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Abstract: Traveling salesman problems (TSPs) are well-known combinatorial optimization problems,
and most existing algorithms are challenging for solving TSPs when its scale is large. To improve
the efficiency of solving large-scale TSPs, this work presents a novel adaptive layered clustering
framework with improved genetic algorithm (ALC_IGA). The primary idea behind ALC_IGA is
to break down a large-scale problem into a series of small-scale problems. First, the k-means and
improved genetic algorithm are used to segment the large-scale TSPs layer by layer and generate
the initial solution. Then, the developed two phases simplified 2-opt algorithm is applied to further
improve the quality of the initial solution. The analysis reveals that the computational complexity of
the ALC_IGA is between O(n log n) and O(n2). The results of numerical experiments on various TSP
instances indicate that, in most situations, the ALC_IGA surpasses the state-of-the-art algorithms in
convergence speed, stability, and solution quality. Specifically, the ALC_IGA can solve instances with
2× 105 nodes within 0.15h, 1.4× 106 nodes within 1h, and 2× 106 nodes in three dimensions within
1.5h.

Keywords: Computational complexity analysis; High parallelizability; Improved genetic algorithm;
Adaptive layered clustering framework; Large-scale traveling salesman problem

1. Introduction

As an important branch of optimization, combinatorial optimization plays a signifi-
cant role in management and economics, computer science, artificial intelligence, biology,
engineering, etc [1]. The traveling salesman problems (TSPs) are main subject of com-
binatorial optimization problems, in which the goal is to find a closed route through all
the cities once, and only once. This problem is equivalent to finding a Hamilton circuit
with the minimum distance. The TSP, and its variants, such as asymmetric TSPs (ATSPs)
[2], clustered TSPs (CTSPs) [3], dynamic TSPs (DTSPs) [4], multiple TSPs (MTSPs) [5],
wandering salesman problems (WSPs) [6], have wide applications in laser engraving [7],
integrated circuit design [8], transportation [9], energy saving [10], logistics problem [11],
communication engineering [12], and medical waste transportation, which is closely related
to COVID-19 pandemic [13]. The TSP was first considered in mathematical format in 1930
to solve a school bus routing problem, and then spread by researchers of Rand corporation.
However, these problems were first considered only dozens of cities, but with the increase
of applications, the scale of the problems may exceed millions [14].

Although the description of TSP is simple, it has been proven as NP-Hard, which
means that the time required to obtain the exact solution for TSP will increase exponentially 32

when the size of the problem aggrandizes. Lots of algorithms have been developed for TSPs,
they can be split into three categories: exact methods, intelligence algorithms, and heuristics
algorithms. The exact solver, such as brute-force search, linear programming [15], dynamic
programming [16], brand and bound [17], brand and cut [18] and cutting plane [19] are
powerful tools for small scale TSPs. However, the computational complexity of exact
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algorithm is very huge that solving the instance with 85900 nodes will take over 136 CPU-
years by Concorde, which is a mature exact solver for TSPs [20]. Intelligence algorithms are
inspired by the nature world and have high capabilities to approximate the global optimal
for optimization problems. Evolutionary algorithm (EA) [21], ant colony optimization
algorithm (ACO) [22], ant colony system (ACS) [23], shuffled frog leaping algorithm (SFLA)
[24], simulated annealing algorithm (SA) [25], particle swarm optimization (PSO) [26] and
other well-known algorithms [27,28] are all belong to intelligence algorithms. The novel
intelligence algorithm can be employed to solve the problem with 2× 105 nodes with high
quality in an hour on a retail computer, but it is still hard to tackle while the scale is larger
[29]. There are two main drawbacks of intelligent algorithms: one is that they frequently
converge to the local optimum; the other one is that the parameters affect the solution
quality deeply but usually can only be determined empirically [30]. The main heuristic
algorithms for TSPs can be grouped into Lin–Kernighan family and stem-and-cycle family,
they could provide high-quality solutions for nearly 2 million cities problems [31]. For
higher quality solution and less running time, some researchers combined intelligence
algorithms and heuristics algorithms, see [32–34] and the reference therein.

Genetic algorithm (GA) was proposed by Holland in 1975, the basic idea stems from
"survival of the fittest" in evolutionism. Most types of GAs contain three main segments:
selection operator, crossover operator and mutation operator. Due to the high effectiveness
and versatility of GAs, they have been widely employed to solve TSPs and other challenging
optimization problems [35,36]. However, there are still several doubts to TSPs, including
premature convergence, population initialization, problem encoding, etc [37].

On the other hand, crossover operators have a significant influence on the performance
of GA and are a key factor in global searching and convergence speed. As a matter of
fact, various crossover operators have been proposed for TSP, including partially mapped
crossover (PMX) [38], ordered crossover (OX) [39], cycle crossover (CX) [40], sequential
constructive crossover operator (SCX) [41], completely mapped crossover operators (CMX)
[42] and others based on heuristic algorithms such as bidirectional heuristic crossover
operator (BHX) [43]. Additionally, merging GAs with local search or heuristic algorithms
will reveal both of their advantages, including high convergence speed and the capacity for
global optimization, therefore it has been a hot topic of study [32,44,45].

While the size of TSPs are larger than 105, seeking the exact solution is extremely
difficult, and even a small improvement in quality can take a long time, the question
of how to get an acceptable approximation solution in a reasonable time is more useful
in real-world applications [46]. Thus, a new series of two-layered algorithms have been
proposed, the fundamental concepts of them can be divided into two categories. The first
type of them is to use various clustering techniques to divide the cities into small groups,
calculate the sub-TSPs within those groups, and then merge the groups into a Hamilton
cycle [47–49]. The other one is to determine the start and end points for each small group
after clustering firstly, and then solve the fixed start and end points TSPs, which is also
called WSPs, finally combine all the groups [50]. These algorithms are much faster than
algorithms without clustering and can solve 180K size TSP within a few hours [7].

The drawbacks of the above two-layered algorithms include high computational
complexity, poor accuracy, and problematic parameter tuning. Naturally, two-layered
algorithms can be developed to three-layered or multiple-layered, very recent works can
be seen in [51] and [52]. Admittedly, in order to fully utilize all the CPUs of computers,
parallelizability is becoming extremely essential for algorithms designed to solve large and
complicated problems. Some parallel algorithms for TSPs can be seen in [53,54].

In this paper, in order to develop a fast, easy implementation and high parallelizability
algorithm for TSPs, an adaptive layered clustering framework with improved genetic
algorithm (ALC_IGA) have been supposed. The key contributions of this study are as
follows:
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• An improved genetic algorithm (IGA) integrated with hybrid selection, selective BHX 90

crossover operator and simplified 2-opt local search has been proposed, a numerical
comparison of IGA, GA and ACS on TSPs shows the high performance of IGA.

• Plentiful numerical results also prove the effectiveness of the novel IGA for solving
the WSPs.

• An adaptive layered clustering framework is proposed to break down a large-scale
problem into a series of small-scale problems. The computational complexity of the
ALC_IGA is between O(n log n) and O(n2), also the parallelability of it has been
discussed.

• We show a numerical experiment for parameters tuning of the proposed ALC_IGA, 99

the results reveal that the larger the parameter set, the higher solution quality is
obtained but a longer time is required.

• Dozens of two-dimensional Euclidean instances have been tested with ALC_IGA and 102

some two-layered algorithms, and the results show that ALC_IGA has advantages in
terms of accuracy, stability and convergence speed over two-layered algorithms.

• Lots of large-scale instances ranging in size from 4× 104 to 2× 105 have been tested, 105

and the results show that the parallel ALC_IGA is times faster than the other three
state-of-the-art algorithms and obtains the best solution in the most cases. The results
on very large-scale TSPs, with sizes ranging from 2× 105 to 2× 106, also demonstrate
the excellent effectiveness of ALC_IGA.

The remainder of the paper is organized as follows: a brief literature review of some
related concepts is presented in Section 2; the main procedures of IGA are shown in Section
3; the details ALC_IGA are discussed in Section 4; the results of experimental analyses and
algorithms comparisons are shown in Section 5; A summary of this paper and future works
are listed in Section 6.

2. Literature review

Numerous algorithms have been introduced for the TSPs, the well-known and typical
combinatorial optimization problem. The three primary kinds are heuristic algorithms,
intelligent algorithms, and exact algorithms. Considering exact algorithms cannot be
used for middle-scale TSPs, which is NP-Hard, the intelligence algorithms and heuristic
algorithms have been the focus of attention. However, for large-scale TSPs, the classical
intelligence algorithms lose efficacy, either. The two primary methods for large-scale TSPs
by intelligence algorithms are improving intelligence algorithms and partitioning the large-
scale problems into smaller ones by clustering. In this section, the well-known genetic
algorithm is explored, and serval approaches based on clustering for large-scale TSPs are
briefly reviewed.

2.1. Genetic algorithm for TSPs

GA is one of the intelligence algorithms that is widely applied to solve both continuous
and discrete optimization problems. Grefenstette et al. [55] studied GA for TSPs in detail
in 1988 and provided various proposals for further work, including merging GA with
other heuristic algorithms and considering the impact of parameters. In the over 40 years
that have passed ever since, the GA for TSPs has tremendous advancements in terms of
representation, population initialization, fitness function, selection, crossover, mutation,
and integrated with other algorithms.

First, when using GA, the primary task is to find a representation that closely relates
to the structure of the problem. There are five different representations of TSPs: binary,
path, adjacency, ordinal, and matrix. Larranaga et al. [56] reviewed representations and
operators for TSPs. They concluded that the path representation performs well under most
circumstances, and lots of powerful substantial crossover and mutation operators have
been developed for it.

The crossover operator plays an important role in GA. A proper crossover operator
could raise the average quality of the population, which would hasten convergence and
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save time. The most popular PMX was first proposed by Goldberg and Lingle in 1985 [38], 142

in which each offspring only uses information from each of their parents partially. Firstly, 143

generating two random cut points, and then the portions from parents between the two
cut points are swapped to generate offspring. Then the other portions are complemented
orderly from the original parents. Iqbal et al. [42] presented a new CMX in 2020, which
differs from prior mapping crossover operators in that it uses cycle-based cut selections
at the parental genes rather than random cuts. The numerical research suggests that the
new CMX outperforms well-known crossover operators such as and PMX in middle-scale
instances. In 2022, Zhang et al. [35] proposed a genetic algorithm with jumping gene and
heuristic operators for TSPs, where the heuristic operators include 2-opt and BHX. The key
distinction between the BHX and Grefenstette’s heuristic algorithm is that the BHX always
chooses the candidate that is closest to the present city out of the four possible candidates.
According to the numerical study, the new algorithm converges far more speedily than the
CMX and other latest crossover operators.

On the other hand, because the strengths of heuristic algorithms have been shown in
TSPs, numerous studies attempt to use heuristic algorithms as crossover operators for GA.
Grefenstette created a probability distribution in 1987 by using the distances between the
chosen city and its four nearby neighbors [57]. Then chose the next visited city at random
from this distribution until all cities were visited. Ulder et al. [58] presented a genetic
local search framework in 1990, which could be combined with 2-opt, Lin-Kernighan
neighborhoods, or any other heuristic algorithms. They concluded that although the
new algorithms might not trump simulated annealing and threshold accepting, they can
nevertheless be advantageously utilized for much larger problems.

Tsai et al. [59] proposed a genetic algorithm with a neighbor-join operator in 2002, and
numerical experiments suggest that the new neighbor-join operator has lower error rates
than 2-opt and swap operator combined with GA in all compared instances, and is nearly
as efficient as 2-opt. In 2014, Wang [32] proposed a hybrid genetic algorithm for TSPs that
combined two local optimization strategies. The computation results demonstrate that
the hybrid genetic algorithm can achieve higher accuracy than the GA in a reasonable
amount of time. However, this method is also sensitive to parameter settings. A list-
based simulated annealing algorithm combined with tour construction algorithms and
enhancement algorithms was developed as a hybrid genetic algorithm by Ilin et al. in 2022
[25]. The tour is built using the nearest insertion algorithm, the cheapest insertion method,
and the other two techniques, and a 2-opt local search is used to improve the tour.

