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Abstract: In the field of vision-based robot grasping, effectively leveraging RGB and depth infor-

mation to accurately determine the position and pose of a target is a critical issue. To address this 

challenge, we propose a tri-stream cross-modal fusion architecture for 2-DoF visual grasp detection. 

This architecture facilitates the interaction of RGB and depth bilateral information and is designed 

to efficiently aggregate multiscale information. Our novel modal interaction module (MIM) with 

spatial-wise cross-attention algorithm adaptively captures cross-modal feature information. Mean-

while, the channel interaction modules (CIM) further enhance the aggregation of different modal 

streams. In addition, we efficiently aggregate global multiscale information through a hierarchical 

structure with skipping connections. To evaluate the performance of our proposed method, we con-

duct validation experiments on standard public datasets and real robot grasping experiments. We 

achieve the image-wise detection accuracy of 99.4% and 96.7% on Cornell and Jacquard datasets 

respectively. The object-wise detection accuracy reaches 97.8% and 94.6% on the same datasets. Fur-

thermore, physical experiments using the 6-DoF Elite robot demonstrate a success rate of 94.5%. 

These experiments highlight the superior accuracy of our proposed method. 
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1. Introduction 

In the realm of robotics, the advancement of intelligence has significantly boosted the 

adoption of robots. As a result, visual detection of targets has become an increasingly cru-

cial area of focus in robotics research. A robot's ability to grasp and transport objects, ei-

ther independently or in response to user commands, can enhance its ability to assimilate 

into the environment and broaden the range of potential robotic applications. Presently, 

the utilization of RGB-D cameras is making remarkable strides in robot grasping, thanks 

to the evolution of vision sensor technology. 

Our work focuses on RGB-D data-driven robot grasp detection. Many pioneers in the 

field have achieved remarkable results. In the past decade, convolutional neural networks 

(CNNs) [1–5] have become the most widely utilized solution for robot grasp detection due 

to their superiority in feature representation, resulting in outstanding detection accuracy 

and high efficiency. While CNNs excel at local feature representation, they tend to lose 

information with global relevance. Recently, transformer-based approaches have gained 

significant popularity for visual tasks and have demonstrated comparable or superior per-

formance in classification, semantic segmentation, and object detection. Some researchers, 

such as S. Wang et al. [6], have demonstrated the applicability of transformers in robot 

grasp detection. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 February 2023                   doi:10.20944/preprints202302.0401.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202302.0401.v1
http://creativecommons.org/licenses/by/4.0/


 

 

Despite the impressive strides made by deep learning in solving the problem of vis-

ually detecting and grasping targets, the robustness of grasp detection still requires fur-

ther improvement. This is because, while either RGB or depth images can provide some 

information about the scene, they are only partial in nature and may not always be effec-

tive in obtaining reliable detection results across different scenarios. Therefore, it is essen-

tial to leverage the information provided by both modalities to enhance grasp detection. 

To address this issue, researchers in the field have developed early [3,7–9] and late 

[2,10] multimodal fusion approaches for grasp detection. While these methods have 

yielded meaningful results, the correlation between multimodal data has only been par-

tially exploited. Recent studies have focused on exploring the mechanisms of intermediate 

fusion [11,12]. Although these methods have improved the efficiency of RGB and depth 

modalities in robot grasp detection, making the most of the bilateral modal information 

still remains a challenge. 

To solve the problem of multimodal fusion, we propose a tri-stream cross-modal fu-

sion architecture to achieve bilateral information interaction. The key idea is to use the 

proposed MIM approach to capture the global association information between modali-

ties. Subsequently, the aggregation of different modal streams is refined through adaptive 

CIM units. The main contributions of our work can be summarized as follows: 

 We propose a tri-stream cross-modal fusion architecture facilitating the interaction 

of RGB and depth bilateral information and efficiently aggregating multiscale infor-

mation. 

 A novel spatial-wise cross-attention algorithm is developed to adaptively capture 

cross-modal feature information. The channel interaction modules further enhance 

the aggregation of different modal streams. 

 The proposed method demonstrates state-of-the-art grasp detection accuracy on both 

the Cornell and Jacquard datasets, with image-wise detection accuracy reaching 

99.4% and 96.7% on Cornell and Jacquard, respectively, and object-wise detection 

accuracy reaching 97.8% and 94.6% on the same datasets. 

 The proposed method has also shown success in guiding gripping tasks in the real 

world, achieving a 94.5% success rate on household items. 

The remaining parts of the article are structured as follows. Section 2 presents the 

deep regression model for detecting robot grasps. Section 3 describes the formulation of 

grasp detection. The proposed method is elaborated in detail in Section 4. The perfor-

mance evaluation of the proposed method is presented in Section 5. Finally, Section 6 pro-

vides a summary and conclusion of the article. 

