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Abstract: Traveling salesman problems (TSPs) are well-known combinatorial optimization problems,
and most existing algorithms are challenging for solving TSPs when its scale is large. To improve
the efficiency of solving large-scale TSPs, this work presents a novel adaptive layered clustering
framework with improved genetic algorithm (ALC_IGA). The primary idea behind ALC_IGA is
to break down a large-scale problem into a series of small-scale problems. First, the k-means and
improved genetic algorithm are used to segment the large-scale TSPs layer by layer and generate
the initial solution. Then, the developed two phases simplified 2-opt algorithm is applied to further
improve the quality of the initial solution. The analysis reveals that the computational complexity of
the ALC_IGA is between O(n log 1) and O(n?). The results of numerical experiments on various TSP
instances indicate that, in most situations, the ALC_IGA surpasses the state-of-the-art algorithms in
convergence speed, stability, and solution quality. Specifically, the ALC_IGA can solve instances with
2 x 10° nodes within 0.15h, 1.4 x 10° nodes within 1h, and 2 x 10° nodes in three dimensions within
1.5h.

Keywords: Computational complexity analysis; High parallelizability; Improved genetic algorithm;
Adaptive layered clustering framework; Large-scale traveling salesman problem

1. Introduction

As an important branch of optimization, combinatorial optimization plays a signifi-
cant role in management and economics, computer science, artificial intelligence, biology,
engineering, etc [1]. The traveling salesman problems (TSPs) are main subject of com-
binatorial optimization problems, in which the goal is to find a closed route through all
the cities once, and only once. This problem is equivalent to finding a Hamilton circuit
with the minimum distance. The TSP, and its variants, such as asymmetric TSPs (ATSPs)
[2], clustered TSPs (CTSPs) [3], dynamic TSPs (DTSPs) [4], multiple TSPs (MTSPs) [5],
wandering salesman problems (WSPs) [6], have wide applications in laser engraving [7],
integrated circuit design [8], transportation [9], energy saving [10], logistics problem [11],
communication engineering [12], and medical waste transportation, which is closely related
to COVID-19 pandemic [13]. The TSP was first considered in mathematical format in 1930
to solve a school bus routing problem, and then spread by researchers of Rand corporation.
However, these problems were first considered only dozens of cities, but with the increase
of applications, the scale of the problems may exceed millions [14].

Although the description of TSP is simple, it has been proven as NP-Hard, which
means that the time required to obtain the exact solution for TSP will increase exponentially
when the size of the problem aggrandizes. Lots of algorithms have been developed for TSPs,
they can be split into three categories: exact methods, intelligence algorithms, and heuristics
algorithms. The exact solver, such as brute-force search, linear programming [15], dynamic
programming [16], brand and bound [17], brand and cut [18] and cutting plane [19] are
powerful tools for small scale TSPs. However, the computational complexity of exact
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algorithm is very huge that solving the instance with 85900 nodes will take over 136 CPU-
years by Concorde, which is a mature exact solver for TSPs [20]. Intelligence algorithms are
inspired by the nature world and have high capabilities to approximate the global optimal
for optimization problems. Evolutionary algorithm (EA) [21], ant colony optimization
algorithm (ACO) [22], ant colony system (ACS) [23], shuffled frog leaping algorithm (SFLA)
[24], simulated annealing algorithm (SA) [25], particle swarm optimization (PSO) [26] and
other well-known algorithms [27,28] are all belong to intelligence algorithms. The novel
intelligence algorithm can be employed to solve the problem with 2 x 10° nodes with high
quality in an hour on a retail computer, but it is still hard to tackle while the scale is larger
[29]. There are two main drawbacks of intelligent algorithms: one is that they frequently
converge to the local optimum; the other one is that the parameters affect the solution
quality deeply but usually can only be determined empirically [30]. The main heuristic
algorithms for TSPs can be grouped into Lin—Kernighan family and stem-and-cycle family,
they could provide high-quality solutions for nearly 2 million cities problems [31]. For
higher quality solution and less running time, some researchers combined intelligence
algorithms and heuristics algorithms, see [32-34] and the reference therein.

Genetic algorithm (GA) was proposed by Holland in 1975, the basic idea stems from
"survival of the fittest" in evolutionism. Most types of GAs contain three main segments:
selection operator, crossover operator and mutation operator. Due to the high effectiveness
and versatility of GAs, they have been widely employed to solve TSPs and other challenging
optimization problems [35,36]. However, there are still several doubts to TSPs, including
premature convergence, population initialization, problem encoding, etc [37].

On the other hand, crossover operators have a significant influence on the performance
of GA and are a key factor in global searching and convergence speed. As a matter of
fact, various crossover operators have been proposed for TSP, including partially mapped
crossover (PMX) [38], ordered crossover (OX) [39], cycle crossover (CX) [40], sequential
constructive crossover operator (SCX) [41], completely mapped crossover operators (CMX)
[42] and others based on heuristic algorithms such as bidirectional heuristic crossover
operator (BHX) [43]. Additionally, merging GAs with local search or heuristic algorithms
will reveal both of their advantages, including high convergence speed and the capacity for
global optimization, therefore it has been a hot topic of study [32,44,45].

While the size of TSPs are larger than 10°, seeking the exact solution is extremely
difficult, and even a small improvement in quality can take a long time, the question
of how to get an acceptable approximation solution in a reasonable time is more useful
in real-world applications [46]. Thus, a new series of two-layered algorithms have been
proposed, the fundamental concepts of them can be divided into two categories. The first
type of them is to use various clustering techniques to divide the cities into small groups,
calculate the sub-TSPs within those groups, and then merge the groups into a Hamilton
cycle [47-49]. The other one is to determine the start and end points for each small group
after clustering firstly, and then solve the fixed start and end points TSPs, which is also
called WSPs, finally combine all the groups [50]. These algorithms are much faster than
algorithms without clustering and can solve 180K size TSP within a few hours [7].

The drawbacks of the above two-layered algorithms include high computational
complexity, poor accuracy, and problematic parameter tuning. Naturally, two-layered
algorithms can be developed to three-layered or multiple-layered, very recent works can
be seen in [51] and [52]. Admittedly, in order to fully utilize all the CPUs of computers,
parallelizability is becoming extremely essential for algorithms designed to solve large and
complicated problems. Some parallel algorithms for TSPs can be seen in [53,54].

In this paper, in order to develop a fast, easy implementation and high parallelizability
algorithm for TSPs, an adaptive layered clustering framework with improved genetic
algorithm (ALC_IGA) have been supposed. The key contributions of this study are as
follows:
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* Animproved genetic algorithm (IGA) integrated with hybrid selection, selective BHX
crossover operator and simplified 2-opt local search has been proposed, a numerical
comparison of IGA, GA and ACS on TSPs shows the high performance of IGA.

e Plentiful numerical results also prove the effectiveness of the novel IGA for solving
the WSPs.

* Anadaptive layered clustering framework is proposed to break down a large-scale
problem into a series of small-scale problems. The computational complexity of the
ALC_IGA is between O(nlogn) and O(n?), also the parallelability of it has been
discussed.

¢ We show a numerical experiment for parameters tuning of the proposed ALC_IGA,
the results reveal that the larger the parameter set, the higher solution quality is
obtained but a longer time is required.

¢ Dozens of two-dimensional Euclidean instances have been tested with ALC_IGA and
some two-layered algorithms, and the results show that ALC_IGA has advantages in
terms of accuracy, stability and convergence speed over two-layered algorithms.

e Lots of large-scale instances ranging in size from 4 x 10* to 2 x 10° have been tested,
and the results show that the parallel ALC_IGA is times faster than the other three
state-of-the-art algorithms and obtains the best solution in the most cases. The results
on very large-scale TSPs, with sizes ranging from 2 x 10° to 2 x 10°, also demonstrate
the excellent effectiveness of ALC_IGA.

The remainder of the paper is organized as follows: a brief literature review of some
related concepts is presented in Section 2; the main procedures of IGA are shown in Section
3; the details ALC_IGA are discussed in Section 4; the results of experimental analyses and
algorithms comparisons are shown in Section 5; A summary of this paper and future works
are listed in Section 6.

2. Literature review

Numerous algorithms have been introduced for the TSPs, the well-known and typical
combinatorial optimization problem. The three primary kinds are heuristic algorithms,
intelligent algorithms, and exact algorithms. Considering exact algorithms cannot be
used for middle-scale TSPs, which is NP-Hard, the intelligence algorithms and heuristic
algorithms have been the focus of attention. However, for large-scale TSPs, the classical
intelligence algorithms lose efficacy, either. The two primary methods for large-scale TSPs
by intelligence algorithms are improving intelligence algorithms and partitioning the large-
scale problems into smaller ones by clustering. In this section, the well-known genetic
algorithm is explored, and serval approaches based on clustering for large-scale TSPs are
briefly reviewed.

2.1. Genetic algorithm for TSPs

GA is one of the intelligence algorithms that is widely applied to solve both continuous
and discrete optimization problems. Grefenstette et al. [55] studied GA for TSPs in detail
in 1988 and provided various proposals for further work, including merging GA with
other heuristic algorithms and considering the impact of parameters. In the over 40 years
that have passed ever since, the GA for TSPs has tremendous advancements in terms of
representation, population initialization, fitness function, selection, crossover, mutation,
and integrated with other algorithms.

First, when using GA, the primary task is to find a representation that closely relates
to the structure of the problem. There are five different representations of TSPs: binary,
path, adjacency, ordinal, and matrix. Larranaga et al. [56] reviewed representations and
operators for TSPs. They concluded that the path representation performs well under most
circumstances, and lots of powerful substantial crossover and mutation operators have
been developed for it.

The crossover operator plays an important role in GA. A proper crossover operator
could raise the average quality of the population, which would hasten convergence and
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save time. The most popular PMX was first proposed by Goldberg and Lingle in 1985 [38],
in which each offspring only uses information from each of their parents partially. Firstly,
generating two random cut points, and then the portions from parents between the two
cut points are swapped to generate offspring. Then the other portions are complemented
orderly from the original parents. Igbal et al. [42] presented a new CMX in 2020, which
differs from prior mapping crossover operators in that it uses cycle-based cut selections
at the parental genes rather than random cuts. The numerical research suggests that the
new CMX outperforms well-known crossover operators such as and PMX in middle-scale
instances. In 2022, Zhang et al. [35] proposed a genetic algorithm with jumping gene and
heuristic operators for TSPs, where the heuristic operators include 2-opt and BHX. The key
distinction between the BHX and Grefenstette’s heuristic algorithm is that the BHX always
chooses the candidate that is closest to the present city out of the four possible candidates.
According to the numerical study, the new algorithm converges far more speedily than the
CMX and other latest crossover operators.

On the other hand, because the strengths of heuristic algorithms have been shown in
TSPs, numerous studies attempt to use heuristic algorithms as crossover operators for GA.
Grefenstette created a probability distribution in 1987 by using the distances between the
chosen city and its four nearby neighbors [57]. Then chose the next visited city at random
from this distribution until all cities were visited. Ulder et al. [58] presented a genetic
local search framework in 1990, which could be combined with 2-opt, Lin-Kernighan
neighborhoods, or any other heuristic algorithms. They concluded that although the
new algorithms might not trump simulated annealing and threshold accepting, they can
nevertheless be advantageously utilized for much larger problems.