2.2. Layered-based algorithms for TSPs

Even though intelligence algorithms are becoming more sophisticated, they can only
solve a TSP with 2× 105 noes in 1h by using fast C++ programming and parallel techniques
[29]. Because the small-scale TSPs can be solved efficiently and precisely, some researchers
attempt to cluster the large-scale TSPs into a succession of small-scale TSPs. In this section,
we give a summary of the advancements produced to the clustering-based (layered-based)
algorithms.

As far as is known, Ding et al. [47] may be the first to employ the well-known k-means
clustering algorithm for TSPs. The k-means algorithm is used to partition the large-scale
cities into several small clusters, and a two-level GA is used to generate the final tour.
The low-level GA is used to find the shortest Hamilton cycle inside each cluster, and the
high-level GA is utilized to determine the in and out nodes of each cluster. The numerical
experiment illustrates that the new algorithm handled the 1000 cities instance in 66 seconds
on Matlab, which is substantially faster than the classical genetic algorithm. Due to the
uneven distribution of cities, the scales of clusters produced by k-means may still be quite
large, leading the low-layer computation to take a long time.

In 2009, Yang et al. [50] introduced an adaptive clustering method to reduce the
computational complexity of the sub-clusters. It checks whether each cluster is smaller
than the specified size after k-means and if so, repeats k-means until all clusters are smaller. 194
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Then, a GA is used to find the visited order of the clusters based on the coordinates of the
clusters’ centers. Finally, the clusters are connected using the nearest nodes between the
adjacent traveled clusters. The numerical experiment shows that the adaptive clustering
method can solve an instance with 85900 cities in 1h. Although Yang’s algorithm ensures
that the low layer is solved quickly, there may be too many clusters produced, resulting in
slow computation of the high level.

The influences of different clustering and intelligence algorithms combined for layered
algorithms were first investigated by Phienthrakul [60] in 2014. He developed a greedy
cluster connection procedure and then analyzed the influence of GA and ACO based on
k-means and Gaussian mixer models. The numerical results show that the four algorithms 204

have only minor differences in accuracy and execution time and can be efficiently applied
to large-scale TSPs.

Although the notion of using a clustering method to solve large-scale TSPs has devel-
oped and grown, the work mentioned above does not verify the algorithms’ efficacy for
TSPs with more than 105 nodes. Wu et al. [7] investigated large-scale laser engraving in
2020, which is a widely used technology in modern production and can be represented as a
TSP. They suggested a new two-layered ant colony system algorithm (TLACS) based on
k-means, in which the ACS optimizes the visited order of clusters, and the start point and 212

the end point for each cluster are determined. After the start point and the end point of
each cluster have been determined, the local traveling path of each cluster can be depicted
as a WSP. The ACS will then be used to find the shortest route of each groups. Finally,
all groups are connected by the order and entrance and exit nodes, and the global path is
determined. The numerical experiment shows that the TLACS can solve the large-scale
TSPs with 2× 105 nodes approximately in 1h.

Naturally, based on clustering algorithms, the two-layered method could be expanded
to the three-layered. This concept was realized recently by Liang et al. [51]. Firstly, they
applied k-medoids algorithm to divide the large-scale instance into some medium-scale
groups, and then applied k-medoids algorithm for all medium-scale groups again to divide
them into small-scale groups. The authors then proposed a three-layered evolutionary
optimization framework comprised of two GAs and a parallel multifactorial evolutionary
algorithm (3L-MFEA-MP). Their results show that three-layered algorithms have two main
advantages over two-layered algorithms. One is speeding up the computation, while
the other is that the three-layered algorithms reduce path length by almost 30% on four
large-scale instances.

As can be seen, the global tour generated by the two-layered or three-layered al- 229

gorithms is rough and unrefined, so a further optimization phase is necessary. In 2018, 230

Liao and Liu [61] first applied the k-opt algorithm to optimize the tour generated by the
hierarchical hybrid algorithm, which is a method proposed by them based on ACO and
density peaks clustering algorithms. Although their results demonstrate that k-opt will
significantly improve the proposed HHA’s performance, the numerical experiments only
test on the medium-scale instances that no more than 3038 cities. We remark that the
computational complexity of k-opt is usually not affordable [62], so the direct application
to complex issues is not feasible.

3. IGA for TSPs and WSPs

The GA is a popular optimization algorithm and is frequently applied to TSPs. As
the main idea of the adaptive layered clustering framework is to break down a large-scale
problem into a series of small-scale problems, GA is suitable for these sub-tasks. However,
the poor convergence speed and accuracy of the traditional GAs will increase the total time
consumption of the new framework. In this section, a novel IGA is introduced to fast and
precisely solve small-scale TSPs and WSPs with the following key modifications: a hybrid
selection algorithm is introduced; a selective bidirectional heuristic crossover is adopted
to speed up the convergence; a hybrid mutation operator is suggested to jump the local
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optimal; a simplified 2-opt is used to balance the convergence speed and global searching
capability.

3.1. Path encoding and population initialization

Path encoding is the fundamental task involved in using GA. Due to the conclusion in
[56], one of the most intuitive and high-performance route encoding methods for TSPs is
path representation. In path representation, all cities are encoded as unique integers and
arranged into a chromosome. The position in the chromosome indicates the visited order of
the city, that is for i, j = 1, 2, · · · , n, if city i is the j-th element in a chromosome, then city i is
the j-th to be traveled. The initial population will impact both the rate of convergence and
the capacity of global searching for GA. In this study, the initial population is generated
randomly, and then a 2-opt local search is applied to improve the quality of the initial
population.

3.2. Fitness function and selection operator

The role of the selection operator is to choose some eligible chromosomes for the
next generation; a decent selection operator will help to converge rapidly and prevent
local optimal, but a poor one will not. Because the objective values of TSPs are not stable,
a proper transformation for the objective values is required, which is called the fitness
function[35].

Assuming there are N individuals in the population, Ci is the i individual, L(Ci)
represents the tour length of Ci, f (Ci) denotes the fitness value of Ci. Some well-known
fitness functions are as follows:

• Reciprocal-based fitness function is one of the most used fitness, it is the reciprocal of 268

objective function value: 269

f (Ci) = 1/L(Ci). (1)

• Linear order-based fitness function that sorts individuals in ascending order by objec- 270

tive function values, where R(Ci) denotes the order of Ci. Then f (Ci) presented by:

f (Ci) =
N − R(Ci)

N
. (2)

• Nonlinear order-based fitness function also sorts the individuals, but f (Ci) defined
by:

f (Ci) = α(1− α)R(Ci)−1, (3)

where α is a constant in [0.01, 0.3].

Some deserving individuals will be picked for the following generation once all the
fitness values of individuals have been evaluated. Once all fitness values of individuals
have been confirmed, some good individuals will be selected for the next generation. The
most common selection method is roulette wheel selection. If M individuals must be chosen
for the next generation, the main steps are as follows:

Step 1: Calculate the selection probability of Ci:

p(Ci) =
f (Ci)

∑2N
j=1 f (Cj)

. (4)

Step 2: Generate a random number P between 0 and 1.
Step 3: Select the first Cj satisfied P ≤ ∑

j
h=1 p(Ch).

Step 4: Remove Cj from the population, then return to the first step until all N 284

individuals are selected. 285

The pseudo-code of the proposed hybrid selection algorithm is shown in Algorithm 1. 286

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2023                   doi:10.20944/preprints202302.0412.v1

https://doi.org/10.20944/preprints202302.0412.v1


7 of 33

Algorithm 1 Hybrid selection algorithm
Input: A set of N individuals, the number of selected requirements M, current iteration number of GA Iter.
Initialize parameters: α = 0.15, and r1, r2 are two random numbers.
Output: A set of M selected individuals.

1: Calculate the objective value for each individuals.
2: if r1 ≥ 1/Iter then
3: if rand ≥ r2 then
4: Calculate fitness values by nonlinear order-based fitness function.
5: else
6: Calculate fitness values by linear order-based fitness function.
7: end if
8: Select M individuals by roulette wheel selection.
9: else

10: Calculate fitness values by reciprocal-based fitness values.
11: Select M individuals according to the smallest fitness values.
12: end if

3.3. Selective bidirectional heuristic crossover

The crossover operation is the primary role of GA in producing new offspring. As
stated in Section 2.1, there are numerous crossover operators proposed for path representa-
tion. Recently, Zhang et al. [35] presented a novel BHX, and the numerical results show its
excellent effectiveness in enhancing the quality of the offspring.

The drawback of the BHX is that two parents will only have one unique offspring,
which will reduce the size of the population gradually. Hence, a method of enriching the
population must be developed to use BHX. As all know that monogamy is not the only type
of mating system in nature, polygynandry is another prevalent mating system in species
that live in troupes. An individual can mate with several individuals, and the number of
mates is governed by individual quality. Inspired by the polygynandry mating system, a
selective bidirectional heuristic crossover (SBHX) has been developed, in which the good
gene of a parent may be preserved for two or more offspring.

Assuming there are N individuals in the current population, M offspring should be
created. The main steps of SBHX are as follows:

Step 1: The fitness values of individuals are computed according to the reciprocal- 303

based fitness function Eq. (1).
Step 2: The probability that an individual will be selected is determined by Eq. (4).
Step 3: The roulette wheel selection is used to choose two individuals C1 and C2 based

on the probability distribution.
Step 4: The start and end points are connected in C1 and C2, and then each chromosome

becomes a ring. Let O1 and O2 represent the two rings.
Step 5: Randomly generate a start city s between 1 and n, and a blank offspring Cnext.
Step 6: Starting from s in O1, searching for the first city Or

1 that Cnext has not yet visited
on the right; Ol

1 on the left. It is the same for O2, remark the two cities as Or
2 and Ol

2.
Step 7: Compute the distance between s and the four feasible cities found by Step 6.

Then choose the nearest city to s and replace s as the selected city.
Step 8: Return to Step 6. until Cnext has been filled. Then the Cnext is a offspring

generated by C1 and C2.
Step 9: Continue with Step 3 until all M offspring are determined.

3.4. Mutation operator

The mutation operator is another important phase of GA. Similar to how genetic
mutations never stop happening and are essential to biodiversity, the mutation operator
also enriches population diversity, which prevents the GA from falling into a local optimal.
Lots of swap, inversion and heuristic mutation operators have been applied in GA for TSPs,
see [32,43]. Suppose that there are n cities in the i-th individual Ci, To employ the swap or
inversion mutation operator, two integers p1 and p2 between [1, n] will be generated firstly. 324

In the swap operator, the two cities Cp1
i and Cp2

i are exchanged. In the inversion operator, 325

the gene fragmentation between p1 and p2 is reversed.
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As the heuristic mutation operators usually have high computational complexity, a
hybrid mutation operator combined with a swap mutation operator and inversion mutation
operator is proposed in this paper. Firstly, a mutation probability is set by hand, and then
if individual Ci has a chance to be mutated, the probability will control which mutation
operator will be selected. The pseudo-code of the new mutation operator is shown in
Algorithm 2.

Algorithm 2 Hybrid mutation operator
Input: A population of N individuals.
Initialize parameters: The probability p of mutation, the probabilities r1 and r2 to select of mutation operator,
r1 ≥ r2.
Output: The population after mutation.

1: for Ci in population do
2: if rand < p then
3: Randomly generated q ∈ [0, 1].
4: if q > r1 then
5: The swap mutation operator is used for Ci .
6: else if q > r2 then
7: The inversion mutation operator is used for Ci .
8: else
9: Continue.