2. Related works 

2.1. Grasp model representation 

The representation of the robot grasp model is a prerequisite for identifying the grip-

ping position. In vision-based approaches, the object grasp can be divided into 2-DoF pla-

nar grasp and 6-DoF grasp based on various application scenarios. For instance, 2-DoF 

planar grasp implies that the target object is positioned on a flat working surface, and is 

confined from one direction. Thus, the grasping information is reduced from 6D to 3D, 

specifically 2D in-plane position and 1D rotation angle. On the other hand, 6-DoF grasp-

ing enables the gripper to hold objects from different angles in the 3D space. 

In 2006, A. Saxena et al. [13] proposed a point-based model representation for 6-DoF 

grasp detection. This representation considers the target location to be a point in 3D space. 

The point is detected in the image, and the relative position of the point with respect to 

the robot end effector is estimated using either a binocular camera or motion recovery 

structure, enabling the robot to perform the grasp operation. In 2010, Q. V. Le et al. [14] 

proposed a multi-points linkage approach to express the grasp position. Subsequent stud-

ies, such as those outlined in references [14–17], have achieved significant progress in 

terms of detection accuracy, reliability, and efficiency. 
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For 2-DoF planar grasp detection, Y. Jiang [18] proposed a rectangular representation 

method for the robot grasp that bypasses the object detection and pose estimation process. 

In this method, each grasp is represented by a rectangle with its central coordinates, 

width, height, and rotation angle. This simplifies the model's complexity significantly. 

Since then, many researchers, such as [2–5,9,14,19,20], have focused on robot grasp detec-

tion using the rectangular model, and these studies have made efforts to improve the ro-

bustness of feature representation and the real-time performance of detection. 

2.2. 2-DoF planar grasp detection approaches based on rectangular representation 

When it comes to studies on robot grasp detection, many researchers have focused 

on improving the quality of deep neural networks in order to achieve better detection 

results. One such method was proposed by I. Lenz et al. [1] in 2014, which utilized a mul-

tilayer deep self-encoder for image feature extraction in combination with a support vec-

tor machine classifier. J. Wei et al. [21] proposed a similar approach in 2017 using Deep 

Extreme Learning Machine for automatic encoding. Trottier et al. [22] also proposed a 

detection method in the same year using a self-coding dictionary learning method with a 

support vector machine classifier, although it was found to be slow and not well-suited 

for robotic object grasping. Z. Wang et al. [23] proposed a unified model for object seg-

mentation and grasp detection in 2016. The method combined a grasping detection net-

work with a two-stage estimator to improves detection accuracy. 

Due to the complexity of multi-stage detection methods, more researchers are focus-

ing on the end-to-end approach. In 2015, J. Redmon et al. [24] proposed a robot grasp 

detection method based on multilayer convolutional neural networks, which allowed for 

end-to-end training and reduced manual involvement in the training process. This ap-

proach also significantly improved detection efficiency through direct regression.  

In 2018, heatmap regression methods were first utilized by D. Morrison et al. [4] to 

indirectly obtain grasp detection results. In their follow-up study, D. Morrison et al. [5] 

introduced a generative convolutional neural network for robot grasp detection. In 2020, 

S. Kumra et al. [8] proposed an antipodal robotic grasp detection method using a residual 

convolutional neural network, achieving image-wise detection accuracy of 97.7% and 94.6% 

on Cornell and Jacquard datasets. Their work was further improved upon in 2022 by the 

same group [20]. H. Cao et al. [3] proposed an efficient convolutional neural network us-

ing Gaussian-based grasp representation in 2021, which achieved image-wise detection 

accuracy of 97.8% and 95.6% for Cornell and Jacquard datasets, respectively. Lastly, S. 

Ainetter and F. Fraundorfer [25] proposed an end-to-end method for robot grasp detection 

in 2021, using a semantic segmentation refinement engine to increase detection accuracy. 

A recent development in the field of robot grasp detection is the transformer-based 

method proposed by S. Wang et al. [6]. In their study, they made a preliminary attempt to 

address the 2-DoF grasp detection problem using the transformer architecture, and 

achieved impressive detection accuracy and efficiency, proving to be a competitive 

method in the field.  

Our work explores the effectiveness of hybrid models that integrate convolutional 

neural networks and transformer architectures to detect 2-DoF robot grasping. This ap-

proach offers new insights into the design of effective grasp detection systems. 

2.3. Multiple modality fusion based grasp detection 

With the wide adoption of RGB-D sensors, an increasing number of studies have 

turned their attention to the efficient fusion of multimodal data. Various approaches for 

multimodality fusion have been proposed, including early-fusion, late-fusion, and inter-

mediate-fusion techniques. 

