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Abstract: We consider a class of density-driven flow problems. We are particularly interested in the
problem of the salinization of coastal aquifers. We consider the Henry saltwater intrusion problem
with uncertain porosity, permeability, and recharge parameters as a test case. The reason for the
presence of uncertainties is the lack of knowledge, inaccurate measurements, and inability to measure
parameters at each spatial or time location. This problem is nonlinear and time-dependent. The
solution is the salt mass fraction, which is uncertain and changes in time. Uncertainties in porosity,
permeability, recharge, and mass fraction are modeled using random fields. This work investigates
the applicability of the well-known multilevel Monte Carlo (MLMC) method for such problems. The
MLMC method can reduce the total computational and storage costs. Moreover, the MLMC method
runs multiple scenarios on different spatial and time meshes and then estimates the mean value of
the mass fraction. The parallelization is performed in both the physical space and stochastic space.
To solve every deterministic scenario, we run the parallel multigrid solver ug4 in a black-box fashion.
We use the solution obtained from the quasi-Monte Carlo method as a reference solution.

Keywords: uncertainty quantification; ug4; multigrid; density-driven flow; reservoir; groundwater;
salt formations

1. Introduction

Notation
Qol g quantity of interest g
D computational spatial domain
Dy, D1, ..., Dy | hierarchy of spatial meshes
To,T1,..., 7L | hierarchy of temporal meshes
L number of levels
s complexity
hy (or h), ng spatial step size and number of spatial degrees of freedom on level ¢
Ty (or 7), 10 time step size and number of time steps on level ¢
my number of samples (scenarios) on level ¢
E[], V[] expectation and variance
(] multidimensional domain of integration in parametric space
w, &(w) random event and random vector
P(x, w) porosity random field
K(x, w) permeability random field
o(x, w) density random field
q(t,x, w) volumetric velocity
D tensor field D = D(q): molecular diffusion and dispersion of salt
©(x) expectation of x(x, w)
d physical (spatial) dimension
¢ =c(t,x,w) | mass fraction of salt (solution of the problem)

Saltwater intrusion occurs when sea levels rise and saltwater moves onto the land. Usually, this
occurs during storms, high tides, droughts, or when saltwater penetrates freshwater aquifers and
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raises the groundwater table. Since groundwater is an essential nutrition and irrigation resource, its
salinization may lead to catastrophic consequences. Many acres of farmland may be lost because they
can become too wet or salty to grow crops. Therefore, accurate modeling of different scenarios of saline
flow is essential [1,2] to help farmers and researchers develop strategies to improve the soil quality
and decrease saltwater intrusion effects.

Saline flow is density-driven and described by a system of time-dependent nonlinear partial
differential equations (PDEs). It features convection dominance and can demonstrate very complicated
behavior [3].

As a specific model, we consider a Henry-like problem with uncertain permeability and porosity.
These parameters may strongly affect the flow and transport of salt. The original Henry saltwater
intrusion problem was introduced by H.R. Henry in the 1960s (cf. [4]). The Henry problem became
a benchmark for numerical solvers for groundwater flow (cf. [3,5-7]. In [8], the authors use the
generalized polynomial chaos expansion approximation to investigate how incomplete knowledge of
the system properties influences the assessment of global quantities. Particularly, they estimated the
propagation of input uncertainties into a few dimensionless scalar parameters.

The hydrogeological formations typically have complicated and heterogeneous structures. These
formations may consist of a few layers of porous media with various porosity and permeability
coefficients (cf. [9,10]). Measurements of the layer positions and their thicknesses are only possible up
to some error, and for the materials inside the layers, the average parameters are typically assumed.
Thus, these layers are excellent candidates to be modeled by random fields. Further, due to the
nonlinearities in the problem, averaging the parameters does not necessarily lead to the correct
mathematical expectation of the solution.

To model uncertainties, we use random fields. Uncertainties in the input data propagate through
the model and make the solution (e.g., the mass fraction) uncertain. An accurate estimation of
the output uncertainties can facilitate a better understanding of the problem, better decisions, and
improved control and design of the experiment.

The following questions can be answered:

1.  How long can a particular drinking water well be used (i.e., when will the mass fraction of the
salt exceed a critical threshold)?

2. What regions have especially high uncertainty?

3. What is the probability that the salt concentration is higher than a threshold at a certain spatial
location and time point?

4. What is the average scenario (and its variations)?

What are the extreme scenarios?

6. How do the uncertainties change over time?

o

Many techniques can quantify uncertainties. A classical method is Monte Carlo (MC) sampling.
Although it is dimension-independent, it converges very slowly and requires many samples. This
method may not be affordable for time-consuming simulations. Nevertheless, even up-to-date
techniques, such as surrogate models and stochastic collocation, require a few hundred to a
few thousand time-consuming simulations and assume a certain smoothness by the quantity of
interest (Qol).

Another class of methods is the class of perturbation methods [11]. The idea is to decompose
the Qol with respect to (w.r.t.) random parameters in a Taylor series. The higher-order terms can be
neglected for small perturbations, simplifying the analysis and numerics. These methods assume that
random perturbations are small (e.g., up to 5% of the mean, depending on the problem). For larger
perturbations, these methods usually do not work.