Tsai et al. [59] proposed a genetic algorithm with a neighbor-join operator in 2002, and
numerical experiments suggest that the new neighbor-join operator has lower error rates
than 2-opt and swap operator combined with GA in all compared instances, and is nearly
as efficient as 2-opt. In 2014, Wang [32] proposed a hybrid genetic algorithm for TSPs that
combined two local optimization strategies. The computation results demonstrate that
the hybrid genetic algorithm can achieve higher accuracy than the GA in a reasonable
amount of time. However, this method is also sensitive to parameter settings. A list-
based simulated annealing algorithm combined with tour construction algorithms and
enhancement algorithms was developed as a hybrid genetic algorithm by Ilin et al. in 2022
[25]. The tour is built using the nearest insertion algorithm, the cheapest insertion method,
and the other two techniques, and a 2-opt local search is used to improve the tour.

2.2. Layered-based algorithms for TSPs

Even though intelligence algorithms are becoming more sophisticated, they can only
solve a TSP with 2 x 10° noes in 1h by using fast C++ programming and parallel techniques
[29]. Because the small-scale TSPs can be solved efficiently and precisely, some researchers
attempt to cluster the large-scale TSPs into a succession of small-scale TSPs. In this section,
we give a summary of the advancements produced to the clustering-based (layered-based)
algorithms.

As far as is known, Ding et al. [47] may be the first to employ the well-known k-means
clustering algorithm for TSPs. The k-means algorithm is used to partition the large-scale
cities into several small clusters, and a two-level GA is used to generate the final tour.
The low-level GA is used to find the shortest Hamilton cycle inside each cluster, and the
high-level GA is utilized to determine the in and out nodes of each cluster. The numerical
experiment illustrates that the new algorithm handled the 1000 cities instance in 66 seconds
on Matlab, which is substantially faster than the classical genetic algorithm. Due to the
uneven distribution of cities, the scales of clusters produced by k-means may still be quite
large, leading the low-layer computation to take a long time.

In 2009, Yang et al. [50] introduced an adaptive clustering method to reduce the
computational complexity of the sub-clusters. It checks whether each cluster is smaller
than the specified size after k-means and if so, repeats k-means until all clusters are smaller.
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Then, a GA is used to find the visited order of the clusters based on the coordinates of the
clusters’ centers. Finally, the clusters are connected using the nearest nodes between the
adjacent traveled clusters. The numerical experiment shows that the adaptive clustering
method can solve an instance with 85900 cities in 1h. Although Yang’s algorithm ensures
that the low layer is solved quickly, there may be too many clusters produced, resulting in
slow computation of the high level.

The influences of different clustering and intelligence algorithms combined for layered
algorithms were first investigated by Phienthrakul [60] in 2014. He developed a greedy
cluster connection procedure and then analyzed the influence of GA and ACO based on
k-means and Gaussian mixer models. The numerical results show that the four algorithms
have only minor differences in accuracy and execution time and can be efficiently applied
to large-scale TSPs.

Although the notion of using a clustering method to solve large-scale TSPs has devel-
oped and grown, the work mentioned above does not verify the algorithms’ efficacy for
TSPs with more than 10° nodes. Wu et al. [7] investigated large-scale laser engraving in
2020, which is a widely used technology in modern production and can be represented as a
TSP. They suggested a new two-layered ant colony system algorithm (TLACS) based on
k-means, in which the ACS optimizes the visited order of clusters, and the start point and
the end point for each cluster are determined. After the start point and the end point of
each cluster have been determined, the local traveling path of each cluster can be depicted
as a WSP. The ACS will then be used to find the shortest route of each groups. Finally,
all groups are connected by the order and entrance and exit nodes, and the global path is
determined. The numerical experiment shows that the TLACS can solve the large-scale
TSPs with 2 x 10° nodes approximately in 1h.

Naturally, based on clustering algorithms, the two-layered method could be expanded
to the three-layered. This concept was realized recently by Liang et al. [51]. Firstly, they
applied k-medoids algorithm to divide the large-scale instance into some medium-scale
groups, and then applied k-medoids algorithm for all medium-scale groups again to divide
them into small-scale groups. The authors then proposed a three-layered evolutionary
optimization framework comprised of two GAs and a parallel multifactorial evolutionary
algorithm (3L-MFEA-MP). Their results show that three-layered algorithms have two main
advantages over two-layered algorithms. One is speeding up the computation, while
the other is that the three-layered algorithms reduce path length by almost 30% on four
large-scale instances.

As can be seen, the global tour generated by the two-layered or three-layered al-
gorithms is rough and unrefined, so a further optimization phase is necessary. In 2018,
Liao and Liu [61] first applied the k-opt algorithm to optimize the tour generated by the
hierarchical hybrid algorithm, which is a method proposed by them based on ACO and
density peaks clustering algorithms. Although their results demonstrate that k-opt will
significantly improve the proposed HHA’s performance, the numerical experiments only
test on the medium-scale instances that no more than 3038 cities. We remark that the
computational complexity of k-opt is usually not affordable [62], so the direct application
to complex issues is not feasible.

3. IGA for TSPs and WSPs

The GA is a popular optimization algorithm and is frequently applied to TSPs. As
the main idea of the adaptive layered clustering framework is to break down a large-scale
problem into a series of small-scale problems, GA is suitable for these sub-tasks. However,
the poor convergence speed and accuracy of the traditional GAs will increase the total time
consumption of the new framework. In this section, a novel IGA is introduced to fast and
precisely solve small-scale TSPs and WSPs with the following key modifications: a hybrid
selection algorithm is introduced; a selective bidirectional heuristic crossover is adopted
to speed up the convergence; a hybrid mutation operator is suggested to jump the local
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optimal; a simplified 2-opt is used to balance the convergence speed and global searching
capability.

3.1. Path encoding and population initialization

Path encoding is the fundamental task involved in using GA. Due to the conclusion in
[56], one of the most intuitive and high-performance route encoding methods for TSPs is
path representation. In path representation, all cities are encoded as unique integers and
arranged into a chromosome. The position in the chromosome indicates the visited order of
the city, thatis fori,j = 1,2, - -, n, if city i is the j-th element in a chromosome, then city i is
the j-th to be traveled. The initial population will impact both the rate of convergence and
the capacity of global searching for GA. In this study, the initial population is generated
randomly, and then a 2-opt local search is applied to improve the quality of the initial
population.

3.2. Fitness function and selection operator

The role of the selection operator is to choose some eligible chromosomes for the
next generation; a decent selection operator will help to converge rapidly and prevent
local optimal, but a poor one will not. Because the objective values of TSPs are not stable,
a proper transformation for the objective values is required, which is called the fitness
function[35].

Assuming there are N individuals in the population, C; is the i individual, L(C;)
represents the tour length of C;, f(C;) denotes the fitness value of C;. Some well-known
fitness functions are as follows:

*  Reciprocal-based fitness function is one of the most used fitness, it is the reciprocal of
objective function value:

f(Ci) =1/L(Cy). 1

e Linear order-based fitness function that sorts individuals in ascending order by objec-
tive function values, where R(C;) denotes the order of C;. Then f(C;) presented by:

N — R(C;
fley = NoRE) @
e Nonlinear order-based fitness function also sorts the individuals, but f(C;) defined
by:
£(C) = a1 = )R, ©)

where « is a constant in [0.01,0.3].

Some deserving individuals will be picked for the following generation once all the
fitness values of individuals have been evaluated. Once all fitness values of individuals
have been confirmed, some good individuals will be selected for the next generation. The
most common selection method is roulette wheel selection. If M individuals must be chosen
for the next generation, the main steps are as follows:

Step 1: Calculate the selection probability of C;:

N f(G)
p(Ci) 72]22]1 ©) 4)

Step 2: Generate a random number P between 0 and 1.

Step 3: Select the first C; satisfied P < ¥ _; p(Cy).

Step 4: Remove C; from the population, then return to the first step until all N
individuals are selected.

The pseudo-code of the proposed hybrid selection algorithm is shown in Algorithm 1.
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Algorithm 1 Hybrid selection algorithm

Input: A set of N individuals, the number of selected requirements M, current iteration number of GA Ifer.
Initialize parameters: « = 0.15, and rq, r, are two random numbers.
Output: A set of M selected individuals.

1: Calculate the objective value for each individuals.

2: if ry > 1/Iter then

3: if rand > r, then

4 Calculate fitness values by nonlinear order-based fitness function.
5 else
6: Calculate fitness values by linear order-based fitness function.
7 end if
8 Select M individuals by roulette wheel selection.
9: else
10:  Calculate fitness values by reciprocal-based fitness values.
11:  Select M individuals according to the smallest fitness values.
12: end if

3.3. Selective bidirectional heuristic crossover

The crossover operation is the primary role of GA in producing new offspring. As
stated in Section 2.1, there are numerous crossover operators proposed for path representa-
tion. Recently, Zhang et al. [35] presented a novel BHX, and the numerical results show its
excellent effectiveness in enhancing the quality of the offspring.

The drawback of the BHX is that two parents will only have one unique offspring,
which will reduce the size of the population gradually. Hence, a method of enriching the
population must be developed to use BHX. As all know that monogamy is not the only type
of mating system in nature, polygynandry is another prevalent mating system in species
that live in troupes. An individual can mate with several individuals, and the number of
mates is governed by individual quality. Inspired by the polygynandry mating system, a
selective bidirectional heuristic crossover (SBHX) has been developed, in which the good
gene of a parent may be preserved for two or more offspring.

Assuming there are N individuals in the current population, M offspring should be
created. The main steps of SBHX are as follows:

Step 1: The fitness values of individuals are computed according to the reciprocal-
based fitness function Eq. (1).

Step 2: The probability that an individual will be selected is determined by Eq. (4).

Step 3: The roulette wheel selection is used to choose two individuals C; and C; based
on the probability distribution.

Step 4: The start and end points are connected in C; and Cy, and then each chromosome
becomes a ring. Let O and O; represent the two rings.

Step 5: Randomly generate a start city s between 1 and 7, and a blank offspring Cex:.

Step 6: Starting from s in Oy, searching for the first city O] that Cy.y+ has not yet visited
on the right; O! on the left. It is the same for O, remark the two cities as O} and O5.

Step 7: Compute the distance between s and the four feasible cities found by Step 6.
Then choose the nearest city to s and replace s as the selected city.

Step 8: Return to Step 6. until Cyeyt has been filled. Then the Cy.y; is a offspring
generated by C; and C;.

Step 9: Continue with Step 3 until all M offspring are determined.

3.4. Mutation operator

The mutation operator is another important phase of GA. Similar to how genetic
mutations never stop happening and are essential to biodiversity, the mutation operator
also enriches population diversity, which prevents the GA from falling into a local optimal.
Lots of swap, inversion and heuristic mutation operators have been applied in GA for TSPs,
see [32,43]. Suppose that there are 7 cities in the i-th individual C;, To employ the swap or
inversion mutation operator, two integers p; and p, between [1, n] will be generated firstly.
In the swap operator, the two cities Cip 'and Cf * are exchanged. In the inversion operator,
the gene fragmentation between p; and p, is reversed.


https://doi.org/10.20944/preprints202302.0412.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 February 2023 d0i:10.20944/preprints202302.0412.v1

8 0of 33

As the heuristic mutation operators usually have high computational complexity, a
hybrid mutation operator combined with a swap mutation operator and inversion mutation
operator is proposed in this paper. Firstly, a mutation probability is set by hand, and then
if individual C; has a chance to be mutated, the probability will control which mutation
operator will be selected. The pseudo-code of the new mutation operator is shown in
Algorithm 2.