In 2018, F. Chu et al. [7] introduced an early-fusion approach that integrated R, G, 

and depth channels to predict multi-grasps for multiple objects. Two years later, in 2020, 

S. Kumra et al. [8] presented a generative residual convolutional neural network for grasp 

detection, utilizing an early-fusion strategy with both RGB and depth images. Similarly, 
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in 2022, H. Cao et al. [3] proposed a Gaussian-based grasp representation method using a 

generative grasping detection model that incorporates both RGB and depth images as in-

puts. Also in 2022, S. Yu et al. [9] introduced another approach using a residual neural 

network and squeeze-and-excitation modules. 

In 2017, Q. Zhang et al. [2] put forth a sturdy robot grasp detection method that inte-

grates RGB and depth features in the prediction head based on the YOLO architecture [26]. 

In 2022, Y. Song et al. [10] also proposed a hierarchical late-fusion method for RGB-D data, 

utilizing two CNN branches in the form of U-Net [27]. The decoding process hierarchi-

cally merges the RGB and depth features. 

H. Tian et al. [11] introduced an intermediate-fusion method for lightweight pixel-

wise robot grasp detection, utilizing RGB and depth information. In 2023, H. Tian et al. 

[12] extended their work by introducing a rotation adaptive grasp detection approach, 

which also utilizes intermediate data fusion. They achieved a remarkable state-of-the-art 

accuracy of 99.3% and 94.6% on the Cornell and Jacquard datasets, respectively. 

Research on multimodal fusion has yielded promising results. However, the effec-

tiveness of cross-modal fusion is still limited by the quality of bilateral mutual information 

support. To address this issue, we propose a novel solution in this paper. Our approach 

offers an improved framework for cross-modal fusion that enhances the mutual infor-

mation support between modalities and enables more effective integration of multimodal 

data. Our results demonstrate the viability and superiority of our proposed method in 

achieving better performance in robot grasp detection. 

3. Problem formulation 

The robot is capable of using different types of grippers, including two-finger, three-

finger, or multi-finger grippers, to grasp objects. However, parallel two-finger grippers 

are commonly preferred due to their simple design and cost-effectiveness. For 2-DoF 

grasp applications, a grasp can be represented by a 5-dimensional tuple � = {�, �, �, �, ℎ} 

[1,8,24]. The tuple g describes a rectangle with the center coordinates (�, �), the gripper 

height size (ℎ), the gripper opening distance (�), and the orientation of the grasp rectangle 

(�) with respect to the horizontal axis. Typically, the gripper dimensions are known, 

which allows the grasp representation to be simplified to � = (�, �, �, �). 

Instead of the 5-dimensional representation, D. Morrison et al. [5] provide an im-

proved version of a grasp described as follows: 

�� = (��, ∅�, �� ) ∈ ℝ�×�×�                              (1) 

In Equation (1), ���,� ∈ [0, 1] denotes the detection quality of each pixel in the image, 

while ∅��,� ∈ [−π/2, π/2] represents the rotation angle of the gripper, and ���,� ∈ [0, W���] 

specifies the required width of the gripper's opening. Our work involves the transfor-

mation of the grasp detection problem into a pixel-level prediction. Specifically, we pro-

pose a cross-modal fusion method to derive �� from an RGB-D image of the environment 

in which the grasping targets are located. 

Equation (1) provides a comprehensive representation of the grasp image, but the 

rotation angle of the grip is challenging to determine due to its symmetrical values. To 

address this ambiguity, we encode the rotation angle using sin(2∅��,�) and cos(2∅��,� ), 

which helps eliminate any discontinuities that may arise during the calculation. The angle 

of the grasp to be executed at each pixel can be obtained using equation (2): 

∅��,� =
�

�
× arctan �

��� (�∅��,�)

���(�∅��,�)
�                            (2) 

The optimal grasp within an image space is determined by identifying the pixel with 

the highest quality score in ��. Additionally, the grasp can be straightforwardly mapped 

to physical space based on the internal and external parameters of the RGB-D camera. 
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4. Approach 

4.1. Overview of Bilateral Cross-Modal Fusion Network 
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Figure 1. Bilateral cross-modal fusion network architecture. 

Our robot grasp detection architecture is illustrated in Figure 1. It comprises three 

main components: feature extraction, feature aggregation, and grasp prediction. To en-

sure robust feature extraction, we employed two strategies. Firstly, we tackled the prob-

lem of modality interaction in feature fusion by assigning adaptive weights to RGB and 

depth image features during the fused feature extraction stage. Secondly, we adopted a 

channel interaction approach for feature aggregation. 

The feature extraction method serves two purposes: extracting multi-scale features 

from the RGB and depth scene images, and constructing fused features from the two mo-

dalities. This process is accomplished through three streams: the RGB feature extraction 

stream, the depth feature extraction stream, and the fused feature extraction stream. 

Within each stream, the feature extraction process comprises two key stages: feature en-

coding and decoding. 