10: end if
11: end if
12: end for

3.5. Simplified 2-opt local optimization

k-opt is a well-known class of local optimization algorithms, here k is an integer 334

greater than 1. The first proposed and simplest algorithm of them is 2-opt, which was
developed by Croes [63] for solving TSPs in 1958. Although k-options have better quality
than 2-options when k > 2, they involve high computational complexity. The 2-opt local
optimization applied in GA can improve the quality of the current population and speed up
the convergence under suitable parameters set. However, since BHX and 2-opt are heuristic
algorithms with drawbacks in searching the global optimal, combining them will almost
certainly result in premature convergence. In the proposed improved genetic algorithm, a
simplified 2-opt (S_2-opt) is developed to enhance the quality of individuals after mutation.
The pseudo-code of the S_2-opt for GA is shown in Algorithm 3. The simplified 2-opt
operator has a simple iterative structure, and only one parameter must be set. It can avoid
the local optimal by setting T to a small value or achieve a fast convergence speed by setting
T to large.

Algorithm 3 Simplified 2-opt for GA
Input: A population of N individuals.
Initialize parameters: Max iteration T for simplified 2-opt, the number n of cities in each individual.
Output: The optimized population.

1: for Ci in population do
2: for h = 1 to T do
3: Calculate the tour distance d1 of Ci .
4: Randomly generated p1 and p2 in [1, n].
5: Inverse the gene fragment between p1 and p2, set as Cnew.
6: Compute the tour length d2 of Cnew.
7: if d1 > d2 then
8: Replace Ci by Cnew.
9: end if

10: end for
11: end for

The main flow of the IGA can be seen in Figure 1, the stop condition of IGA is set as 347

no improvement of solution in specified iterations. Since the WSP is a TSP with fixed start 348

and end nodes, it can be solved as a TSP by setting the distance between the start node and 349
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the end node to −M, where M is a large positive number [6]. With the help of this feature, 350

the proposed IGA can also be employed to solve WSPs. 351

Figure 1. Flowchart of the proposed IGA.

4. The framework of ALC_IGA for large-scale TSPs

In recent years, some two-layered algorithms have been proposed, and they signifi- 353

cantly reduce the time expenditure for large-scale TSPs. Liang et al. [51] recently proposed
a three-layered algorithm with k-means and indicated that it outperforms two-layered
algorithms by numerical experiments. Notwithstanding, both two-layered and three-
layered algorithms may still have medium-scale or large-scale groups. Naturally, this will
require a significant amount of time to solve the underlying problems. Thus, upgrading
the two-layered and three-layered algorithms to the adaptive layered algorithm stands to
reason.

We propose a brand-new framework for adaptive layered clustering that takes into
account the IGA created in the previous section. The framework is divided into two
parts: the first is applying clustering and IGA to initialize the solution, and the second is
optimizing the initial solution. Based on our new algorithm, the large-scale TSPs can be
transformed into solving some TSPs and WSPs that are smaller than the specified size. The
processing flows are illustrated in Figure 2, and the details of solution initialization and
optimization are represented subsequently in Sections 4.1 and 4.2.

4.1. Solution initialization 368

Assuming that there are N cities in a large-scale problem G, the cities are designated by 369

c1, c2, · · · , cN , and d(a, b) denotes the distance between vectors a and b, then the proposed 370

ALC_IGA processes by following steps: 371

Step 1: Specify a positive integer M; if the size of the TSPs is smaller than M, then the 372

IGA can solve it no more than T1 seconds in most cases. 373
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Figure 2. Main steps of the novel ALC_IGA.

Step 2: The k-means algorithm is used to cluster the N cities into k1 clusters, where
k1 is an integer no greater than M. Then there are k1 groups {G1, G2, · · · , Gk1}, and the
coordinate vectors of centers for the groups are {V(G1), V(G2), · · · , V(Gk1)}, the size of
groups denote as {S(G1), S(G2), · · · , S(Gk1)}.

Step 3: Determine the traveling order of the groups; this is referred to as a TSP. If all
the sizes of the groups are less than D1, here D1 is a positive integer, then the distance
between Gi and Gj is defined as the minimum distance between two points that belong to
Gi and Gj respectively. Otherwise, the distance is set to the distance between the centers of
groups. Then there is a distance matrix that can be used to solve the k1 cities TSP using
IGA. Make a note of the visited order as {O(G1), O(G2), · · · , O(Gk1)}.

Step 4: Determine the entry city Gentry
i and the exit city Gexit

i for each group. Based on
the order of visits came by Step 3., assume Gj is visited directly after Gi, then the exit of Gi
is the closest city of Gi to Gj, the entry city of Gj is the closest city of Gj to Gi.
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Step 5: After determining the entry and exit cities in each group, evaluating the
shortest route from entry to exit of each group is a WSP. If the size of Gi is smaller than M,
the IGA is used to find the optimal path P(Gi) of Gi; if the size of Gi is greater than M, the
k-means algorithm is applied for Gi again to reduce the computational complexity, see Step
6.

Step 6: If the size of Gh is greater than M, then divide Gh into k1h groups {Gh1, Gh2, · · · ,
Ghk1h

}, here k1h ≤ M, denote the coordinates of centers for each group as {V(Gh1), V(Gh2),
· · · , V(Ghk1h

)}. The difference between this step and Step 2 is that the entry and exit cities

of G are not specified. If Ghi includes Gentry
h and Ghj includes Gexit

h , then Ghi is set as the

start group, and Ghj is set as the end group. Then finding the optimal route from Gentry
h

to Ghj is a WSP, not the TSP in step 3. The distance between Ghi and Ghj is the same as
defined in Step 3. As the distance is determined, the IGA is applied to find the visit order
{O(Gh1), O(Gh2), · · · , O(Ghk1h

)}.
Step 7: Return to Step 4 until all the sizes of groups are smaller than M, then the visited

order of each group is determined, and the optimal path of each group is recorded.
Step 8. Combine the optimum path of each group by the order in each layer from the

bottom to the top layer.
An example of 100 cities TSP and M set to 20 is shown in Figure 3. In the first layer, the

cities have been divided into to groups G1, G2 by k-means, then the visit order found by IGA
is O(G1) = 1 and O(G2) = 2. On the one hand, since the size of G2 equals M, the visit route
P(G2) of the 20 cities in G2 could be solved by IGA quickly. On the other hand, because
there are 80 cities in G1, that is larger than M, so G1 need to be divided into small groups
again. Repeat the procedures until all of the group sizes are less than M, resulting in 6
groups and 4 layers being determined during the solution initialization phase. To combine
the six routes, first from the bottom layer, connect P(G1311) with P(G1312) sequentially,
and obtain P(G131) = {P(G1311), P(G1312)}. Then in the third layer, connect P(G131) with
P(G132) , then P(G13) = {P(G131), P(G132)}. Following these steps, the path for the 100
cities TSP is eventually {P(G1311), P(G1312), P(G132), P(G11), P(G12), P(G2)}.

Figure 3. An example of the ALC_IGA on a 100 nodes instance. The black lines represent the solution
initialization phase, and the green lines denote the solution optimization phase.
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4.2. Two phases 2-opt for solution optimization 415

Because of the clustering algorithm used, even if the routes in each cluster are optimal, 416

the entire path is nearly impossible to achieve optimality. In [61], Liao and Liu first applied
the 2-opt and 3-opt operators to optimize the initial route while the clustering algorithm
involved, and the numerical studies show a marked improvement when k-opt is used.
Nevertheless, when the number of cities in the problem is exceptionally enormous, the
k-opt struggle to work.

To improve the quality of the initial solution in an affordable time, a two phases
simplified 2-opt algorithm (TS_2-opt) is given in Algorithm 4. The TS_2-opt is aimed to
optimize the routes and orders of all the groups which belong to a cluster at a higher layer.
Once the solution is initialized, TS_2-opt is used to optimize the route of each group in the
penultimate layer and repeated layer by layer until the top layer is optimized. Depicted
in Figure 3, the green lines show the workflow of solution optimization. Firstly, from
the bottom layer, the routes P(G1311) and P(G1312) are combined by TS_2-opt to the local
optimal routes P(G131)

opt. Then the two routes in the third layer also are optimized to
P(G13)

opt by using TS_2-opt. Following these steps, until the final solution P(G)opt is
obtained.

Algorithm 4 Two phases simplified 2-opt algorithm
Input: A batch of groups {Gi···j1, Gi···j2, · · · , Gi···jh}, suppose the order of them is 1, 2, · · · , h, and the travel
routes of them {P(Gi···j1), P(Gi···j2), · · · , P(Gi···jh)}.
Initialize parameters: The first phase max iteration L1; the second phase max iteration L2; the length selected
for optimization R.
Output: An optimized route P(Gi···j) for Gi···j.

1: Compute the distance dbks of the tour {P(Gi···j1), P(Gi···j2), · · · , P(Gi···jh)}.
2: for iter1 = 1 to L1 do
3: Randomly generated two different integers p1, p2 between [2, h− 1].
4: Denote the route between Gi···jp1 and Gi···jp2 as Pp2

p1 ; denote the route between Gi···j1 and Gi···jp1−1 as Pp1−1
1 ;

denote the route between Gi···jp2 and Gi···jh as Ph
p2+1.

5: Inverse Pp2
p1 , denote the new route as Inv(Pp2

p1 ).

6: Generate two routes P1 and P2, where P1 is combined by the last R elements of Pp1−1
1 and the first R

elements of Inv(Pp2
p1 ); P2 is combined by the last R elements of Inv(Pp2

p1 ) and the first R elements of Ph
p2+1.

Denote the new order of groups as {O(Gi···j1), O(Gi···j2), · · · , O(Gi···jh)}, the sizes of groups is noted as
{S(Gi···j1), S(Gi···j2), · · · , S(Gi···jh)}.

7: The Algorithm 3 with max iteration number L2 is applied to optimize P1 and P2. Denote the new routes as
Popt

1 and Popt
2 .

8: Replace P1 and P2 in {Pp1−1
1 , Inv(Pp2

p1 ), Ph
p2+1} with Popt

1 and Popt
2 , respectively. Denote the new route as

Popt.
9: Compute the distance dopt of Popt.

10: if dbks > dopt then
11: Assign dopt to dbks.
12: Divide Popt into h segments {Pm1 , Pm2 , · · · , Pmh}, here S(Pmk ) is equal to {S(Gi···jr)|r = mk}.
13: end if
14: Replace {P(Gi···j1), P(Gi···j2), · · · , P(Gi···jh)} by {Pm1 , Pm2 , · · · , Pmh}.
15: end for
16: Output R = Popt.

Suppose there are three groups {G11, G12, G13} belong to the same higher group G1, 432

and the visit orders of them are {2, 3, 1} respectively. Figure 4 illustrates the major process- 433

ing of TS_2-opt in detail. Each cluster is represented by a different color, while the start and
end locations are marked by larger shapes. In Step 1, the three routes are arranged by order
and assume the G11 is chosen, then the path of G11 is inverted. In Step 2, the segments at
the junctions of the clusters are determined according to R, where R equals 5 for simplicity.
The next step is to optimize the two segments provided by Step 2. In Step 4, three new
routes are generated according to Step 3 and the input routes. Once all four steps have
been completed, return to Step 1 until the termination condition is met.
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Figure 4. The major processes of TS_2-opt for optimizing three subgroups.

We remark that the purpose of the TS_2-opt is not to reach the global optimal, but
rather to optimize the visit orders and junctions between groups that belong to the same
group at the higher layer. Despite sacrificing some precision, the computation speed of
TS_2-opt is very fast, which is critical in large-scale TSPs.

