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Abstract: This paper presents a study of an automated system for identifying planktic foraminifera at the 
species level. The system uses a combination of deep learning methods, specifically Convolutional Neural 
Networks (CNNs), to analyze digital images of foraminifera taken at different illumination angles. The dataset 
is composed of 1437 groups of sixteen grayscale images, one group for each foraminifer, that are then converted 
to RGB images with various processing methods. These RGB images are fed into a set of CNNs, organized in 
an Ensemble Learning (EL) environment. The ensemble is built by training different networks using different 
approaches for creating the RGB images. The study finds that an ensemble of CNN models trained on different 
RGB images improves the system's performance compared to other state-of-the-art approaches. The proposed 
system was also found to outperform human experts in classification accuracy. The source code for the system, 
written in MATLAB, is available at a provided GitHub repository: https://github.com/LorisNanni. 

Keywords: Convolutional Neural Network; Ensemble Learning; transfer learning; fine-tuning; 
plankton classification; foraminifera 

 

1. Introduction 

Image classification is a very complex task that has witnessed massive improvement in the past 
decade thanks to hardware advancements and the application of Deep Learning. Because this new 
technology is a repetitive and non-creative process, it is well-suited for automation. One of the best 
deep learners for images is a family of learners called Convolutional Neural Networks (CNNs). 
CNNs have already proven their efficacy and efficiency at image classification in many studies [1]; 
however, the stochastic nature of neural networks (NNs) leads to results that are influenced by a fair 
share of randomness [2]. Ensemble Learning (EL) is a widely used implementation that combines 
results from different networks to achieve better performance and higher consistency, reducing the 
individual random component of each network. Transfer learning, which takes a pre-trained CNN 
as the baseline for training yet another dataset of images, typically a smaller one, is yet another 
technique that can be employed to improve classification accuracy both at the first epoch and at the 
end of the training process. 

This paper proposes a practical application of EL to the classification problem presented in [3], 
which was to train a CNN for foraminifera classification, a task of high interest for industrial and 
research purposes. Species of planktic foraminifera are paleo-environmental bioindicators whose 
radiocarbon measurements are used to infer parameters like global ice volume, temperature, salinity, 
PH, and nutrient content of ancient marine environments. Foraminifera classification is usually 
performed by groups of humans, ranging in size from 500 to 1000 individuals. As a result, 
foraminifera classification is a very repetitive, resource-intensive, and time-consuming process. In 
the early 1990s, there have been several attempts to automate this task. Although strides were made 
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in this direction, most methods still required strong human supervision. In 2004, however, the neural 
network SYRACO2 was developed to identify single-celled organisms automatically and was shown 
to perform reliably [4]. In 2017 CNNs were applied to diatom identification with great success [5]. 
With further development, CNNs should be able to take over the arduous process of foraminifera 
classification. 

Our goal is to improve the classification accuracy on the same dataset presented in [3]. This 
dataset is composed of 1437 groups of sixteen grayscale images of foraminifera taken at different 
lighting angles and separated into seven classes. Several RGB colorization approaches were used to 
generate different sets of colored images that became the inputs for a set of CNN architectures that 
formed the EL environment. The authors of [3] employed a fusion of ResNet50 and Vgg16, using 
colorization methods based on intensity percentiles in the sixteen grayscale channels. 

This paper proposes several alternative colorization methods that deviate from the state of the 
art [6] but still achieve remarkable ensemble results. New approaches such as Luma scaling, HSV 
colorspace mapping, and gaussian or mean-based techniques are applied to CNN architectures to 
extend [3]. The results of this study show that a diverse set of CNN models trained on different 
colorized images improves the system's performance compared to other state-of-the-art approaches. 
The proposed system is also shown to outperform human experts in classification accuracy. 