The architecture of the RGB and depth feature extraction process, as shown in Figure 

1, is based on U-Net-like structures. Similar to the approach in [28], each stream consists 
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of a residual connection based stem module (RSM) and a series of modal interaction mod-

ules (MIM) for encoding RGB and depth features. Down-sampling operations are used to 

obtain multi-scale features. However, low-level features may contain more details but also 

unnecessary information, while high-level features may have more semantic information 

but may not represent small target features well. To obtain more robust features, we em-

ploy feature decoders, which are composed of transposed convolution and up-sampling 

processes with skip connections. 

As depicted in Figure 1, the initial step in the feature extraction process involves the 

utilization of the RSM on the RGB image, which is responsible for extracting fine-grained 

features and generating the cf0 feature. To produce features at multiple scales, the cf0 fea-

ture undergoes several stages of light-weight multi-head self-attention modules (LMHSA) 

to create multi-scale features, including cf1, cf2, cf3, and cf4. These encoding procedures 

also involve the fused features from using an addition operation. To ensure that the re-

sulting feature map is consistent with the size of the input image, a series of up-sampling 

modules are employed at the decoding step. Additionally, concatenation operations are 

incorporated into these processes to fully exploit the low-level and high-level features, 

leading to the production of the cf5, cf6, and cf7 feature maps. The depth feature extraction 

stream is also capable of generating corresponding feature maps, ranging from df0 to df7. 

Compared to the encoding processes for RGB and depth features, the fused feature 

maps (ff1, ff2, ff3, and ff4) are initially generated using light weight multi-head cross-at-

tention (LMHCA) strategy. During feature fusion, adaptive weights are assigned to the 

RGB and depth information. Details about the LMHCA algorithm is described in 4.2.2. To 

ensure the resulting fused features are robust, the same decoders used in the RGB and 

depth feature decoding processes are employed. Consequently, ff7 is of the same size as 

cf7 and df7. 

As previously stated, the feature extraction process results in three distinct feature 

maps: cf7, df7, and ff7. It is our hypothesis that the feature aggregation process should 

optimally utilize useful information from all three features while minimizing the impact 

of irrelevant information. Previous research, such as that conducted in [2,11], has made 

numerous attempts to explore this topic. However, both studies employ equal-weight fea-

ture aggregation for each channel. In an effort to enhance the efficacy of feature aggrega-

tion, we have implemented a channel interaction strategy. As illustrated in Figure 1, the 

RGB, depth, and fused feature maps are initially concatenated. CIM units are then utilized 

to assign adaptive weights to the feature channels. Subsequent transposed convolution 

based up-sampling processes further improve the resolution of the fused feature map.  

The grasp prediction head is comprised of several convolution calculation modules 

and is able to predict grasp quality, cos�2∅��,�� , sin(2∅��,�) , and grasp opening width 

heatmaps, which are employed to construct grasp rectangles. 

4.2. Feature extraction pipeline 

4.2.1. Residual connection based stem module (RSM) 

The residual network has proven to be highly effective in various applications such 

as image classification, object detection, and moving object tracking. To capitalize on its 

exceptional performance, we adopt a RSM module to generate a compact feature repre-

sentation, thereby addressing the inferior feature representation capability of the linear 

projection.  

Taking inspiration from [29], the stem module comprises two streams, as depicted in 

Figure 2. The first stream is composed of a sequence of convolution, Gaussian Error Linear 

Unit (GELU) [30], and Batch Normalization (BN) [31]processes. The convolution modules 

utilize 1×1 (stride=1), 3×3 (stride=2), and 1×1 (stride=1) kernels, respectively. This approach 

ensures that no information is neglected. The second stream includes a 2×2 (stride=1) av-

erage pooling stage, a 1×1 (stride=1) kernel convolution, GELU, and BN modules. This 

mechanism enables the expression of features while incurring minimal computational 
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costs. The outputs of these two streams are combined to generate the encoding features, 

which are then fed into the self-attention and cross-attention procedures. 

⊕
input 
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stride=1
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Figure 2. Input data feature extraction diagram using RSM. 

4.2.2. Cross-modal feature encoding based on MIM 

The proposed MIM module is use to execute feature extraction and bilateral RGB and 

depth cross-modal fusion strategies. As shown in Figure 3, Each MIM module consists of 

two patch embedding blocks, two LMHSA blocks, one LMHCA module and two summa-

tion units. The patch aggregation module, composed by a 2×2 convolution with the 

stride=2 and layer normalization block, is used to aggregate patches into a single image 

and produce hierarchical representation. The LMHSA module is used to extract features 

by spatial-wise self-attention. The LMHCA module is to compute fused features based on 

cross-attention. The summation operation helps to achieve mutual information support.  