4.3. Parallelability and computational complexity analysis

We show the highly parallelizable capability of the proposed ALC_IGA. In the phase
of solution initialization, the operations for clusters are independent in each layer; the
operations of subgroups that do not belong to the same cluster in different layers are also
independent. As an illustration, there are three tasks in the third layer shown in Figure 3,
find the visit route for G11 and G12, and apply k-means to divide G13 into small groups. As
they are stand-alone, if there are three or more cores of the CPU, they can be computed on
different cores simultaneously. Furthermore, if k-means is faster than the other two tasks,
then the computations of G131 and G132 in the next layer can also be allocated to the free
cores even if P(G11) and P(G12) are still being calculated.

In the second phase of ALC_IGA, solution optimization also can be parallelized, but
the parallel effectiveness is not as high as in the first phase. Firstly, the complex calculation
in solution optimization is only the optimization of the junctions, but there are only two
junctions in each iteration, so parallel computing is unnecessary. Secondly, the optimization
of the solution starts from the bottom and ends at the top layer, but the higher-layer
optimizations must wait for lower-layer optimizations to finish. As the example shown
in Figure 3, there is only one task in the fourth layer, which is connecting G1311 and G1312.
Because the route of G131 is not determined before the computation of the fourth layer is
finished, the free cores can not be used to combine G131 and G132 in the third layer.

Notwithstanding, parallel techniques can be used in each layer to speed up compu-
tation while the scale of the problem is very large. The computational complexity of the
major stages of the proposed ALC_IGA is presented in the remainder of this section.

For the sake of simplicity, it is assumed that there are n cities. First and foremost, the
times of TS_2-opt used is no more than n, and the execution time of TS_2-opt is bounded
if the parameters are set. Thus the complexity of the solution optimization phase is less
than O(n). The computational complexity analysis of solution initialization can be split
into two categories: best and worst. Considering the best-case scenario, if n = mk, where
k is a positive integer, assume that each cluster’s size equals m after clustering. Then the
procedures of solution initialization include n−1

m(m−1) times clustering and n−1
m−1 times IGA.

Once if the parameters of IGA are determined, the running time of IGA is less than T1, and
the running time of IGA used in the first phase is less than n−1

m−1 T1. It is well known that

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2023                   doi:10.20944/preprints202302.0412.v1

https://doi.org/10.20944/preprints202302.0412.v1


14 of 33

the computational complexity of k-means is O(pq), where p are the size of data and q is
the number of cluster centers. Therefore the computational complexity of the first time
k-means used is O(mn), and the computational complexity of k-means used in the second 478

layer is mO(n), and the last layer is mk−2O(m2m). According to n = mk, the complexity of 479

k-means implemented in the ALC_IGA is O(mn logm
n
m ), that is quasilinear computational 480

complexity. Consequently, the whole computational complexity is O(n log n) for ALC_IGA
in the best condition.

In the worst possible scenario, each clustering results in m − 1 groups that each
contains just one city and one group that contains all the remaining cities. Suppose
n = k(m − 1) + m, then there will be k times clustering and k + 1 times IGA. The time
of IGA applied is no more than n−m

m−1 T1, it is O(n). Similar to the best-case analysis, the
computational complexity of clustering in the worst condition is O(n2). Accordingly, the
computational complexity of ALC_IGA in the worst condition is O(n2).

In summary, the computational complexity of the ALC_IGA ranges from O(n log n) to
O(n2). The computational complexity of ALC_IGA is closer to O(n log n), however, in the
majority of cases. This is supported by the numerical experiments presented in Section 5.

5. Numerical results and discussions

Four-part numerical experiments are presented in this paper to illustrate the effec- 493

tiveness of ALC_IGA. First, Section 5.4 proves that IGA is substantially superior to GA 494

and ACS in terms of accuracy and convergence speed. The implications of the primary 495

parameter setting performance on ACL_IGA are examined in the second part. The third
part proves the superiority of ALC_IGA on middle-scale benchmark datasets over two
two-layered algorithms from the literature. The last part proves the excellent performance
and parallelizability of the proposed ALC_IGA in comparison to some state-of-the-art
algorithms.

5.1. Experimental setting

In this study, all experiments were computed on a Dell PowerEdge R620 with two
Intel Xeon E5-2680V2 10-cores processors and 64.0 GB of 1066 MHz DDR3 memory under
Windows 10 OS. The speed of all cores is locked to 2.80 GHz without turbo boost technology
and disable hyperthreading to ensure the fairness and stability of numerical experiments.
All the programs are edited and run on MATLAB R2020a, the only parallel technique used
is the parallel computing toolbox in MATLAB. By default, each instance was computed
20 times under the same setting. In detail, if the algorithm is single-threaded, execute the
instance on 20 cores simultaneously; if the algorithm is multi-threaded, run them one by
one. The sources of GA, ACS [23], IGA, two-level genetic algorithm (TLGA) [47], TLACS
[7], and ALC_IGA are published on GitHub 1, and the instances involved are also on this
repository.

5.2. Benchmark instances

Numerous instances are used to study the effectiveness of the proposed IGA and
ALC_IGA. The major instances come from three sources: the famous benchmark TSP
datasets TSPLIB 2; the TSP Test Data gathered by William Cook for large instances 3; hard to
solve instances of the Euclidean TSPs (TNM) [64]. The TSP Test Data used in this research
can be divided into three categories: National TSPs; VLSI TSPs; Art TSPs. And the TNM
data generated by the C++ source provided by the authors of [64]. A two-dimensional
Santa 4 and a three-dimensional Gaia 5 with millions of nodes, also be investigated.

1 https://github.com/nefphys/tsp
2 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
3 https://www.math.uwaterloo.ca/tsp/data/index.html
4 http://cs.uef.fi/sipu/santa/
5 https://www.math.uwaterloo.ca/tsp/star/gaia1.html
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For various experimental tasks, the instances are classified into three categories: small- 521

scale TSPs (n ≤ 500), medium-scale TSPs (500 < n ≤ 4× 104), and large-scale TSPs
(n > 4× 104). Small-scale TSPs are used to study the effectiveness of IGA; middle-scale
TSPs are employed to tune parameters and compare ALC_IGA with TLACS and TLGA in a
single thread; large-scale TSPs are adopted to compare ALC_IGA with some state-of-the-art
algorithms in parallel and verify the efficiency of ALC_IGA.

5.3. Evaluation criteria

The following are the evaluation criteria for the algorithmic analyses on instances:

• The minimum objective value among all runs Rbest.
• The average objective value among all runs Ravg.
• The standard deviation of results among all runs Rstd.
• The best known solution of the instance BKS.
• The deviation percentage of Rbest is defined by:

PDbest =
Rbest − BKS

BKS
× 100%. (5)

• The deviation percentage of Ravg is defined by:

PDavg =
Ravg − BKS

BKS
× 100%. (6)

• The running time TRb in seconds while Rbest found.
• The average of the running time in seconds among all runs Tavg.
• The count of the best Rbest, Ravg, Rstd and Tavg are denoted as CRb, CRa, Cstd, CTa.

5.4. Performance comparison of IGA, GA and ACS

In addition to clustering, the most time-consuming part of ALC is eliminating the
sub-TSPs. That is why the IGA proposed. To illustrate that IGA is efficient on TSPs, a
comparison of IGA, GA, and ACS is imperative, and 42 small-scale benchmark instances
are used in this numerical comparison. The parameters setting of IGA were as follows: the
population was set to 0.4 times the number of nodes; the maximum number of iterations
for S_2-opt was set to 20 times the number of nodes; the parameters of selection operator, r1
and r2, were set to 0.15 and 0.5; the probability of mutation was set to 0.05. The population
size of GA was set to 0.8 times the size of the instance and the mutation number was always
set at three individuals. The parameters setting of ACS is as same as the literature [7].
Finally, the termination condition for the three compared algorithms is when there has
been no improvement in the population for X iterations. In this experiment, X were set
to 100, 100, and 104 for IGA, ACS and GA, respectively. The results of the comparison are
displayed in Table 1, various evaluation criteria are considered, include Rbest, PDbest, Ravg, 551

PDavg, Rstd, TRb, Tavg, CRb/CRa/Cstd/CTa and the average value for PDavg, Rstd and Tavg. 552

The best value of Rbest, PDbest, Rstd and Tavg are set in bold. 553

Table 1. Results obtained by IGA, GA and ACS on 42 small-scale instances.

Instance IGA GA ACS

Name BKS Rbest (PDbest) Rstd TRb Rbest (PDbest) Rstd TRb Rbest (PDbest) Rstd TRb
Ravg

(
PDavg

)
Tavg Ravg

(
PDavg

)
Tavg Ravg

(
PDavg

)
Tavg

eil51 426 426 (0) 0.37 1.94 428 (0.47) 3.18 9.02 427 (0.23) 4.03 3.8
426.85 (0.2) 1.72 436 (2.35) 11.42 430.95 (1.16) 2.56

berlin52 7542 7542 (0) 0 1.81 7542 (0) 206.62 8.85 7542 (0) 103.39 3.56
7542 (0) 1.71 7836.95 (3.91) 6.14 7600.25 (0.77) 2.3

continued on next page

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 February 2023                   doi:10.20944/preprints202302.0412.v1

https://doi.org/10.20944/preprints202302.0412.v1


16 of 33

Table 1. (continued).

Instance IGA GA ACS

Name BKS Rbest (PDbest) Rstd TRb Rbest (PDbest) Rstd TRb Rbest (PDbest) Rstd TRb
Ravg

(
PDavg

)
Tavg Ravg

(
PDavg

)
Tavg Ravg

(
PDavg

)
Tavg

st70 675 675 (0) 3.1 3.49 675 (0) 8.3 16.28 682 (1.04) 7.2 5.91
676.65 (0.24) 2.88 689.45 (2.14) 17.56 696.4 (3.17) 4.39

pr76 108159 108159 (0) 465.2 4.89 108936 (0.72) 3423.5718.91 112647 (4.15) 657.37 7.05
108611.3 (0.42) 3.6 113302.85 (4.76) 20.53 113573.65 (5.01) 7.3

eil76 538 538 (0) 2.6 4.12 549 (2.04) 8.43 16.76 539 (0.19) 4.22 7.8
540.3 (0.43) 3.57 558.65 (3.84) 26.14 546.25 (1.53) 9.55

rat99 1211 1211 (0) 5.4 6.35 1230 (1.57) 19.24 25.94 1229 (1.49) 6.95 15.89
1217.25 (0.52) 5.92 1276.5 (5.41) 23.33 1239.05 (2.32) 15.39

kroA100 21282 21282 (0) 49.28 5.94 21389 (0.5) 510.46 29.03 21867 (2.75) 246.01 16.23
21327 (0.21) 5.53 22134.75 (4.01) 21.58 22310.65 (4.83) 10.49

rd100 7910 7910 (0) 12.88 6.04 7965 (0.7) 181.42 29.27 8074 (2.07) 80.08 16.68
7917.3 (0.09) 5.66 8332.3 (5.34) 40.3 8195.65 (3.61) 23.02

eil101 629 630 (0.16) 4.49 7.92 638 (1.43) 7.73 29.4 635 (0.95) 11.26 15.31
636.45 (1.18) 5.76 658.35 (4.67) 22.05 661.2 (5.12) 16.56

lin105 14379 14379 (0) 43.05 7.82 14531 (1.06) 319.22 31.11 14486 (0.74) 60.69 17.37
14414.05 (0.24) 5.99 15080.8 (4.88) 26.73 14596.25 (1.51) 14.62

pr107 44303 44303 (0) 119.04 9.49 44577 (0.62) 728.56 33.58 44707 (0.91) 198.61 15.89
44460.9 (0.36) 6.88 45283.25 (2.21) 38.55 45054.75 (1.7) 13.55

pr124 59030 59030 (0) 270.36 10 59838 (1.37) 746.56 40.4 59210 (0.3) 326.31 22.74
59357.15 (0.55) 11.51 60725.3 (2.87) 35.17 59664.95 (1.08) 22.61

bier127 118282 118423 (0.12) 352.24 14.27 120538 (1.91) 2110.4555.57 121306 (2.56) 643.63 21.38
118982.65 (0.59) 15.57 124348.1 (5.13) 46.66 122591 (3.64) 20.44