It's important to note that the application of multi-grayscale channels to RGB colorization is not 
limited to the field of foraminifera classification but can be applied in other domains as well. Some 
example applications include remote sensing [7,8], where multispectral images are often represented 
in grayscale, and medical imaging, where grayscale images are commonly used in CT scans and MRI 
images [9]. The use of RGB colorization in these domains has already been shown to improve the 
performance of classification tasks and enhance the interpretability of the results. For example, in 
medical imaging, converting grayscale images to RGB can highlight certain features in the images 
that were not as noticeable in grayscale, potentially leading to improved diagnosis accuracy [10]. 
Similarly, in remote sensing, RGB colorization can help highlight different features in the image, such 
as vegetation or water bodies, improving CNNs results. Thus, the methods proposed here should 
also increase classification accuracy in other domains that use grayscale images. Furthermore, our 
methods should work well for the image fusion of different grayscale pictures obtained from 
multispectral analysis or from polarized/filtered light sources on objects that may be difficult to 
capture in the typical visible spectrum. 

2. Convolutional Neural Networks 

CNNs were first introduced in the 1980s by the French researcher Yann LeCun [11] and were 
shown to perform well throughout the 1990s [12,13]. In the last decade, however, due to the advent 
of big data and GPU computing, the performance of CNNs has increased to the point that in 
computer vision and image recognition CNNs are now considered state-of-the-art. 

As with every other type of neural network, the structure of a CNN is divided into three 
components: an input layer, which, in a CNN architecture, is usually a volume of n×n×3 neurons 
directly connected to the input of an image's pixels, hidden layers that utilize shared weights and 
local connections, and a fully connected output layer.  

CNNs implement pooling and convolution directly through the architecture. Local connections, 
non-linear activation functions, and shared weights are used to build feature maps that 
autonomously create the filters needed. Local connections and shared weights are what distinguish 
CNNs from a normal multilayer perceptron (MLP) network. Neurons of the hidden layers are only 
connected locally to the adjacent neurons, meaning they will only process information from a subset 
of the previous layer. Furthermore, weights and biases are shared in groups to interpret in a 
consistent manner information gained in different portions of the input. Convolution utilizes a digital 
filter (or mask) to extract data from a subset of the input. The result of filtering the whole input 
volume by making the mask slide in every possible position is a feature map [14]. Pooling is another 
filtering method that aggregates portions of an input feature map and is used to reduce variance 
between small transformations of the input [15]. Two of the most utilized methods are max and 
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average pooling, from which the maximum or average value is extracted, given a portion of the input 
only. 

The output layer of a CNN is a fully connected one that utilizes a neuron for each class, which 
is usually, in modern models, a SoftMax activation function: 

𝒇(𝒛)𝒌 = 𝒆𝒛𝒌∑ 𝒆𝒛𝒋𝒏𝒋స𝟏 . 

with 𝒏, the number of classes and 𝒛 the input vector. The function's output is a normalized value 𝟎 ≤  𝒃 ≤ 𝟏 and can be interpreted as confidence. 
In this work, we use the ResNet50 topology pretrained using ImageNet, which is fine-tuned 

further for 20 epochs with a learning rate of 0.001 and a batch size of 30. 

3. CNN Ensemble Learning 

The theory behind Ensemble Learning is based on a simple idea: by combining different models, 
it should be possible to produce better and more reliable results. Ensembles can be constructed on 
four different levels: 
• Data level: by splitting the dataset into different subsets; 
• Feature level: by pre-processing the dataset with unique methods; 
• Classifier level: by training different classifiers on the same dataset;  
• Decision level: by combining the decisions of multiple models. 

Ensembles work best when applied to significantly diverse models [16]. In this work, we 
construct ensembles by applying different  pre-processing approaches, detailed in section 3.1, for 
representing the input images as RGB images. The images generated by these approaches are used 
to train multiple networks whose decisions are finally combined using the sum rule. 