LMHSA

LMHCA

LMHSA

⊕

⊕

Patch
Aggregation

Patch
Aggregation

MIM

input 
RGB features

input 
depth features

output 
RGB features

output
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output
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Figure 3. The structure of the MIM module 

 Light weight multi-head self-attention (LMHSA) block 

As shown in Figure 4, before performing self-attention calculations, we incorporated 

a local perceptual unit to address the issue of missing local associations and structural 

information when using the self-attention module [28]. This unit is depicted in light yel-

low in Figure 4. Next, we apply LMHSA computation to the feature transformation, rep-

resented in light green in Figure 4. To enhance the representation ability of tokens, we 

introduce the Inverted Residual Feed-Forward Network module, or IRFFN, which can 

perform dimensional expansion and non-linear transformation on each token. 

LMHSA IRFFN
3×3 Conv
stride=1

LMHSA Block

⊕
input

features
output 

features

 

Figure 4. LMHSA block for RGB and Depth features extraction. 

As described in [32], the original self-attention module utilizes linear mapping to de-

rive the query matrix �, key matrix �, and value matrix �. The dimensions of �, � and 

�  are given by � × � × �� , � × � × ��  and � × � × �� , respectively, where � × � 
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represents the number of image patches, and �� and �� are the dimensions of the tensor 

� and �. Subsequently, the self-attention module can be expressed as the following for-

mula: 

����(�, �, �) = ������� �
���

���
� �                      (3) 

While the original self-attention algorithm can effectively handle various visual 

tasks, it is associated with high computational costs. As such, numerous researchers have 

dedicated efforts to addressing this issue. In our work, we adopt a similar approach to 

that in [32] which involves the use of � × � depth-wise convolutional operations with 

stride of � to reduce the dimensionality of the key and value matrices, thereby mitigating 

the computational burden. The computation associated with the depth-wise convolution 

can be expressed as follows: 

�

� = ������(�)                     

� = ������(������(�))

� = ������(������(�))

                                   (4) 

Equation (4) describes the lightweight self-attention mechanism used in our ap-

proach, where � represents the input feature, ������(·) denotes the depth-wise con-

volution operation, and ������(·)  is the linear operation. To further enhance perfor-

mance, we incorporate a position bias term. Then the lightweight self-attention can be 

defined as: 

���ℎ�����(�, �, �, �) = �������(
���

���
+ �)�                         (5) 

In the above formula, the dimensions of the query (�) and value (�) matrices are 

reduced to 1/�� due to the application of stride � in the depth-wise convolution kernel. 

�� is the dimension of �. The structure of the lightweight multi-head self-attention mod-

ule is depicted in Figure 5. 

k×k DW-Conv 
stride=s

Linear Linear Linear

k×k DW-Conv 
stride=s

Q K V

MHSA

input features

⊕

output features

DW-Conv: Depth-wise convolution

Linear: Fully connected layer

⊕  Pixel-wise addition

MHSA: Multi-Head Self-Attention

 

Figure 5. Lightweight multi-head self-attention block. 

In the robot grasp detection architecture, the IRFFN layer serves to expand and re-

duce feature dimensions, allowing for non-linear transformation. However, unlike the 

structure proposed in [28], we utilize an improved IRFFN layer to boost the expressive-

ness of the features. Figure 6 displays the structure of our proposed IRFFN layer which 

consists of two branches. 
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Figure 6. IRFFN block diagram. 

 Light weight multi-head cross-attention (LMHCA) module 

The fusion algorithm we have developed tackles the challenge of how to optimize 

the utilization of information from RGB and depth modalities, taking into account their 

respective importance. To further enhance the robustness of the fused features, we have 

designed a cross-attention mechanism and a modal reweighting strategy. These tech-

niques work in tandem to ensure that the most salient features from each modality are 

given the appropriate attention and weight in the final fusion result. 

The proposed modal interaction strategy is illustrated in Figure 7. To address the 

issue of missing local associations and structural information during cross-attention com-

putation, we incorporate local perception units into the design. Subsequently, multi-head 

cross-attention operations are employed to extract high-level semantic features from the 

RGB and depth features. Finally, the output features are fed into the IRFFN unit to enable 

dimensional expansion and non-linear transformation. 

LMHCA IRFFN

3×3 Conv
stride=1

LMHCA Block

⊕

3×3 Conv
stride=1

⊕

RGB
features

depth 
features

fused 
features

 

Figure 7. LMHCA block for fused feature extraction. 

The token compounding method proposed by [33] has demonstrated outstanding 

performance in vision-and-language representation learning. Building upon this ap-

proach, we propose a lightweight multi-head cross-attention method to facilitate the fu-

sion of RGB and depth features in robotic gripping applications. The lightweight multi-

head cross-attention unit comprises two parts: a multi-head cross-attention component 

and a modality reweighting-based feature fusion component. Figure 8 presents a detailed 

schematic of the proposed procedure. Specifically, in the cross-attention module, we em-

ploy linear layer to acquire matrices ���� , �� for RGB and depth streams respectively. 

Depth-wise convolution and linear mapping are used to obtain the matrices ���� , ����, 

��, �� accordingly. Then, the lightweight cross-attention computation can be expressed 

as equation (6). 