Algorithm 2 Hybrid mutation operator

Input: A population of N individuals.
Initialize parameters: The probability p of mutation, the probabilities 1 and 7, to select of mutation operator,
r1 > 1.
Output: The population after mutation.
: for C; in population do
if rand < p then
Randomly generated g € [0, 1].
if ¢ > rq then
The swap mutation operator is used for C;.
else if ¢ > r; then
The inversion mutation operator is used for C;.
else
Continue.
10: end if
11:  endif
12: end for

VRN RN

3.5. Simplified 2-opt local optimization

k-opt is a well-known class of local optimization algorithms, here k is an integer
greater than 1. The first proposed and simplest algorithm of them is 2-opt, which was
developed by Croes [63] for solving TSPs in 1958. Although k-options have better quality
than 2-options when k > 2, they involve high computational complexity. The 2-opt local
optimization applied in GA can improve the quality of the current population and speed up
the convergence under suitable parameters set. However, since BHX and 2-opt are heuristic
algorithms with drawbacks in searching the global optimal, combining them will almost
certainly result in premature convergence. In the proposed improved genetic algorithm, a
simplified 2-opt (S_2-opt) is developed to enhance the quality of individuals after mutation.
The pseudo-code of the S_2-opt for GA is shown in Algorithm 3. The simplified 2-opt
operator has a simple iterative structure, and only one parameter must be set. It can avoid
the local optimal by setting T to a small value or achieve a fast convergence speed by setting
T to large.

Algorithm 3 Simplified 2-opt for GA

Input: A population of N individuals.

Initialize parameters: Max iteration T for simplified 2-opt, the number n of cities in each individual.
Output: The optimized population.

1: for C; in population do

2:  forh=1toTdo

3 Calculate the tour distance d; of C;.

4: Randomly generated p; and p; in [1, n].

5: Inverse the gene fragment between p; and p», set as Cyer-
6.

7

8

Compute the tour length dy of Cyeqp.
if d; > d, then
Replace C; by Cew-

end if
10: end for
11: end for

The main flow of the IGA can be seen in Figure 1, the stop condition of IGA is set as
no improvement of solution in specified iterations. Since the WSP is a TSP with fixed start
and end nodes, it can be solved as a TSP by setting the distance between the start node and
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the end node to —M, where M is a large positive number [6]. With the help of this feature,
the proposed IGA can also be employed to solve WSPs.

I Start I

A 4

Parameters setting

A 4
Initialize population by
simplified 2-opt operator

¢ Yes End

No
\ 4

Selective bidirectional
heuristic crossover

A\ 4

Hybrid mutation operator

A 4
Improve the quality of
population by simplified 2-opt

\ 4
Calculate fitness value
and select

Figure 1. Flowchart of the proposed IGA.
4. The framework of ALC_IGA for large-scale TSPs

In recent years, some two-layered algorithms have been proposed, and they signifi-
cantly reduce the time expenditure for large-scale TSPs. Liang et al. [51] recently proposed
a three-layered algorithm with k-means and indicated that it outperforms two-layered
algorithms by numerical experiments. Notwithstanding, both two-layered and three-
layered algorithms may still have medium-scale or large-scale groups. Naturally, this will
require a significant amount of time to solve the underlying problems. Thus, upgrading
the two-layered and three-layered algorithms to the adaptive layered algorithm stands to
reason.

We propose a brand-new framework for adaptive layered clustering that takes into
account the IGA created in the previous section. The framework is divided into two
parts: the first is applying clustering and IGA to initialize the solution, and the second is
optimizing the initial solution. Based on our new algorithm, the large-scale TSPs can be
transformed into solving some TSPs and WSPs that are smaller than the specified size. The
processing flows are illustrated in Figure 2, and the details of solution initialization and
optimization are represented subsequently in Sections 4.1 and 4.2.

4.1. Solution initialization

Assuming that there are N cities in a large-scale problem G, the cities are designated by
€1,¢2,- - ,cN, and d(a, b) denotes the distance between vectors a and b, then the proposed
ALC_IGA processes by following steps:

Step 1: Specify a positive integer M; if the size of the TSPs is smaller than M, then the
IGA can solve it no more than T; seconds in most cases.
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Size of 4 larger
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Figure 2. Main steps of the novel ALC_IGA.

Step 2: The k-means algorithm is used to cluster the N cities into k; clusters, where
ki is an integer no greater than M. Then there are k; groups {G1, Gy, - - -, Gy, }, and the
coordinate vectors of centers for the groups are {V(Gy), V(Gz),- - -, V(Gy, )}, the size of
groups denote as {S(G1),S(G2),- -+, S(Gy,) }-

Step 3: Determine the traveling order of the groups; this is referred to as a TSP. If all
the sizes of the groups are less than D, here D, is a positive integer, then the distance
between G; and Gj is defined as the minimum distance between two points that belong to
G; and G; respectively. Otherwise, the distance is set to the distance between the centers of
groups. Then there is a distance matrix that can be used to solve the k; cities TSP using
IGA. Make a note of the visited order as {O(G1),0(G2),- -+ ,O(Gy,) }-

Step 4: Determine the entry city antry and the exit city G¢*" for each group. Based on
the order of visits came by Step 3., assume G; is visited directly after G;, then the exit of G;
is the closest city of G; to Gj, the entry city of G; is the closest city of G; to G;.
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Step 5: After determining the entry and exit cities in each group, evaluating the
shortest route from entry to exit of each group is a WSP. If the size of G; is smaller than M,
the IGA is used to find the optimal path P(G;) of G;; if the size of G; is greater than M, the
k-means algorithm is applied for G; again to reduce the computational complexity, see Step
6.

Step 6: If the size of Gy, is greater than M, then divide Gy, into ky;, groups {Gy1, Gyp, - - -,
Ghiky, }, here ky, < M, denote the coordinates of centers for each group as {V(Gyp1), V(Gyz),
-+, V(Gp,,) }- The difference between this step and Step 2 is that the entry and exit cities

of G are not specified. If Gy; includes Gzntry and Gy; includes GZ"”, then Gy,; is set as the

start group, and Gy is set as the end group. Then finding the optimal route from GZ”W

to Gy; is a WSP, not the TSP in step 3. The distance between Gj,; and Gj; is the same as
defined in Step 3. As the distance is determined, the IGA is applied to find the visit order
{O(Gn1),0(Gn2), - -+ , O(Ggy,) }-

Step 7: Return to Step 4 until all the sizes of groups are smaller than M, then the visited
order of each group is determined, and the optimal path of each group is recorded.

Step 8. Combine the optimum path of each group by the order in each layer from the
bottom to the top layer.

An example of 100 cities TSP and M set to 20 is shown in Figure 3. In the first layer, the
cities have been divided into to groups Gy, G by k-means, then the visit order found by IGA
is O(G1) = 1and O(G,) = 2. On the one hand, since the size of G, equals M, the visit route
P(Gy) of the 20 cities in G could be solved by IGA quickly. On the other hand, because
there are 80 cities in Gy, that is larger than M, so G need to be divided into small groups
again. Repeat the procedures until all of the group sizes are less than M, resulting in 6
groups and 4 layers being determined during the solution initialization phase. To combine
the six routes, first from the bottom layer, connect P(Gj311) with P(Gi312) sequentially,
and obtain P(Gy31) = {P(Gi311), P(G1312) }- Then in the third layer, connect P(Gi31) with
P(Gy3p) , then P(Gy3) = {P(Gy31), P(Gi32)}. Following these steps, the path for the 100
cities TSP is eventually {P(G1311), P(G1312)r P(G132), P(GH), P(Glz), P(Gz) }

Input layer
REREPLEEE
G oriiniini G,
0G)=1 Liiiiiiiis 0(G,)=2 Ist layer
P(Gy)
2nd layer
3rd layer
4th layer

[
0(Gyy =1
P(Gyyy))

Figure 3. An example of the ALC_IGA on a 100 nodes instance. The black lines represent the solution
initialization phase, and the green lines denote the solution optimization phase.
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4.2. Two phases 2-opt for solution optimization

Because of the clustering algorithm used, even if the routes in each cluster are optimal,
the entire path is nearly impossible to achieve optimality. In [61], Liao and Liu first applied
the 2-opt and 3-opt operators to optimize the initial route while the clustering algorithm
involved, and the numerical studies show a marked improvement when k-opt is used.
Nevertheless, when the number of cities in the problem is exceptionally enormous, the
k-opt struggle to work.

To improve the quality of the initial solution in an affordable time, a two phases
simplified 2-opt algorithm (TS_2-opt) is given in Algorithm 4. The TS_2-opt is aimed to
optimize the routes and orders of all the groups which belong to a cluster at a higher layer.
Once the solution is initialized, TS_2-opt is used to optimize the route of each group in the
penultimate layer and repeated layer by layer until the top layer is optimized. Depicted
in Figure 3, the green lines show the workflow of solution optimization. Firstly, from
the bottom layer, the routes P(Gj311) and P(Gi312) are combined by TS_2-opt to the local
optimal routes P(Gi31)°?". Then the two routes in the third layer also are optimized to
P(G13)°P! by using TS_2-opt. Following these steps, until the final solution P(G)%! is
obtained.

Algorithm 4 Two phases simplified 2-opt algorithm

Input: A batch of groups {G;... i1, G,'.”jz, cee, G,-__A]-h}, suppose the order of them is 1,2, - ,h, and the travel
routes of them {P(G;..j1), P(Gj..j2), - - -, P(Gi..jn) }-
Initialize parameters: The first phase max iteration L;; the second phase max iteration Ly; the length selected
for optimization R.
Output: An optimized route P(G;...;) for G;...;.

1: Compute the distance dyy, of the tour {P(G;...;1), P(Gi...;2), - , P(Gi..jn) }-

2: foritery =1to L, do

3:  Randomly generated two different integers p;, p» between [2,h — 1].

4:  Denote the route between G;...j,, and G;...j, as P[,’lz ; denote the route between G;...j; and G;...j, 1 as Pf -1 ;

denote the route between G;...j,, and G;...j; as P;‘z 11
P2

Inverse Py?, denote the new route as I nv(P}ff).
Generate two routes P; and P, where P; is combined by the last R elements of P{] 171 and the first R
elements of Inv(P)?); P, is combined by the last R elements of Ino(P)?) and the first R elements of PII;Z e
Denote the new order of groups as {O(G;..;1), O(G;...;2),- -+ ,O(G;...jn) }, the sizes of groups is noted as
{5(Gi..1), S(Gi...p), - -+, S(Gioojn) }-
7: The Algorithm 3 with max iteration number L, is applied to optimize P; and P,. Denote the new routes as
prt and ngt.
8:  Replace P, and P, in {P/ | no(Ph?), P;’Z 1} with P} " and P;pt, respectively. Denote the new route as
Popt.
9: Compute the distance dopt of Popt-
10: if dyps > dgpt then

11: Assign dop; to dpys.

12: Divide P,y into h segments { Py, , Py, - - -, P, }, here S(Py, ) is equal to {S(G;...j, ) [r = my .
13: end if

14: Replace {P(Gi,.jl),P(Gim]‘z), e /P(Giwjh)} by {Pml,sz, e ,th }

15: end for

16: Output R = Popt.

Suppose there are three groups {Gi1, G12, G13} belong to the same higher group Gj,
and the visit orders of them are {2,3,1} respectively. Figure 4 illustrates the major process-
ing of TS_2-opt in detail. Each cluster is represented by a different color, while the start and
end locations are marked by larger shapes. In Step 1, the three routes are arranged by order
and assume the Gy is chosen, then the path of Gy; is inverted. In Step 2, the segments at
the junctions of the clusters are determined according to R, where R equals 5 for simplicity.
The next step is to optimize the two segments provided by Step 2. In Step 4, three new
routes are generated according to Step 3 and the input routes. Once all four steps have
been completed, return to Step 1 until the termination condition is met.
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Figure 4. The major processes of TS_2-opt for optimizing three subgroups.

