proposed a mathematical model (using delay differential equations) taking

human (susceptible and infected) and mosquito populations (susceptible and infected). They have assumed the

‘level of awareness’ as a separate population for the impact of campaigns through social media. They have yet to
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apply optimal control theory but focus on the effect of delay in organizing the campaign. In this research, media

awareness is assumed as a separate model population that changes with time. Also, susceptible humans are

divided into aware and unaware human classes. Moreover, optimal control theory has been applied to maximize

the awareness level and cost-effectiveness.

In [23], authors have divided infected humans into aware and unaware infected human populations. Also

assumed media as separate model variables whose growth is assumed as proportional to the unaware infected

human population. They have not divided the susceptible human into an aware and unaware human. In

this research, we divide the susceptible human into aware and unaware susceptible humans, which is more

realistic [21]. Moreover, the infected human recovers through awareness-induced treatment, and after recovery,

they will join the aware human population. This hypothesis is more realistic.

In [12], authors have formulated a mathematical model taking human (susceptible, infected, recovered) and

mosquito (susceptible and infected) populations. The susceptible population is divided into aware and unaware

susceptible humans. Finally, they applied optimal control for cost minimization and optimal control of the disease.

They have not assumed that recovered people again become susceptible and aware of the disease. Also, the effect

of awareness is modeled using constant terms.

In this research, it is assumed additionally that the infected human recovered by awareness-induced

treatment, and after recovery, they will join the aware human population, which is more realistic. In the proposed

model, ‘level of awareness’ is taken as a model variable, increasing due to awareness campaigns (as adopted

by Al Basir et al. [22]). The local awareness (due to the information from local people and relatives) and global

awareness (due to radio and TV campaigns) are also included in the model. Further assumed that the aware

people become unaware but decrease with the level of awareness, M(t). Aware people may become infected at a

much lower rate than unaware humans. Applied optimal control theory has been applied to maximize awareness

and minimize the disease control cost.

Thus the awareness-based model proposed here is more functional that can capture the dynamics of

Malaria with awareness-based interventions. Also, the control-induced model can minimize the cost of malaria

management.

The dynamics of malaria propagation have been studied using the proposed mathematical models

analytically and numerically. Using the next-generation matrix, the basic reproduction number R0 is derived.

Equilibria assessment shows two equilibria of the proposed model: the disease-free and endemic. The disease-free

equilibrium is stable for R0 < 1 and endemic equilibrium exists for R0 > 1 that is when the disease-free

equilibrium becomes unstable. The endemic equilibrium, when it exists, is globally asymptotically stable.

Optimal control theory has been applied to awareness-induced intrusions for the cost-effective administration

of Malaria. The proposed optimal system is analytically solved using the Pontryagin minimum principle (Section 5)

and numerically solved (using the scheme stated in subSection 6.1) and plotted the optimal profiles of the control

variables (Figure 9). It has been established that the optimally controlled system is essential and effective in

malaria disease control (Figure 8).

8. Conclusion

Malaria, the world’s most significant dominant disease, is a mosquito-borne human disease caused by

a parasite transmitted by a female Anopheles mosquito. Mathematical modeling and control theory helps in

predicting the dynamics of the disease and are also helpful for practical policy-making. Awareness campaign

about the disease is also equally important in controlling the disease.

In this article, a mathematical model is proposed for a malaria disease dynamic, considering the impact

of awareness-based control approaches. The dynamics of the system are analyzed using qualitative stability

theory. The optimal control concept is applied for cost minimization to disease control. The maximum principle is

implemented for the optimization of the system.

The control-induced model helps optimal disease control with a minimum advertisement, insecticide, and

treatment costs using the maximum principle. The obtained results are helpful for policymakers in proposing

suitable control strategies against Malaria. In a nutshell, the awareness movement is vital for controlling Malaria,

and applying optimal control theory sideways with media consciousness is required.
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Appendix A

The coefficients of (3) is given below:

l1 = −a11 − a22, l2 = −a12a21 + a11a22,

and

m1 = −a33 − a44, m2 = −a34a43 + a33a44,

where,

a11 = −
α ω

θ
− dh,

a12 = −
θ g

α ω + θ
,

a14 =
λ1k1

k3N0
,

a21 = −
α2ω

θ
,

a22 = −dh −
θ g

α ω + θ
,

a23 = −
rα ω

θ
,

a24 =
λ2k2

k3N0
,

a33 = −
rα ω

θ
− δ − dh,

a34 = −
λ1k1

k3N0
−

λ2k2

k3N0
,

a43 = −
β Πvθ

(γ ω + µ θ) N0
,

a44 = −µ −
γ α ω

θ
.

Appendix B

where H∗
i = 0 or A(H∗

i )
2 + B(H∗

i ) + C = 0 and

A = (γ ω + µ θ)2 N4α δ µ2ω θ4dh +
(

N
(

2 α δ γ µ ω2dh + α δ µ2ω2dh + 2 α γ µ ω2dh
2
))2

θ3

+ N2γ dhα ω3 (δ γ + 2 δ µ + γ dh + 2 µ r + 2 µ dh) θ2

B =N4µ2dh (δ g + δ dh + gdh) θ5 (γ ω + µ θ)2 N2

+ N2µ ω dh (α µ dh + 2 δ gγ + 2 δ γ dh + δ µ dh + 2 gγ dh + gµ r) θ4

− N2ω2dh

(

α µ2r + α µ2dh + δ gγ2 + δ γ2dh + 2 δ γ µ dh + gγ2dh + 2 gγ µ r + γ2dh
2
)

θ3

− N2ω3dh

(

α µ2r + δ γ2dh + gγ2r + γ2rdh + γ2dh
2
)

θ2 + N2γ2ω4rθ dh
2

C = (γ ω + µ θ)2 N2
(

N2µ2dh
3 − β gΠvπhλ1 − β Πvπhdhλ1

)

θ5

+ ω
(

2 N2γ µ dh
3 + N2µ2rdh

2 + N2µ2dh
3 − α β Πvπhλ2 − β Πvπhdhλ1

)

θ4

+ ω2
(

2 N2γ µ rdh
2 + 2 N2γ µ dh

3 + N2µ2rdh
2 − α β Πvπhλ2

)

θ3 + 2 N2γ µ ω3rθ2dh
2
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