�
���ℎ�����������(���2����ℎ) = �������(

������
�

���
+ �)��

���ℎ�����������(����ℎ2���) = �������(
������

�

���
+ �)����

            (6) 

RGB and depth tokens are exported according the upper operation. These two tokens 

are concatenated and fed into the modality reweighting process to create fused features. 

Different from the strategy of [34], we developed a novel modal reweighting method and 

assign appropriate adaptive weights to RGB and depth tokens respectively to obtain 
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effective fused features. The detailed structure of the modality reweighting strategy can 

be seen in the bottom half of Figure 8. First, we concatenate the RGB and depth tokens, 

followed by using 1×1 convolution and SoftMax functions to learn adaptive weights for 

both token types. The fused features are obtained by reweighting the RGB and depth to-

kens and adding them at the pixel level. 

k×k DW-Conv 
stride=s

Linear Linear Linear

k×k DW-Conv 
stride=s

Qrgb KrgbVrgb

k×k DW-Conv 
stride=s

LinearLinearLinear

k×k DW-Conv 
stride=s
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input RGB features input depth features

©
1×1 Conv

out_channels=1 
stride=1
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out_channels=1 

stride=1

©

Ⓢ

⨂ ⨂

output fused features
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MHCA: Multi-head cross attention computation

DW-Conv: Depth-wise convolution

Linear: Fully connected layer

Ⓢ  Sigmoid function

Modal re-weighting part

Multi-head cross attention part

RGB token depth token

 

Figure 8. Multi-head cross-attention block diagram. 

4.3. Feature aggregation based on channel interaction module (CIM) 

In Figure 1, three feature maps cf7, df7 and ff7 can be obtained after the feature ex-

traction procedures. These feature maps are subsequently aggregated for grasp prediction.  

GAP
F
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F
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⊕
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W

H
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output 
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Figure 9. Channel interaction module. 

Since each of these maps contains both valuable and non-valuable information, we 

apply the channel interaction method to reweight each channel of the connected features 

accordingly. To accomplish this, we use an SE-block [35] to improve the sensitivity of val-

uable channels and suppress useless ones. The structure of the CIM unit is shown in Fig-

ure 9. 

To generate a feature map that is of the same size as the input image, we employ the 

same up-sampling techniques used in the feature decoding step in the final stages of the 

feature aggregation process. 
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4.4. Robot grasp prediction 

As outlined in sections 3 and 4.1, the neural network we designed is expected to gen-

erate four heatmaps, namely �� , sin(2∅��,�), cos(2∅��,�) and �� , to facilitate robot grasping. 

To accomplish this, four separate branches of 2-D convolutions are constructed. 

4.5. Loss function 

We train the neural network by minimizing the discrepancy between the predicted 

grasps (��) and the ground truth grasps (�). To accomplish this, we utilize the smooth L1 

loss function [36] in our work. This loss function is defined as follows: 

���� − �� = ∑ ∑ �����ℎ�����,�
�� − ��,�

� ��∈{�,∅,�}
�
�               (7) 

In Equation (7), N represents the number of pixels in the heatmap, and �����ℎ��(�) 

is defined as: 

�����ℎ��(�) = �
0.5 ×

��

�
,    ��|�| < �

|�| − 0.5�, ��ℎ������
                     (8) 

Here, the hyperparameter � controls the extent of smoothness and separates the 

positive axis range into �1 loss and �2 loss parts. In our work, we set the parameter 

� to 1. 

5. Evaluation 

5.1. Experimental methodology 

5.1.1. Experiment content 

We have designed four experiments to comprehensively evaluate the proposed 

method. The first two experiments are comparison studies that aim to verify the perfor-

mance of different approaches on the Cornell and Jacquard datasets, respectively. The 

third experiment is an ablation study that examines the effects of cross-attention and chan-

nel interaction strategies. In this experiment, we evaluate the effectiveness of the modality 

adaptive reweighting algorithm in the fused feature extraction stage and the effects of the 

channel interaction algorithm in the feature aggregation stage. Additionally, we have ver-

ified the effectiveness of the proposed algorithm through a fourth physical experiment. 

5.1.2. Datasets 

We utilized two datasets, the Cornell dataset [1] and the Jacquard dataset [37], in our 

experiments. The Cornell dataset is relatively small, comprising 240 distinct objects with 

885 samples, while the Jacquard dataset is of medium size, consisting of 11,619 unique 

objects and 54,485 different scenes. Both datasets provide RGB images and 3D dense cloud 

data for each sample. Prior to training the neural network, we converted the 3D point 

cloud data into depth images and adjusted their resolution to 224 × 224. We allocated 

90% of each dataset for training and the remaining 10% for testing. Given the small size 

of the Cornell dataset, we augmented the dataset by performing augmentation operations 

such as cropping and rotation. 

