

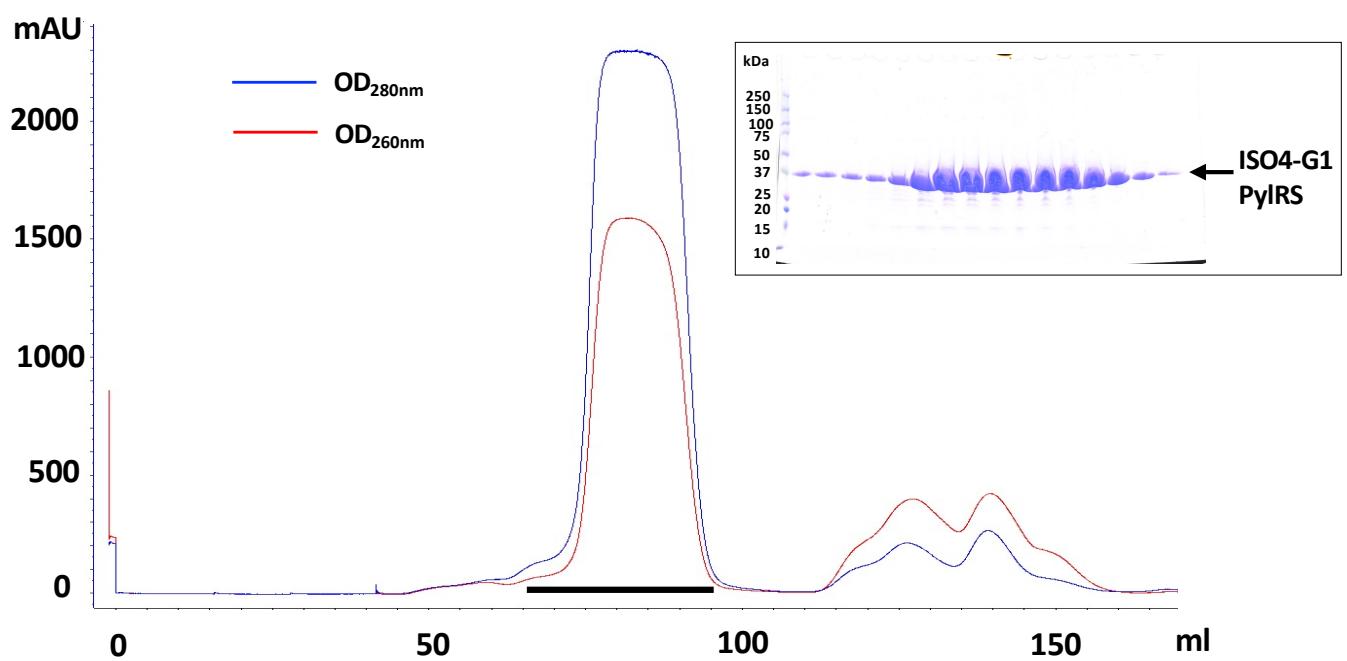
Fig. S1 Yanagisawa *et al.*

Diagram illustrating the structure of human isoform 4 (hISO4) with various motifs and loops. The structure is a beta-barrel with alpha-helices (red) and beta-sheets (green). Motifs are labeled with arrows:

- Motif 1**: Ordering loop (alpha3-beta1-alpha4-beta2)
- Motif 2**: Loop between alpha5 and beta3 (alpha5-beta3-beta4-beta2)
- Motif 3**: Loop between alpha6 and beta5 (alpha6-beta5-beta6-beta5-beta6-hairpin-beta7-n2)
- Motif 4**: Loop between alpha7 and eta3 (alpha7-eta3)

Residues are numbered along the structure. The structure is composed of the following segments:

- Top Segment (alpha1-alpha2):** alpha1 (red), beta1 (green), alpha2 (red).
- Middle Segment (alpha3-alpha4-beta2):** alpha3 (red), beta1 (green), alpha4 (red), beta2 (green).
- Motif 1 (Ordering loop):** alpha3 (red), beta1 (green), alpha4 (red), beta2 (green).
- Motif 2 (loop between alpha5 and beta3):** alpha5 (red), beta3 (green), alpha5 (red), beta3 (green), beta4 (green), beta2 (green).
- Motif 3 (loop between alpha6 and beta5):** alpha6 (red), beta5 (green), beta6 (green), beta5 (green), beta6 (green), beta5 (green), beta6 (green), beta7 (green), n2 (yellow).
- Motif 4 (loop between alpha7 and eta3):** alpha7 (red), eta3 (yellow).
- Bottom Segment (alpha7-eta3):** alpha7 (red), eta3 (yellow).


