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Abstract: We introduce a novel hybrid Transformer-CNN architecture for robotic grasp detection, designed to
enhance the accuracy of grasping unknown objects. Our proposed architecture has two key designs. Firstly,
we develop a hierarchical transformer as the encoder, incorporating the external attention to effectively capture
the correlation features across the data. Secondly, the decoder is constructed with cross-layer connections to
efficiently fuse multi-scale features. Channel attention is introduced in the decoder to model the correlation
between channels and to adaptively recalibrate the channel correlation feature response, thereby increasing the
weight of the effective channels. Our method is evaluated on the Cornell and Jacquard public datasets,
achieving an image-wise detection accuracy of 98.3% and 95.8% on each dataset, respectively. Additionally, we
achieve object-wise detection accuracy of 96.9% and 92.4% on the same datasets. A physical experiment is also
performed using the Elite 6Dof robot, with a grasping accuracy rate of 93.3%, demonstrating the proposed
method’s ability to grasp unknown objects in real-world scenarios. The results of this study show that our
proposed method outperforms other state-of-the-art methods.

Keywords: Robotic Grasp; Transformer; attentional mechanism

1. Introduction

In recent years, the advancement of artificial intelligence has made smart robots increasingly
important in industries such as smart factories and healthcare [1,2]. Among the tasks performed by
these robots, grasping objects is a fundamental ability that enables them to carry out more complex
operations [3,4]. Vision-based automated grasping, where the robot uses visual sensors to identify
the best gripping position for an object, is crucial for their intelligence and automation. However,
despite the advancements in the field, most of the current methods are still limited to models of
known objects or trained for known scenes, making the task of grasping unknown objects with high
accuracy a significant challenge [5].

Currently, most grasp detection methods for vision robots rely on Convolutional Neural
Networks (CNNs) [6-10]. Despite their popularity, CNNs have limitations in handling grasping
tasks. They are designed to process local information through their small convolutional kernels and
have difficulty capturing global information due to limited filter channels and convolution kernel
sizes. The convolutional computation method used by CNNs also makes it challenging to capture
long-distance dependency information during information processing.

The Transformer architecture has seen great success in the field of vision lately [11,12]. The
Transformer’s self-attention mechanism provides a more comprehensive understanding of image
features compared to CNNs. The Transformer’s ability to effectively capture global information
through its self-attentive mechanism makes it a more representative model. In this article, we propose
a novel robot grasp detection network that combines the Transformer and CNN architectures. The
network features an encoder composed of Transformer layers, which provide multi-scale feature
information, and a decoder that uses CNN with Res-channel attention blocks for feature aggregation
to improve accuracy. The original contributions of this research are outlined below:

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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1. A novel hierarchical Transformer-CNN architecture for robot grasp detection is developed
that integrates local and global features.

2. The encoder’s Transformer layer is enhanced with efficient external attention to better capture
the relationships between different images. The decoder is designed with Res-channel attention
blocks to more efficiently learn channel-wise features.

3. Extensive experiments are conducted on both public datasets and real-world object grasp task
to validate the performance of the proposed method. The results, both qualitative and quantitative,
show that the proposed method outperforms state-of-the-art methods and can detect stable grasps
with high accuracy.

2. Related Works

The representation of object grasping is crucial for robot grasp detection. Jiang et al. [13]
proposed a method that describes the grasping position using a rectangular representation, using a
5-dimensional vector to describe the position, height, width, and rotation angle of the grasp in the
image. Morrison et al. [14] proposed a grasp location description method based on a grasp map,
which gives the gripping position and posture by predicting the gripping quality of each pixel. These
two models are widely used in robot grasp detection tasks.

Current grasp detection models can be broadly categorized into two types: cascade methods and
one-stage methods. Cascade methods perform the entire grasp prediction process in stages, including
the extraction of target features, generation of candidate regions, and evaluation of the optimal
gripping position. Lenz et al. [15] created the Cornell dataset and proposed a two-stage cascade
detection model to learn this five-dimensional grasp. The first stage uses a neural network to extract
grasp prediction features, and the second stage refines the predicted grasp parameters to output the
optimal grasp location. Zhou et al. [16] presented a model that predicts multiple grasping poses using
an oriented anchor box. Zhang et al. [17] proposed a robotic grasp detection algorithm named ROI-
GD, which uses ROI features to detect grasps instead of the whole image. Laili et al. [18] presented a
region-based approach to locate grasping point pairs. A consistency-based method is used to train
the grasp detector with less labelled training data.