5.1.3. Experiment environment 

The training and validation process was conducted on the Ubuntu 20.04 operating 

system, utilizing an Intel Core i9-12900KF CPU clocked up to 5.20 GHz, 64GB DDR4 

memory, and an NVIDIA GeForce GTX 3090-Ti graphics card. 

We have set up a real-world robot grasp scenario, as depicted in Figure 10. For this 

experiment, we gathered 30 distinct objects on a desk. An Orbbec Femto-W RGBD camera 

is used as the image sensor, while a parallel gripper is installed at the end of the Elite EC-

66 collaborative robot to act as the clamping mechanism. Prior to the experiment, a hand-

eye calibration is performed to ensure proper operation of the system. 
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Figure 10. Physical experiment conditions. Experiment instruments include a Femto-W RGB-D 

camera, an EC-66 collaborative robot, a parallel gripper and some objects to be grasped. 

5.1.4. Grasp Detection Metric 

In all of our experiments, we employ the grasp intersection over union (���) metric, 

which is defined in equation (9). The use of this metric allows for a quantitative evaluation 

of the performance of our proposed method in terms of its ability to accurately predict 

grasps. 

��� =
����∩���

����∪���
× 100%                           (9) 

The ��� metric is utilized in all experiments, as defined in equation (8). The numer-

ator of the equation represents the area of overlap between the detected grasp rectangle 

and the ground truth, while the denominator represents their union. To be considered a 

valid detection, the results must exhibit the following properties: 

 ��� should be above 25% 

 The angle error between the detection result and the ground truth should be less 

than 30°. 

5.1.5. Experiment configuration 

Our proposed architecture has input dimensions of 224 × 224 × 3 and 224 × 224 ×

1 for RGB and depth images, respectively. The detailed size of each feature map is listed 

in Table 1. 

We utilized self-attention and cross-attention based feature encoders with 1, 2, 4, and 

8 heads, and the corresponding number of block layers are 2, 2, 10, and 2, respectively. 

Table 1. Size of each feature map. 

Feature map Size (H×W×C) Feature map Size (H×W×C) 

cf0, df0 112×112×16 cf5, df5, ff5 14×14×184 

cf1, df1, ff1 56×56×46 cf6, df6, ff6 28×28×92 

cf2, df2, ff2 28×28×92 cf7, df7, ff7 56×56×46 

cf3, df3, ff3 14×14×184 f8 112×112×46 

cf4, df4, ff4 7×7×368 f9 224×224×32 

5.2. Experiement results 

5.2.1 Cornell dataset experiment results 

To compare the grasp detection performance of recent methods with our proposed 

algorithm on the Cornell dataset, we conducted an experiment that evaluated image-wise 

and object-wise grasp detection separately. Our algorithm achieved state-of-the-art 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 February 2023                   doi:10.20944/preprints202302.0401.v1

https://doi.org/10.20944/preprints202302.0401.v1


 

 

accuracy of 99.4% and 97.8% in image-wise and object-wise grasp detection, respectively, 

as shown in Table 2. However, the average time expenditure is 17.7 ms, which is higher 

compared to algorithms in [10–12] due to the complexity of our algorithm. 

Figure 11 depicts some typical examples of heatmap regression results for quality, 

angle, and width, as well as grasp detection results. As shown in the figure, the quality 

heatmaps demonstrate the robustness of our proposed method, which contributes to the 

superior performance of our grasp detection results. 

Table 2. Grasp detection results of different algorithms on Cornell dataset. 

Method Input 
Accuracy (%) 

Time (ms) 
Image-wise Object-wise 

Lenz[1] RGB-D 73.9 75.6 1350 

Redmon[24] RGB-D 88 87.1 76 

Morrision[5] D 73 69 19 

Song[10] RGB-D 92.5 90.3 17.2 

Kumra[8] RGB-D 97.7 96.6 20 

Wang[6] RGB-D 97.99 96.7 41.6 

Yu[9] RGB-D 98.2 97.1 25 

Tian[11] RGB-D 98.9 - 15 

Tian[12] RGB-D 99.3 91.1 12 

Ours RGB-D 99.4 97.8 17.7 

 RGB Depth Grasp Qulity Angle Width 

Kumra[8] 

 

Wang[6] 

 

Ours 

 

Kumra[8] 

 

Wang[6] 

 

Ours 

 

Figure 11. Experiment results of the algorithms [8,6] and our method on Cornell dataset. The 1st 

and 2nd columns are RGB image and depth images. The 3rd column shows grasp detection results. 

The last three columns illustrate the quality, angle and width heatmaps. 
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5.2.2. Jacquard dataset experiment results 

We also conducted a comparative analysis of our grasp detection algorithm with that 

of several other methods [5,6,8–12] using the Jacquard dataset. Table 3 presents the statis-

tical results of our experiment with the Jacquard dataset. As evident from the table, our 

algorithm achieved the highest image-wise and object-wise detection accuracy of 96.7% 

and 94.6%, respectively, on the Jacquard dataset. Figure 11 shows several detection cases. 

