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Article 

HTC-Grasp: A Hybrid Transformer-CNN 
Architecture for Robotic Grasp Detection 

Qiang Zhang 1, Jiangwei Zhu 1, Xueying Sun 1,* and Mingmin Liu 2 

1 School of Automation, Jiangsu University of Science and Technology, No. 666 Changhui Road, Zhenjiang 

212100, Jiangsu, China; 
2 Central Research Institute, SIASUN Robot & Automation Co., LTD., NO.16 Jinhui Street, Hunnan District, 

Shenyang 110168, China; 

* Correspondence: sunxueying@ just.edu.cn 

Abstract: We introduce a novel hybrid Transformer-CNN architecture for robotic grasp detection, designed to 

enhance the accuracy of grasping unknown objects. Our proposed architecture has two key designs. Firstly, 

we develop a hierarchical transformer as the encoder, incorporating the external attention to effectively capture 

the correlation features across the data. Secondly, the decoder is constructed with cross-layer connections to 

efficiently fuse multi-scale features. Channel attention is introduced in the decoder to model the correlation 

between channels and to adaptively recalibrate the channel correlation feature response, thereby increasing the 

weight of the effective channels. Our method is evaluated on the Cornell and Jacquard public datasets, 

achieving an image-wise detection accuracy of 98.3% and 95.8% on each dataset, respectively. Additionally, we 

achieve object-wise detection accuracy of 96.9% and 92.4% on the same datasets. A physical experiment is also 

performed using the Elite 6Dof robot, with a grasping accuracy rate of 93.3%, demonstrating the proposed 

method’s ability to grasp unknown objects in real-world scenarios. The results of this study show that our 

proposed method outperforms other state-of-the-art methods. 

Keywords: Robotic Grasp; Transformer; attentional mechanism 

 

1. Introduction 

In recent years, the advancement of artificial intelligence has made smart robots increasingly 

important in industries such as smart factories and healthcare [1,2]. Among the tasks performed by 

these robots, grasping objects is a fundamental ability that enables them to carry out more complex 

operations [3,4]. Vision-based automated grasping, where the robot uses visual sensors to identify 

the best gripping position for an object, is crucial for their intelligence and automation. However, 

despite the advancements in the field, most of the current methods are still limited to models of 

known objects or trained for known scenes, making the task of grasping unknown objects with high 

accuracy a significant challenge [5]. 

Currently, most grasp detection methods for vision robots rely on Convolutional Neural 

Networks (CNNs) [6–10]. Despite their popularity, CNNs have limitations in handling grasping 

tasks. They are designed to process local information through their small convolutional kernels and 

have difficulty capturing global information due to limited filter channels and convolution kernel 

sizes. The convolutional computation method used by CNNs also makes it challenging to capture 

long-distance dependency information during information processing. 

The Transformer architecture has seen great success in the field of vision lately [11,12]. The 

Transformer’s self-attention mechanism provides a more comprehensive understanding of image 

features compared to CNNs. The Transformer’s ability to effectively capture global information 

through its self-attentive mechanism makes it a more representative model. In this article, we propose 

a novel robot grasp detection network that combines the Transformer and CNN architectures. The 

network features an encoder composed of Transformer layers, which provide multi-scale feature 

information, and a decoder that uses CNN with Res-channel attention blocks for feature aggregation 

to improve accuracy. The original contributions of this research are outlined below: 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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1. A novel hierarchical Transformer-CNN architecture for robot grasp detection is developed 

that integrates local and global features. 

2. The encoder’s Transformer layer is enhanced with efficient external attention to better capture 

the relationships between different images. The decoder is designed with Res-channel attention 

blocks to more efficiently learn channel-wise features. 

3. Extensive experiments are conducted on both public datasets and real-world object grasp task 

to validate the performance of the proposed method. The results, both qualitative and quantitative, 

show that the proposed method outperforms state-of-the-art methods and can detect stable grasps 

with high accuracy. 

2. Related Works 

The representation of object grasping is crucial for robot grasp detection. Jiang et al. [13] 

proposed a method that describes the grasping position using a rectangular representation, using a 

5-dimensional vector to describe the position, height, width, and rotation angle of the grasp in the 

image. Morrison et al. [14] proposed a grasp location description method based on a grasp map, 

which gives the gripping position and posture by predicting the gripping quality of each pixel. These 

two models are widely used in robot grasp detection tasks. 