Residues are numbered along the structure. The structure is composed of the following segments:

- Top Segment (alpha1-alpha2):** alpha1 (red), beta1 (green), alpha2 (red).
- Middle Segment (alpha3-alpha4-beta2):** alpha3 (red), beta1 (green), alpha4 (red), beta2 (green).
- Motif 1 (Ordering loop):** alpha3 (red), beta1 (green), alpha4 (red), beta2 (green).
- Motif 2 (loop between alpha5 and beta3):** alpha5 (red), beta3 (green), alpha5 (red), beta3 (green), beta4 (green), beta2 (green).
- Motif 3 (loop between alpha6 and beta5):** alpha6 (red), beta5 (green), beta6 (green), beta5 (green), beta6 (green), beta5 (green), beta6 (green), beta7 (green), n2 (yellow).
- Motif 4 (loop between alpha7 and eta3):** alpha7 (red), eta3 (yellow).
- Bottom Segment (alpha7-eta3):** alpha7 (red), eta3 (yellow).

Fig. S1. Structure-based sequence alignments of ISO4-G1 PylRS and other PylRSs.

The PylRS sequences were aligned with the program CLUSTAL W [77], and then parts of the alignments were adjusted manually. Highly conserved residues among the PylRSs are shown in blue. The secondary structures (α -helices, 3_{10} helices, and β -sheets) are shown as wine red bars, olive bars, and green arrows, respectively, above the sequence alignments. Numbers at the top and bottom correspond to the amino acid residues of ISO4-G1 PylRS and *Mm*PylRS, respectively. Dashes represent breaks in the actual amino acid sequences to allow sequence alignments with PylRSs. Motifs 1, 2, and 3 are colored yellow. The ordering loop, the motif-2 loop, and the β 5- β 6 hairpin are shown on the top line. Amino acid residues that were mutated in this study are colored pink. Accession numbers are as follows. ISO4-G1 PylRS (*M.a* ISO4-G1, AMK13702); *Ma*PylRS (*M. alvus*, WP_015505008); 1R26PylRS (*M. sp* 1R26, WP_058747239); ISO4-H5 PylRS (*M.a* ISO4-H5, WP_066075773); RumPylRS (*M.a* RumEnM1, KQM11560); *Ml*PylRS (*M. luminyensis*, WP_019176308); *Mt*PylRS (*M. termitum*, WP_048111907); *Mi*PylRS (*M. intestinalis*, WP_020448777); *Dh*PylSc (*D. hafniense*, WP_018307530); *Mb*PylRS (*M. barkeri*, Q6WRH6); and *Mm*PylRS (*M. mazei*, Q8PWY1).