3.1. Image Pre-Processing 

Each image in the dataset, presented in [3] and described in more detail in section 4, comes in 
the form of sixteen grayscale pictures of the same foraminifera subject. The dataset, size 1437 samples, 
is divided into seven classes: one for each of the six species of foraminifera that are the subject of this 
study. Each class has approximately 150 entries, except for the last which has 450. 

Since we use pre-trained networks and their inputs are expected to be RGB images, the first step 
in our pipeline will be to generate CNN-compatible inputs starting from the dataset. 

Multiple ways for completing this task were tested; in the end, we settled on a combination of 
five: 
• The "Percentile" method presented in [3], also called "Baseline". 
• A "Gaussian" image processing method that encodes each color channel based on the normal 

distribution of the grayscale intensities of the sixteen images. 
• Two "Mean-based" methods focused on utilizing an average or mean of the sixteen images to 

reconstruct the R, G, and B values. 
• The "HSVPP" method that utilizes a different color space composed of hue, saturation, and value 

of brightness information. 
An illustration of the resulting images can be found in Figure 3. A discussion of the five methods 

is provided below. 

3.1.1. Percentile 

Percentile is the most straightforward method for generating an RGB image. As presented in [3], 
the sixteen individual grayscale values for each pixel are used to calculate the 10th percentile, median, 
and 90th percentile. These three values are then mapped to the RGB channels to generate a single 
color composite. 
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To speed up the process, we use the nearest rank method: the list of sixteen grayscale values is 
sorted in ascending order, after which the P-th percentile element is selected by extracting the value 
of cell 𝑛, where 𝒏 =  ቒ 𝑷𝟏𝟎𝟎  ∙  𝟏𝟔ቓ. 

Since our input vectors are always the same size, the sixteen values are sorted, and the three 
values of 𝑛 selected here are 2, 8, and 15.  

The percentile pre-processing pipeline, see Figure 1, works as follows: 
1. Read the sixteen images; 
2. Populate a 𝑵 ൈ 𝑴 ൈ 𝟏𝟔 matrix with the grayscale values; 
3. For each pixel, extract its sixteen grayscale values into a list; 
4. Sort the list; 
5. Use elements 2, 8, and 15 as RGB values for the new image; 

 
Figure 1. Percentile pre-processing pipeline, sourced from [17]. 

A few variations of this method were also tested (the 20th/80th/median, for example), but they 
were discarded due to their performance being slightly worse than the original, losing out on 1-2% 
of accuracy per single-run training cycle on average. 

3.1.2. Gaussian 

The Gaussian method for image processing tries to find the optimal way to fit the sixteen 
grayscale image values at position 𝑥, represented as the vector 𝐈ଵ଺(𝑥), in a normal distribution, using 
the fitdist method in MATLAB. 

The fitting of sixteen values into a normal distribution is independent of their ordering, thereby 
ensuring that no bias from the order of lighting angles is encoded into the colorized images. 

Once the distribution is computed, the R, G, and B values of the colorized image are assigned as 
follows: 

Given the gaussian random variable 𝑋 ~ 𝑁(𝜇, 𝜎) fit from 𝐈ଵ଺(𝑥), 𝑹(𝒙) = 𝝁 െ 𝟐𝝈 𝑮(𝒙) = 𝝁 
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𝑩(𝒙) = 𝝁 + 𝟐𝝈 

If any assigned value is negative or exceeds 255, it is thresholded to the nearest valid color 
intensity value 0 or 255. 

3.1.3. Mean-based 

With mean-based methods, the main idea is to address the lack of ordering in the lighting angle 
of the various samples by combining the sixteen pictures of each sample into a single image that 
approximates the information contained in the grayscale images. The mean is then used to determine 
each of the RGB color values. The advantage of approaches like these is that they can be computed 
relatively quickly compared to more involved image colorization techniques. The techniques used to 
determine the RGB color values are detailed in the following sub-sections. Given a set of values 𝐒 =ሼ𝑥ଵ, … , 𝑥௡ሽ, the following means were calculated: 