We remark that the purpose of the TS_2-opt is not to reach the global optimal, but
rather to optimize the visit orders and junctions between groups that belong to the same
group at the higher layer. Despite sacrificing some precision, the computation speed of
TS_2-opt is very fast, which is critical in large-scale TSPs.

4.3. Parallelability and computational complexity analysis

We show the highly parallelizable capability of the proposed ALC_IGA. In the phase
of solution initialization, the operations for clusters are independent in each layer; the
operations of subgroups that do not belong to the same cluster in different layers are also
independent. As an illustration, there are three tasks in the third layer shown in Figure 3,
find the visit route for G11 and Gip, and apply k-means to divide G35 into small groups. As
they are stand-alone, if there are three or more cores of the CPU, they can be computed on
different cores simultaneously. Furthermore, if k-means is faster than the other two tasks,
then the computations of G131 and Gi3; in the next layer can also be allocated to the free
cores even if P(Gy1) and P(Gyy) are still being calculated.

In the second phase of ALC_IGA, solution optimization also can be parallelized, but
the parallel effectiveness is not as high as in the first phase. Firstly, the complex calculation
in solution optimization is only the optimization of the junctions, but there are only two
junctions in each iteration, so parallel computing is unnecessary. Secondly, the optimization
of the solution starts from the bottom and ends at the top layer, but the higher-layer
optimizations must wait for lower-layer optimizations to finish. As the example shown
in Figure 3, there is only one task in the fourth layer, which is connecting G1311 and Gi312.
Because the route of Gj3; is not determined before the computation of the fourth layer is
finished, the free cores can not be used to combine Gi3; and Gi3; in the third layer.

Notwithstanding, parallel techniques can be used in each layer to speed up compu-
tation while the scale of the problem is very large. The computational complexity of the
major stages of the proposed ALC_IGA is presented in the remainder of this section.

For the sake of simplicity, it is assumed that there are 7 cities. First and foremost, the
times of TS_2-opt used is no more than n, and the execution time of TS_2-opt is bounded
if the parameters are set. Thus the complexity of the solution optimization phase is less
than O(n). The computational complexity analysis of solution initialization can be split
into two categories: best and worst. Considering the best-case scenario, if n = m*, where
k is a positive integer, assume that each cluster’s size equals m after clustering. Then the
procedures of solution initialization include m("m;}n times clustering and =1 times IGA.

m—1
Once if the parameters of IGA are determined, the running time of IGA is less than T;, and

the running time of IGA used in the first phase is less than ,’:1:11 T. It is well known that
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the computational complexity of k-means is O(pgq), where p are the size of data and ¢ is
the number of cluster centers. Therefore the computational complexity of the first time
k-means used is O(mn), and the computational complexity of k-means used in the second
layer is mO(n), and the last layer is m*~20(m?m). According to n = m¥, the complexity of
k-means implemented in the ALC_IGA is O(mnlog,, i), that is quasilinear computational
complexity. Consequently, the whole computational complexity is O(nlogn) for ALC_IGA
in the best condition.

In the worst possible scenario, each clustering results in m — 1 groups that each
contains just one city and one group that contains all the remaining cities. Suppose
n = k(m — 1) + m, then there will be k times clustering and k + 1 times IGA. The time
of IGA applied is no more than Z=2 T, it is O(n). Similar to the best-case analysis, the

m—1
computational complexity of clustering in the worst condition is O(1n?). Accordingly, the
computational complexity of ALC_IGA in the worst condition is O(n?).

In summary, the computational complexity of the ALC_IGA ranges from O(nlogn) to
O(n?). The computational complexity of ALC_IGA is closer to O(n log ), however, in the
majority of cases. This is supported by the numerical experiments presented in Section 5.

5. Numerical results and discussions

Four-part numerical experiments are presented in this paper to illustrate the effec-
tiveness of ALC_IGA. First, Section 5.4 proves that IGA is substantially superior to GA
and ACS in terms of accuracy and convergence speed. The implications of the primary
parameter setting performance on ACL_IGA are examined in the second part. The third
part proves the superiority of ALC_IGA on middle-scale benchmark datasets over two
two-layered algorithms from the literature. The last part proves the excellent performance
and parallelizability of the proposed ALC_IGA in comparison to some state-of-the-art
algorithms.

5.1. Experimental setting

In this study, all experiments were computed on a Dell PowerEdge R620 with two
Intel Xeon E5-2680V2 10-cores processors and 64.0 GB of 1066 MHz DDR3 memory under
Windows 10 OS. The speed of all cores is locked to 2.80 GHz without turbo boost technology
and disable hyperthreading to ensure the fairness and stability of numerical experiments.
All the programs are edited and run on MATLAB R2020a, the only parallel technique used
is the parallel computing toolbox in MATLAB. By default, each instance was computed
20 times under the same setting. In detail, if the algorithm is single-threaded, execute the
instance on 20 cores simultaneously; if the algorithm is multi-threaded, run them one by
one. The sources of GA, ACS [23], IGA, two-level genetic algorithm (TLGA) [47], TLACS
[7], and ALC_IGA are published on GitHub ! and the instances involved are also on this
repository.

5.2. Benchmark instances

Numerous instances are used to study the effectiveness of the proposed IGA and
ALC_IGA. The major instances come from three sources: the famous benchmark TSP
datasets TSPLIB ?; the TSP Test Data gathered by William Cook for large instances *; hard to
solve instances of the Euclidean TSPs (TNM) [64]. The TSP Test Data used in this research
can be divided into three categories: National TSPs; VLSI TSPs; Art TSPs. And the TNM
data generated by the C++ source provided by the authors of [64]. A two-dimensional
Santa * and a three-dimensional Gaia ° with millions of nodes, also be investigated.

https://github.com/nefphys/tsp
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https:/ /www.math.uwaterloo.ca/tsp/data/index.html
http:/ /cs.uef.fi/sipu/santa/

https:/ /www.math.uwaterloo.ca/tsp/star/gaial.html

G W N =


https://github.com/nefphys/tsp
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://www.math.uwaterloo.ca/tsp/data/index.html
http://cs.uef.fi/sipu/santa/
https://www.math.uwaterloo.ca/tsp/star/gaia1.html
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For various experimental tasks, the instances are classified into three categories: small-
scale TSPs (n < 500), medium-scale TSPs (500 < n < 4 x 10%), and large-scale TSPs
(n > 4 x 10*). Small-scale TSPs are used to study the effectiveness of IGA; middle-scale
TSPs are employed to tune parameters and compare ALC_IGA with TLACS and TLGA in a
single thread; large-scale TSPs are adopted to compare ALC_IGA with some state-of-the-art
algorithms in parallel and verify the efficiency of ALC_IGA.

5.3. Evaluation criteria
The following are the evaluation criteria for the algorithmic analyses on instances:

*  The minimum objective value among all runs Rp,g;.

*  The average objective value among all runs Rgyq-

*  The standard deviation of results among all runs Rg;;.
e  The best known solution of the instance BKS.

*  The deviation percentage of Ry, is defined by:

Rpest — BKS

PDbest = BKS

% 100%. 5)

*  The deviation percentage of Rsyg is defined by:

Ravg — BKS

e X 100%. (6)

P Davg =
*  The running time Tg; in seconds while Ry, found.
*  The average of the running time in seconds among all runs Ty,.
e The count of the best Ry, Ravg, Rgpg and Toyg are denoted as Cry, Cra, Cotd, Crae

5.4. Performance comparison of IGA, GA and ACS

In addition to clustering, the most time-consuming part of ALC is eliminating the
sub-TSPs. That is why the IGA proposed. To illustrate that IGA is efficient on TSPs, a
comparison of IGA, GA, and ACS is imperative, and 42 small-scale benchmark instances
are used in this numerical comparison. The parameters setting of IGA were as follows: the
population was set to 0.4 times the number of nodes; the maximum number of iterations
for S_2-opt was set to 20 times the number of nodes; the parameters of selection operator, rq
and rp, were set to 0.15 and 0.5; the probability of mutation was set to 0.05. The population
size of GA was set to 0.8 times the size of the instance and the mutation number was always
set at three individuals. The parameters setting of ACS is as same as the literature [7].
Finally, the termination condition for the three compared algorithms is when there has
been no improvement in the population for X iterations. In this experiment, X were set
to 100, 100, and 10* for IGA, ACS and GA, respectively. The results of the comparison are
displayed in Table 1, various evaluation criteria are considered, include Rp,s, PDpest, Ravg,
PDgvg, Rsta, Trys Tavg, Cry/ Cra/ Csta/ Cra and the average value for PDgyg, Req and Tpyg.
The best value of Rpest, PDpest, Rstq and Tpyg are set in bold.

Table 1. Results obtained by IGA, GA and ACS on 42 small-scale instances.

Instance IGA GA ACS

Name BKS Rbest (PDbest) Rstd TRb Rbest (PDhest) Rstd TRh Rbest (PDbest) Rstd TRb
Ravg (PDuvg) Tavg Ravg (PDavg) Tavg Ravg (PDuvg) Tavg

eil51 426 426 (0) 0.37 194 428 (0.47) 3.18 9.02 427 (0.23) 403 3.8
426.85 (0.2) 1.72 436 (2.35) 11.42 430.95 (1.16) 2.56

berlin52 7542 7542 (0) 0 1.81 7542 (0) 206.62 8.85 7542 (0) 103.39 3.56
7542 (0) 1.71 7836.95 (3.91) 6.14 7600.25 (0.77) 2.3