ch130 6110 6128 (0.29) 32.35 13.4 6221 (1.82) 87.47 55.16 6292 (2.98) 32.14 26.49
6178.45 (1.12) 12.96 6397.35 (4.7) 66.31 6331.55 (3.63) 21.52

xqf131 564 565 (0.18) 3.71 13.32 577 (2.3) 10.46 48.99 593 (5.14) 4.26 30.3
575.05 (1.96) 11.29 594.85 (5.47) 46.33 599.3 (6.26) 63.67

pr136 96772 96870 (0.1) 691.4 23.05 97605 (0.86) 1340.6468.59 105463 (8.98) 657.71 30.5
97810.2 (1.07) 20.19 100223.55 (3.57) 75.11 106761.45 (10.32) 19.16

pr144 58537 58537 (0) 23.66 22.16 58746 (0.36) 1379.6562.2 58701 (0.28) 87.31 30.3
58561.15 (0.04) 16.88 60252.7 (2.93) 48.28 58824.15 (0.49) 46.68

kroA150 26524 26583 (0.22) 137.74 19.81 27276 (2.84) 499.34 71.77 27840 (4.96) 224.01 43.56
26758.25 (0.88) 18.18 28026.55 (5.66) 71.92 28334.55 (6.83) 59.19

ch150 6528 6533 (0.08) 8.55 14.91 6697 (2.59) 180.44 78.56 6720 (2.94) 28.95 35.78
6556.85 (0.44) 12.31 6914.5 (5.92) 84.22 6758 (3.52) 29

pr152 73682 73682 (0) 207.17 16.63 74424 (1.01) 983.05 74.12 74849 (1.58) 410.16 31.11
73968.05 (0.39) 16.26 75970.1 (3.11) 65.55 75539.3 (2.52) 44.05

u159 42080 42080 (0) 185.91 16.25 42396 (0.75) 138.31 56.49 43582 (3.57) 406.45 44.13
42201.9 (0.29) 12.35 42470.45 (0.93) 41.8 44194.8 (5.03) 39.03

rat195 2323 2332 (0.39) 9.68 32.84 2402 (3.4) 31.16 119.44 2402 (3.4) 9.57 71.04
2343.25 (0.87) 48.16 2450.75 (5.5) 93.94 2422.45 (4.28) 90.99

d198 15780 15885 (0.67) 76.13 40.34 15979 (1.26) 179.24 163.14 16487 (4.48) 188.48 63.99
15993.45 (1.35) 50.12 16270.4 (3.11) 147.3 16731.7 (6.03) 93.31

kroA200 29368 29380 (0.04) 112.12 31.57 30196 (2.82) 448.98 172.31 30798 (4.87) 256.21 66.66
29526.75 (0.54) 25.16 30935.75 (5.34) 160.72 31320.5 (6.65) 79.73

pr226 80369 80500 (0.16) 255.01 46.71 81124 (0.94) 1789.16168.17 83027 (3.31) 435.43 84.47
80883.05 (0.64) 39.63 84492.25 (5.13) 154 84005.2 (4.52) 113.67

continued on next page
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Table 1. (continued).

Instance IGA GA ACS

Name BKS Rbest (PDbest) Rstd TRb Rbest (PDbest) Rstd TRb Rbest (PDbest) Rstd TRb
Ravg

(
PDavg

)
Tavg Ravg

(
PDavg

)
Tavg Ravg

(
PDavg

)
Tavg

xqg237 1019 1027 (0.79) 4.04 42.36 1062 (4.22) 16.54 222.25 1081 (6.08) 11.84 105.78
1031.35 (1.21) 34.42 1090.6 (7.03) 202.02 1096.4 (7.6) 83.27

gil262 2378 2381 (0.13) 10.73 70.38 2491 (4.75) 34.6 328.5 2564 (7.82) 18.17 118.42
2392.55 (0.61) 76.99 2541.8 (6.89) 325.98 2594.85 (9.12) 166.12

pr264 49135 49135 (0) 243.7 73.85 50411 (2.6) 1627.27380.4 51893 (5.61) 333.2 135.88
49287.35 (0.31) 92.22 53602.05 (9.09) 497.31 52451.6 (6.75) 256.38

pr299 48191 48248 (0.12) 330.8 108.56 50372 (4.53) 1029.18433.79 52663 (9.28) 330.56 182.62
48645.35 (0.94) 91.98 51657.1 (7.19) 472.81 53056.7 (10.1) 221.02

lin318 42029 42203 (0.41) 310.79 131.16 44466 (5.8) 838.64 573.21 46273 (10.1) 344.83 198.23
42630.25 (1.43) 168.95 45454.3 (8.15) 656.22 47145.25 (12.17) 156.24

pma343 1368 1373 (0.37) 4.57 125.75 1423 (4.02) 15.67 652.51 1478 (8.04) 15.32 281.64
1379.5 (0.84) 82.22 1450.25 (6.01) 792.98 1512.55 (10.57) 462.81

pka379 1332 1337 (0.38) 5.89 175.62 1390 (4.35) 18.06 898.63 1416 (6.31) 18.21 373.21
1344.7 (0.95) 173.24 1424.55 (6.95) 910.52 1442.9 (8.33) 387.1

bcl380 1621 1630 (0.56) 8.52 125.36 1723 (6.29) 29.13 1106.53 1732 (6.85) 13.06 368.99
1644.05 (1.42) 94.35 1789.95 (10.42) 1344.2 1753.1 (8.15) 475.46

pbl395 1281 1288 (0.55) 5.57 181.8 1369 (6.87) 19.78 1265.45 1427 (11.4) 10.27 347.13
1300.6 (1.53) 184.75 1401.95 (9.44) 1269.97 1444.7 (12.78) 563.52

rd400 15281 15350 (0.45) 74.95 261.87 15993 (4.66) 196.73 1581.54 17338 (13.46) 105.81 419.85
15512.55 (1.52) 200.67 16414.55 (7.42) 1617.67 17519.65 (14.65) 375.42

pbk411 1343 1359 (1.19) 7.02 216.66 1421 (5.81) 24.53 1419.09 1492 (11.09) 15.07 462.24
1368.15 (1.87) 202.87 1472.55 (9.65) 1940.95 1518.5 (13.07) 447.8

fl417 11861 11910 (0.41) 49.41 218.09 11993 (1.11) 338.81 1548.44 12559 (5.88) 101.44 432.18
11973.75 (0.95) 253.43 12488.4 (5.29) 1585.45 12664.55 (6.77) 554.4

pbn423 1365 1369 (0.29) 8.61 214.1 1459 (6.89) 29.16 1508.73 1515 (10.99) 15.95 504.08
1386.45 (1.57) 231.72 1512.15 (10.78) 1677.52 1545.6 (13.23) 542.73

pbm436 1443 1446 (0.21) 7.19 189.32 1538 (6.58) 22.71 1881.99 1570 (8.8) 11.29 527.42
1458.55 (1.08) 238.13 1594.9 (10.53) 2523.16 1595 (10.53) 744.35

pr439 107217 107666 (0.42) 754.5 264.02 110702 (3.25) 2445.652097.05 117852 (9.92) 1099.39464.33
108535.5 (1.23) 218.1 115479.95 (7.71) 2074.73 120033.4 (11.95) 463.28

pcb442 50778 51380 (1.19) 176.52 332 54091 (6.52) 990.52 1888.44 56711 (11.68) 348.22 554.25
51597.35 (1.61) 443.97 55595.1 (9.49) 1889.08 57762.95 (13.76) 572.78

d493 35002 35484 (1.38) 194.6 469.09 36888 (5.39) 336.55 3096.78 38744 (10.69) 412.42 771.14
35750 (2.14) 650.09 37488.9 (7.11) 3437.53 39710 (13.45) 753.55

Average 0.27 125.45 90.43 2.79 556.08 585.95 5.19 197.51 192.60

CRb/CRa/Cstd/CTa 42/42/39/41 2/0/0/0 1/0/3/1

From Table 1, the CRb/CRa/Cstd/CTa of IGA, GA and ACS are 42/42/39/41, 2/0/0/0
and 1/0/3/1 respectively. It is clear that the innovative IGA consistently produces superior
results over GA and ACS. Additionally, the average computation time of IGA is the least in
97% instances, and its stability also has a far higher level than the other two algorithms.
More specifically, the average PDbest of IGA is 0.27%, but GA and ACS are 2.79% and 5.19%,
respectively 10 times and 19 times of IGA. In almost all cases, the PDavg of IGA is less
than 2%, but GA and ACS are often greater than 5%, especially ACS, even greater than
10% in some instances. In the view of stability, the average of the evaluation criteria Rstd
of IGA is 125.45, only 22.56% of GA and 63.52% of ACS. The average computation time
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of IGA is 90.43 seconds, which is less than one-sixth as long as GA or half as long as ACS. 563

The above discussion indicates that all the accuracy and the convergence speed of IGA are
substantially superior to the traditional GA and ACS, which proves that the proposed IGA
can reduce the computation time and improve the solution of ALC_IGA.

In Figure 5, the convergence speeds of IGA, GA, and ACS are compared under four
instances which sizes ranging from 51 to 226. It can be observed that the convergence
speed of IGA in the initial stage is much faster than that of GA and ACS. This is due to the
heuristic crossover SBHX and the local search S_2-opt combined in IGA.

(a) eil51 (b) lin105

(c) ch150 (d) pr226

Figure 5. Comparison of the convergence speed of IGA, GA and ACS on 4 instances.

We know that the suggested IGA can be utilized to solve WSP as stated in Section 3, 571

with just a minor adjustment to the distance between the start and end cities. In this part, 572

to validate the effectiveness of IGA for WSP, the 42 instances in Table 1 are reinvestigated. 573

The start and end cities of these instances were determined using the first and last elements
of the best known solutions provided by TSPLIB and TSP Test Data, and the distances
between start and end cities were set to -105 . The benchmark algorithm is the famous TSP
solver LKH proposed by Keld Helsgaun 6. The results, which include Rbest, PDBest, Ravg,
PDavg, Rworst, Rstd, TRb and Tavg are shown in Table 2.

It is clear from Table 2 that the IGA can produce the solution of WSP with a high level
of accuracy. We note that all PDbest are lower than 1% and 18 out of 42 are as good as LKH.
The PDbest of 25 out of 42 instances produced by IGA are less than 0.1%, and all the PDbest

6 http://webhotel4.ruc.dk/ keld/research/LKH/
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are lower than 1%. The outcomes on WSPs are even superior to those of IGA on TSPs in
some aspects. In detailed, the average of PDbest, Rstd, and Tavg are 0.2%, 134.28 and 81.83
respectively. By comparison, they are 0.27%, 125.45, and 90.43 on TSPs, that indicating that
the IGA is able to find better solutions on WSPs in a shorter time than on TSPs. Especially
on d493, the average execution time Tavg of IGA on WSPs is only 473.19, whereas it is 650.09
on TSPs.

According to the aforementioned analyses, the proposed IGA significantly outper- 588

forms GA and ACS in terms of convergence speed, solution quality, and stability. Addi- 589

tionally, on the WSP, which more often appeared in ALC_IGA, IGA also performs very 590

well. 591

Table 2. Results obtained by IGA on 42 small-scale WSPs.