• 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝑴𝒆𝒂𝒏(𝐒) = 𝟏𝒏 ∑ 𝒙𝒊𝒏𝒊ୀ𝟏    

• 𝑮𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝑴𝒆𝒂𝒏(𝐒) = (∏ 𝒙𝒊𝒏𝒊ୀ𝟏 )𝟏𝒏 

• 𝑯𝒂𝒓𝒎𝒐𝒏𝒊𝒄 𝑴𝒆𝒂𝒏(𝐒) = ቀ∑ 𝒙𝒊ష𝟏𝒏𝒊స𝟏𝒏 ቁି𝟏
 

3.1.3.1. Luma Scaling 

Considering that a mean grayscale image can be viewed as containing only luminosity 
information, it follows that a possible way to assign RGB values and colorize the picture would be to 
try to compute a color value according to its perceived luminosity. With images close to the resolution 
of Standard Definition (SD) television, which is 704×480 pixels, the Luma Scaling approach attempts 
to encode luma information in the component video following values used by the BT.601 standard. 
The formula for recovering luma information is: 𝑌ᇱ = 0.299 ∙ 𝑅 + 0.587 ∙ 𝐺 + 0.114 ∙ 𝐵 

This formula weighs the primary colors based on their brightness, with green the brightest 
component and blue the dimmest. The Luma Scaling images are obtained from these weights, which 
are multiplied by the mean image to get the intensity value for each color channel; the result is a basic 
recoloring obtained by computing the following: 

Given the pixel at position 𝑥, let 𝐈ଵ଺(𝑥) be the array of sixteen values of the grayscale intensity 
of the sixteen images in that position; the colored reconstruction is obtained as follows: 
• 𝑹(𝒙) = 𝟎. 𝟐𝟗𝟗 ∙ 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝑴𝒆𝒂𝒏 ൫𝐈𝟏𝟔(𝒙)൯  
• 𝑮(𝒙) = 𝟎. 𝟓𝟖𝟕 ∙ 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝑴𝒆𝒂𝒏 ൫𝐈𝟏𝟔(𝒙)൯ 
• 𝑩(𝒙) = 𝟎. 𝟏𝟏𝟒 ∙ 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝑴𝒆𝒂𝒏 ൫𝐈𝟏𝟔(𝒙)൯. 

3.1.3.2. Means Reconstruction 

This approach utilizes an important relationship between the three different means. Knowing 
that the order of luminosity between the three primary colors is 𝐵𝑙𝑢𝑒 < 𝑅𝑒𝑑 < 𝐺𝑟𝑒𝑒𝑛 and given an 
array of real numbers S, the following relationship holds true: 𝑴𝒊𝒏(𝐒) ≤ 𝑯𝒂𝒓𝒎𝒐𝒏𝒊𝒄 𝑴𝒆𝒂𝒏(𝐒) ≤ 𝑮𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝑴𝒆𝒂𝒏(𝐒) ≤ 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝑴𝒆𝒂𝒏(𝐒) ≤ 𝑴𝒂𝒙(𝐒). 

Given the vector of sixteen grayscale images of each sample 𝐈ଵ଺(𝑥) at a given pixel position 𝑥, 
the Means Reconstruction approach maps every mean to a color channel according to the established 
order as follows: 
• 𝑹(𝒙) = 𝑮𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝑴𝒆𝒂𝒏 ൫𝐈𝟏𝟔(𝒙)൯ 
• 𝑮(𝒙) = 𝑨𝒓𝒊𝒕𝒉𝒎𝒆𝒕𝒊𝒄 𝑴𝒆𝒂𝒏 ൫𝐈𝟏𝟔(𝒙)൯ 
• 𝑩(𝒙) = 𝑯𝒂𝒓𝒎𝒐𝒏𝒊𝒄 𝑴𝒆𝒂𝒏 ൫𝐈𝟏𝟔(𝒙)൯. 
  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 February 2023                   doi:10.20944/preprints202302.0396.v1

https://doi.org/10.20944/preprints202302.0396.v1


 6 

 

3.1.3. HSVPP: Hue, Saturation, Value of brightness + Post-Processing 

This method utilizes an alternative representation of RGB information. Instead of encoding each 
RGB color channel separately, each pixel is encoded with three different values that represent 
coordinates in the HSV color space, as illustrated in Figure 2. 