continued on next page
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Table 1. (continued).
Instance IGA GA ACS
Name BKS Rpest (PDpest) Rsa Tre Rypest (PDpest) Reta Tro Rpest (PDpest) Rog  Trp
Ravg (PDuvg) Tavg Ravg (PDavg) Tavg Ravg (PDavg) Tavg
st70 675 675 (0) 3.1 3.49 675 (0) 8.3 16.28 682 (1.04) 7.2 591
676.65 (0.24) 2.88 689.45 (2.14) 17.56 696.4 (3.17) 4.39
pr76 108159 108159 (0) 465.2 4.89 108936 (0.72) 3423.5718.91 112647 (4.15) 657.37 7.05
108611.3 (0.42) 3.6 113302.85 (4.76) 20.53 113573.65 (5.01) 7.3
eil76 538 538 (0) 2.6 412 549 (2.04) 843 16.76 539 (0.19) 422 78
540.3 (0.43) 3.57 558.65 (3.84) 26.14 546.25 (1.53) 9.55
rat99 1211 1211 (0) 5.4 6.35 1230 (1.57) 19.24 2594 1229 (1.49) 6.95 15.89
1217.25 (0.52) 5.92 1276.5 (5.41) 23.33 1239.05 (2.32) 15.39
kroA100 21282 21282 (0) 49.28 5.94 21389 (0.5) 510.46 29.03 21867 (2.75) 246.01 16.23
21327 (0.21) 5.53 22134.75 (4.01) 21.58 22310.65 (4.83) 10.49
rd100 7910 7910 (0) 12.88 6.04 7965 (0.7) 181.42 29.27 8074 (2.07) 80.08 16.68
7917.3 (0.09) 5.66 8332.3 (5.34) 40.3 8195.65 (3.61) 23.02
eill01 629 630 (0.16) 449 792 638 (1.43) 773 294 635 (0.95) 11.26 15.31
636.45 (1.18) 5.76 658.35 (4.67) 22.05 661.2 (5.12) 16.56
1in105 14379 14379 (0) 43.05 7.82 14531 (1.06) 319.22 31.11 14486 (0.74) 60.69 17.37
14414.05 (0.24) 5.99 15080.8 (4.88) 26.73 14596.25 (1.51) 14.62
prl07 44303 44303 (0) 119.04 9.49 44577 (0.62) 728.56 33.58 44707 (0.91) 198.61 15.89
44460.9 (0.36) 6.88 45283.25 (2.21) 38.55 45054.75 (1.7) 13.55
pri24 59030 59030 (0) 270.36 10 59838 (1.37) 746.56 40.4 59210 (0.3) 326.31 22.74
59357.15 (0.55) 11.51 60725.3 (2.87) 35.17 59664.95 (1.08) 22.61
bier127 118282 118423 (0.12) 352.24 14.27 120538 (1.91) 2110.4555.57 121306 (2.56) 643.63 21.38
118982.65 (0.59) 15.57 124348.1 (5.13) 46.66 122591 (3.64) 20.44
ch130 6110 6128 (0.29) 3235 134 6221 (1.82) 87.47 55.16 6292 (2.98) 3214 2649
6178.45 (1.12) 12.96 6397.35 (4.7) 66.31 6331.55 (3.63) 21.52
xqf131 564 565 (0.18) 3.71 1332 577 (2.3) 10.46 48.99 593 (5.14) 426 303
575.05 (1.96) 11.29 594.85 (5.47) 46.33 599.3 (6.26) 63.67
pri36 96772 96870 (0.1) 691.4 23.05 97605 (0.86) 1340.6468.59 105463 (8.98) 657.71 30.5
97810.2 (1.07) 20.19 100223.55 (3.57) 75.11 106761.45 (10.32) 19.16
prl44 58537 58537 (0) 23.66 22.16 58746 (0.36) 1379.6562.2 58701 (0.28) 87.31 30.3
58561.15 (0.04) 16.88 60252.7 (2.93) 48.28 58824.15 (0.49) 46.68
kroA150 26524 26583 (0.22) 137.74 19.81 27276 (2.84) 499.34 71.77 27840 (4.96) 224.01 43.56
26758.25 (0.88) 18.18 28026.55 (5.66) 71.92 28334.55 (6.83) 59.19
ch150 6528 6533 (0.08) 8.55 1491 6697 (2.59) 180.44 78.56 6720 (2.94) 28.95 35.78
6556.85 (0.44) 12.31 6914.5 (5.92) 84.22 6758 (3.52) 29
prl52 73682 73682 (0) 207.17 16.63 74424 (1.01) 983.05 74.12 74849 (1.58) 410.16 31.11
73968.05 (0.39) 16.26 75970.1 (3.11) 65.55 75539.3 (2.52) 44.05
ul59 42080 42080 (0) 185.91 16.25 42396 (0.75) 138.31 56.49 43582 (3.57) 406.45 44.13
42201.9 (0.29) 12.35 42470.45 (0.93) 41.8 44194.8 (5.03) 39.03
rat1l95 2323 2332 (0.39) 9.68 32.84 2402 (3.4) 31.16 119.44 2402 (3.4) 957 71.04
2343.25 (0.87) 48.16 2450.75 (5.5) 93.94 2422 .45 (4.28) 90.99
d198 15780 15885 (0.67) 76.13 40.34 15979 (1.26) 179.24 163.14 16487 (4.48) 188.48 63.99
15993.45 (1.35) 50.12 16270.4 (3.11) 147.3 16731.7 (6.03) 93.31
kroA200 29368 29380 (0.04) 112.12 31.57 30196 (2.82) 44898 172.31 30798 (4.87) 256.21 66.66
29526.75 (0.54) 25.16 30935.75 (5.34) 160.72 31320.5 (6.65) 79.73
pr226 80369 80500 (0.16) 255.01 46.71 81124 (0.94) 1789.16168.17 83027 (3.31) 435.43 84.47
80883.05 (0.64) 39.63 84492.25 (5.13) 154 84005.2 (4.52) 113.67

continued on next page
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Table 1. (continued).
Instance IGA GA ACS
Name BKS Rpest (PDpest) Rsa Tre Rypest (PDpest) Reta Tro Rpest (PDpest) Rog  Trp
Ravg (PDuvg) Tavg Ravg (PDavg) Tavg Ravg (PDavg) Tavg
xqg237 1019 1027 (0.79) 4.04 4236 1062 (4.22) 16.54 222.25 1081 (6.08) 11.84 105.78
1031.35 (1.21) 34.42 1090.6 (7.03) 202.02 1096.4 (7.6) 83.27
gil262 2378 2381 (0.13) 10.73 70.38 2491 (4.75) 346 3285 2564 (7.82) 18.17 118.42
2392.55 (0.61) 76.99 2541.8 (6.89) 325.98 2594.85 (9.12) 166.12
pr264 49135 49135 (0) 243.7 73.85 50411 (2.6) 1627.27380.4 51893 (5.61) 333.2 135.88
49287.35 (0.31) 92.22 53602.05 (9.09) 497.31 52451.6 (6.75) 256.38
pr299 48191 48248 (0.12) 330.8 108.56 50372 (4.53) 1029.18433.79 52663 (9.28) 330.56 182.62
48645.35 (0.94) 91.98 51657.1 (7.19) 472.81 53056.7 (10.1) 221.02
1in318 42029 42203 (0.41) 310.79 131.16 44466 (5.8) 838.64 573.21 46273 (10.1) 344.83 198.23
42630.25 (1.43) 168.95 45454.3 (8.15) 656.22 47145.25 (12.17) 156.24
pma343 1368 1373 (0.37) 4.57 125.75 1423 (4.02) 15.67 652.51 1478 (8.04) 15.32 281.64
1379.5 (0.84) 82.22 1450.25 (6.01) 792.98 1512.55 (10.57) 462.81
pka379 1332 1337 (0.38) 5.89 175.62 1390 (4.35) 18.06 898.63 1416 (6.31) 18.21 373.21
1344.7 (0.95) 173.24 1424.55 (6.95) 910.52 1442.9 (8.33) 387.1
bcl380 1621 1630 (0.56) 8.52 125.36 1723 (6.29) 29.13 1106.53 1732 (6.85) 13.06 368.99
1644.05 (1.42) 94.35 1789.95 (10.42) 1344.2 1753.1 (8.15) 475.46
pbl395 1281 1288 (0.55) 5.57 181.8 1369 (6.87) 19.78 1265.45 1427 (11.4) 10.27 347.13
1300.6 (1.53) 184.75 1401.95 (9.44) 1269.97 1444.7 (12.78) 563.52
rd400 15281 15350 (0.45) 74.95 261.87 15993 (4.66) 196.73 1581.54 17338 (13.46) 105.81 419.85
15512.55 (1.52) 200.67 16414.55 (7.42) 1617.67 17519.65 (14.65) 375.42
pbk411 1343 1359 (1.19) 7.02 216.66 1421 (5.81) 2453 1419.09 1492 (11.09) 15.07 462.24
1368.15 (1.87) 202.87 1472.55 (9.65) 1940.95 1518.5 (13.07) 447.8
fl417 11861 11910 (0.41) 49.41 218.09 11993 (1.11) 338.81 1548.44 12559 (5.88) 101.44 432.18
11973.75 (0.95) 253.43 12488.4 (5.29) 1585.45 12664.55 (6.77) 554.4
pbn423 1365 1369 (0.29) 8.61 214.1 1459 (6.89) 29.16 1508.73 1515 (10.99) 15.95 504.08
1386.45 (1.57) 231.72 1512.15 (10.78) 1677.52 1545.6 (13.23) 542.73
pbm436 1443 1446 (0.21) 719 189.32 1538 (6.58) 22.71 1881.99 1570 (8.8) 11.29 527.42
1458.55 (1.08) 238.13 1594.9 (10.53) 2523.16 1595 (10.53) 744.35
pr439 107217 107666 (0.42) 754.5 264.02 110702 (3.25) 2445.652097.05 117852 (9.92) 1099.39464.33
108535.5 (1.23) 218.1 115479.95 (7.71) 2074.73 120033.4 (11.95) 463.28
pcb442 50778 51380 (1.19) 176.52 332 54091 (6.52) 990.52 1888.44 56711 (11.68) 348.22 554.25
51597.35 (1.61) 443.97 55595.1 (9.49) 1889.08 57762.95 (13.76) 572.78
d493 35002 35484 (1.38) 194.6 469.09 36888 (5.39) 336.55 3096.78 38744 (10.69) 41242 771.14
35750 (2.14) 650.09 37488.9 (7.11) 3437.53 39710 (13.45) 753.55
Average 0.27 125.45 90.43 2.79 556.08 585.95 5.19 197.51 192.60
Crp/Cra/Csta/Cr, 42/42/39/41 2/0/0/0 1/0/3/1

From Table 1, the Cry,/Cra/Csta/ Cra of IGA, GA and ACS are 42/42/39/41,2/0/0/0
and 1/0/3/1 respectively. It is clear that the innovative IGA consistently produces superior
results over GA and ACS. Additionally, the average computation time of IGA is the least in
97% instances, and its stability also has a far higher level than the other two algorithms.
More specifically, the average PDy,s; of IGA is 0.27%, but GA and ACS are 2.79% and 5.19%,
respectively 10 times and 19 times of IGA. In almost all cases, the PD,,g of IGA is less
than 2%, but GA and ACS are often greater than 5%, especially ACS, even greater than
10% in some instances. In the view of stability, the average of the evaluation criteria Ry
of IGA is 125.45, only 22.56% of GA and 63.52% of ACS. The average computation time
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of IGA is 90.43 seconds, which is less than one-sixth as long as GA or half as long as ACS.
The above discussion indicates that all the accuracy and the convergence speed of IGA are
substantially superior to the traditional GA and ACS, which proves that the proposed IGA
can reduce the computation time and improve the solution of ALC_IGA.

In Figure 5, the convergence speeds of IGA, GA, and ACS are compared under four
instances which sizes ranging from 51 to 226. It can be observed that the convergence
speed of IGA in the initial stage is much faster than that of GA and ACS. This is due to the
heuristic crossover SBHX and the local search S_2-opt combined in IGA.
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Figure 5. Comparison of the convergence speed of IGA, GA and ACS on 4 instances.

We know that the suggested IGA can be utilized to solve WSP as stated in Section 3,
with just a minor adjustment to the distance between the start and end cities. In this part,
to validate the effectiveness of IGA for WSP, the 42 instances in Table 1 are reinvestigated.
The start and end cities of these instances were determined using the first and last elements
of the best known solutions provided by TSPLIB and TSP Test Data, and the distances
between start and end cities were set to -10° . The benchmark algorithm is the famous TSP
solver LKH proposed by Keld Helsgaun °. The results, which include Rpest, PDpest, Raog,
PDgyg, Rworst, Rstd, Trp and Tyyg are shown in Table 2.

It is clear from Table 2 that the IGA can produce the solution of WSP with a high level
of accuracy. We note that all PDy,; are lower than 1% and 18 out of 42 are as good as LKH.
The PDy,; of 25 out of 42 instances produced by IGA are less than 0.1%, and all the PDy,;

6 http:/ /webhotel4.ruc.dk/ keld /research/LKH/
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are lower than 1%. The outcomes on WSPs are even superior to those of IGA on TSPs in
some aspects. In detailed, the average of PDyes, Rstq, and Tppg are 0.2%, 134.28 and 81.83
respectively. By comparison, they are 0.27%, 125.45, and 90.43 on TSPs, that indicating that
the IGA is able to find better solutions on WSPs in a shorter time than on TSPs. Especially
on d493, the average execution time Tpyg of IGA on WSPs is only 473.19, whereas it is 650.09
on TSPs.

According to the aforementioned analyses, the proposed IGA significantly outper-
forms GA and ACS in terms of convergence speed, solution quality, and stability. Addi-
tionally, on the WSP, which more often appeared in ALC_IGA, IGA also performs very
well.