In the last few years, the development of one-stage detection approaches for object grasping has
gained popularity due to their simple and efficient structure. The one-stage approach trains a neural
network model to directly output the grasp position. Previous works, such as Redmon et al. [19],
used AlexNet to directly process the input image and predict the grasp location. Kumra et al. [20,21]
built a grasp network based on ResNet that extracts features from RGB and depth images to output
both classification and regression results for the optimal grasp location. Mahler et al. [22] proposed a
grasp quality evaluation network using image segmentation and a corresponding point cloud for
grasp prediction. Morrison et al. [14] used convolutional layers for encoding and decoding to perform
pixel-level grasp prediction of feature maps. Yu et al. [23] proposed a U-Net based neural network
with channel attention modules to better utilize features. Wu et al. [24] introduced an anchor-free
grasp detector based on a fully convolutional network that formulates grasp detection as a closest
horizontal or vertical rectangle regression task and a grasp angle classification task.

Recently, the transformer has gained traction in the field of computer vision due to its ability to
model global information, overcoming the limitations of CNN models in using contextual
information. The transformer has been successfully applied to vision tasks [25,26] through its self-
attention mechanism and pyramid-like structure. In 2022, Wang et al. [27] used the SWIN
Transformer as a backbone for feature extraction with impressive results.

Our proposed model, HTC-Grasp, differs from these efforts in two key ways. Firstly, it employs
external attention for the transformer block to enhance the representation of the correlation between
different images. Secondly, it uses a Residual connection-based channel attention block for the
decoder to efficiently learn discriminative channel-wise features.
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3. Method

3.1. Grasp Task Representation

The vision grasping tasks typically involve collecting visual images of the target object using
sensors such as RGBD cameras. These images are processed by a model to determine the optimal
grasp position. When the robot is equipped with parallel grippers, the grasping parameters p can be
represented as a 5-dimensional tuple.

p={x,y,6,w,h} (1)

where (x,y) represents the center coordinates, (w, h) represents the width and height of the grasp
box, and 8 is the angle between the horizontal axis of the grasp box and the horizontal axis of the
image.

An alternative representation for high-precision, real-time robot grasping was introduced in
[14]. In this representation, the grasp is redefined for 2DoF robotic grasping tasks as follows:

P = {Q 0,W} € R¥*Wx" )

where P is a 3-dimensional tensor. The first dimension, Q, represents the grasping quality of each
pixel in the image; the second dimension, ©, denotes the orientation angle of the gripper; and the
third dimension, W, represents the width of the gripper. Each pixel, with a specific width W; ; and
angle 0;;, corresponds to the width and orientation angle of the gripper at that particular position.

3.2. Grasp Overview

In this section, we present the proposed neural network architecture for grasp detection, which
is illustrated in Figure 1. The architecture of the HTC-Grasp network consists of three parts: the
encoder, the decoder, and the prediction head. The encoder is built using hierarchical transformers
with a pyramid-like structure to extract both high-resolution coarse features and low-resolution fine
features. The decoder, made up of convolution layers with res-channel attention blocks, fuses the
previously obtained multi-scale features. Finally, the fused features are used by four sub-task
networks to predict grasp heatmaps, including the quality score map, the angle map in the form of
sin (260) and cos (26), and the gripper width.
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Figure 1. Overall network architecture of HTC-Grasp.

The specific process is as follows. Using an RGB-D image as an input, the size of which is
H X W x 4, it is first divided into blocks with 4 x 4 pixels for each block. These blocks are then used
as inputs to the transformer blocks, which output multi-level feature images with resolutions of
{1/4,1/8,1/16,1/32} of the original image. These multi-level features are then passed to the decoder
to predict the grasp heatmaps. In the following sections, we will delve into the details of the proposed
encoder-decoder design.

3.3. Neural Network Architecture

3.3.1. Hierarchical Transformer Encoder

We introduced a pyramid structure into the Transformer architecture to facilitate the generation
of multi-scale feature maps. High-resolution coarse features and low-resolution fine features
generated by the hierarchical Transformer encoder enhance the performance of the model. The
feature encoder of the proposed method comprises four stages, each designed to generate feature
maps at a different scale. The architecture of each stage is similar and consists of a Patch Embedding
Layer followed by a Transformer block.

To be more specific, we take an input image with a resolution of H X W X 4 and feed it into the
H w
2i+17 pi+1’ G,

where i ranges from 1 to 4. Considering that uniform partitioning will make the obtained patches
have no overlapping parts and weaken the connection between patches, we intentionally have
overlapping parts between each patch in the partitioning. Then the images patches are fed into the
encoder to obtain multi-scale features.