There are quite a few studies where authors model uncertainties in reservoirs (cf. [12,13]).
Reconnecting stochastic methods with hydrogeological applications was accomplished in [14], where
the authors analyzed a collaboration between academics and water suppliers in Germany and made
recommendations regarding optimization and risk assessment. The fundamentals of stochastic
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hydrogeology and an overview of stochastic tools and accounting for uncertainty are described
in [15].

The review [16] deals with hydrogeologic applications of recent advances in uncertainty
quantification, probabilistic risk assessment, and decision-making under uncertainty. The author
reviewed probabilistic risk assessment methods in hydrogeology under parametric, geologic, and
model uncertainties. Density-driven vertical transport of saltwater through the freshwater lens on the
island of Baltrum (Germany) is modeled in [17].

In [18], the authors examined the implications of transgression for a range of seawater intrusion
scenarios based on simplified coastal freshwater aquifer settings. They stated that vertical intrusion
during transgressions could involve density-driven convective processes, causing substantially greater
amounts of seawater to enter the aquifer and create more extensive intrusion than horizontal seawater
intrusion in the absence of transgression.

The methods to compute the desired statistics of the Qol are direct integration methods, such
as the MC, quasi-MC (QMC) and collocation methods and surrogate-based (generalized polynomial
chaos approximation and stochastic Galerkin [19-22]) methods. Direct methods compute statistics
directly by sampling uncertain input coefficients and solving the corresponding PDEs, whereas the
surrogate-based method computes a cheap functional (polynomial, exponential, or trigonometrical)
approximation of the Qol. Examples of the surrogate-based methods are radial basis functions [23-26],
sparse polynomials [27-29], and polynomial chaos expansion [30-32]. Sparse grid methods to integrate
high-dimensional integrals are considered in [31,33-40]. An idea to generate goal-oriented adaptive
spatial grids and use them in the multilevel MC (MLMC) framework was presented in [41,42].

The quantification of uncertainties in stochastic PDEs could be a significant challenge due to a)
the large possible number of involved random variables and b) the high cost of each deterministic
solution of the governed PDE. The MC quadrature and its variance-reduced variants have a
dimension-independent error convergence rate O(N -3 ), and the QMC has the worst-case rate
O(log™(N)N—1), where N is the number of samples, and M indicates the dimension of the stochastic
space [43]. The MC method is not affected by the dimension of the integration domain, such as
collocations on sparse or full grid methods [44,45]. A numerical comparison of other QMC sequences
is presented in [46].

Construction of a cheap generalized polynomial chaos expansion-based surrogate model [47-49]
is an alternative to the MC method. Some well-known functions, such as the multivariate Legendre,
Hermite, Chebyshev, or Laguerre functions, have been taken as a basis [47,50]. Surrogate models
have pros and cons. The pros are that the model can be easily sampled once constructed, and all
samples are almost free (much cheaper than sampling the original stochastic PDE). For some problem
settings, sampling is unnecessary because the solution can be computed analytically (e.g., computing
an integral of a polynomial). The nontrivial part of surrogate models is to define how many coefficients
are needed and how accurately they should be computed. Another difficulty is that not every function
can be approximated well by a polynomial. The MLMC methods do not have such limitations.

This work is structured as follows. Section 2 describes the Henry problem and numerical methods
to solve it. The well-known MLMC method is reviewed in Section 3. Next, Section 4 details the
numerical results, which include the numerical analysis of the Henry problem, computing different
statistics, the performance of the MLMC method, and the practical performance of the parallel ug4
solver for the Henry problem [4,5] with uncertain coefficients. Finally, we conclude this work with a
discussion in Section 5.

Our contribution: We investigate the propagation of uncertainties in the Henry-like problem.
Assuming the porosity, permeability, and recharge are uncertain, we estimate the uncertainties in
the density-driven flow. To reduce the high computing complexity, we applied the existing MLMC
technique. We use the multigrid ug4 software library as a black-box solver, allowing us to solve the
Henry problem and others (see more in [2]). We run all MLMC random simulations in parallel. To the
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best of our knowledge, we are unaware of any other studies where Henry’s problem [4,5] was solved
using MLMC methods with uncertain porosity, permeability, and recharge parameters.

2. Henry Problem with Uncertain Porosity and Permeability

2.1. Problem setting

In coastal aquifers, salty seawater intruding on the formation on one side (the seaside) displaces
the pure water due to water recharge from land sources and precipitation from the other side. Due
to its higher density, seawater mainly penetrates along the bottom of the aquifer. This process can
achieve a steady state but may be time-dependent due to the periodicity of the recharge or controlling
the pumping rate from the wells. An accurate simulation of the salinization is vital for the prediction
of water resource availability. However, the accuracy of such predictions strongly depends on the
hydrogeological parameters of the formation and the geometry of the computational domain, denoted
by D.

The aquifer D C ]Rd, de {2, 3}, can be modeled as an immobile porous matrix filled with liquid
phase—a solution of salt in water. Due to the nonhomogeneous density distribution, gravitation
induces the motion of the liquid phase. This motion transports the salt, which is otherwise subject to
molecular diffusion.