 

Figure 2. HSV color space representation as found on [18]. 

To encode the three values this conversion is used: 
• Hue (H) encodes the angle of the color vector on the HSV space, with 0° being red, 120° being 

green, and 240° being blue, rescaled to [0,1] during computation; 
• Saturation (S) determines how far from the center of the circumference the color is placed in the 

range [0,1]; 
• Value of brightness (V) calculates the height in the color space cylinder and measures color 

luminosity in the range [0,1]. 
The three values are computed for all sixteen grayscale images in the following manner: 

• H is assigned based on the index of the image, giving each a different color hue; 
• S is set to 1 by default, for maximum diversity between colors; 
• V is set to the grayscale image's original intensity, i.e., its brightness. 

Since the ordering of the lighting angles differs across the classes, the sixteen images are shuffled 
randomly to prevent bias before computing H. Shuffling ensures that the network does not 
discriminate classes based on the order of lightning angles in the post-processed images. 

After obtaining sixteen images of different colors, they are fused into a single RGB image by 
converting the HSV representation to RGB and then by summing the squared intensity of each 
channel together into a single colorized image. 

Finally, it is possible to enhance the resulting images with some post-processing, mainly by 
increasing the brightness of the darker colors and reducing haze for a sharper image. Once this post-
processing is done, the HSVPP dataset is ready to be fed to the network. 
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Figure 3. Examples of the six colorization methods. In the top row from left to right: Percentile, 
Gaussian, and Luma Scaling images; In the bottom row from left to right: Means Reconstruction, HSV, 
and HSVPP images. 

3.2. Training 

Once the dataset is built, networks are trained using a pre-trained ResNet50, which, as the name 
suggests, is a 50-layer CNN. The input layer is a 224×224×3 zero-pad layer. There are 48 hidden layers, 
two of which are a max and an average pool, respectively. Networks of the ResNet family utilize 
residual blocks to maximize depth while diminishing the number of parameters [19]. The output 
layer is a 1000-neuron SoftMax layer. 

All networks were pre-trained with the open-source image dataset ImageNet, which contains 
millions of labelled images. Hyperparameters for all networks were set as follows: 
• Mini Batch Size: 30 
• Max Epochs: 20 
• Learning Rate: 10-3 

The main benefit of a pre-trained network is transfer learning. A modern neural network can 
carry over some of the knowledge gained in previous training cycles on a particular dataset when 
retraining it on a different dataset [19] . This carry-over of information is especially pronounced in 
deep learning models because they operate on a wide array of weights and features. Transfer learning 
significantly reduces the time and number of images needed to train the networks, an advantage 
when working with relatively small datasets. 

The output layer of the pretrained networks has to be adapted to accommodate the task of 
foraminifera classification. Thus, all the output layers were replaced with fully connected SoftMax 
layers of seven neurons, one for each class of foraminifera available in the dataset. Images of the 
dataset were also resized to match the dimensions of the input layers. 

By replacing the last layer with a seven-neuron SoftMax layer, the outputs form a vector 𝒗, 
whose values (scores) are: 

൜𝟎 ≤ 𝒗𝒊 ≤ 𝟏 ∀ 𝒊∑ 𝒗𝒊𝟕𝒊ୀ𝟏 = 𝟏 . 