The Transformer blocks are used to extract features. Each Transformer block consists of self-
attention and feed-forward layer. The original self-attention mechanism generates three matrices: the
query matrix Q € R¥*, the key matrix K € RV*%, and the value matrix V € R¥*% . Here, N
represents the number of patches, and d; and d,, signify the feature dimensions of Q@ and K, and
V, respectively. The self-attention is then calculated as follows:

Patch Embedding stages to get a hierarchical feature image F; with the resolution of

T

Vd

The computational complexity of self-attention is O(N?), which presents a significant drawback
to the real-time applications. Additionally, self-attention can only model correlations within

w ©)

Attention = softmax(

individual samples, ignoring the correlations across the entire dataset. To overcome these limitations,
we introduce the multi-head external attention (MEA) [28] mechanism as a replacement for the
standard multi-head self-attention (MSA) module in our Transformer blocks.

To improve the efficiency of the transformer layer, we incorporate the use of MEA mechanism.
This mechanism is represented by the following equation:

h; = ExternalAttention(F;, My, M,,) 4)
Foue = MultiHead (F, M, M,,) (5)
Fyyt = Concat(hy, ..., hg)W, (6)

where h; stands for the ith multihead, H symbolizes the total number of multiheads, and W, is a
linear transformation matrix that has equal output and input dimensions. The structure of MEA is
shown in Figure 2.
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Figure 2. The architecture of external attention block.

3.3.2. Grasp Decoder

Our decoder is designed with a combination of convolutional layers and Res-channel attention
blocks. As illustrated in Figure 3, the Res-channel attention block is a combination of a ResNet block
and a channel attention block. The ResNet block is made up of three convolutional layers with kernel
sizes of 1 x1, 3x3 and 1 X 1. The channel attention block, on the other hand, utilizes global
average pooling to reduce the number of parameters contained in the features. This block is then
composed of two fully connected layers and one ReLU layer, which utilizes global information to
selectively emphasize important features and reduce the emphasis on less relevant features.

Conv
1x1

Input

F
Cony Conyv Conv GAP — C

Ix1 33 1xl

— RELU — g — Sigmoid

Figure 3. Res-Channel attention block.

Specifically, the decoder we propose involves three key steps. To begin with, the multilevel
features F; from the encoder are fed through the upsample block, which increases the resolution to
1/4 x 224 X 224, and then these features are concatenated. Next, a CNN layer is utilized to merge
the resulting features, and this is followed by two upsampling layers that increase the resolution to
224 x 224. Finally, the fused features are utilized to make predictions regarding the grasp heatmaps.

3.3.3. Loss Function

In our study, we define the task of robot grasp detection as a regression problem and adopt the
smooth L1 loss function as our optimization objective. This loss function has the advantage of being
robust to outliers and provides stability during training.

Lyeg(Ti, Ty) = z Smooth(Ty, — Ty)
ke{q,sin 20,cos 26,w}

(7)

The Smooth L1 loss is defined as follows

0.5x2, iflx] <1

Smoothy, (x) = {lxl — 0.5, otherwise

®)
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In our work, the predicted grasping parameters T, and the ground truth T, are defined as
follows: g represents the grasping quality, 6 stands for the grasping angle, and w represents the
width of the gripper.

4. Experiments and Results

4.1. Dataset

In this chapter, experiments are conducted on two popular datasets, the Cornell and the
Jacquard datasets, to fully validate the performance of the proposed method.

(a) Datasets

The Cornell dataset is a dataset for robot grasp detection, which includes 240 distinct objects. It
consists of 885 RGB images and 885 depth images. To ensure the best results from the transformer
structure, which requires a substantial amount of data, various data augmentation techniques such
as rotation, scaling, and random cropping are applied to the Cornell dataset in the experiments.

The Jacquard dataset consists of 54485 diverse scenes for 11619 different objects. It provides RGB
images, 3D point cloud data, and grasp annotations for each scene. Given the massive size of the
Jacquard dataset, no data transformations are performed on it in our work.

(b) Implementation details

In this ariticle, the model was constructed using the Pytorch framework on the Ub-untu 20.04
platform. For training, we utilized an NVIDIA RTX 3090Ti GPU and an Intel Core i9-12900K CPU. In
the data augmentation process for the Cornell dataset, each 640x480 image undergoes rotation,
scaling, and random cropping, resulting in an image of size 224x224. During each training step, a
batch of samples was randomly selected from the training set, with 200 batches of size 32 in each
epoch, and 100 epochs are trained in total. AdamW is employed as the optimizer, with an initial
learning rate of 0.0001.