Our algorithm offers superior quality heatmap prediction results. 

Table 3. Grasp detection results of different algorithms on Jacquard dataset. 

Method Input 
Accuracy (%) 

Image-wise Object-wise 

Morrison[5] D 84 - 

Song[10] RGB-D 93.2 - 

Kumra[8] RGB-D 92.6 87.7 

Wang[6] RGB-D 94.6 - 

Yu[9] RGB-D 95.7 - 

Tian[11] RGB-D 94 - 

Tian[12] RGB-D 94.6 92.8 

Ours RGB-D 96.7 94.6 

The detection results presented in Table 3 and Figure 12 provide evidence that our 

proposed method, which leverages cross-attention and channel interaction for RGB-D fea-

ture fusion, can effectively utilize the information shared between the two modalities. 

 RGB Depth Grasp Quality Angle Width 

Kumra[8] 

Wang[6] 

Ours 

Kumra[8] 

Wang[6] 

Ours 

Figure 12. Experiment results of algorithms in [8,6] and our method on Jacquard dataset. 

5.2.3 Ablation experiment 

Since the cross-attention module is only involved in the fused feature encoding stage, 

we simplified our pipeline (shown in Figure 1) to produce the architecture depicted in 
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Figure 13.  

To validate the effectiveness of the different modules in the proposed approach, we 

conducted several leave-one-out experiments on the Cornell and Jacquard datasets. Ini-

tially, we removed the MIM and CIM modules from the proposed architecture. The gen-

erated approaches are served as baseline approaches, shown in Figure 13(a) and Figure 

13(b).  
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(a) Architecture without MIM units. 
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(b) Architecture without CIM units. 

Figure 13. Architectures in ablation experiments. (a) has no MIM blocks. (b) has no CIM blocks. 

In the ablation experiment, we evaluated the object-wise grasp detection accuracy on 

both the Cornell and Jacquard datasets. The corresponding statistical results are presented 

in Table 4. 

Table 4. Object-wise grasp detection results of ablation experiment on Cornell and Jacquard da-

tasets. 

Methods 
Accuracy of  

Cornell Dataset (%) 

Accuracy of  

Jacquard Dataset (%) 

Without MIM 89.7 84.6 

Without CIM 96.4 92.6 

With MIM and CIM 97.8 94.6 

The results of the ablation experiment demonstrate that the bilateral modality inter-

action method based on cross-attention significantly enhances the accuracy of grasp de-

tection. Additionally, the feature aggregation method based on channel interaction strat-

egy has a fine-tuning effect on detection accuracy. 

5.2.4. Physical experiment 

The physical experiment was conducted on our in-house robotic platform, which 

comprises an Elite EC-66 robot with public open ROS interfaces, a parallel gripper, an 

Orbbec Femo-W RGB-D camera, and a computer server running Ubuntu. The experiment 

involved 30 different unknown objects in the scene, with the camera positioned relative 

to the desktop similar to that in the Cornell dataset. RGB-D image data was captured by 

the camera, and the server detected the position and pose of potential grasps. Following 

a coordinate transformation, the robot executed the grasping operation on the target ob-

ject. The detailed grasp process is depicted in Figure 14. 
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During the experiment, we made a total of 200 attempts to grasp the target objects 

and successfully grasped the objects in 189 of those attempts, resulting in an average suc-

cess rate of 94.5%. Figure 15 illustrates several examples of our grasp detection results. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14. Four grasp stages in the physical experiment. (a) shows the initial position and posture 

of EC-66 robot. In this stage, grasp detection is performed. After detection, the parallel gripper 

moves to the effective grasping position, which can be seen in (b). The gripper then grasps the target, 

which is shown in (c). The robot completes the target grasping task in (d) finally. 

RGB Depth Grasps Quality Angle Width 

 

 

 

 

 

Figure 15. Detection results of the physical experiment. 
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6. Conclusions 

This paper addresses the 2-DoF robot grasp detection problem by analyzing data fu-

sion issues that affect grasp detection results. Our analysis shows that fully utilizing useful 

information from each modality and eliminating useless information is essential for 

achieving high accuracy in grasp detection. In response, we propose a cross-modality fu-

sion method for 2-DoF robot grasp detection that uses a convolutional neural network and 

transformer structure. This method incorporates modal interaction and channel interac-

tion strategies to adaptively retain essential information and reduce the impact of invalid 

information. To validate our approach, we conduct a series of comparison experiments 

with other methods and an ablation experiment. Our experimental results demonstrate 

that the proposed cross-modality fusion method achieves high accuracy for both image-

wise and object-wise grasp detection and is effective in practical robot grasp detection 

scenarios. However, this method is somewhat time-consuming, which is a limitation that 

we will address in future work. 
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