Scores reflect the level of confidence with which the networks classify an input. 
By diversifying the models, the information processed by each is different. Score fusion is a 

method that combines the confidence values of each model to build a more robust prediction. The 
fusion technique used here is the sum rule [16], defined as: 

𝒔𝒖𝒎 =  ෍ 𝒗𝑵
𝒊ୀ𝟏   ;  𝒐𝒖𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙 ൛𝒔𝒖𝒎𝒋ൟ, 𝒋 =  𝟏 … 𝒏 

where 𝑁 is the number of models and 𝑛 the size of each confidence vector 𝒗. The sum rule is one 
of the best fusion methods because it does not suffer from potentially destructive operations like 
multiplication by zero. 
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4. Results 

The dataset used for all tests is composed of a total of 1437 samples, divided into the following 
classes: 
• 178 images are G. bulloides; 
• 182 images are G. ruber; 
• 150 images are G. sacculifer; 
• 174 images are N. incompta; 
• 152 images are N. pachyderma; 
• 151 images are N. dutertrei; 
• 450 images are "rest of the world," i.e., they belong to other species of planktic foraminifera. 

The initial images were obtained using a reflected light binocular microscope, each taken with a 
light shining from the side at 22.5° intervals, using an AmScope SE305R-PZ binocular microscope at 
30× magnification [3]. For every sample of foraminifera, sixteen grayscale pictures were taken at 
different illumination angles. The resolution of the images can vary per sample, but most are around 
450×450 pixels. Upon manual inspection, the starting illumination angle for the sixteen images seems 
to change partially for different classes of foraminifera in the naming scheme used to sort the pictures. 
We believed the start angle could lead to biased results in classification if a specific class always had 
the same starting angle compared to the others. This problem was addressed, when pre-processing 
the images, by randomly sorting them while keeping the relative illumination angles ordered to avoid 
the insertion of bias within methods that leverage the light positional information. 

The testing protocol for the dataset is the 4-fold cross-validation, and the performance metric is 
the F-score (𝐹ଵ), defined as: 𝑭𝟏 =  𝑻𝒑𝑻𝒑  + 𝟏𝟐 ൫𝑭𝒑 + 𝑭𝒏൯ 

where 𝑇௣, 𝐹௣, 𝐹௡ are respectively the total number of True positives and the False positive/negative 
predictions made by the model.  

In Table 1, we compare our ensemble with that proposed in [3]. With 𝑋(𝑦), we report the 
performance of 𝑦 ResNet50 trained with the 𝑋 RGB approach for colorizing the images. 

Table 1. 𝐹ଵ scores across the specified training cycles. 

4-fold cross-validation  
[3] 0.850 
Percentile(1) 0.811 
Percentile(10) 0.853 
Luma Scaling(10) 0.870 
Means Reconstruction(10) 0.874 
Gaussian(10) 0.873 
HSVPP(10) 0.843 
Percentile(3)+Luma Scaling(3)+ 
Means Reconstruction(3) 0.877 

Gaussian(3)+Luma Scaling(3)+ 
Means Reconstruction(3) 0.879 

Percentile(2)+Gaussian(2)+Luma Scaling(2)+ 
Means Reconstruction(2)+HSVPP(2) 0.885 

The conclusions that can be obtained from the results reported in Table 1 are the following: 
• The best-performing ensemble produces results that significantly improve those obtained by the 

method presented in [3] (Percentile), whose 𝐹ଵ score was reported as 81%.  
• It appears that, in general, increasing the diversity of the ensemble yields better results. The 

approaches combining multiple preprocessed images sets consistently rank higher in 𝐹ଵ scores 
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than any individual method, iterated ten times. Combining fewer iterations of all the approaches 
yielded the best results overall. 
The breakdown of the 4-fold classification on the full dataset is presented in Figure 4 as a 

confusion chart, where we can see the number of true positives, false positives, and false negatives. 
The G. sacculifer was the class classified correctly the least, but this class had the smallest number of 
samples, 150 specimens, compared to the rest, which could have affected results. Also noteworthy is 
the high number of false positives predicted for the N. incompta class, consistent with the classification 
rate in [3], although if found the false negatives to be the larger issue. 