HTC-Grasp is parameterized with the following configuration. The channel numbers for stages
1 to 4 are set to C; = 32,(C, = 64,C3; = 128,(C, = 256, respectively. The number of heads in the self-
attention layer for each block is set to 1, 2, 4, and 8, respectively. The number of encoder layers in
stages 1to4issetto L; = L, = L3 = L, = 256. The number of channels in the decoder layer is set to
C=256.

In our work, each dataset is divided into two parts, with 90% used for training and 10% for
testing. To evaluate the performance of the method, both image-wise and object-wise grasp detection
accuracy were used. Image-wise split randomly assigns the entire dataset into a training set and a
test set, to assess the network’s ability to generalize to previously seen objects when they appear in
new positions and orientations. Object-wise split, on the other hand, divides the dataset based on
object instances, ensuring that objects in the test set do not appear in the training set, thereby testing
the network’s ability to generalize to unknown objects.

(c) Evaluation index

The predicted grasping box is considered correct if it meets the following two criteria.

(1) The discrepancy between the predicted grasping angle and the ground truth must be within

30°
(2) The IOU index, defined in equation (9), must be greater than 0.25.
. _|R*NR|
IOU(R*,R) = R*UR| 9)

4.2. Comparison Studies

To evaluate the performance of our method against other grasp detection methods, we use the
same evaluation metric to compare their results on both the Cornell and Jacquard datasets.

The comparison study starts with the evaluation on the Cornell dataset. The grasp position can
be determined using the quality heatmap, with the best grasp position being the pixel with the
highest quality score and the grasping box being determined by the angle and width corresponding
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to the best grasp position. Figure 4 presents the grasp detection results of GR-CNN , TF-Grasp [27]
and the proposed HTC-Grasp for unseen objects on the Cornell Dataset. The results indicate that
HTC-Grasp has a higher grasp quality as compared to the GR-CNN and TF-Grasp methods.
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Figure 4. Comparison of predicted heatmaps on Cornell Dataset.

For the classical method experimental results presented in Table 1, we have selected the data

reported in their original paper. Table 1 illustrates the performance of HTC-Grasp compared to

existing algorithms on the Cornell dataset. HTC-Grasp sur-passes other algorithms with accuracy
rates of 98.3% and 96.9% on Image-wise split (IW) and Object-wise split (OW) test, respectively.
Furthermore, our model, utilizing the NVIDIA RTX 3090Ti GPU, processes a single frame in
approximately 5.4 ms, fulfilling the requirement for real-time processing.

Table 1. The comparison results on Cornell Dataset.

Accuracy (%) Time

Authors Method Input W oW (ms)
Lenz [15] SAE RGB-D 73.9 75.6 1350
Redmon [19] AlexNet RGB-D 88 87.1 76
Kumra [20] ResNet-50x2 RGB-D 89.2 88.9 103
Morrision [14] GG-CNN D 73 69 19
Chu [29] ResNet-50 RGB-D 96 96.1 120
Asif [8] GraspNet RGB-D 90.2 90.6 24
Kumra [21] GR-CNN RGB-D 97.7 96.6 20
Wang [27] TF-Grasp RGB-D 97.99 96.7 41.6
Ours HTC-Grasp RGB-D 98.3 96.9 5.4

We conducted comparative experiments using the Jacquard dataset. Figure 5 dis-plays some
examples of the predicted heatmaps and predicted grasps of GR-CNN, TF-Grasp, and HTC-Grasp.
The results indicate that HTC-Grasp exhibits a higher grasping quality compared to GR-CNN and
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TF-Grasp methods. Table 2 presents the performance of HTC-Grasp on the Jacquard dataset in
comparison to several classic algorithms. HTC-Grasp outperformed the other algorithms with an
accuracy of 95.8% on the Jacquard dataset.

RGB D Grasp Quality Angle Width
GR- B '.
I i
TF- ‘
S i
S — i
-
S | B
CNN ~ -
d
-
TE- ’
Grasp : - ‘
i
I
Figure 5. Comparison of predicted heatmaps on Jacquard Dataset.
Table 2. The comparison results on Jacquard Dataset.
Authors Method Input Accuracy (%)
Morrision [14] GG-CNN2 D 84
Kumra [21] GR-CNN RGB-D 94.6
Wang [27] TF-Grasp RGB-D 94.6
Ours HTC-Grasp RGB-D 95.8

We present qualitative comparison results for the Cornell and Jacquard datasets, as
demonstrated in Figures 4 and 5. It can be observed that:

1) As shown in the first and third rows of Figures 4 and 5, the GR-CNN method which is solely
based on CNNs has a low prediction quality in the central region of easily grasped objects. The
background predictions by GRCNN are close to the actual grasping poses, indicating that grasp pose
detection is vulnerable to environmental interference. This is due to the absence of an attention
mechanism in the GR-CNN network, leading to its poor performance.