Current grasp detection models can be broadly categorized into two types: cascade methods and 

one-stage methods. Cascade methods perform the entire grasp prediction process in stages, including 

the extraction of target features, generation of candidate regions, and evaluation of the optimal 

gripping position. Lenz et al. [15] created the Cornell dataset and proposed a two-stage cascade 

detection model to learn this five-dimensional grasp. The first stage uses a neural network to extract 

grasp prediction features, and the second stage refines the predicted grasp parameters to output the 

optimal grasp location. Zhou et al. [16] presented a model that predicts multiple grasping poses using 

an oriented anchor box. Zhang et al. [17] proposed a robotic grasp detection algorithm named ROI-

GD, which uses ROI features to detect grasps instead of the whole image. Laili et al. [18] presented a 

region-based approach to locate grasping point pairs. A consistency-based method is used to train 

the grasp detector with less labelled training data. 

In the last few years, the development of one-stage detection approaches for object grasping has 

gained popularity due to their simple and efficient structure. The one-stage approach trains a neural 

network model to directly output the grasp position. Previous works, such as Redmon et al. [19], 

used AlexNet to directly process the input image and predict the grasp location. Kumra et al. [20,21] 

built a grasp network based on ResNet that extracts features from RGB and depth images to output 

both classification and regression results for the optimal grasp location. Mahler et al. [22] proposed a 

grasp quality evaluation network using image segmentation and a corresponding point cloud for 

grasp prediction. Morrison et al. [14] used convolutional layers for encoding and decoding to perform 

pixel-level grasp prediction of feature maps. Yu et al. [23] proposed a U-Net based neural network 

with channel attention modules to better utilize features. Wu et al. [24] introduced an anchor-free 

grasp detector based on a fully convolutional network that formulates grasp detection as a closest 

horizontal or vertical rectangle regression task and a grasp angle classification task. 

Recently, the transformer has gained traction in the field of computer vision due to its ability to 

model global information, overcoming the limitations of CNN models in using contextual 

information. The transformer has been successfully applied to vision tasks [25,26] through its self-

attention mechanism and pyramid-like structure. In 2022, Wang et al. [27] used the SWIN 

Transformer as a backbone for feature extraction with impressive results. 

Our proposed model, HTC-Grasp, differs from these efforts in two key ways. Firstly, it employs 

external attention for the transformer block to enhance the representation of the correlation between 

different images. Secondly, it uses a Residual connection-based channel attention block for the 

decoder to efficiently learn discriminative channel-wise features. 
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3. Method 

3.1. Grasp Task Representation 

The vision grasping tasks typically involve collecting visual images of the target object using 

sensors such as RGBD cameras. These images are processed by a model to determine the optimal 

grasp position. When the robot is equipped with parallel grippers, the grasping parameters 𝑝 can be 

represented as a 5-dimensional tuple. 𝑝={𝑥,𝑦,𝜃,𝑤,ℎ} (1) 

where (𝑥, 𝑦) represents the center coordinates, (𝑤, ℎ) represents the width and height of the grasp 

box, and 𝜃 is the angle between the horizontal axis of the grasp box and the horizontal axis of the 

image. 

An alternative representation for high-precision, real-time robot grasping was introduced in 

[14]. In this representation, the grasp is redefined for 2DoF robotic grasping tasks as follows: 𝑃 = {Q, Θ,W} ∈ ℝ3×𝑤×ℎ   (2) 

where 𝑃 is a 3-dimensional tensor. The first dimension, Q, represents the grasping quality of each 

pixel in the image; the second dimension, Θ, denotes the orientation angle of the gripper; and the 

third dimension, W, represents the width of the gripper. Each pixel, with a specific width W𝑖,𝑗 and 

angle Θ𝑖,𝑗, corresponds to the width and orientation angle of the gripper at that particular position. 