A straightforward but very demonstrative model of coastal aquifers is the so-called Henry
problem, first considered in [4]. In this two-dimensional setting, the aquifer is represented by a
rectangular domain D = [0,2] x [—1,0] [m?] entirely saturated with the liquid phase (Figure 1).
The salty seawater intrudes from the right side, and pure water is recharged from the left. The top
and bottom are considered impermeable. Analogous settings with partially saturated domains are
considered in [51].

The mass conservation laws for the entire liquid phase and salt yield the following equations

d(pp) + V-(pq) =0, ey
ot(ppc) + V-(pcq—pDVc) =0, )

where ¢ : D — R denotes the porosity, K : D — R?*4 represents the permeability, c(t,x) : [0, +-c0) x
D — [0,1] is the mass fraction of the salt (or of the brine) in the solution, p = p(c) indicates the density
of the liquid phase, and D(t,x) : [0, +-c0) x D — R¥*? denotes the molecular diffusion and mechanical
dispersion tensor. For the velocity q(t,x) : [0, +c0) x D — R?, we assume Darcy’s law:

q= —I;(W—pg), 3)

where p = p(t,x) : [0,4+00) x D — R is the hydrostatic pressure, u = y(c) denotes the viscosity of the
liquid phase, and g = (0,...,0,—¢)T € R represents the gravity vector. Inserting (3) into (1-2) results
in a system of two time-dependent PDEs in the unknowns c and p. This system should be closed with
boundary conditions for ¢ and p and an initial condition for c.

Following the classical setting in [4], for this variant of the Henry problem, we set

p(c) = po+ (p1 — po)c, p = const )
and

D = ¢DI (5)
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with a constant scalar D € R, and the identity matrix I € R¥*4_ Furthermore, we assume the isotropic
permeability
K =KI, KeR.

This setting is consistent with the problem setting in [3]. However, we do not assume the Boussinesq
approximation and keep the density variable for all terms. For the initial conditions, we set

Cli—g = 0. (6)

The boundary conditions are presented in Figure 1(a). On the right side of the domain, we impose
Dirichlet conditions for the ¢ and p variables that represent the adjacent seawater aquifer:

C|x:2 =1, p|x:2 = —18Y- (7)
On the left side, we prescribe the inflow of fresh water:
cleeo =0,  pq-ex|,_g=din, ®)

where ey = (1,0) ', and 4y, is a constant. For the classical formulation of the Henry problem, this value
was set to Jin = 6.6 - 102 kg/sin[3] or §in = 3.3 - 102 kg/s in [5,6]. The Neumann zero boundary
conditions are imposed on the upper and lower sides of D.

Gin = 6.6 - 10 2kg /s p=—pgy

—1ln

Figure 1. (left) Computational domain D := [0,2] x [—1,0]. (Right) One realization of the mass fraction
c(t,x) and the streamlines of the velocity field q for the undisturbed Henry problem at t = 6016 s.

An example of c(t,x) and q(t, x) for the parameters from Table 1 is presented in Figure 1(right).
The dark red color corresponds to ¢ = 1, and dark blue corresponds to ¢ = 0. Due to its higher density,
the saltwater intrudes into the aquifer in the lower right part. It is pushed back by the lighter pure
water coming from the left. This process induces a vortex in the flow in the lower right corner of the
domain. The saltwater flows in at the lower part of the right boundary and deviates to the top and
right, back to the seaside, forming a salt triangle. This flow does not transport the salt to the left part
of the domain. The salt propagates further to the left due to diffusion and dispersion and is washed
out by the recharge. In the classical formulation, this salt triangle initially increases over time but
achieves a steady state (cf. [3,5,6]). However, the initial nonstationary phase may take significant time.
Investigating this phase is especially important to understand the system behavior when changing the
recharge. For this, in addition to the mean and variance, we consider the mass fraction at 12 points
(listed below) and an integral value—the total amount of pure water (as in Eq. 23). The list of chosen
points follows:

{(x,y)i=1..12} = {(1.10, —0.95), (1.35, —0.95), (1.60, —0.95), (1.85, —0.95), (1.10, —0.75), (1.35, ~0.75),  (9)
(1.60, —0.75), (1.85, —0.75), (1.10, —0.50), (1.35, —0.50), (1.60, —0.50), (1.85, —0.50).}

The motivation is to consider points where the concentration variation is considerable. In addition,
the mass fraction c at each point x is a function of time.
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Table 1. Parameters of the considered density-driven flow problem

Parameter | Values and Units Description

E [¢] 0.35[-] mean value of porosity

D 18.8571-107° [m? - s~ 1] | diffusion coefficient in the medium
K 1.020408 - 107 [m?] permeability of the medium

g 9.8 [m-s?] gravity

00 1000 [kg - m 3] density of pure water

01 1024.99 [kg - m 7] density of brine

U 103 [kg-mT-s71] viscosity

These spatial points may help track salinity changes over time in groundwater wells and
understand which areas in the aquifer are most vulnerable. Farmers can use this information to
take action, such as decreasing salinity or adapting strategies by planting salt-tolerant crops.