Instance IGA

Name LKH Rbest PDbest Ravg PDavg Rworst Rstd TRb Tavg

eil51 420 420 0 420.95 0.23 426 2.09 1.72 1.91
berlin52 7387 7387 0 7387 0 7387 0 1.77 1.95
st70 666 666 0 669.05 0.46 675 3.19 2.94 3.51
pr76 104443 104443 0 104856.4 0.4 105375 469.08 3.56 4.15
eil76 530 530 0 532.95 0.56 535 1.5 3.84 4.1
rat99 1207 1211 0.33 1217.35 0.86 1225 4.6 6.14 7.27
kroA100 21106 21106 0 21262.5 0.74 21509 92.99 6.26 6.46
rd100 7787 7787 0 7796.2 0.12 7947 35.53 5.42 6.58
eil101 629 629 0 631.8 0.45 637 2.44 5.89 6.9
lin105 14336 14336 0 14400.7 0.45 14509 60.77 6.55 7.5
pr107 39270 39270 0 39413.85 0.37 39729 134.11 7.83 10.84
pr124 58810 58810 0 58898.9 0.15 59030 78.16 9.73 12.5
bier127 117393 117650 0.22 118336.9 0.8 119236 594.61 10.87 12.81
ch130 6028 6075 0.78 6119.35 1.52 6201 40.47 12.69 13.33
xqf131 529 529 0 535.6 1.25 541 3.7 9.83 10.74
pr136 96386 96475 0.09 97392.7 1.04 99228 862.65 17.2 22.12
pr144 56126 56126 0 56134.65 0.02 56162 13.41 14.29 16.14
kroA150 26387 26390 0.01 26594.2 0.79 26975 164.62 24.62 19.39
ch150 6498 6498 0 6528.1 0.46 6591 19.52 15.77 15.25
pr152 64215 64215 0 64459.35 0.38 65335 335.55 13.21 19.92
u159 41797 41797 0 41925.8 0.31 42410 179.63 12.93 16.2
rat195 2260 2260 0 2264.7 0.21 2297 8.42 19.28 24.15
d198 12804 12855 0.4 12914.7 0.86 13019 48.92 61.13 48.05
kroA200 29206 29218 0.04 29411.5 0.7 29688 121.34 28.33 35.48
pr226 78587 78637 0.06 79045.9 0.58 80116 378.15 39.01 49.5
xqg237 1004 1012 0.8 1021.4 1.73 1032 5.53 35.45 46.88
gil262 2375 2378 0.13 2396.7 0.91 2415 10.32 66.78 72.32
pr264 46430 46430 0 46914.8 1.04 47922 439.57 70.32 64.26
pr299 47534 47563 0.06 48069.9 1.13 48544 275.39 133.62 112.19
lin318 41608 41704 0.23 42139.8 1.28 42714 266.71 179.63 119.53
pma343 1323 1326 0.23 1336.5 1.02 1357 9.26 146 125.9
pka379 1267 1269 0.16 1282.8 1.25 1312 11.47 155.4 153
bcl380 1606 1609 0.19 1623.9 1.11 1660 12.9 95.49 121.71
pbl395 1277 1284 0.55 1292.65 1.23 1311 6.71 141.11 157.49
rd400 15192 15310 0.78 15435.5 1.6 15620 79.69 157.5 209.83
pbk411 1337 1348 0.82 1367.8 2.3 1380 7.64 274.59 203.49
fl417 11414 11423 0.08 11464.45 0.44 11679 54.26 274.92 225.02
pbn423 1361 1362 0.07 1382.6 1.59 1407 10.21 243.59 196.58
pbm436 1420 1431 0.77 1446.15 1.84 1460 8.36 186.44 179.57
pr439 104810 104957 0.14 105786.2 0.93 106390 383.21 322.24 271.09
pcb442 50331 50734 0.8 51205.2 1.74 51654 252.19 333.2 327.85
d493 32897 33097 0.61 33363.95 1.42 33722 154.92 510.58 473.19

Average - 0.20 - 0.86 - 134.38 87.33 81.83
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5.5. Parameters tuning for ALC_IGA

The solution initialization phase of ALC_IGA shown in Section 4.1 shows that the
main parameters of ALC_IGA in the first phase only is M, which limits the time required
to solve TSP or WSP less than T1. The results from the previous section show that, under
ordinary situations, the IGA can handle TSPs with less than 100 nodes in 6 seconds and
solve TSPs with less than 150 nodes in 20 seconds. Consequently, a decent M shouldn’t
go beyond 150 too much. In order to choose a favorable M for ALC_IGA to balance the
computation time and quality of solution, numerical comparison of M was set to 50, 100,
and 150 on 45 instances are considered in this section. These instances are medium-scale,
which sizes ranging from 1.3× 103 to 2.5× 104. Due to the fact that the distribution of
nodes greatly affects the clustering effect, in order to fairly study the influence of M on
the results of ALC_IGA, a variety of instances come from TSPLIB, TSP Test Data and
TNM data were studied in this experiment. In the following of this paper, the termination
condition of IGA is set to when there has been no improvement in the population for 30
iterations, and the other parameters are as same as in the last section. Denote the ALC_IGA
with M = 50, 100, 150 as ALC_IGA50, ALC_IGA100, ALC_IGA150 respectively, the major
five evaluation criteria Rbest, PDbest, Ravg, PDavg, Tavg and CRb/CRa/CTa of the results are
presented in Table 3.

Table 3. Comparison of results obtained by ALC_IGA with M setting to 50, 100, 150 respectively.

Instance ALC_IGA50 ALC_IGA100 ALC_IGA150

Name BKS PDbest PDavg Tavg PDbest PDavg Tavg PDbest PDavg Tavg

rl1323 270199 9.63 14.83 14.67 10.07 11.7 25.36 5.99 9.84 32.49

dca1389 5085 10.05 11.56 16.05 5.17 8.32 27.7 6.12 7.49 52.5

fl1400 20127 3.42 7.89 15.86 6.04 10.17 22.66 6 9.16 39.92

u1432 152970 5.62 7.06 15.99 4.73 5.62 24.17 4.41 5.29 45.62

fl1577 22249 10.78 14.05 18.35 8.88 12.32 29.87 7.38 11.37 41.37

fnb1615 4956 8.35 10.05 18.32 7.14 8.82 35 5.31 7.49 47.57

d1655 62128 8.44 9.78 19.13 5.43 6.93 30.27 3.17 4.22 53.45

vm1748 336556 8.46 9.74 21.64 6.4 7.71 42.32 5.15 6.86 63.85

u1817 57201 9.37 10.89 20.25 7.47 9.53 32.81 6.98 8.81 71.13

dkd1973 6421 7.16 8.24 23.86 5.17 6.14 40.96 6.73 7.99 54.72

Tnm2002 37029600 7.33 10.74 21.7 8.4 13.72 28.08 9.36 14.93 49.52

d2103 80450 12.56 15.9 25.49 10.56 12.7 45.11 9.03 10.69 70.55

bva2144 6304 7.92 9.68 24.25 5.9 7.49 39.01 4.6 5.65 68.61

u2319 234256 2.64 3.2 25.39 1.8 2.25 41.08 1.76 2.16 69.86

pr2392 378032 8.48 9.83 30.69 7.85 9.22 46.79 6.65 8.31 121.08

pcb3038 137694 8.13 9 37.59 6.42 7.33 72.23 5.56 6.5 112.85

ltb3729 11821 9.86 11.07 42.9 6.97 8.54 67.82 5.74 7.16 114.96

fl3795 28772 13.79 16.04 43.27 10.4 12.85 68.44 9.23 12.3 100.94

Tnm4000 74858233 4.73 7.55 42.1 8.88 12.05 62.52 10.88 16 86

fnl4461 182566 6.95 7.72 56.3 5.35 5.9 108.01 4.52 5.29 160.13

bgf4475 13221 13.46 15.06 51.97 10.51 11.6 84.75 9.15 10.43 121.42

fea5557 15445 12.35 13.34 64.25 8.73 9.6 99.42 8.11 8.87 172.33

rl5915 565530 17.75 19.14 66.7 12.81 14.58 108.87 11.43 12.86 158.25

continued on next page
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Table 3. (continued).

Instance ALC_IGA50 ALC_IGA100 ALC_IGA150

Name BKS PDbest PDavg Tavg PDbest PDavg Tavg PDbest PDavg Tavg

rl5934 556045 15.77 17.94 68.37 12.59 13.82 107.29 10.5 11.73 151.87

Tnm6001 112708118 7.68 9.76 62.41 5.96 9.05 89.06 9.32 12.26 120.36

xsc6880 21535 12.77 13.91 79.76 10.25 11.04 130.57 9.05 9.64 191.37

bnd7168 21834 11.88 12.63 87.6 8.41 9.31 142.97 7.73 8.56 226.37

lap7454 19535 13.87 14.62 87.4 9.89 10.67 127.22 8.96 9.59 204.57

Tnm8002 150561446 12.85 14.74 88.22 6.24 8.01 112.69 7.29 10.04 132.49

ida8197 22338 10.89 12.53 96.35 9.21 10.01 160.35 7.66 9 240.39

dga9698 27724 14.88 15.82 116.08 11.08 12.23 190.04 9.55 10.49 272.45

Tnm10000 188414262 20.6 23.02 103.41 5.13 6.97 127.58 5.94 8.93 160.26

xmc10150 28387 13.61 14.51 113.46 10.75 11.77 191.94 9.47 10.4 284.55

rl11849 923288 14.22 15.03 141.87 10.8 11.47 224.3 9.31 10.18 358.89

usa13509 19982859 9.81 10.93 165.83 8.26 8.82 318.67 6.69 7.18 492.82

xvb13584 37083 11.16 11.85 155.75 8.48 9.13 236.12 7.77 8.27 373.29

brd14051 469385 8.07 8.52 174.4 5.92 6.18 334.87 5.16 5.49 552.78

d15112 1573084 7.94 8.43 190.14 6.13 6.62 349.63 5.54 5.79 598.85

xia16928 52838 13.24 13.85 194.99 8.77 9.53 312.44 8.26 8.74 477.84

pjh17845 48083 11.19 12 204.99 8.22 8.88 324.65 7.63 8.38 524.2

d18512 645238 8.06 8.39 233.68 6.47 6.86 438.17 5.27 5.57 720.64

Tnm20002 377692238 15.16 23.22 209.17 5.44 6.58 268.69 4.88 6.42 379.48

ido21215 63501 12.57 13.18 246.85 9.77 10.25 401.68 8.8 9.14 656.89

lsb22777 60977 13.35 13.83 268.06 9.85 10.71 409.42 8.76 9.8 660.7

bbz25234 69335 12.08 12.69 290.48 9.45 9.98 482.27 8.5 8.99 746.58

Average 10.64 12.31 91.02 7.96 9.4 148.09 7.23 8.76 231.93

CRb/CRa/CTa 3/3/45 5/4/0 37/38/0

From Table 3, the CRb/CRa/CTa of the ALC_IGA50, ALC_IGA100, ALC_IGA150 are
3/3/45, 5/4/0 and 37/38/0 respectively. As can be seen, the ALC_IGA50 is the fastest,
whereas the ALC_IGA150 algorithm usually produces the best results. When the size of
instance is less than 2× 103, ALC_IGA50 has the minimum PDbest and PDavg on fl1400,
ALC_IGA10 has the lowest PDbest on dca1389 and dkd1973. However, the PDbest and
PDavg of ALC_IGA150 on the three instances are all less than 10%, this is still a respectable
result. When the instance size is large than 2× 103, the ALC_IGA50 and ALC_IGA100
only perform better than the ALC_IGA150 on TNM instances. Concerning specifics, the
ALC_IGA50 works well on Tnm2002 and Tnm4000, the ALC_IGA100 excels on Tnm6001,
Tnm8002, and Tnm10000, but the ALC_IGA150 provided the best result on the large
instance of Tnm20002. The results of ALC_IGA150 are therefore superior to those of
ALC_IGA50 and ALC_IGA100 in TSPLIB and TSP Test Data, and it is still a suitable
approach for TNM data. The average of PDbest and PDavg for the three algorithms shown
at the bottom of Table 3 also support this.