Fig. S2 Yanagisawa *et al.*

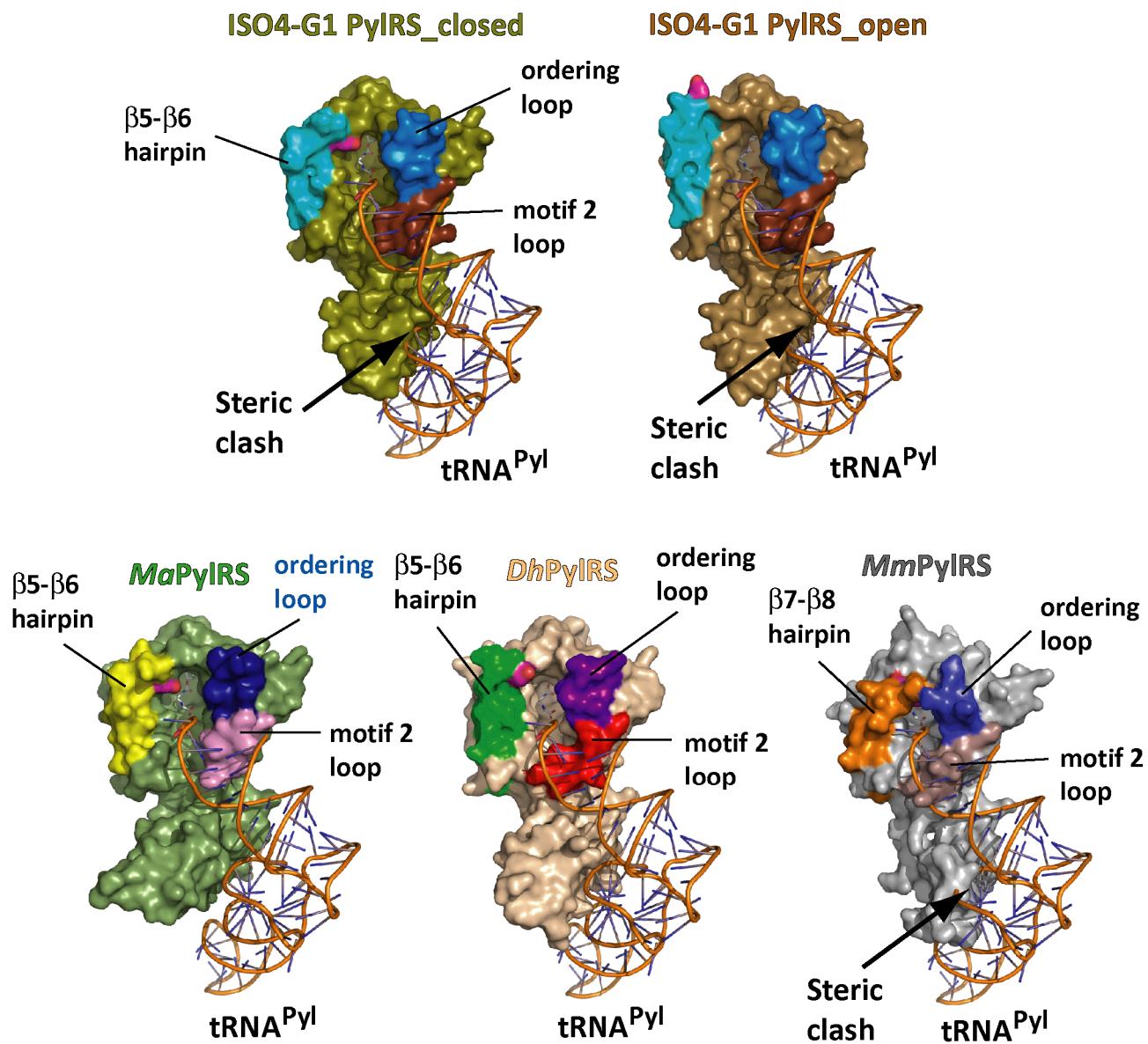


Fig. S2. Chromatogram for the purification of ISO4-G1 PylRS by Superdex 200 size-exclusion chromatography. SDS-PAGE analysis of the ISO4-G1 PylRS fractions (inset).

The absorbances of the ISO4-G1 PylRS fractions are saturated at 280 nm and 260 nm.

The black bar represents the range of fractions subjected to SDS-PAGE analysis.