 

Figure 4. Confusion chart of the 4-fold cross validation results obtained by our ensemble. 

Comparing the final results of the ensemble with the study reported in [3], the precision 
averaged across the six labelled classes achieved by six human experts ranged from 59% to 83%, with 
a mean of 74%. In contrast, five human novices ranged from 49% to 65%, with 56% on average. The 
ensemble approach proposed in [3] was found to achieve an average precision of 80%, which is 
comparable to that of the experts. The best ensemble presented in Table 1, which is 
Percentile(2)+Gaussian(2)+Luma Scaling(2)+Means Reconstruction(2)+HSVPP(2), was found to 
achieve an average precision of 87%, a much better average than that of the experts and higher than 
any of them individually. 

Similar results have been obtained for recall and the 𝐹ଵ  score, which was always averaged 
across the six labelled classes. The six experts achieved recall between 32% and 83% (mean 60%), 
while the novices scored 47%–64% (mean 53%). The ensemble proposed in [3] (named 
Original(ResNet50+Vgg16) in the following figures) reported an average recall of 82%, while our ensemble 
reached 89%. The 𝐹ଵ score of the six experts ranged from 39% to 83% (mean 63%), the five novices 
obtained 𝐹ଵ scores between 47% and 63% (mean 53%), and the [3] reported an average of 81%. The 
ensemble presented in this paper scored 88%. These results are illustrated in Figure 5. 
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Figure 5. Precision, recall and 𝐹ଵ score comparison between [3] and the best ensemble presented in 
the paper. 

On a finer level, we have also charted the precision, recall and 𝐹ଵ scores across all the different 
classes in our study, as seen in Figure 6. 
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Figure 6. precision, recall and 𝐹ଵ score of the best ensemble across al classes of the dataset. 

In both precision and 𝐹ଵ  score, N. incompta comes out the lowest by a significant margin, 
achieving 0.76 in precision, while the other six classes average 0.9; the 𝐹ଵ score for N. incompta is 0.82, 
while the other six classes average 0.88. N. pachyderma has the poorest recall, achieving 0.83, while the 
other six classes average 0.9. In contrast, the highest precision, recall, and 𝐹ଵ score were all achieved 
on the G. ruber class, which may indicate it has features that are easier to distinguish than all the 
others. 

Out of the false positives for G. ruber, two were G. sacculifer, five were G. bulloides, and nine were 
Others, while the false negatives were only misclassified as G. sacculifer or as Other. The differences 
and similarities between the false positives and real data are illustrated in Figure 7. 
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Figure 7. Visual comparison of false positives (FPs) in the classification of G. ruber with hand-picked 
true samples. 

It's important note that all the performance indicators for our method achieved scores higher 
than 75%, while in [3] some classes like N. dutertrei had precision less than 70%. 

5. Conclusions 

Although the sample size of the experiment is small, the impact of Ensemble Learning on the 
problem is definitely noticeable. There are, however, a few points of concern. The dataset only 
contained ~1500 images divided into seven classes of foraminifera, a problem we addressed with 
transfer learning. Nonetheless, the scope of the experience was limited to a very small portion of the 
real-world problem of foraminifera classification. We can, however, safely assume that with more 
samples per class, performance could be enhanced even further. What we are uncertain about, 
without experimental data, is how the model would respond to a larger set of classes. Image 
preprocessing and classification on multiple CNNs are very time-consuming tasks. Because our 
models were run on sub-optimal machines, our focus was directed toward maximizing accuracy 
while neglecting the time it took for training. 

A possible future development of the project is the application of the technique used to generate 
an approximate normal map of an object from grayscale images with lights coming from the four 
cardinal directions. Since normal maps are used in 3D computer graphics to fake details such as 
bumps, dents, and lighting without the need for added geometry, these results could also be used to 
generate entirely new images with new lighting conditions, colors, and viewpoints without the need 
of the human labor usually needed to increase the size of the dataset. 
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