Furthermore, considering the algorithms’ running time, the mean of Tavg of ALC_IGA50
is 91.02, which is three-fifths of the time taken by ALC_IGA100 and two-fifths of ALC_IGA-
150. This indicates that the fastest algorithm is ALC_IGA50, and the ratio of running 626

time hardly changes with the size of the instance. However, even the slowest proposed
ALC_IGA150 could handle the 104 nodes instance with just approximately 10% deviation
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percentage in the same amount of running time as the IGA, which can only solve the
instance with a size of roughly 400 nodes. The fastest ALC_IGA50, which is more than 60
times faster than the IGA, can deal with 2.5× 104 nodes in the same amount of time. Thus
the high efficiency of ALC_IGA has been verified.

Figure 6 displays the deviation percentage of each run among all instances. It is
noteworthy that for all three algorithms, most of the deviation percentages are under 20%.
In particular, the deviation percentages of the ALC_IGA100 and ALC_IGA150 are less than
10% in the majority of instances. Furthermore, the figure also reveals that the ALC_IGA100
and ALC_IGA150 have many overlapping regions, indicating that the performance of the
two algorithms is roughly equivalent.

Figure 6. The deviation percentage of each run on 45 medium-scale instances with M setting to 50,
100, 150.

Additionally, the relationship between the running time of ALC_IGA and the value
of M is taken into account. The average execution time for the instances of the three
algorithms is plotted in Figure 7 in different colors. In order to discuss the computational
complexity of the algorithms, the exponential curve fitting for each group is calculated. Due
to the computation time of ALC_IGA150 is larger than the other two, its slope shown in the
figure is undoubtedly the steepest. The approximated time complexities of ALC_IGA50,
ALC_IGA100 and ALC_IGA150 are O(n0.9992), O(n0.9958) and O(n1.02) respectively, which
are all extremely close to the linear computational complexity O(n). With 95% confidence
bounds, the upper bound of the computational complexity for ALC_IGA50 is 1.0326, and
the other two are 1.0963 and 1.151. The statistical outcomes of curve fitting are shown in
Table 4. It can be seen that all three fitting models have high confidence, especially the R2

of ALC_IGA50 is over 0.99. The above results prove the computational complexity analysis
of the proposed ALC_IGA in Section 4.3.

Table 4. The exponential curve fitting a · nb of the running time of ALC_IGA while M setting to 50,
100, 150.

M a b SSE R2 Adjusted
R2

RMSE

50 0.0118 ± 0.0038 0.9992 ± 0.0334 1705 0.9938 0.9936 6.297
100 0.0198 ± 0.0192 0.9958 ± 0.1005 41246 0.9459 0.9446 30.97
150 0.0247 ± 0.0314 1.02 ± 0.131 167900 0.9146 0.9126 62.49
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Figure 7. Computational complexity analysis of the proposed ALC_IGA.

To sum up, the quality of the solution obtained by ALC_IGA has a strong relationship
with the data distribution and the value of M. On the other hand, the larger M is set, the
longer the computation time required by ALC_IGA according to the numerical experiments.
In most cases, setting M to 100 is a typical compromise choice to balance computation time
and quality.

5.6. ALC_IGA compared with two-layered algorithms

The effectiveness of ALC_IGA on medium-scale problems was confirmed in Section
5.5, although it is unclear whether it is superior to the other layered algorithms. To illustrate
the performance of ALC_IGA, the proposed ALC_IGA is compared with two typical
algorithms, which are TLGA [47] and TLACS [7]. The TLGA and TLACS are re-coded
in Matlab, and to be fair, the running time and the solution quality are improved to be
better than the literature. The main parameters were set as follows: the M of ALC_IGA 663

was set to 100; the numbers of cluster centers of TLACS and TLGA were automatically 664

adjusted according to the size of the instance; the termination conditions of ALC_IGA, 665

TLACS, TLGA were that when there has been no improvement of the solution for 30, 30, 666

100 iterations respectively. All of the algorithms are implemented in single-thread. There 667

are 45 medium-scale instances whose sizes ranging from 1× 103 to 4× 105 are investigated 668

in this experiment. 669

Table 5. Comparison of results obtained by ALC_IGA, TLACS and TLGA on medium-scale instances.

Instance ALC_IGA TLACS TLGA

Name BKS PDbest PDavg Tavg PDbest PDavg Tavg PDbest PDavg Tavg

vm1084 239297 5.88 7.72 21.32 12.03 13.63 13.59 53.63 66.69 92.61

d1291 50801 8.76 10.65 20.89 14.08 16.34 15.32 58.1 65.88 61.76

rl1323 270199 10.01 11.46 24.65 17.88 20.35 13.86 70.35 79.18 69.01

fl1400 20127 4.57 9.74 23.93 4.25 6.85 28.78 54.8 74.71 147.38

fl1577 22249 7.79 13.08 29.34 10.19 12.27 18.86 86.64 98.19 82.13

d1655 62128 5.03 6.54 29.27 13.15 14.32 21.17 50.89 61.03 115.34

vm1748 336556 6.7 7.64 31.65 12.74 14.19 22.95 64.18 76.08 108.67

u1817 57201 7.88 9.49 33.76 10.88 12.34 19.89 54.99 61.58 102.33

continued on next page
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Table 5. (continued).

Instance ALC_IGA TLACS TLGA

Name BKS PDbest PDavg Tavg PDbest PDavg Tavg PDbest PDavg Tavg

d2103 80450 10.58 12.45 44.22 19.26 21.76 24.17 59.41 68.84 166.26

u2152 64253 8.06 9.37 39.2 12.12 13.45 28.12 57.26 63.54 144.79

u2319 234256 1.84 2.3 41.32 4.3 5.09 31.11 32.87 36.72 150.83

pr2392 378032 7.17 9.13 44.87 10.99 13.38 37.39 53.73 62.36 132.17

pcb3038 137694 6.66 7.38 76.63 12.17 13.25 48.31 51.59 57.4 175.13

fl3795 28772 11.53 12.98 66.47 13.01 14.28 112.8 101.58 116.31 275.55

dkf3954 12538 9.02 9.89 76.13 14.47 16.08 68.82 61.99 67.22 247.99

Tnm4000 74858233 8.58 12.59 59.12 3.59 5.17 44.85 259.8 298.2 214.53

fnl4461 182566 5.53 5.93 112.01 10.1 10.75 90.24 47.59 52.67 240.54

ca4663 1290319 8.61 10.45 100.84 14.37 16.41 155.92 76.7 92.73 378.54

xqd4966 15316 5.56 6.53 100.23 11.07 12.45 105.53 71.28 94.91 349.59

fqm5087 13029 5.52 6.56 99.07 11.15 12.03 99.23 81.88 94.76 325.78

fea5557 15445 8.93 9.84 106.72 14.06 15.72 111.2 63.68 74.72 417.61

rl5915 565530 14.14 15.1 103.29 20.18 22.21 113.81 75.64 85.77 386.15

rl5934 556045 12.66 13.9 105.45 19.4 20.16 107.38 72.67 84.82 374.8

tz6117 394718 6.86 7.63 136.46 13.17 14.13 205.99 66.47 73.76 429.67

xsc6880 21535 9.94 11.14 132.75 15.76 17.26 150.23 64.88 72.96 495.94

bnd7168 21834 8.18 9.13 139.69 14.7 16.02 163.16 63.15 70.91 518.01

lap7454 19535 9.76 10.75 128.89 15.9 16.71 172.89 67.42 74.47 594.09

ida8197 22338 9.19 9.92 152.68 14.87 15.74 190.42 61.98 72.42 610.65

dga9698 27724 11.3 12.18 176.72 17.14 17.88 256.85 71.31 77.97 690.84

Tnm10000 188414262 5.43 7.57 132 1.96 3.05 163.07 393.56 458.1 722.56

xmc10150 28387 10.9 11.68 175.01 16.45 17.23 265.42 72.03 77.04 734.97

rl11849 923288 10.35 11.43 224.34 15.54 16.63 359.35 69.73 75.44 933.61

usa13509 19982859 8.21 8.65 295.5 13.61 14.53 664.7 66.37 71.67 1378.6

brd14051 469385 5.72 6.11 342.91 10.96 11.71 528.3 50.36 58.39 1232.43

d15112 1573084 6.1 6.44 356.77 11.02 11.92 641.19 52.75 57.46 1443.81

it16862 557315 8.55 9.11 361.73 12.7 13.39 790.6 63.35 75.35 1547.82

d18512 645238 6.59 6.84 434.83 11.1 11.71 795.83 52.15 57.02 1722.17

boa28924 79622 11.19 11.83 529.35 15.76 16.41 1473.54 79.98 86.43 2760.68

Tnm30001 566973296 8.06 8.68 417.43 1.18 1.78 905.14 640.39 730.39 2924.84

pbh30440 88313 11.33 11.77 585.99 15.9 16.33 1685.75 72.34 80.03 3306.87

xib32892 96757 10.34 10.84 613.21 15.07 15.63 1897.12 76.96 83.16 3252.86

fry33203 97240 11.44 11.79 617.37 15.2 16.01 1992.54 76.68 82.39 3600.66

bby34656 99159 9.67 10.19 647.45 14.92 15.38 2192.23 70.47 77.38 3866

pba38478 108318 10.7 11.21 732.33 15.34 15.89 2614.56 73.06 79.11 4093.7

ics39603 106819 11.97 12.54 725.33 16.4 16.81 2584.34 76.36 83.37 4318.36

Average 8.51 9.74 209.98 12.89 14.1 489.48 89.84 102.43 1020.86

CRb/CRa/CTa 41/40/30 4/5/15 0/0/0
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As is shown in Table 5, the evaluation criteria CRb/CRa/CTa of ALC_IGA is 41/40/30, 670

the CRb/CRa/CTa of TL-ACS is 4/5/15 and CRb/CRa/CTa of TLGA is 0/0/0. First of all, it
is pointed out that TLGA has no advantage in all instances compared with the other two
algorithms in terms of solution quality and convergence speed. The TLACS obtained 4 best
PDbest and 5 best PDavg among all 45 instances. In detail, TLACS outperforms ALC_IGA
on fl1400 and fl1577, but ALC_IGA defeats TLACS on fl3795. The other three instances
where TLACS performs better are all hard-to-solve instances [64]. That is because the fewer
clusters generated, the better solution produced, which is according to the results in Section
5.5. The average of PDbest and PDavg for ALC_IGA are 8.51 and 9.74, while for TLACS and
TLGA, they are 12.89 and 14.10, 88.84 and 102.43, respectively. The analyses above verify
that the accuracy of ALC_IGA is superior to TLACS and TLGA in all scenarios except for
TNM instances.

From Table 5, the average values of Tavg of ALC_IGA, TLACS and TLGA are 209.98,
489.48 and 1020.86 seconds. It can be seen that the proposed ALC_IGA is much faster than
the other two algorithms. In detail, when the size of the instance is less than 4.5× 103,
TLACS is faster than ALC_IGA in most cases. When the size of the instance is between
4.5× 103 and 104, the running time of ALC_IGA and TLACS are very close. When the size
of the instance is larger than 104, the proposed ALC_IGA has huge advantages, especially
when the problem size is greater than 3× 104, the computation time of ALC_IGA is less
than one-third of TLACS and less than one-fifth of TLGA.

Figure 8 converts a large amount of data in Table 5 into an explicit image. The real
lines represent the PDavg and Tavg of ALC_IGA. It is closer to the horizontal axis, which
means that the ALC_IGA has high performance on accuracy and convergence speed. The
results of run time for ALC_IGA, TLACS and TLGA with exponential curve fitting are
O(n0.945), O(n1.611) and O(n1.221). It reveals that the gap in computation time between
ALC_IGA and the other two algorithms will increase as the size of the problem increases.

Figure 8. Results analysis of the proposed algorithm, TLGA and TLACS.