Fig.S3 Yanagisawa *et al.*

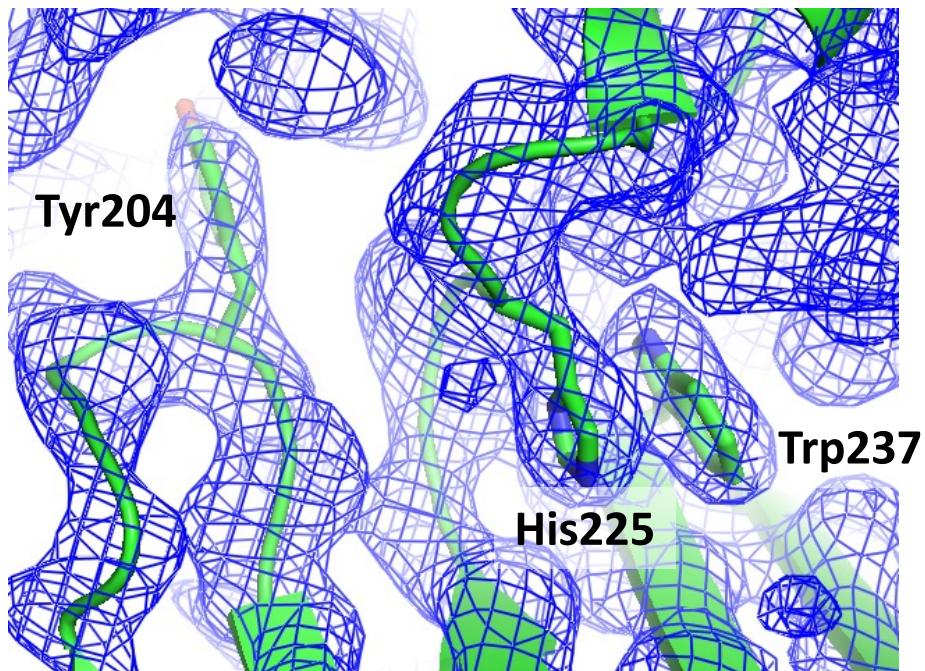


Fig. S3. Structural comparison of ISO4-G1 PylRS with *MaPylRS*, *MmPylRSc*, and *DhPylSc*•tRNA^{PyL}.

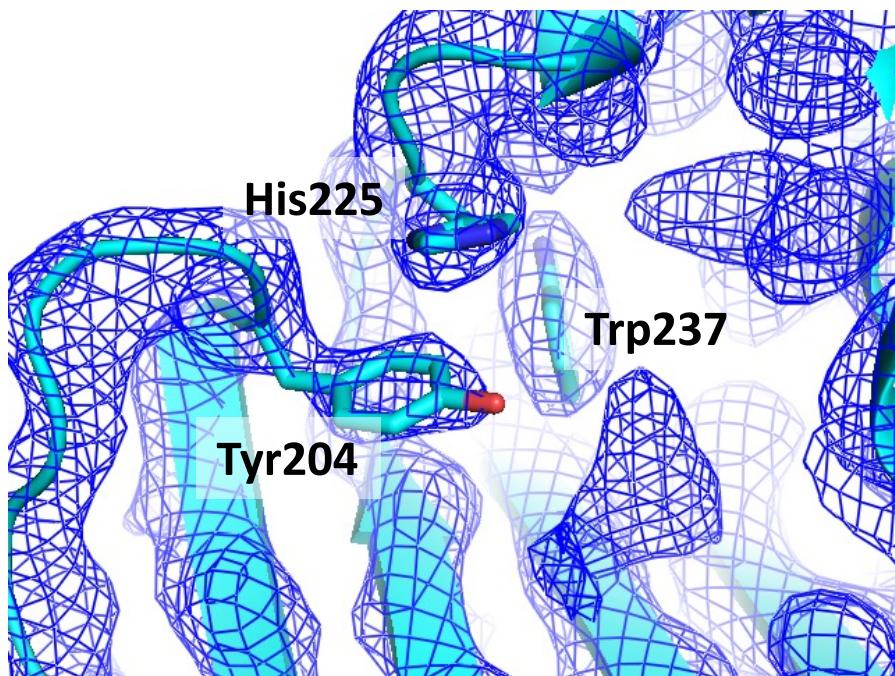

Superimpositions of the ISO4-G1 PylRS with the *MaPylRS*, the *DhPylSc*•tRNA^{PyL} complex (PDB code: 2ZNI), the apo form (PDB: 2E3C), and the Pyl-AMP-bound *MmPylRSc* (PDB: 2ZIM) structures, represented by surface models. The ordering loop, the motif-2 loop, and the β 5- β 6 hairpin (β 7- β 8 hairpin in *MmPylRS*) are colored differently. The catalytic core structures of ISO4-G1 PylRS, *MaPylRS*, *DhPylSc*, and *MmPylRSc* superimposed well, but the two α -helices (α 1 and α 2) of *MmPylRSc* are slightly tilted and cause steric hindrance with tRNA^{PyL}.

Fig. S4 Yanagisawa *et al.*

a Open (molecule A)

b Closed (molecule B)