2.2. Modeling porosity, permeability, and mass fraction

The primary sources of uncertainty are the hydrogeological properties of the porous
medium—porosity (¢) and permeability (K) fields of the solid phase—and the freshwater recharge flux
dx through the left boundary. The Qols are related to the mass fraction ¢, a function of ¢, K, and the
recharge. We model the uncertain ¢ using a random field and assume K to be isotropic and dependent
on ¢:

K=KI, K=K(¢) R (10)

The distribution of ¢(x, ), x € D, is determined by a set of stochastic parameters = (¢1,...,Em, -.)-
Each component ¢; is a random variable depending on a random event w. For concision, we skip w
and write ¢ := ¢(w).

The dependence in Eq. (10) is specific for every material. We refer to [52-54] for a detailed
discussion. In the proposed model, we use a Kozeny-Carman-like dependence

3

- )

K(¢) = xkc -
where the scaling factor xgc is chosen to satisfy the equality K(E [¢])I = E(K), resembling the
parameters of the standard Henry problem. The inflow flux is kept constant across the left boundary

but depends on the stochastic variable g;,. We also assume that the inflow flux is independent of ¢
and K.

2.3. Numerical methods for the deterministic problem

The system (1-2) is numerically solved in the domain D x [0, T|, where the symbol x denotes the
Cartesian product. After the discretization of D using quadrilaterals of size i, we obtain Dj,. Equations
(1-2) are discretized using a vertex-centered finite-volume scheme with a “consistent velocity” for the
approximation of Darcy’s law (3), as presented in [55-57]. The degrees of freedom associated with
Dy, are denoted by n. There are two degrees of freedom per grid vertex: one for the mass fraction
and another for the pressure. We use the implicit Euler method with a fixed time step T for time
discretization. The number of the computed time stepsisr = T/ 7.

We use partial upwind for the convective terms (cf. [55]). Therefore, the discretization error is of
the second order w.r.t. the spatial mesh size i. However, the diffusion in (2) is minimal compared with
the velocity. For the grids in the numerical experiments, the observed reduction of the discretization
error after grid refinement corresponds to the first order. Thus, we assume the first-order dependence
of the discretization error w.r.t. i, which is consistent with the numerical experiments. Furthermore,
the Euler method provides the first-order dependence of the discretization error w.r.t. 7.
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The implicit time-stepping scheme provides unconditional stability but requires the solution to
an extensive nonlinear algebraic system of the discretized equations with 7 unknowns in every time
step. The Newton method is used to solve this system. Linear systems inside the Newton iteration
are solved using the BiCGStab method (cf. [58]) preconditioned with the geometric multigrid method
(V-cycle, cf. [59]). In the multigrid cycle, the ILUg-smoothers [60] and Gaussian elimination are used as
the coarse grid solver.

To construct the spatial grid hierarchy Dy, Dy, ..., D, we start with a coarse grid consisting of
512 grid elements (quadrilaterals) and ng = 1122 degrees of freedom. This grid is regularly refined
to obtain all other grid levels. After every spatial grid refinement, the number of grid elements is
multiplied by a factor of four. Consequently, the number of degrees of freedom is increased by a
factor of four (i.e., ny ~ ng - 24¢, d = 2; see Table 2). This hierarchy is used in the geometric multigrid
preconditioner and MLMC method. We also construct the temporal grid hierarchy 7y, 71,..., 7r. The
time step on each temporal grid is denoted by 1, with 7,11 = %Tg. The number of time steps on the
(th grid (level) is ;.1 = 2r; and r; = 192!, where 1 is the number of grid points on 7g. On the /th
level, the MLMC uses the grid D, x 7. Up to six spatial and time grids were used in the numerical
experiments.

In the context of this work, it is critical to estimate the numerical complexity of the deterministic
solver w.r.t. the grid level ¢. The most time-consuming part of the simulation is the solution of the
discretized nonlinear system. Typically, it is challenging to predict the number of Newton iterations
in every time step, but in the numerical experiments, two iterations were sufficient to achieve the
prescribed accuracy. Accordingly, the linear solver was called at most two times per time step.
Furthermore, the convergence rate of the geometric multigrid method does not depend on the mesh
size (cf. [60]). Hence, the computation complexity of one time step is O(n,), where 1y is the number of
the degrees of freedom on the grid level ¢. Therefore, the overall numerical cost of the computation of
one scenario on grid level ¢ for r, time steps is

Sy = O(Tlﬂ’g), Sy X Sg,lz(dJrl), d=2. (12)

3. Multilevel Monte Carlo

Various numerical methods can quantify uncertainty, and every method has pros and cons. For
example, the classical MC method converges slowly and requires numerous samples. To reduce the
total computing cost, we apply the MLMC method, which is a natural idea because the deterministic
solver uses a multigrid method (see Section 2.3). The MLMC method efficiently combines samples from
various levels. Further, we repeat the main idea of the MLMC method. A more in-depth description of
these techniques is found in [61-67].

We let ¢(w) and g(&) = g(&(w)) represent a vector of random variables and the Qol, respectively,
where w is a random event. The MLMC method aims to approximate the expected value E [g] with
an optimal computational cost. In this work, g could be ¢(t,x, §) in the whole domain or at a point
(t,x) or an integral over a subdomain. The MLMC method constructs a telescoping sum, defined
over a sequence of spatial and temporal meshes, ¢ = 0,...,L, as described next, to achieve this
goal. Moreover, g, numerically evaluated on level /, is denoted by gy, -, ¢ or, for simplicity, by just
g¢, where hy and 1y are the discretization steps in space and time on level ¢. Further, we assume that
Egn.] = E[g]ash — 0and T — 0.