3.2. Grasp Overview 

In this section, we present the proposed neural network architecture for grasp detection, which 

is illustrated in Figure 1. The architecture of the HTC-Grasp network consists of three parts: the 

encoder, the decoder, and the prediction head. The encoder is built using hierarchical transformers 

with a pyramid-like structure to extract both high-resolution coarse features and low-resolution fine 

features. The decoder, made up of convolution layers with res-channel attention blocks, fuses the 

previously obtained multi-scale features. Finally, the fused features are used by four sub-task 

networks to predict grasp heatmaps, including the quality score map, the angle map in the form of sin⁡(2𝜃) and cos⁡(2𝜃), and the gripper width. 
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Figure 1. Overall network architecture of HTC-Grasp. 

The specific process is as follows. Using an RGB-D image as an input, the size of which is 𝐻 ×𝑊 × 4, it is first divided into blocks with 4 × 4 pixels for each block. These blocks are then used 

as inputs to the transformer blocks, which output multi-level feature images with resolutions of {1/4, 1/8, 1/16, 1/32}⁡of the original image. These multi-level features are then passed to the decoder 

to predict the grasp heatmaps. In the following sections, we will delve into the details of the proposed 

encoder-decoder design. 

3.3. Neural Network Architecture 

3.3.1. Hierarchical Transformer Encoder 

We introduced a pyramid structure into the Transformer architecture to facilitate the generation 

of multi-scale feature maps. High-resolution coarse features and low-resolution fine features 

generated by the hierarchical Transformer encoder enhance the performance of the model. The 

feature encoder of the proposed method comprises four stages, each designed to generate feature 

maps at a different scale. The architecture of each stage is similar and consists of a Patch Embedding 

Layer followed by a Transformer block.  

To be more specific, we take an input image with a resolution of 𝐻 ×𝑊 × 4 and feed it into the 

Patch Embedding stages to get a hierarchical feature image 𝐹𝑖 with the resolution of 
𝐻2𝑖+1 , 𝑊2𝑖+1 , 𝐶𝑖, 

where 𝑖 ranges from 1 to 4. Considering that uniform partitioning will make the obtained patches 

have no overlapping parts and weaken the connection between patches, we intentionally have 

overlapping parts between each patch in the partitioning. Then the images patches are fed into the 

encoder to obtain multi-scale features. 

The Transformer blocks are used to extract features. Each Transformer block consists of self-

attention and feed-forward layer. The original self-attention mechanism generates three matrices: the 

query matrix 𝑄 ∈ ℝ𝑁×𝑑𝑘 , the key matrix 𝐾 ∈ ℝ𝑁×𝑑𝑘 , and the value matrix 𝑉 ∈ ℝ𝑁×𝑑𝑣 . Here, 𝑁 

represents the number of patches, and 𝑑𝑘 and 𝑑𝑣 signify the feature dimensions of 𝑄 and 𝐾, and 𝑉, respectively. The self-attention is then calculated as follows: 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇√𝑑 )𝑉 (3) 

The computational complexity of self-attention is 𝑂(𝑁2), which presents a significant drawback 

to the real-time applications. Additionally, self-attention can only model correlations within 

individual samples, ignoring the correlations across the entire dataset. To overcome these limitations, 

we introduce the multi-head external attention (MEA) [28] mechanism as a replacement for the 

standard multi-head self-attention (MSA) module in our Transformer blocks. 

To improve the efficiency of the transformer layer, we incorporate the use of MEA mechanism. 

This mechanism is represented by the following equation: ℎ𝑖 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐹𝑖 , 𝑀𝑘, 𝑀𝑣) (4) 𝐹𝑜𝑢𝑡 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝐹,𝑀𝑘, 𝑀𝑣)    (5) 𝐹𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ1, … , ℎ𝐻)𝑊𝑜   (6) 

where ℎ𝑖 stands for the 𝑖th multihead, H symbolizes the total number of multiheads, and 𝑊𝑜 is a 

linear transformation matrix that has equal output and input dimensions. The structure of MEA is 

shown in Figure 2. 
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Figure 2. The architecture of external attention block. 

3.3.2. Grasp Decoder 

Our decoder is designed with a combination of convolutional layers and Res-channel attention 

blocks. As illustrated in Figure 3, the Res-channel attention block is a combination of a ResNet block 

and a channel attention block. The ResNet block is made up of three convolutional layers with kernel 

sizes of 1 × 1 , 3 × 3  and 1 × 1 . The channel attention block, on the other hand, utilizes global 

average pooling to reduce the number of parameters contained in the features. This block is then 

composed of two fully connected layers and one ReLU layer, which utilizes global information to 

selectively emphasize important features and reduce the emphasis on less relevant features. 