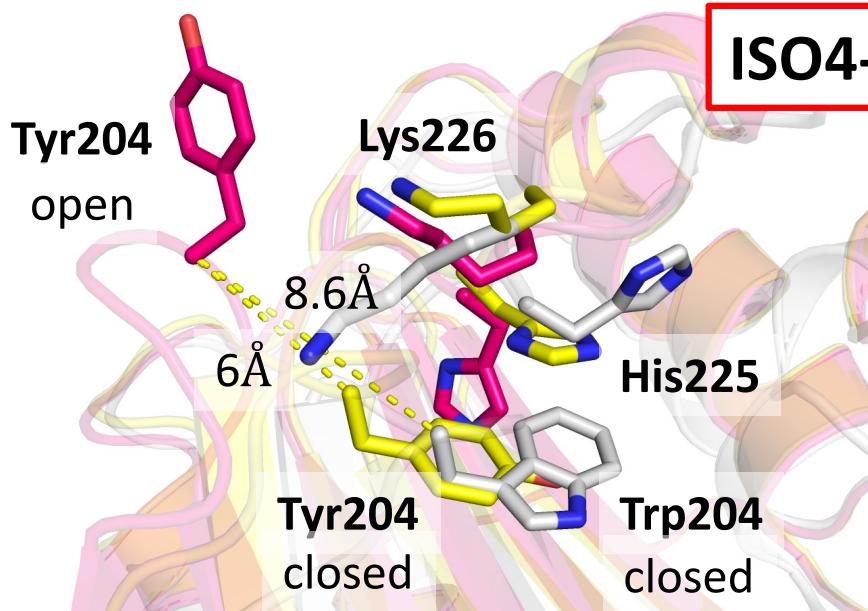


Fig. S4. Electron density map of the β 5- β 6 region in the ISO4-G1 PylRS structure.