Furthermore, s¢ is the computing cost to evaluate one realization of g (the most expensive one
from all realizations). Similarly, s, denotes the computing cost of evaluating g, — g,_1. For simplicity,
we assume that sy for g, — gy_1 is almost the same as sy for g,. The number of iterations is variable;
thus, the cost of computing a sample of g, — g,—1 may fluctuate for various realizations.

For a better understanding, we consider a two-level MLMC (cf. [64]) and estimate the optimal
number of needed samples on both levels. The two-level MLMC has only two meshes: a coarse one
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and a fine one. The Qol E [g] can be approximated on the fine mesh by E [¢1] and on the coarse mesh
by E [go]. Furthermore,

mo 3 mq . .
Els1] =Elgol +Elg ol » my' Lo +mit 167 — 5, (13)
i=1 j=1
where ggj ) g(()j )= $1(&;) — g0(&j), ¢; is a random vector, and g and m; represent the numbers of

quadrature points (numbers of samples/realizations) on the coarse and fine meshes, respectively. The
total computational cost of evaluation (13) is mgsg 4 m151. The variances of gp and g1 — go are denoted
by Vp and V3, and the total variance is obtained by Vy/mg + V1 /mj, assuming that g(()i) and ggj ) _ g(()j )
use independent samples. By solving an auxiliary minimization problem, the variance is minimal if
my = mp - % Thus, with the estimates of the variances and m, we can estimate 4.

The idea p%esented above can be extended to a case with multiple levels. Thus, we can find
(quasi-) optimal numbers of samples myg, my, ..., my. The MLMC method calculates E [¢1] = E [g]

using the following telescopic sum:

L
Elgr] =E[go] + ) Elgr — ge-1] (14)
(=1
18 00), ¢ 1V (6i) ()
A mg ;80' +€Zl<mg Y (8, —g(ggl)). (15)

i=1

In the above equation, level ¢ in the superscript (¢,) indicates that independent samples are used at
each correction level. As £ increases, the variance of gy — gy_1 decreases. Thus, the total computational
cost can be reduced by taking fewer samples on finer meshes.

We recall that iy = hg - 272 and 7, = 19 - 2~¢. We assume that the average cost of generating one
sample of gy (the cost of one deterministic simulation for one random realization) is

1 1 1
sp = O(ngry) = O(h 't 1) = O (mzﬂzf) =0 (mﬂ) =0 (mﬂ“)“) . (16)
where d = 2 is the spatial dimension, and v = 1 is determined by the computational complexity of the
deterministic solver (ug4).

We let V; be the variance of one sample of gy — g¢_1. Then, the total cost and variance of the
multilevel estimator in Eq. (14) are Z%:o mysy and ZLO Vi /my, respectively. For a fixed variance, the
cost is minimized by choosing m, to minimize the following functional for some value of the Lagrange
multiplier y2:

L

\Y
F(mg,...,mp) = ngSg—i-,uz—Z. (17)
=0 My

To determine my, we take the derivatives w.r.t. m, and set them equal to zero:

aF(mo,...,mL) ZVK
— =5~ u"—5 = 0.
omy St K m2
After solving the obtained equations, we obtain
2_ 2 Vi Vi

my =pu"— and my=p—.
5¢ 5S¢
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To achieve an overall variance of €2, that is,
L
Z Vg / my = 82,
(=0
we substitute my with the computed m, = u Z—f, and obtain

L
Vi 2

Vi
=0 /<t

From the last equation, we obtain

L
p=e2Y \/Vis;, and
(=0

o [V &
my =¢2 S—; YV Visi. (18)
i=0

2
The total computational cost is S := &2 (ZLO V' Vs 4) (for further analysis of this sum, see [64], p.4).

Definition 1. We let

E[g0], =0
E[Y, = { 80] . (19)
Elgr—geal, €>0
In addition, Y := Y5, Y, denotes a multilevel estimator of E [g] based on L + 1 levels and m, independent
samples on level {, where £ = 0,. .., L. Moreover, Y, = m[l Z;":‘l (g,(f’l) — gééfl) ), where g_1 = 0.