Conv

1×1

Conv

3×3

Conv

1×1

Conv

1×1

+Input

GAP
F

C
RELU

F

C
Sigmoid

× output

 

Figure 3. Res-Channel attention block. 

Specifically, the decoder we propose involves three key steps. To begin with, the multilevel 

features 𝐹𝑖 from the encoder are fed through the upsample block, which increases the resolution to 1/4 × 224 × 224, and then these features are concatenated. Next, a CNN layer is utilized to merge 

the resulting features, and this is followed by two upsampling layers that increase the resolution to 224 × 224. Finally, the fused features are utilized to make predictions regarding the grasp heatmaps. 

3.3.3. Loss Function  

In our study, we define the task of robot grasp detection as a regression problem and adopt the 

smooth 𝐿1 loss function as our optimization objective. This loss function has the advantage of being 

robust to outliers and provides stability during training. 𝐿𝑟𝑒𝑔(𝑇̂𝑘, 𝑇𝑘) = ∑ 𝑆𝑚𝑜𝑜𝑡ℎ(𝑇̂𝑘 − 𝑇𝑘)𝑘∈{𝑞,sin 2𝜃,cos 2𝜃,𝑤}  
(7) 

The Smooth 𝐿1 loss is defined as follows 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = { 0.5𝑥2,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓|𝑥| < 1|𝑥| − 0.5,⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8) 
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In our work, the predicted grasping parameters 𝑇̂𝑘  and the ground truth 𝑇𝑘  are defined as 

follows: 𝑞 represents the grasping quality, 𝜃 stands for the grasping angle, and 𝑤 represents the 

width of the gripper. 

4. Experiments and Results 

4.1. Dataset 

In this chapter, experiments are conducted on two popular datasets, the Cornell and the 

Jacquard datasets, to fully validate the performance of the proposed method. 

(a) Datasets 

The Cornell dataset is a dataset for robot grasp detection, which includes 240 distinct objects. It 

consists of 885 RGB images and 885 depth images. To ensure the best results from the transformer 

structure, which requires a substantial amount of data, various data augmentation techniques such 

as rotation, scaling, and random cropping are applied to the Cornell dataset in the experiments. 

The Jacquard dataset consists of 54485 diverse scenes for 11619 different objects. It provides RGB 

images, 3D point cloud data, and grasp annotations for each scene. Given the massive size of the 

Jacquard dataset, no data transformations are performed on it in our work. 

(b) Implementation details 

In this ariticle, the model was constructed using the Pytorch framework on the Ub-untu 20.04 

platform. For training, we utilized an NVIDIA RTX 3090Ti GPU and an Intel Core i9-12900K CPU. In 

the data augmentation process for the Cornell dataset, each 640x480 image undergoes rotation, 

scaling, and random cropping, resulting in an image of size 224x224. During each training step, a 

batch of samples was randomly selected from the training set, with 200 batches of size 32 in each 

epoch, and 100 epochs are trained in total. AdamW is employed as the optimizer, with an initial 

learning rate of 0.0001. 

HTC-Grasp is parameterized with the following configuration. The channel numbers for stages 

1 to 4 are set to 𝐶1 = 32, 𝐶2 = 64, 𝐶3 = 128, 𝐶4 = 256, respectively. The number of heads in the self-

attention layer for each block is set to 1, 2, 4, and 8, respectively. The number of encoder layers in 

stages 1 to 4 is set to 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 256. The number of channels in the decoder layer is set to 

C=256.  

In our work, each dataset is divided into two parts, with 90% used for training and 10% for 

testing. To evaluate the performance of the method, both image-wise and object-wise grasp detection 

accuracy were used. Image-wise split randomly assigns the entire dataset into a training set and a 

test set, to assess the network’s ability to generalize to previously seen objects when they appear in 

new positions and orientations. Object-wise split, on the other hand, divides the dataset based on 

object instances, ensuring that objects in the test set do not appear in the training set, thereby testing 

the network’s ability to generalize to unknown objects. 

(c) Evaluation index 

The predicted grasping box is considered correct if it meets the following two criteria. 