5.7. Results on large-scale TSP instances 696

In this section, to investigate the performance of ALC_-IGA on large-scale instances, 697

the new ALC_IGA is compared to three state-of-the-art algorithms, which are TLACS [7], an
accelerating genetic algorithm evolution via ant-based mutation and crossover (ER-ACO)
[28] and a 3L-MFEA-MP [51]. The ALC_IGA and TLACS were implemented in Matlab 700

R2022a and parallelized by the parallel computing toolbox in Matlab. The ER-ACO was set
on an AMD Ryzen 2700 CPU with 16 threads in parallel. The parallel 3L-MFEA-MP was
coded in Python, and it was implemented on a supercomputer with a 24-core Intel Xeon
CPU and 96 GB RAM. The sizes of the 15 involved instances range from 4× 104 to 2× 105.
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Table 6. Comparison of ALC_IGA and three state-of-the-art algorithms on large-scale instances.

Instance BKS Algorithms Rbest PDbest Ravg PDavg Tavg

rbz43748 125183 ALC_IGA 138336 10.51 138780 10.86 78.97
TLACS 143707 14.8 144783 15.66 460.23
ER-ACO - - - - -
3L-MFEA-MP - - - - -

fht47608 125104 ALC_IGA 138369 10.6 138854 10.99 90.39
TLACS 143328 14.57 144080 15.17 500.51
ER-ACO - - - - -
3L-MFEA-MP - - - - -

fna52057 147789 ALC_IGA 162347 9.85 162900 10.22 89.73
TLACS 170295 15.23 170813 15.58 545.47
ER-ACO - - - - -
3L-MFEA-MP - - - - -

bna56769 158078 ALC_IGA 174110 10.14 175110 10.77 121.35
TLACS 181703 14.95 182421 15.4 604.53
ER-ACO - - - - -
3L-MFEA-MP - - - - -

dan59296 165371 ALC_IGA 183301 10.84 183803 11.15 112.64
TLACS 190994 15.49 191471 15.78 607.85
ER-ACO - - - - -
3L-MFEA-MP - - - - -

Tnm80002 1513392208 ALC_IGA 1719287088 13.6 1815094672 19.94 145.72
TLACS 1521978113 0.57 1528977655 1.03 876.21
ER-ACO - - - - -
3L-MFEA-MP - - - - -

Tnm90001 1702667051 ALC_IGA 1900341576 11.61 2038420433 19.72 161.17
TLACS 1712186024 0.56 1717989072 0.9 949.71
ER-ACO - - - - -
3L-MFEA-MP - - - - -

Tnm100000 1891945975 ALC_IGA 2107195713 11.38 2237645170 18.27 171.85
TLACS 1902231611 0.54 1910148253 0.96 1497.72
ER-ACO - - - - -
3L-MFEA-MP - - - - -

mona-lisa100K 5757191 ALC_IGA 5930206 3.01 5934489 3.08 235.13
TLACS 6401529 11.19 6417896 11.48 1657.04
ER-ACO - 7.99 - 8.9 1792.95
3L-MFEA-MP 6513686 13.34 6525173 13.34 1030.72

sra104815 251342 ALC_IGA 276998 10.21 277851 10.55 212.9
TLACS 288535 14.8 289519 15.19 1562.05
ER-ACO - - - - -
3L-MFEA-MP - - - - -

vangogh120K 6543609 ALC_IGA 6742349 3.04 6746733 3.1 314.21
TLACS 7332648 12.06 7344261 12.24 2269.41
ER-ACO - 8.66 - 9.22 1975.97
3L-MFEA-MP 7423925 13.55 7430063 13.55 1256.78

venus140K 6810665 ALC_IGA 7018375 3.05 7021104 3.09 341.17
TLACS 7638796 12.16 7647611 12.29 3262.63
ER-ACO - 8.33 - 8.72 2496.99
3L-MFEA-MP 7718441 13.41 7724201 13.41 1518.13

pareja160K 7619953 ALC_IGA 7854282 3.08 7858881 3.14 428.04
TLACS 8623198 13.17 8629465 13.25 3734.21
ER-ACO - 8.47 - 9.47 3049.45
3L-MFEA-MP - - - - -

continued on next page
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Table 6. (continued).

Instance BKS Algorithms Rbest PDbest Ravg PDavg Tavg

courbet180K 7888731 ALC_IGA 8148232 3.29 8150953 3.32 498.64
TLACS 8940877 13.34 8956732 13.54 4454.45
ER-ACO - 8.37 - 9.83 3666.29
3L-MFEA-MP - - - - -

earring200K 8171677 ALC_IGA 8454565 3.46 8460779 3.54 522.74
TLACS - - - - -
ER-ACO - 9.18 - 9.83 4236.65
3L-MFEA-MP 9365519 14.65 9368743 14.65 2382.31

The results and five evaluation criteria Rbest, PDbest, Ravg, PDavg and Tavg are shown
in Table 6. Compared to ALC_IGA with TLACS, the advantage of ALC_IGA in running
time is apparent again. The running time of ALC_IGA is roughly one-sixth of TLACS when
the problem size is around 5 × 104, but when the size approaches 2× 105, the running time
of it is just one-ninth of TLACS. The performance of ALC_IGA is better than TLACS in
most conditions, but TLACS works pretty well on TNM instances.

There are four instances compared with 3L-MFEA-MP, results shown in Table 6 reveal
that the performance of it is very close to TLACS, the difference between them in terms
of PDbest and PDavg is about 2%. While compared with ALC_IGA, the 3L-MFEA-MP is
far worse than it in terms of convergence speed and solution quality. On the involved
six instances, the PDbest and PDavg of the novel intelligence algorithm ER-ACO exceed
ALC_IGA by 2.5 times. Additionally, the proposed ALC_IGA runs significantly faster than
ER-ACO.

Figure 9 shows the average computation time and deviation percentages of the four
algorithms. It is clear that ALC_IGA performs well in most situations and is significantly
faster than the others. According to the results illustrated in Section 5.5, the only drawback
of ALC_IGA is on TNM instances, which can be improved by setting M larger.

Figure 9. The results of the compared algorithms on large-scale TSPs.

Finally, the results of ALC_IGA under M set to 50, 100 and 150 for five huge instances
are also given. The ara238025, lra498378 and lrb744710 are three instances containing
hundreds of thousands of nodes, which are the very large-scale integration instances of
TSP Test Data. The Santa, which has 1437195 cities, as a benchmark instance for large-scale
TSPs, has been investigated thoroughly by several well-known solvers in [65]. Gaia was
published by William Cook in 2019 and includes two million coordinates of stars.
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Five evaluation criteria and the average of them are presented in Table 7. It shows
again that the larger the M set, the better solution obtained and the longer computation
time needed. For ALC_IGA50, ALC_IGA100, and ALC_IGA150, the average of PDbest are
13.882, 11.064, and 10.304, respectively, which is extremely close to the average of PDavg.
This illustrates the strong stability of ALC_IGA, which the average of Rstd has also proven.
While M was set to 50 or 100, the 1.4× 106 nodes instance can be handled within 1h on our
implement, and even the large three-dimensional Gaia can be fixed within 1.5h. Figure 10
depicts the best solutions obtained by the ALC_IGA with M = 100.

(a) ara238025 (b) lra498378

(c) lrb744710 (d) santa1437195

(e) gaia2079471

Figure 10. Visualization of the best solutions obtained by the ALC_IGA with M = 100 on five large
instances over 2× 105 nodes.
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Table 7. Results obtained by the ALC_IGA on five large instances over 2× 105 nodes.

Instance BKS M Rbest PDbest Ravg PDavg Rstd Tavg TRb

ara238025 578761 50 649841 12.28 653160 12.85 1534 242.59 250.69
100 634357 9.61 637414 10.13 1001 392.4 390.87
150 630357 9.17 631805 9.17 905 621.9 587.38

lra498378 2168039 50 2504137 15.5 2511139 15.83 3620 586.65 561.38
100 2424156 11.81 2431562 12.15 4526 799.82 822.77
150 2398861 10.92 2404857 10.92 4126 1447.49 1241.13

lrb744710 1611232 50 1803710 11.95 1806807 12.14 1553 832.53 856.56
100 1773389 10.06 1775519 10.2 1402 1164.27 1209.86
150 1756006 9.09 1757731 9.09 1199 1728.67 1718.95

santa1437195109284000 50 126452359 15.71 126870650 16.09 282274 2355.69 2502.04
100 122732785 12.31 123183399 12.72 282164 3403.22 3101.24
150 121831057 11.76 122134133 11.76 189127 5022.14 4812.72

gaia2079471 288843524 50 329200974 13.97 329395175 14.04 106820 5010.2 4865
100 322144985 11.53 322360796 11.6 117896 5225.05 5377.99
150 319244386 10.58 319408762 10.58 86203 7891.54 7694.04

50 - 13.882 - 14.19 79160.2 1805.53 1807.13
Average 100 - 11.064 - 11.36 81397.8 2196.952 2180.546

150 - 10.304 10.304 56312 3342.348 3210.844

6. Conclusions and future research

The existing layered algorithms might encounter obstacles when solving large-scale
TSPs: the subtask small-scale TSPs solved slowly; the number of cluster centers in the upper
layer may be enormous; the single cluster in the bottom layer may have an overwhelming
number of nodes; the quality of the final solution is poor.

In this study, aiming at solving large-scale TSPs with millions of nodes fast, the
ALC_IGA with high parallelizability is proposed. In the first phase, ALC_IGA ensures that
all sub-TSPs and sub-WSPs are smaller than the specified size through k-means repeatedly
applied, thereby reducing the computation time. In the second phase, the TS_2-opt is
developed to rapidly improve the initial solution. The IGA is also proposed for small-scale
TSPs and WSPs, with the following significant modifications: the polygynandry-inspired
SBHX is designed for high convergence speed; the S_2-opt for balancing convergence
speed and falling into local optimum is created. According to the study, the computational
complexity of ALC_IGA is between O(n log n) and O(n2).

The numerical results on 42 instances show that the proposed IGA is better than both
GA and ACS in terms of convergence speed and accuracy, and it performs better on WSP
than on TSP. According to the numerical results on lots of instances from diverse sources,
in most conditions, ALC_IGA outperforms TLGA, TLACS, 3L-MFEA-MP and the novel
ER-ACO in terms of precision, stability and computation speed. The worst situation of
ALC_IGA is on the hard-to-solve TSP instances, where the errors are still less than 20% and
can be improved by adjusting the parameters.

To improve the performance of ALC_IGA, future research may focus on optimizing
the initial solution of ALC_IGA, investigating the influence of the different clustering
algorithms adopted, and improving the performance on the hard-to-solve TSPs. The
ALC_IGA can also be extended to solve large-scale ATSPs, CTSPs, DTSPs and other related
problems.
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Abbreviations
The following abbreviations are used in this manuscript:

TSPs traveling salesman problems
ALC_IGA Adaptive layered clustering framework with improved genetic algorithm
ATSPs Asymmetric TSPs
CTSPs Clustered TSPs
DTSPs Dynamic TSPs
MTSPs Multiple TSPs
WSPs Wandering salesman problems
EA Evolutionary algorithm
ACO Ant colony optimization algorithm
ACS Ant colony system
SFLA Shuffled frog leaping algorithm
SA Simulated annealing algorithm
PSO Particle swarm optimization
GA Genetic algorithm
PMX Partially mapped crossover
OX Ordered crossover
CX Cycle crossover
SCX Sequential constructive crossover operator
CMX Completely mapped crossover operators
BHX Bidirectional heuristic crossover operator
IGA Improved genetic algorithm
TLACS Two-layered ant colony system algorithm
3L-MFEA-MP The three-layered evolutionary optimization framework
SBHX Selective bidirectional heuristic crossover
S_2-opt Simplified 2-opt
TS_2-opt Two phases simplified 2-opt algorithm
TLGA Two-level genetic algorithm
TNM Hard to solve instances of the Euclidean TSPs
ER-ACO Accelerating genetic algorithm evolution via ant-based mutation and crossover
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