The standard theory indicates that E [Y] = E [g1], VY] = TF_, m;lw, and Vy =V g — g¢-1].
The mean squared error (MSE) is used to measure the quality of the multilevel estimator:
MSE = E (Y —E[g])?] = VY] + (E[Y] - E[g])*. (20)

To obtain an MSE smaller than &2, we ensure that both V[Y] and (E [Y] — E [g] )2 = (E[gL — g])? are
smaller than €? /2. Combining this idea with a geometric sequence of levels in which the cost increases
exponentially with the level while the weak error E [¢; — ¢] and multilevel correction variance V,
decrease exponentially leads to the following theorem (cf. Theorem 1, p. 6 in [64]):

Theorem 2. We let d denote the problem dimension. Suppose positive constants «, B,y > 0 exist such that
a > Imin(B,vd), and

E[gr—gl| <ci27 (21a)
Vy < cp27 P (21b)
Sy < c32%C, (21c)

Then, for any accuracy € < e, a constant ¢4 > 0 and a sequence of realizations {m}}s_ exist, such that

MSE :=E [(Y ~E [g])z] <&,
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and the computational cost is
O(e72), B> dy
§=140(e?) (log(e))?, p=dy (22)
_ dy—p
o &%), p<ay

This theorem (see also [61,63,68-70]) indicates that, even in the worst-case scenario, the MLMC
algorithm has a lower computational cost than that of the traditional (single-level) MC method, which
scales as O(e~2~%7/%), Furthermore, in the best-case scenario presented above, the computational cost
of the MLMC algorithm scales as O (¢72).

Using preliminary tests, we can estimate the convergence rates « for the mean (the so-called weak
convergence) and f for the variance (the so-called strong convergence). In addition, « is strongly
connected to the order of the discretization error (see Section 2.3), which equals 1, and precise estimates
of parameters & and f are crucial to distribute the computational effort optimally.

4. Numerical Experiments

The goal is to reduce the total computational cost of stochastic simulations. We use the MLMC
method to compute the mean value of various Qols, such as ¢ in the whole domain, c at a point, or an
integral value (we call it the freshwater integral):

Qrw(t,w) = / 1(e(tx,w) < 0.012178)dx, (23)
Xxe

where I(-) is the indicator function identifying a subdomain {x : ¢(t,x,w) < 0.012178}, meaning the

mass of the fresh water at a time ¢. Each simulation may contain up to 7 = 0.5 - 10° spatial mesh points

and a few thousand time steps (r = 6016 on the finest mesh).

Software and parallelization: The computations presented in this work were performed using
the ug4 simulation software toolbox (https://github.com /ug4/ughub.wiki.git) [71,72]. This software
has been applied for subsurface flow simulations of real-world aquifers (cf. [2]). The toolbox was
parallelized using MPI, and the presented results were obtained on the Shaheen II cluster provided
by the King Abdullah University of Science and Technology. Every sample was computed on 32
cores of a separate cluster node. Each simulation (scenario) was localized to one node to reduce the
communication time between nodes. All scenarios were concurrently computed on different nodes.
A similar approach was used in [48,49]. Simulations were performed on different meshes; thus, the
computation time of each simulation varied over a wide range (see Table 2).

Porosity and recharge: We assume two horizontal layers: y € (—0.75,0] (the upper layer) and
y € [—1,—0.75] (the lower layer). The porosity inside each layer is uncertain and is modeled as in
Eq. (24):

$(x,&) = 0.35- (14 0.15(; cos(mtx/2) + & sin(27y) + &1 cos(2mx))) - Co(é1),  (24)

1+0.2¢; ify < —075
h = 2
where Co(61) { 1-02¢ ify > —0.75, @)
Additionally, the recharge flux is also uncertain and is equal to
Gin = —6.6-1072(1+0.5-3), (26)

where {1, &, and {3 are sampled independently and uniformly in [—1, 1]. Figure 2 depicts a random
realization of the porosity random field ¢ (&) (left) and the corresponding solution c¢(t,x,&) = c(t, ¢(&))
att = T (right). Additionally, four isolines {x : |[c(t,¢()) —¢c(t)] = 0.1-i}, i = 1,2,3,4, are
presented on the right. The isolines demonstrate the absolute value of the difference between the
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computed realization c(t,¢(¢)) and the expected value ¢(t). These computations were performed for
¢ =¢*=(-0.5898,-0.7257,—0.9616) and t = T = 6016 s.

Figure 2. (left) Realisation of porosity ¢(¢*) € [0.248,0.499]. (right) Corresponding mass fraction
c(T,x,¢(&*)) € [0,1] with isolines {x : |c (T,¢(§*)) —-¢(T)|=01-i},i=1,2,3,4

The mean and variance of the mass fraction are provided in Figure 3 on the left and right,
respectively. The expectation takes values from [0, 1], and the variance range is [0, 0.05]. The areas with
high variance (dark red) indicate regions with high variability /uncertainty. Such regions may need
additional attention from specialists (e.g., placement of additional sensors) Additionally, the right
image displays five contour lines {x : Var[c =001-i},i=1.5t=T = 6016.

Figure 3. (left) Mean value ¢ € [0,1] and (rlght) variance Var|c] € [0.01,0.05] of the mass fraction, with
contour lines {x : Var[c] =0.01-i},i=1.5,t= T = 6016.

We observed that the variability (uncertainty) of the mass fraction might vary from one grid
point to another. At some points (dark blue regions), the solution does not change. At other points
(white-yellow regions), the variability is very low or high (dark red regions). In regions with high
uncertainty, refining the mesh and applying the MLMC method make sense.