(1) The discrepancy between the predicted grasping angle and the ground truth must be within 

30° 

(2) The IOU index, defined in equation (9), must be greater than 0.25. 𝐼𝑂𝑈(𝑅∗, 𝑅) = |𝑅∗∩𝑅||𝑅∗∪𝑅|     (9) 

4.2. Comparison Studies 

To evaluate the performance of our method against other grasp detection methods, we use the 

same evaluation metric to compare their results on both the Cornell and Jacquard datasets.  

The comparison study starts with the evaluation on the Cornell dataset. The grasp position can 

be determined using the quality heatmap, with the best grasp position being the pixel with the 

highest quality score and the grasping box being determined by the angle and width corresponding 
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to the best grasp position. Figure 4 presents the grasp detection results of GR-CNN , TF-Grasp [27] 

and the proposed HTC-Grasp for unseen objects on the Cornell Dataset. The results indicate that 

HTC-Grasp has a higher grasp quality as compared to the GR-CNN and TF-Grasp methods. 

 RGB D Grasp Quality Angle Width 

GR- 
CNN 

 

TF- 
Grasp 

 

Ours 

 

GR- 
CNN 

 

TF- 
Grasp 

 

Ours 

 

Figure 4. Comparison of predicted heatmaps on Cornell Dataset. 

For the classical method experimental results presented in Table 1, we have selected the data 

reported in their original paper. Table 1 illustrates the performance of HTC-Grasp compared to 

existing algorithms on the Cornell dataset. HTC-Grasp sur-passes other algorithms with accuracy 

rates of 98.3% and 96.9% on Image-wise split (IW) and Object-wise split (OW) test, respectively. 

Furthermore, our model, utilizing the NVIDIA RTX 3090Ti GPU, processes a single frame in 

approximately 5.4 ms, fulfilling the requirement for real-time processing. 

Table 1. The comparison results on Cornell Dataset. 

Authors Method Input 
Accuracy (%) Time 

(ms) IW OW 

Lenz [15] SAE RGB-D 73.9 75.6 1350 

Redmon [19] AlexNet RGB-D 88 87.1 76 

Kumra [20] ResNet-50x2 RGB-D 89.2 88.9 103 

Morrision [14] GG-CNN D 73 69 19 

Chu [29] ResNet-50 RGB-D 96 96.1 120 

Asif [8] GraspNet RGB-D 90.2 90.6 24 

Kumra [21] GR-CNN RGB-D 97.7 96.6 20 

Wang [27] TF-Grasp RGB-D 97.99 96.7 41.6 

Ours  HTC-Grasp RGB-D 98.3 96.9 5.4 

We conducted comparative experiments using the Jacquard dataset. Figure 5 dis-plays some 

examples of the predicted heatmaps and predicted grasps of GR-CNN, TF-Grasp, and HTC-Grasp. 

The results indicate that HTC-Grasp exhibits a higher grasping quality compared to GR-CNN and 
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TF-Grasp methods. Table 2 presents the performance of HTC-Grasp on the Jacquard dataset in 

comparison to several classic algorithms. HTC-Grasp outperformed the other algorithms with an 

accuracy of 95.8% on the Jacquard dataset. 

 RGB D Grasp Quality Angle Width 

GR- 
CNN 

TF- 
Grasp 

Ours 

GR- 
CNN 

TF- 
Grasp 

Ours 

Figure 5. Comparison of predicted heatmaps on Jacquard Dataset. 

Table 2. The comparison results on Jacquard Dataset. 

Authors Method Input Accuracy (%) 

Morrision [14] GG-CNN2 D 84 

Kumra [21] GR-CNN RGB-D 94.6 

Wang [27] TF-Grasp RGB-D 94.6 

Ours HTC-Grasp RGB-D 95.8 

We present qualitative comparison results for the Cornell and Jacquard datasets, as 

demonstrated in Figures 4 and 5. It can be observed that:  

1) As shown in the first and third rows of Figures 4 and 5, the GR-CNN method which is solely 

based on CNNs has a low prediction quality in the central region of easily grasped objects. The 

background predictions by GRCNN are close to the actual grasping poses, indicating that grasp pose 

detection is vulnerable to environmental interference. This is due to the absence of an attention 

mechanism in the GR-CNN network, leading to its poor performance. 