Table 2. Results obtained by IGA on 42 small-scale WSPs.

Instance IGA

Name LKH Ripest PDpess  Ravg PDayg  Ruworst  Rsa Trp Taog
eil51 420 420 0 42095 0.23 426 2.09 1.72 1.91
berlin52 7387 7387 0 7387 0 7387 0 1.77 1.95
st70 666 666 0 669.05 0.46 675 3.19 2.94 3.51
pr76 104443 104443 0 104856.4 0.4 105375 469.08 3.56 4.15
eil76 530 530 0 53295 0.56 535 15 3.84 41
rat99 1207 1211 0.33 1217.35 0.86 1225 4.6 6.14 7.27
kroA100 21106 21106 0 21262.5 0.74 21509  92.99 6.26 6.46
rd100 7787 7787 0 7796.2 0.12 7947 35.53 5.42 6.58
eill01 629 629 0 631.8 0.45 637 2.44 5.89 6.9
lin105 14336 14336 0 14400.7 0.45 14509  60.77 6.55 7.5
prl07 39270 39270 0 39413.85 0.37 39729 13411 7.83 10.84
prl24 58810 58810 0 58898.9 0.15 59030 78.16 9.73 12.5
bier127 117393 117650 0.22 118336.9 0.8 119236 594.61 10.87 12.81
ch130 6028 6075 0.78 6119.35 1.52 6201 40.47 12.69 13.33
xqfl131 529 529 0 535.6 1.25 541 3.7 9.83 10.74
prl36 96386 96475  0.09 97392.7 1.04 99228  862.65 17.2 22.12
prl44 56126 56126 0 56134.65 0.02 56162  13.41 14.29 16.14
kroA150 26387 26390 0.01 26594.2 0.79 26975  164.62 24.62 19.39
ch150 6498 6498 0 6528.1 0.46 6591 19.52 15.77 15.25
pr152 64215 64215 0 64459.35 0.38 65335 335,55 13.21 19.92
ul59 41797 41797 0 41925.8 0.31 42410 179.63 1293 16.2
ratl95 2260 2260 0 2264.7 0.21 2297 8.42 19.28 24.15
d198 12804 12855 04 12914.7 0.86 13019  48.92 61.13 48.05
kroA200 29206 29218  0.04 29411.5 0.7 29688  121.34 28.33 35.48
pr226 78587 78637  0.06 79045.9 0.58 80116  378.15 39.01 49.5
xqg237 1004 1012 0.8 10214 1.73 1032 5.53 35.45 46.88
gil262 2375 2378 0.13 2396.7 091 2415 10.32 66.78 72.32
pr264 46430 46430 0 46914.8 1.04 47922  439.57 70.32 64.26
pr299 47534 47563  0.06 480699 1.13 48544 27539 133.62 112.19
lin318 41608 41704  0.23 42139.8 1.28 42714  266.71 179.63 119.53
pma343 1323 1326 0.23 1336.5 1.02 1357 9.26 146 125.9
pka379 1267 1269 0.16 1282.8 1.25 1312 11.47 155.4 153
bcl380 1606 1609 0.19 16239 1.11 1660 12.9 95.49 121.71
pbl395 1277 1284 0.55 1292.65 1.23 1311 6.71 141.11 157.49
rd400 15192 15310 0.78 154355 1.6 15620  79.69 157.5 209.83
pbk411 1337 1348 0.82 1367.8 2.3 1380 7.64 27459  203.49
fl417 11414 11423  0.08 11464.45 0.44 11679  54.26 27492  225.02
pbn423 1361 1362 0.07 1382.6 159 1407 10.21 243.59  196.58
pbm436 1420 1431 0.77 1446.15 1.84 1460 8.36 186.44 179.57
pr439 104810 104957 0.14 105786.2 0.93 106390 383.21 32224 271.09
pcb442 50331 50734 0.8 51205.2 1.74 51654 25219 333.2 327.85
d493 32897 33097 0.61 33363.95 1.42 33722 15492 510.58 473.19

Average - 0.20 - 0.86 - 13438 87.33 81.83
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5.5. Parameters tuning for ALC_IGA

The solution initialization phase of ALC_IGA shown in Section 4.1 shows that the
main parameters of ALC_IGA in the first phase only is M, which limits the time required
to solve TSP or WSP less than T. The results from the previous section show that, under
ordinary situations, the IGA can handle TSPs with less than 100 nodes in 6 seconds and
solve TSPs with less than 150 nodes in 20 seconds. Consequently, a decent M shouldn’t
go beyond 150 too much. In order to choose a favorable M for ALC_IGA to balance the
computation time and quality of solution, numerical comparison of M was set to 50, 100,
and 150 on 45 instances are considered in this section. These instances are medium-scale,
which sizes ranging from 1.3 x 10% to 2.5 x 10*. Due to the fact that the distribution of
nodes greatly affects the clustering effect, in order to fairly study the influence of M on
the results of ALC_IGA, a variety of instances come from TSPLIB, TSP Test Data and
TNM data were studied in this experiment. In the following of this paper, the termination
condition of IGA is set to when there has been no improvement in the population for 30
iterations, and the other parameters are as same as in the last section. Denote the ALC_IGA
with M = 50,100,150 as ALC_IGA50, ALC_IGA100, ALC_IGA150 respectively, the major
five evaluation criteria Ryest, PDpest, Ravg, PDavg, Tavg and Cry,/Cra/Cry of the results are
presented in Table 3.

Table 3. Comparison of results obtained by ALC_IGA with M setting to 50, 100, 150 respectively.

Instance ALC_IGA50 ALC_IGA100 ALC_IGA150
Name BKS PDyost PDavg Tavg PDyest PDavg Tang PDyest PDavg Tavg
111323 270199 9.63 14.83 14.67 1007 117 2536 599 9.84 3249
dcal389 5085 1005 1156 16.05 517 832 277 612 749 525
£11400 20127 342 7.89 1586 604 1017 2266 6 9.16 39.92
11432 152970 562 7.06 1599 473 562 2417 441 529 4562
f11577 22249 1078 14.05 1835 888 1232 2987 738 1137 41.37
fnb1615 4956 835 1005 1832 714 882 35 531 749 4757
d1655 62128 844 978 1913 543 693 3027 317 422 5345
vml748 336556 846 974 2164 64 771 4232 515 686 63.85
ul1817 57201 937 10.89 2025 747 953 3281 698 881 71.13
dkd1973 6421 716 824 2386 517 614 4096 673 799 5472
Tnm2002 37029600 733 1074 217 84 1372 2808 936 1493 4952
d2103 80450 1256 159 2549 1056 127 4511  9.03 10.69 70.55
bva2l4d 6304 792 968 2425 59 749 3901 46 565 6861
u2319 234256 264 32 2539 18 225 4108 176 216 69.86
pr2392 378032 848 9583 3069 785 922 4679 665 831 121.08
pcb3038 137694 813 9 3759 642 733 7223 556 65  112.85
1tb3729 11821 9.86 11.07 42.9 697 854 6782 574 716 114.9
13795 28772 1379 1604 4327 104 1285 6844 923 123 100.94
Tnm4000 74858233 473 7.55 421 888 1205 6252 1088 16 86
fnl4461 182566 695 772 563 535 59 10801 452 529 160.13
bgf4475 13221 1346 1506 5197 1051 11.6 8475 915 1043 12142
fea5557 15445 1235 1334 6425 873 96 9942 811 8.87 172.33
115915 565530 17.75 19.14 66.7 12.81 1458 108.87 1143 12.86 15825

continued on next page
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Table 3. (continued).

Instance ALC_IGA50 ALC_IGA100 ALC_IGA150
Name BKS PDyost PDavg Tavg PDyest PDavg Taog PDyest PDavg Tavg
rl5934 556045 15.77 1794 68.37 12,59 13.82 10729 105 11.73 151.87
Tnm6001 112708118 768 976 6241 596 9.05 89.06 9.32 1226 120.36
xsc6880 21535 12.77 1391 79.76 10.25 11.04 13057 9.05 9.64 191.37
bnd7168 21834 11.88 12.63 87.6 841 931 14297 7.73 856 22637
lap7454 19535 13.87 14.62 874 9.89 10.67 12722 896 9.59 20457
Tnm8002 150561446 12.85 14.74 88.22 6.24 8.01 11269 729 10.04 13249
ida8197 22338 10.89 12.53 96.35 9.21 1001 16035 7.66 9 240.39
dga9698 27724 14.88 15.82 116.08 11.08 12.23 190.04 9.55 10.49 27245
Tnm10000 188414262 206 23.02 10341 513 6.97 12758 594 893 160.26
xmcl10150 28387 13.61 14.51 11346 10.75 11.77 19194 947 104 28455
r111849 923288 1422 15.03 141.87 108 1147 2243 9.31 10.18 358.89
usal3509 19982859 9.81 1093 165.83 826 882 31867 6.69 718 492.82
xvb13584 37083 11.16 11.85 155.75 848 913 23612 7.77 827 373.29
brd14051 469385 8.07 852 1744 592 618 334.87 516 549 552.78
di15112 1573084 794 843 19014 6.13 6.62 34963 554 579 598.85
xial6928 52838 1324 13.85 19499 877 953 31244 826 8.74 477.84
pjh17845 48083 11.19 12 20499 822 888 32465 7.63 838 5242
d18512 645238 8.06 839 233.68 647 6.86 43817 527 557 720.64
Tnm?20002 377692238 15.16 23.22 209.17 544 658 268.69 4.88 6.42 37948
ido21215 63501 12.57 13.18 24685 9.77 10.25 401.68 8.8 9.14 656.89
1sb22777 60977 13.35 13.83 268.06 9.85 10.71 40942 876 9.8 660.7
bbz25234 69335 12.08 12.69 29048 945 998 48227 8.5 8.99  746.58
Average 10.64 1231 91.02 796 94 148.09 723 8.76 231.93
Crb/Cra/Cra 3/3/45 5/4/0 37/38/0

From Table 3, the Cgy,/Cr,/Cr, of the ALC_IGA50, ALC_IGA100, ALC_IGA150 are
3/3/45,5/4/0 and 37/38/0 respectively. As can be seen, the ALC_IGA50 is the fastest,
whereas the ALC_IGA150 algorithm usually produces the best results. When the size of
instance is less than 2 x 103, ALC_IGA50 has the minimum PDy,s; and PD,wg on 11400,
ALC_IGA10 has the lowest PDy,s; on dcal389 and dkd1973. However, the PDy,s; and
PDgye of ALC_IGA150 on the three instances are all less than 10%, this is still a respectable
result. When the instance size is large than 2 x 10%, the ALC_IGA50 and ALC_IGA100
only perform better than the ALC_IGA150 on TNM instances. Concerning specifics, the
ALC_IGA50 works well on Tnm2002 and Tnm4000, the ALC_IGA100 excels on Tnm6001,
Tnm8002, and Tnm10000, but the ALC_IGA150 provided the best result on the large
instance of Tnm20002. The results of ALC_IGA150 are therefore superior to those of
ALC_IGA50 and ALC_IGA100 in TSPLIB and TSP Test Data, and it is still a suitable
approach for TNM data. The average of PDy,s; and PD;yg for the three algorithms shown
at the bottom of Table 3 also support this.

Furthermore, considering the algorithms’ running time, the mean of T,y¢ of ALC_IGA50
is 91.02, which is three-fifths of the time taken by ALC_IGA100 and two-fifths of ALC_IGA-
150. This indicates that the fastest algorithm is ALC_IGAS50, and the ratio of running
time hardly changes with the size of the instance. However, even the slowest proposed
ALC_IGA150 could handle the 10* nodes instance with just approximately 10% deviation
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percentage in the same amount of running time as the IGA, which can only solve the
instance with a size of roughly 400 nodes. The fastest ALC_IGA50, which is more than 60
times faster than the IGA, can deal with 2.5 x 10* nodes in the same amount of time. Thus
the high efficiency of ALC_IGA has been verified.