2) In comparison to the Transformer-based TF-Grasp model, our proposed method, HTC-Grasp,
provides more precise predictions of grasp quality and retains more de-tailed shape information.
This is achieved by incorporating an external attention mechanism in the encoder module, which
enhances the network’s capability to encode global context and differentiate semantics. Furthermore,
we introduced a Residual Channel attention module in the decoder module, which allows the
network to learn and determine the significance of each feature channel, thereby improving the
utilization of valuable features and reducing the impact of redundant features.
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Experimental results demonstrate that the proposed framework can accurately identify suitable
grasp locations and effectively differentiate graspable regions with a high level of confidence. As seen
in the third and sixth rows of Figure 4, the center of the object is highlighted with a high score close
to 1, while the edges of the object are marked with a lower score. Similarly, in the third and sixth
rows of Figure 5, the protruding parts of the object that are easily graspable are precisely marked
with a high score, and the model effectively captures both global information and fine-grained
features such as the exact lo-cation and shape of the object.

To further demonstrate the efficacy of our proposed method, we conducted experiments using
a test set of images captured by ourselves without additional training. The results shown in Figure 6
indicate that our proposed method can accurately identify grasp regions in an unseen real-world
environment.

RGB D
-

Width

~

Figure 6. Test result of our method in the real-world multiple objects environment.

4.3. Ablation Studies

To validate the impact of external attention and channel attention on the proposed grasp
detection model, we conduct experiments on the Cornell and Jacquard datasets. Our model is
compared to versions without external attention and channel attention, respectively.

The results are shown in Table 3 and indicate that incorporating external attention in the encoder
and channel attention in the decoder leads to improved performance. The external attention
mechanism in the transformer effectively combines global features, leading to better results.
Additionally, the Res-Channel attention blocks enhance the weight of effective feature maps,
resulting in improved performance. The results demonstrate that both the external attention and Res-
Channel attention contribute to the accuracy of the final grasp box predictions.

Table 3. The comparison results on Jacquard Dataset.

With external attention  With channel attention Accuracy(%)
v 97.2
Dataset ! 76
v v 98.3
Jacquard v 94.2
D;aset v 047
v v 95.8

4.4. Grasping in realistic scenarios

In our grasping experiments, we utilize an Elite EC66 robot and an Orbbec Femto-W RGB-D
camera as the experimental setup. The camera is positioned in a fixed location, and the image streams
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are captured by it. The RGB-D images are then fed into our model to obtain the best grasping pose.
Subsequently, the robot’s end actuator approaches the target according to the motion planning
method, and the gripper is closed to grasp the target. The end actuator is then able to lift the object to
another location. Figure 7 illustrates the grasp process. Our method is tested on 180 household
objects, and the robot success-fully grasped 168 objects with a 93.3% accuracy rate. The detailed
experimental results are presented in Table 4 and demonstrate the effectiveness of our method in
real-world robot grasping tasks.

(d)

Figure 7. Example of the robotic grasp process. (a) shows the initial state of the robot. (b) illustrates
the robot’s gripper has moved to the target to be grasped. (c) shows the state of the object being
grasped. (d) demonstrates the target being moved to another location.

Table 4. Grasp success rates in robotic grasping experiments.

Authors Physical grasp Success rate
Lenz [15] 89/100 89.0%
Morrison [14] 110/120 92.0%
Chu [29] 89/100 89.0%
Wang [27] 152/165 92.1%
Ours 168/180 93.3%

5. Conclusion

In this article, we present a novel hierarchical hybrid transformer CNN architecture for robotic
visual grasping, named HTC-Grasp. The proposed architecture uses hierarchical transformer blocks
with external attention as encoders to enhance the ability to capture long-range spatial correlations
at multiple scales, and the Res-Channel attention block in the decoder module adaptively recalibrates
the channel-wise feature response to achieve precise positioning. We evaluated the performance of
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HTC-Grasp on the Cornell and Jacquard datasets and found that it outperformed existing methods,
achieving favor-able grasping results.
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