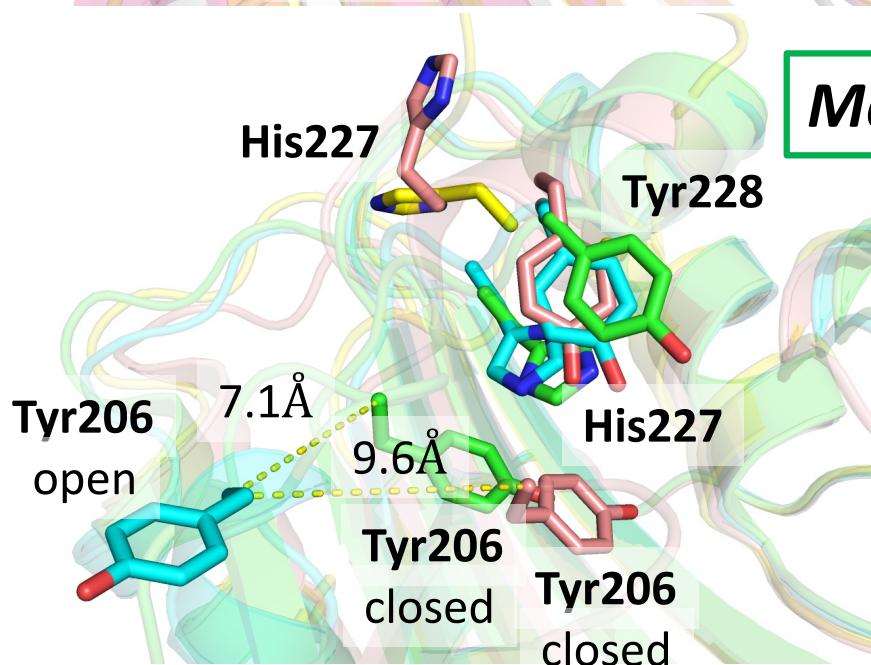
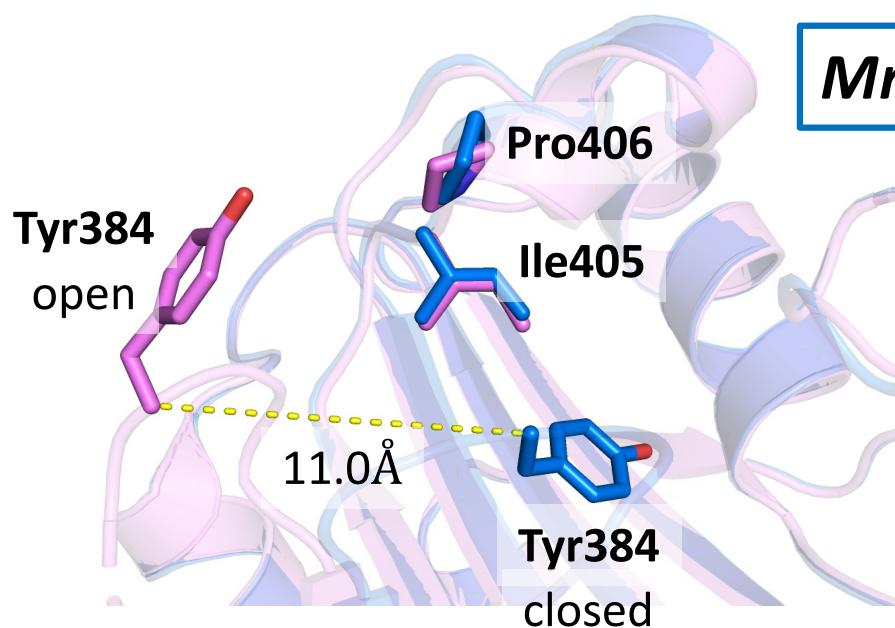
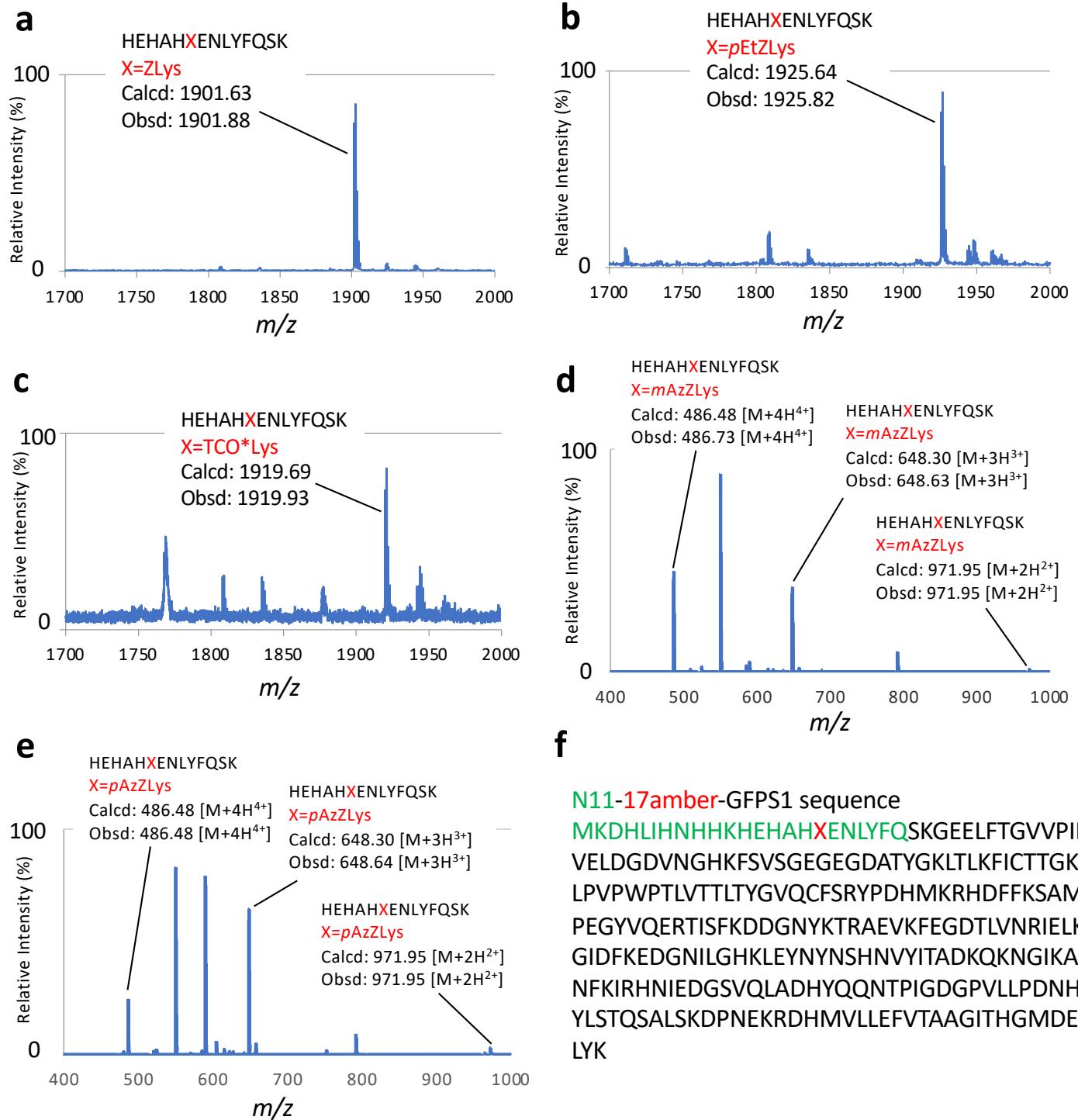

The $2Fo-Fc$ electron density map for the regions around Tyr204, His225, and Trp237 is represented as a blue mesh at a contour level of 1σ . (a) The open conformation. (b) The closed conformation. The Tyr204, His225, and Trp237 residues are shown as stick models.