Before we run the MLMC method, we first examine the solution c(t,x) at 12 preselected points
(see Eq. (9)). Figure 4 includes 12 subfigures. Each subfigure presents 600 QMC realizations of c(t, x)
and five quantiles depicted by dotted lines. The dotted line at the bottom indicates the quantile 0.025.
The following dotted line is the quantile 0.25, and the dotted line on the top indicates the quantile
0.975. All five quantiles from the bottom to the top are 0.025, 0.25, 0.50, 0.75, and 0.975, respectively.
We observe that c at the final point ¢ = T varies considerably.
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Figure 4. Six hundred QMC realisations of c(t,x) at 12 x-points listed in Eq. (9).
First row points: {(1.10,—-0.95),(1.35, —0.95),(1.60, —0.95),(1.85, —0.95)}, second row
points: {(1.10,-0.75),(1.35, —0.75),(1.60, —0.75),(1.85, —0.75)}, and third row points:
{(1.10,-0.50),(1.35, —0.50),(1.60, —0.50),(1.85, —0.50) }.  Dotted lines from the bottom to the
top indicate the quantiles 0.025, 0.25, 0.50, 0.75, and 0.975, respectively.

Example. In Figure 5, we demonstrate the probability density function (pdf) of t*(w) = min{¢ :
Qrw (t,w) < 1.2} (left), and the pdf of t*(w) = mins{t : Qpw(t,w) < 1.7} (right). On average, after
approximately 29 time steps (on the left) and six time steps (on the right), the volume of the fresh water
becomes less than 1.2 and 1.7, respectively. The initial volume of the fresh water was 2.0.

0.06 T T T T r T 0.45
0.4+
0.05 -
0.35+
0.04 - 0.3+
0.25+
0.03 -
0.2+
0.02 - 0.15 -
0.1+
0.01+
0.05 -
0 0 - -
15 50 4 6 8 10 12 14

Figure 5. The pdf of the earliest time point when the freshwater integral Qry becomes smaller than 1.2
(left) and 1.7 (right). The x-axis represents time points.

All 600 realiations of Qpw (t) are depicted in Figure 6 The time is along the x-axis, t € [7,487].
Additionally, five quantiles are represented by dotted curves from the bottom to the top and are 0.025,
0.25, 0.50, 0.75, and 0.975, respectively.
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0.6 1 L L 1
0 10 20 30 40 50

Figure 6. Six hundred realizations of Qpyy (¢). The x-axis represents time t = 17, .. .,487; dotted curves
denote five quantiles: 0.025, 0.25, 0.50, 0.75, and 0.975 from the bottom to the top.

Example. Figure 7 (left) displays the evolution of the pdf of c¢(t,x,w) at a fixed point x =
(1.85,—0.95) in time t = {37,...,487}. From left to right, the farthest left (blue) pdf corresponds to
t = 37, the second curve from the left (red) corresponds to t = 47, and so on. In the beginning, t = 37,
and the mass fraction c is low, about 0.15 on average. Then, with time, c increases and, at t = T = 487,
is approximately equal to 1. Example. The next Qol is the earliest time moment when c(t, x), at fixed
x = (1.85,—0.95), becomes smaller than the threshold value 0.9 (maximum is 1.0). Figure 7 (right)
presents its pdf. On average, after t ~ 10 time steps, the mass fraction becomes smaller than 0.9, but 40
time steps are needed in some scenarios.

0.08

0.07 [

0.06

0.05 -

0.04

0.03

0.02 -

0.011

Figure 7. (left) Evolution of the pdf of c(¢, x) for t = {37, ...,487}. (right) The pdf of the earliest time
point when c(t,x) < 0.9 (x = (1.85, —0.95) is fixed).
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Next, we research how g, — g¢_1 depends on the time and level. All graphics in Figure 8 display
100 realizations of the differences between solutions computed on two neighbor meshes for every
time point ¢;,i = 1...48 (along the x-axis). The top left graphic indicates the differences between the
mass fractions computed on Levels 1 and 0. The other graphics reveal the same, but for Levels 2 and
1,3 and 2,4 and 3, and 5 and 4, respectively. The largest value decreases from 2.5 - 102 (top left) to
5.10~*. Considerable variability is observed for ¢ € [3,7] and t € [8,25]. Starting with t ~ 30, the
variability between solutions decreases and stabilizes. From these five graphics, we can estimate that
the maximal amplitude decreases by a factor ~ 2, at 0.015, 0.008, 0.004, 0.0015, and 0.0008. However, it
is challenging to make a similar statement about each time point ¢. This observation makes it difficult
to estimate the weak and strong convergence rates and the optimal number of samples correctly on
each mesh level. They are different for each time ¢ (and for each x). For some time points, the solution
is smooth and requires only a few levels and a few samples on each level. For other points with
substantial dynamics, the numbers of levels and samples are higher.
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Figure 8. Differences between mass fractions ¢ computed at the point (1.60, —0.95) on levels a) 1 and 0,
b) 2 and 1 (first row), ¢) 3 and 2, d) 4 and 3 (second row), and e) 5 and 4 (third row) for 100 realizations
(x-axis represents time).
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Because gy — g¢—1 is random, we visualize its mean and variance. Figure 9 demonstrates the
mean (left) and variance (right) of the differences in concentrations g, — gy_1, £ = 1,...,5. On the
left, the amplitude decreases when ¢ increases. A slight exception is the blue line for ¢t ~ 9,10,11
(right). A possible explanation is that the solutions g( or g; are insufficiently accurate. The right image
presents how the amplitude of the variances decays. This decay is necessary for the successful work of
the MLMC method. We also observe a potential issue; the weak and strong convergence rates vary
for various time points t. Thus, determining the optimal number of samples m, for each level is not
possible (only suboptimal).