Figure 6 displays the deviation percentage of each run among all instances. It is
noteworthy that for all three algorithms, most of the deviation percentages are under 20%.
In particular, the deviation percentages of the ALC_IGA100 and ALC_IGA150 are less than
10% in the majority of instances. Furthermore, the figure also reveals that the ALC_IGA100
and ALC_IGA150 have many overlapping regions, indicating that the performance of the
two algorithms is roughly equivalent.
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Figure 6. The deviation percentage of each run on 45 medium-scale instances with M setting to 50,

100, 150.

Additionally, the relationship between the running time of ALC_IGA and the value
of M is taken into account. The average execution time for the instances of the three
algorithms is plotted in Figure 7 in different colors. In order to discuss the computational
complexity of the algorithms, the exponential curve fitting for each group is calculated. Due
to the computation time of ALC_IGA150 is larger than the other two, its slope shown in the
figure is undoubtedly the steepest. The approximated time complexities of ALC_IGAS50,
ALC_IGA100 and ALC_IGA150 are O(n%9%92), O(n%958) and O(n'92) respectively, which
are all extremely close to the linear computational complexity O(n). With 95% confidence
bounds, the upper bound of the computational complexity for ALC_IGA50 is 1.0326, and
the other two are 1.0963 and 1.151. The statistical outcomes of curve fitting are shown in
Table 4. It can be seen that all three fitting models have high confidence, especially the R?
of ALC_IGA50 is over 0.99. The above results prove the computational complexity analysis
of the proposed ALC_IGA in Section 4.3.

Table 4. The exponential curve fitting a - n” of the running time of ALC_IGA while M setting to 50,
100, 150.

M a b SSE R? Adjusted RMSE
RZ

50  0.0118 & 0.0038 0.9992 + 0.0334 1705 0.9938 0.9936 6.297

100 0.0198 + 0.0192 0.9958 + 0.1005 41246 0.9459 0.9446 30.97

150 0.0247 + 0.0314 1.02 4+ 0.131 167900 0.9146 0.9126 62.49
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Figure 7. Computational complexity analysis of the proposed ALC_IGA.

To sum up, the quality of the solution obtained by ALC_IGA has a strong relationship
with the data distribution and the value of M. On the other hand, the larger M is set, the
longer the computation time required by ALC_IGA according to the numerical experiments.
In most cases, setting M to 100 is a typical compromise choice to balance computation time
and quality.

5.6. ALC_IGA compared with two-layered algorithms

The effectiveness of ALC_IGA on medium-scale problems was confirmed in Section
5.5, although it is unclear whether it is superior to the other layered algorithms. To illustrate
the performance of ALC_IGA, the proposed ALC_IGA is compared with two typical
algorithms, which are TLGA [47] and TLACS [7]. The TLGA and TLACS are re-coded
in Matlab, and to be fair, the running time and the solution quality are improved to be
better than the literature. The main parameters were set as follows: the M of ALC_IGA
was set to 100; the numbers of cluster centers of TLACS and TLGA were automatically
adjusted according to the size of the instance; the termination conditions of ALC_IGA,
TLACS, TLGA were that when there has been no improvement of the solution for 30, 30,
100 iterations respectively. All of the algorithms are implemented in single-thread. There
are 45 medium-scale instances whose sizes ranging from 1 x 10° to 4 x 10° are investigated
in this experiment.

Table 5. Comparison of results obtained by ALC_IGA, TLACS and TLGA on medium-scale instances.

Instance ALC_IGA TLACS TLGA

Name BKS PDyest PDavg  Tavg PDpest  PDavg  Tavg PDyest  PDavg  Tavg
vm1084 239297 5.88 7.72 21.32 12.03  13.63  13.59 53.63 66.69  92.61
d1291 50801 8.76 10.65  20.89 14.08 1634 15.32 58.1 65.88 61.76
rl1323 270199 10.01 1146  24.65 17.88 2035 13.86 7035  79.18  69.01
11400 20127 457 9.74 23.93 4.25 6.85 28.78 54.8 7471  147.38
11577 22249 7.79 13.08  29.34 10.19 12.27 18.86 86.64 9819 82.13
d1655 62128 5.03 6.54 29.27 13.15 1432 2117 50.89 61.03 115.34
vm1748 336556 6.7 7.64 31.65 12.74 1419 2295 64.18 76.08 108.67
ul81l7 57201 7.88 9.49 33.76 10.88 1234  19.89 5499 6158 102.33

continued on next page
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Table 5. (continued).

Instance ALC_IGA TLACS TLGA

Name BKS PDpest  PDavg  Tavg PDpest  PDavg  Tavg PDyest PDavg  Tavg
d2103 80450 10.58 1245 4422 1926 2176 2417 5941 68.84 166.26
u2152 64253 8.06 9.37 39.2 12.12 1345  28.12 5726  63.54 144.79
u2319 234256 1.84 2.3 41.32 43 5.09 31.11 32.87 36.72  150.83
pr2392 378032 7.17 9.13 44.87 1099 1338  37.39 53.73 6236 13217
pcb3038 137694 6.66 7.38 76.63 12.17 1325  48.31 51.59 574 175.13
{13795 28772 11.53 1298  66.47 13.01 1428 1128 101.58 116.31 275.55
dkf3954 12538 9.02 9.89 76.13 1447 16.08  68.82 6199 6722  247.99
Tnm4000 74858233 8.58 1259  59.12 3.59 5.17 44.85 259.8 2982  214.53
fnl4461 182566 5.53 5.93 112.01 10.1 10.75  90.24 47.59  52.67  240.54
ca4663 1290319 8.61 1045 100.84 1437 1641  155.92 76.7 9273  378.54
xqd4966 15316 5.56 6.53 100.23 11.07 1245 105.53 7128 9491  349.59
fqm5087 13029 5.52 6.56 99.07 11.15 12.03  99.23 81.88 9476  325.78
fea5557 15445 8.93 9.84 106.72 14.06 1572  111.2 63.68 7472  417.61
rl5915 565530 1414 151 103.29 20.18 2221  113.81 75.64 85.77  386.15
rl5934 556045 12.66  13.9 105.45 194 20.16  107.38 72.67 8482  374.8
tz6117 394718 6.86 7.63 136.46 1317 1413  205.99 66.47 7376  429.67
xsc6880 21535 9.94 1114  132.75 1576  17.26  150.23 64.88 7296  495.94
bnd7168 21834 8.18 9.13 139.69 14.7 16.02  163.16 63.15 7091 518.01
lap7454 19535 9.76 10.75  128.89 159 16.71  172.89 6742 7447  594.09
ida8197 22338 9.19 9.92 152.68 14.87 1574  190.42 6198 7242  610.65
dga9698 27724 11.3 12.18  176.72 17.14  17.88  256.85 7131 7797  690.84
Tnm10000 188414262 543 7.57 132 1.96 3.05 163.07 39356 458.1  722.56
xmc10150 28387 10.9 11.68  175.01 1645 1723  265.42 72.03 77.04 73497
rl11849 923288 10.35 1143  224.34 1554 16.63  359.35 69.73 7544  933.61
usal3509 19982859 8.21 8.65 295.5 13.61 1453  664.7 66.37 71.67 1378.6
brd14051 469385 5.72 6.11 34291 1096 1171 5283 50.36  58.39  1232.43
d15112 1573084 6.1 6.44 356.77 11.02 1192  641.19 52.75 5746  1443.81
it16862 557315 8.55 9.11 361.73 12.7 13.39  790.6 63.35 7535 1547.82
d18512 645238 6.59 6.84 434.83 11.1 11.71  795.83 5215 57.02 172217
boa28924 79622 11.19 11.83  529.35 1576 1641  1473.54 7998 8643  2760.68
Tnm30001 566973296 8.06 8.68 417.43 1.18 1.78 905.14 640.39 730.39 2924.84
pbh30440 88313 11.33  11.77  585.99 15.9 16.33  1685.75 72.34  80.03  3306.87
xib32892 96757 10.34 10.84 613.21 15.07 1563  1897.12 7696  83.16  3252.86
fry33203 97240 1144 11.79 617.37 15.2 16.01  1992.54 76.68 8239  3600.66
bby34656 99159 9.67 10.19  647.45 1492 1538  2192.23 7047  77.38 3866
pba38478 108318 10.7 11.21  732.33 1534 1589  2614.56 73.06 79.11  4093.7
ics39603 106819 1197 1254  725.33 16.4 16.81  2584.34 76.36  83.37  4318.36
Average 8.51 9.74 209.98 12.89 141 489.48 89.84 102.43 1020.86

Cro/Cra/Cra 41/40/30 4/5/15 0/0/0
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As is shown in Table 5, the evaluation criteria Cgy, /Cr,/Cr, of ALC_IGA is 41/40/30,
the Cry/Crq/Cr, of TL-ACSis 4/5/15 and Cgp/Cr,/Cr, of TLGA is 0/0/0. First of all, it
is pointed out that TLGA has no advantage in all instances compared with the other two
algorithms in terms of solution quality and convergence speed. The TLACS obtained 4 best
PDpy,st and 5 best PDje among all 45 instances. In detail, TLACS outperforms ALC_IGA
on f11400 and 11577, but ALC_IGA defeats TLACS on fI13795. The other three instances
where TLACS performs better are all hard-to-solve instances [64]. That is because the fewer
clusters generated, the better solution produced, which is according to the results in Section
5.5. The average of PDy,s; and PDgyg for ALC_IGA are 8.51 and 9.74, while for TLACS and
TLGA, they are 12.89 and 14.10, 88.84 and 102.43, respectively. The analyses above verify
that the accuracy of ALC_IGA is superior to TLACS and TLGA in all scenarios except for
TNM instances.

From Table 5, the average values of Tj,; of ALC_IGA, TLACS and TLGA are 209.98,
489.48 and 1020.86 seconds. It can be seen that the proposed ALC_IGA is much faster than
the other two algorithms. In detail, when the size of the instance is less than 4.5 x 103,
TLACS is faster than ALC_IGA in most cases. When the size of the instance is between
4.5 x 10% and 10%, the running time of ALC_IGA and TLACS are very close. When the size
of the instance is larger than 10%, the proposed ALC_IGA has huge advantages, especially
when the problem size is greater than 3 x 10, the computation time of ALC_IGA is less
than one-third of TLACS and less than one-fifth of TLGA.

Figure 8 converts a large amount of data in Table 5 into an explicit image. The real
lines represent the PD;ye and Tpye of ALC_IGA. It is closer to the horizontal axis, which
means that the ALC_IGA has high performance on accuracy and convergence speed. The
results of run time for ALC_IGA, TLACS and TLGA with exponential curve fitting are
O(n%9%), O(n11) and O(n!??!). It reveals that the gap in computation time between
ALC_IGA and the other two algorithms will increase as the size of the problem increases.
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Figure 8. Results analysis of the proposed algorithm, TLGA and TLACS.

5.7. Results on large-scale TSP instances

In this section, to investigate the performance of ALC_-IGA on large-scale instances,
the new ALC_IGA is compared to three state-of-the-art algorithms, which are TLACS [7], an
accelerating genetic algorithm evolution via ant-based mutation and crossover (ER-ACO)
[28] and a 3L-MFEA-MP [51]. The ALC_IGA and TLACS were implemented in Matlab
R2022a and parallelized by the parallel computing toolbox in Matlab. The ER-ACO was set
on an AMD Ryzen 2700 CPU with 16 threads in parallel. The parallel 3L-MFEA-MP was
coded in Python, and it was implemented on a supercomputer with a 24-core Intel Xeon
CPU and 96 GB RAM. The sizes of the 15 involved instances range from 4 x 10% to 2 x 10°.
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Table 6. Comparison of ALC_IGA and three state-of-the-art algorithms on large-scale instances.