Fig. S5 Yanagisawa *et al.*


a

b



c

Fig. S5. Conformational changes of the active-site residues in the open and closed forms of the ISO4-G1 PylRS, *MaPylRS*, and *MmPylRS* structures. (a) The open and closed conformations of the ISO4-G1 PylRS apo form (magenta and yellow, respectively), and the closed conformation of the ISO4-G1 PylRS mutant (7R6O, white). (b) The open and closed conformations of the *MaPylRS* apo form (6JP2, cyan and light green, respectively), and the closed conformation of the *de novo* screened *MaPylRS*(N166A/C168G/W239C) mutant bound to acrydonylalanine and AMPPNP (8DQG, vermillion). Tyr206 is disordered in the AMPPNP-bound form (8DQG, yellow). (c) The open conformation of the *MmPylRS* apo form (pink), and the closed conformation of *MmPylRS* bound to pyrrolylsyladenylate (2Q7H, sky blue). The translucent ribbon models are shown in the background. The ISO4-G1 PylRS Tyr205 residue corresponds to Tyr206 in *MaPylRS*, and to Tyr384 in *MmPylRS*. The ISO4-G1 PylRS His225 residue corresponds to His227 in *MaPylRS*, and to Ile405 in *MmPylRS*. The ISO4-G1 PylRS Lys226 residue corresponds to Tyr228 in *MaPylRS*, and to Pro406 in *MmPylRS*. Each residue is shown as a stick model.

Fig.S6 Yanagisawa *et al.*

Fig. S6. Mass spectrometry analysis of N11-GFPS1 proteins containing non-canonical amino acids. The amino acid sequence of GFP51, with a 24-residue N11-peptide tag at the N-terminus, is shown in (f). The codon of the N11-GFPS1 residue Ala17, which is highlighted by a red X, is mutated to an amber (UAG) codon. The incorporations of ZLys (a), *p*EtZLys (b), and TCO**Lys* (c), at position 17 in N11-GFPS1, were confirmed by MALDI-TOF analyses. The incorporations of *m*AzZLys (d) and *p*AzZLys (e), at position 17 in N11-GFPS1, were confirmed by ESI-MS analyses of the tryptic peptide HEHAHXENLYFQSK (X represents a non-canonical amino acid). The observed molecular masses agreed well with the calculated masses.

Table S1

Data collection and refinement statistics.

	ISO4-G1 PylRS
PDB code	8IFJ
X-ray source	SPring-8 BL32XU
No. of crystals	1
Wavelength	1.0000
Space group	$P2_12_12_1$
Cell dimensions	
a (Å)	98.51
b (Å)	102.68
c (Å)	349.86
α, β, γ (°)	90, 90, 90
Resolution (Å)	50–2.78 (2.85–2.78)
$I/\sigma(I)$	14.47 (1.32)
Completeness (%)	99.73 (99.77)
No. reflections	90,164
Redundancy (%)	5.99 (6.07)
^a R_{meas}	0.16 (1.94)
Refinement	
^b R_{work} / ^c R_{free} (%)	23.3/29.5
Resolution (Å)	49.9–2.78
No. atoms	
protein	21,566
water	49
No. reflections (total / test)	90,021/1,999
Average B-factors	
protein	100.10
water	57.18
R.m.s. deviations	
Bond length (Å)	0.004
Bond angles (°)	0.640
Ramachandran plot	
Most favored (%)	96.09
Allowed (%)	3.91
Disallowed (%)	0.00

The numbers in parentheses are for the last shell.

$$^a R_{\text{meas}} = S_{hkl} (n^{1/2}/(n-1)^{1/2}) S_i |I_{\text{avg}} - I_i| / S_{hkl} S I_i.$$

$$^b R_{\text{work}} = S_{hkl} |F_o - F_c| / S_{hkl} F_o \text{ for reflections of work set.}$$

$$^c R_{\text{free}} = S_{hkl} |F_o - F_c| / S_{hkl} F_o \text{ for reflections of test set [2.2% of total reflections for ISO4-G1 PylRS].}$$