2) In comparison to the Transformer-based TF-Grasp model, our proposed method, HTC-Grasp, 

provides more precise predictions of grasp quality and retains more de-tailed shape information. 

This is achieved by incorporating an external attention mechanism in the encoder module, which 

enhances the network’s capability to encode global context and differentiate semantics. Furthermore, 

we introduced a Residual Channel attention module in the decoder module, which allows the 

network to learn and determine the significance of each feature channel, thereby improving the 

utilization of valuable features and reducing the impact of redundant features. 
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Experimental results demonstrate that the proposed framework can accurately identify suitable 

grasp locations and effectively differentiate graspable regions with a high level of confidence. As seen 

in the third and sixth rows of Figure 4, the center of the object is highlighted with a high score close 

to 1, while the edges of the object are marked with a lower score. Similarly, in the third and sixth 

rows of Figure 5, the protruding parts of the object that are easily graspable are precisely marked 

with a high score, and the model effectively captures both global information and fine-grained 

features such as the exact lo-cation and shape of the object. 

To further demonstrate the efficacy of our proposed method, we conducted experiments using 

a test set of images captured by ourselves without additional training. The results shown in Figure 6 

indicate that our proposed method can accurately identify grasp regions in an unseen real-world 

environment. 

RGB D Grasp Qulity Angle Width 

 

 

 

Figure 6. Test result of our method in the real-world multiple objects environment. 

4.3. Ablation Studies 

To validate the impact of external attention and channel attention on the proposed grasp 

detection model, we conduct experiments on the Cornell and Jacquard datasets. Our model is 

compared to versions without external attention and channel attention, respectively.  

The results are shown in Table 3 and indicate that incorporating external attention in the encoder 

and channel attention in the decoder leads to improved performance. The external attention 

mechanism in the transformer effectively combines global features, leading to better results. 

Additionally, the Res-Channel attention blocks enhance the weight of effective feature maps, 

resulting in improved performance. The results demonstrate that both the external attention and Res-

Channel attention contribute to the accuracy of the final grasp box predictions. 

Table 3. The comparison results on Jacquard Dataset. 

  With external attention With channel attention Accuracy(%) 

Cornell 

Dataset 

√  97.2 
 √ 97.6 

 √ √ 98.3 

Jacquard 

Dataset 

 √  94.2 
 √ 94.7 

 √ √ 95.8 

4.4. Grasping in realistic scenarios 

In our grasping experiments, we utilize an Elite EC66 robot and an Orbbec Femto-W RGB-D 

camera as the experimental setup. The camera is positioned in a fixed location, and the image streams 
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are captured by it. The RGB-D images are then fed into our model to obtain the best grasping pose. 

Subsequently, the robot’s end actuator approaches the target according to the motion planning 

method, and the gripper is closed to grasp the target. The end actuator is then able to lift the object to 

another location. Figure 7 illustrates the grasp process. Our method is tested on 180 household 

objects, and the robot success-fully grasped 168 objects with a 93.3% accuracy rate. The detailed 

experimental results are presented in Table 4 and demonstrate the effectiveness of our method in 

real-world robot grasping tasks. 

 
(a)                             (b) 

 
(c)                             (d) 

Figure 7. Example of the robotic grasp process. (a) shows the initial state of the robot. (b) illustrates 

the robot’s gripper has moved to the target to be grasped. (c) shows the state of the object being 

grasped. (d) demonstrates the target being moved to another location. 

Table 4. Grasp success rates in robotic grasping experiments. 

Authors Physical grasp Success rate 

Lenz [15] 89/100 89.0% 

Morrison [14] 110/120 92.0% 

Chu [29] 89/100 89.0% 

Wang [27] 152/165 92.1% 

Ours 168/180 93.3% 

5. Conclusion 

In this article, we present a novel hierarchical hybrid transformer CNN architecture for robotic 

visual grasping, named HTC-Grasp. The proposed architecture uses hierarchical transformer blocks 

with external attention as encoders to enhance the ability to capture long-range spatial correlations 

at multiple scales, and the Res-Channel attention block in the decoder module adaptively recalibrates 

the channel-wise feature response to achieve precise positioning. We evaluated the performance of 
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HTC-Grasp on the Cornell and Jacquard datasets and found that it outperformed existing methods, 

achieving favor-able grasping results. 
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