Instance BKS Algorithms Rpest PDyest Ravg PDgyg Tavg
rbz43748 125183 ALC_IGA 138336 10.51 138780 10.86 78.97
TLACS 143707 14.8 144783 15.66 460.23
ER-ACO - - - - -
3L-MFEA-MP - - - - -
fht47608 125104 ALC_IGA 138369 10.6 138854 10.99 90.39
TLACS 143328 14.57 144080 15.17 500.51
ER-ACO - - - - -
3L-MFEA-MP - - - - -
fna52057 147789 ALC_IGA 162347 9.85 162900 10.22 89.73
TLACS 170295 15.23 170813 15.58 545.47
ER-ACO - - - - -
3L-MFEA-MP - - - - -
bna56769 158078 ALC_IGA 174110 10.14 175110 10.77 121.35
TLACS 181703 14.95 182421 154 604.53
ER-ACO - - - - -
3L-MFEA-MP - - - - -
dan59296 165371 ALC_IGA 183301 10.84 183803 11.15 112.64
TLACS 190994 15.49 191471 15.78 607.85
ER-ACO - - - - -
3L-MFEA-MP - - - - -
Tnm80002 1513392208 ALC_IGA 1719287088  13.6 1815094672  19.94 145.72
TLACS 1521978113  0.57 1528977655  1.03 876.21
ER-ACO - - - - -
3L-MFEA-MP - - - - -
Tnm90001 1702667051 ALC_IGA 1900341576  11.61 2038420433 19.72 161.17
TLACS 1712186024  0.56 1717989072 0.9 949.71
ER-ACO - - - - -
3L-MFEA-MP - - - - -
Tnm100000 1891945975 ALC_IGA 2107195713  11.38 2237645170  18.27 171.85
TLACS 1902231611  0.54 1910148253  0.96 1497.72
ER-ACO - - - - -
3L-MFEA-MP - - - - -
mona-lisal 00K 5757191 ALC_IGA 5930206 3.01 5934489 3.08 235.13
TLACS 6401529 11.19 6417896 11.48 1657.04
ER-ACO - 7.99 - 8.9 1792.95
3L-MFEA-MP 6513686 13.34 6525173 13.34 1030.72
sral04815 251342 ALC_IGA 276998 10.21 277851 10.55 2129
TLACS 288535 14.8 289519 15.19 1562.05
ER-ACO - - - - -
3L-MFEA-MP - - - - -
vangogh120K 6543609 ALC_IGA 6742349 3.04 6746733 3.1 314.21
TLACS 7332648 12.06 7344261 12.24 2269.41
ER-ACO - 8.66 - 9.22 1975.97
3L-MFEA-MP 7423925 13.55 7430063 13.55 1256.78
venus140K 6810665 ALC_IGA 7018375 3.05 7021104 3.09 341.17
TLACS 7638796 12.16 7647611 12.29 3262.63
ER-ACO - 8.33 - 8.72 2496.99
3L-MFEA-MP 7718441 13.41 7724201 13.41 1518.13
parejal60K 7619953 ALC_IGA 7854282 3.08 7858881 3.14 428.04
TLACS 8623198 13.17 8629465 13.25 3734.21
ER-ACO - 8.47 - 9.47 3049.45
3L-MFEA-MP - - - - -

continued on next page
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Table 6. (continued).

Instance BKS Algorithms Ripest PDyes; Ravg PDgyg Tavg

courbet180K 7888731 ALC_IGA 8148232 3.29 8150953 3.32 498.64
TLACS 8940877 13.34 8956732 13.54 4454.45
ER-ACO - 8.37 - 9.83 3666.29
3L-MFEA-MP - - - - -

earring200K 8171677 ALC_IGA 8454565 3.46 8460779 3.54 522.74
TLACS - - - - -
ER-ACO - 9.18 - 9.83 4236.65
3L-MFEA-MP 9365519 14.65 9368743 14.65 2382.31

The results and five evaluation criteria Ryest, PDpest, Ravg, PDavg and Tpye are shown
in Table 6. Compared to ALC_IGA with TLACS, the advantage of ALC_IGA in running
time is apparent again. The running time of ALC_IGA is roughly one-sixth of TLACS when
the problem size is around 5 x 10%, but when the size approaches 2 x 10°, the running time
of it is just one-ninth of TLACS. The performance of ALC_IGA is better than TLACS in
most conditions, but TLACS works pretty well on TNM instances.

There are four instances compared with 3L-MFEA-MD, results shown in Table 6 reveal
that the performance of it is very close to TLACS, the difference between them in terms
of PDyes and PDgyq is about 2%. While compared with ALC_IGA, the 3L-MFEA-MP is
far worse than it in terms of convergence speed and solution quality. On the involved
six instances, the PDy,s; and PDgyg of the novel intelligence algorithm ER-ACO exceed
ALC_IGA by 2.5 times. Additionally, the proposed ALC_IGA runs significantly faster than
ER-ACO.

Figure 9 shows the average computation time and deviation percentages of the four
algorithms. It is clear that ALC_IGA performs well in most situations and is significantly
faster than the others. According to the results illustrated in Section 5.5, the only drawback
of ALC_IGA is on TNM instances, which can be improved by setting M larger.
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Figure 9. The results of the compared algorithms on large-scale TSPs.

Finally, the results of ALC_IGA under M set to 50, 100 and 150 for five huge instances
are also given. The ara238025, 1ra498378 and Irb744710 are three instances containing
hundreds of thousands of nodes, which are the very large-scale integration instances of
TSP Test Data. The Santa, which has 1437195 cities, as a benchmark instance for large-scale
TSPs, has been investigated thoroughly by several well-known solvers in [65]. Gaia was
published by William Cook in 2019 and includes two million coordinates of stars.
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Five evaluation criteria and the average of them are presented in Table 7. It shows
again that the larger the M set, the better solution obtained and the longer computation
time needed. For ALC_IGA50, ALC_IGA100, and ALC_IGA150, the average of PDy,; are
13.882, 11.064, and 10.304, respectively, which is extremely close to the average of PDgyq.
This illustrates the strong stability of ALC_IGA, which the average of R, has also proven.
While M was set to 50 or 100, the 1.4 x 10° nodes instance can be handled within 1h on our
implement, and even the large three-dimensional Gaia can be fixed within 1.5h. Figure 10
depicts the best solutions obtained by the ALC_IGA with M = 100.

(c) Irb744710 (d) santal437195

Z (0.1 parsecs)
(=]
|

Y (0.1 parsecs)

X (0.1 parsecs)

(e) gaia2079471

Figure 10. Visualization of the best solutions obtained by the ALC_IGA with M = 100 on five large
instances over 2 x 10° nodes.
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Table 7. Results obtained by the ALC_IGA on five large instances over 2 x 10° nodes.
Instance BKS M Rpest PDypg; Ravg PDgyg Rgpq Tavg Trp
ara238025 578761 50 649841 12.28 653160 12.85 1534 242.59 250.69
100 634357 9.61 637414 10.13 1001 392.4 390.87
150 630357 9.17 631805 9.17 905 621.9 587.38
1ra498378 2168039 50 2504137 15.5 2511139 15.83 3620 586.65 561.38
100 2424156 11.81 2431562 12.15 4526 799.82 822.77
150 2398861 10.92 2404857 10.92 4126 1447 .49 1241.13
Irb744710 1611232 50 1803710 11.95 1806807 12.14 1553 832.53 856.56
100 1773389 10.06 1775519 10.2 1402 1164.27 1209.86
150 1756006 9.09 1757731 9.09 1199 1728.67 1718.95
santal1437195109284000 50 126452359 15.71 126870650  16.09 282274 2355.69 2502.04
100 122732785 12.31 123183399 12.72 282164 3403.22 3101.24
150 121831057 11.76 122134133 11.76 189127 5022.14 4812.72
gaia2079471 288843524 50 329200974 13.97 329395175 14.04 106820 5010.2 4865
100 322144985 11.53 322360796 11.6 117896 5225.05 5377.99
150 319244386 10.58 319408762 10.58 86203 7891.54 7694.04
50 - 13.882 - 14.19 79160.2 1805.53 1807.13
Average 100 - 11.064 - 11.36 81397.8 2196.952 2180.546
150 - 10.304 10.304 56312 3342.348 3210.844

6. Conclusions and future research

The existing layered algorithms might encounter obstacles when solving large-scale
TSPs: the subtask small-scale TSPs solved slowly; the number of cluster centers in the upper
layer may be enormous; the single cluster in the bottom layer may have an overwhelming
number of nodes; the quality of the final solution is poor.

In this study, aiming at solving large-scale TSPs with millions of nodes fast, the
ALC_IGA with high parallelizability is proposed. In the first phase, ALC_IGA ensures that
all sub-TSPs and sub-WSPs are smaller than the specified size through k-means repeatedly
applied, thereby reducing the computation time. In the second phase, the TS_2-opt is
developed to rapidly improve the initial solution. The IGA is also proposed for small-scale
TSPs and WSPs, with the following significant modifications: the polygynandry-inspired
SBHX is designed for high convergence speed; the S_2-opt for balancing convergence
speed and falling into local optimum is created. According to the study, the computational
complexity of ALC_IGA is between O(nlogn) and O(n?).

The numerical results on 42 instances show that the proposed IGA is better than both
GA and ACS in terms of convergence speed and accuracy, and it performs better on WSP
than on TSP. According to the numerical results on lots of instances from diverse sources,
in most conditions, ALC_IGA outperforms TLGA, TLACS, 3L-MFEA-MP and the novel
ER-ACO in terms of precision, stability and computation speed. The worst situation of
ALC_IGA is on the hard-to-solve TSP instances, where the errors are still less than 20% and
can be improved by adjusting the parameters.

To improve the performance of ALC_IGA, future research may focus on optimizing
the initial solution of ALC_IGA, investigating the influence of the different clustering
algorithms adopted, and improving the performance on the hard-to-solve TSPs. The
ALC_IGA can also be extended to solve large-scale ATSPs, CTSPs, DTSPs and other related
problems.
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Abbreviations

The following abbreviations are used in this manuscript:

TSPs traveling salesman problems

ALC_IGA Adaptive layered clustering framework with improved genetic algorithm
ATSPs Asymmetric TSPs

CTSPs Clustered TSPs

DTSPs Dynamic TSPs

MTSPs Multiple TSPs

WSPs Wandering salesman problems

EA Evolutionary algorithm

ACO Ant colony optimization algorithm

ACS Ant colony system

SFLA Shuffled frog leaping algorithm

SA Simulated annealing algorithm

PSO Particle swarm optimization

GA Genetic algorithm

PMX Partially mapped crossover

OX Ordered crossover

CX Cycle crossover

SCX Sequential constructive crossover operator

CMX Completely mapped crossover operators

BHX Bidirectional heuristic crossover operator

IGA Improved genetic algorithm

TLACS Two-layered ant colony system algorithm
3L-MFEA-MP  The three-layered evolutionary optimization framework
SBHX Selective bidirectional heuristic crossover

S_2-opt Simplified 2-opt

TS_2-opt Two phases simplified 2-opt algorithm

TLGA Two-level genetic algorithm

TNM Hard to solve instances of the Euclidean TSPs

ER-ACO Accelerating genetic algorithm evolution via ant-based mutation and crossover
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