At the beginning t = 0, the variability is zero and starts to increase. We observe changes during a
specific time interval, and then the process starts to stabilize after ~ 45 time steps. The variability is
either unchanging from level to level or decreases.

x10™

| M il n

*x10~

—Elg,-g5)| | 1
~——Elg,-g,]

Elg,-9,]
—— Elg,-g,] 0.5
——Elgg-g,l| |

Figure 9. (left) Mean and (right) variance of the differences g, — g,_1 vs. time, computed on various
levels at the point (1.60, —0.95).

Table 2 contains average computing times, which are necessary to estimate the number of samples
my at each level £. The fourth column contains the average computing time, and the fifth and sixth
columns contain the shortest and longest computing times. The computing time for each simulation
varies depending on the number of iterations, which depends on the porosity and permeability. We
observed that, after ~ 6016 s, the solution is almost unchanging; thus, we restrict this to only ¢ € [0, T],
where T = 6016. For example, if the number of time steps is r, = 188 (Level 0 in Table 2), then the time

T _ 6016 _

StepTzﬁ—W—3ZS.

The time step 7 is adaptive and changing from 7 = % = 32 s (very coarse mesh) to T = % =
1 s (finest mesh). Starting with level ¢ = 2, the average time increases by a factor of eight. These

numerical tests confirm the theory in Eq. (12), stating that the numerical solver is linear w.r.t. 1y, and 7,.

Table 2. Number of degrees of freedom n,, number of time steps ry, step size in time 7;, average,
minimal, and maximal computing times on each level /.

Level ¢ | ny v | 1 = 6016/r, |COmPpUting times (s,)
aVerage min. max.
0 1122 | 188 | 32 115 088 | 133
1 090 [ 376 |16 41 34 | 487
2 16770 | 752 |8 196 176 | 22
3 66306 | 1504 | 4 1360 | 128 | 144
1 263682 | 3008 | 2 10040 | 891 | 1032
5 1051650 | 6016 | 1 8138.0 | 6430 | 8480
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With estimates for each level, we can estimate the rates of « and 8 (Egs. (21a)-(21b)) in weak and
strong convergences.

The slope in Figure 10 can be used to estimate the rates of the weak (left) and strong (right)
convergences. The differences are indicated on the horizontal axis.

10 %10

35 14
3 12
25 1
2 0.8
15 0.6
1 04
0.5 0.2

0 0
9,9, 9,-9, 9;-9, 9,°9, 959, 9,-9, 9,-9, 9;-9, 9,°9, 959,

Figure 10. Weak (left) and strong (right) convergences computed for Levels 1 and 0,2 and 1,3 and 2, 4
and 3, and 5 and 4 (horizontal axis) at the fixed point (¢, x,y) = (14,1.60, —0.95).

We use computed variances V; and computing times (work) sy from Table 2 to estimate the
optimal number of samples m, and compute the telescopic sum from Eq. (15) to approximate the
expectation.

Table 3 lists 1, for a given total variance &2:

Table 3. Number of samples m, computed using Eq. (18) as a function of the total variance €?.

level, ¢ 0 1 2 3 4 5

) 1.156 | 4113 | 20.382 | 139.0 | 993.0 | 8053.0
vy 1.4e-5 | 0.2e-5 | 0.5e-6 | 0.1e-6 | 0.5e-7 | le-7
(e =5e-6) | 35 7 2 1 1 1
my(e? =le-6) | 172 35 8 2 1 1
my(e? =5e-7) | 343 69 16 3 1 1
me(e? =1e-7) | 1714 | 344 78 14 4 2

After the telescopic sum is computed, we can compare the results with the QMC results. Figure 11
depicts the decay of the absolute (left) and relative (right) errors vs. levels along the x-axes. The "true’
solution was computed using the QMC method on the finest mesh level L = 5.

0016 035
0014 03

0012
025

001
02

0.008
015

0.006
01

0.004
0.002 0.05
0 0

Figure 11. Decay of the absolute (left) and relative (right) errors between the mean values computed
on a fine mesh via QMC and on a hierarchy of meshes via MLMC at the fixed point (t,x,y) =
(12,1.60, —0.95). x-axis contains the mesh levels.
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5. Conclusion

We investigated the applicability and efficiency of the MLMC approach for the Henry-like
problem with uncertain porosity, permeability, and recharge. These uncertain parameters were
modeled by random fields with three independent random variables. The numerical solution for each
random realization was obtained using the well-known ug4 parallel multigrid solver. The number of
required random samples on each level was estimated by computing the decay of the variances and
computational costs for each level. These estimates depend on the minimization function in Eq. (17).

We also computed the expected value and variance of the mass fraction in the whole domain, the
evolution of the pdfs, the solutions at a few preselected points (t,x), and the time evolution of the
freshwater integral value. We have found that some Qols require only 2-3 of the coarsest mesh levels,
and samples from finer meshes would not significantly improve the result. Note that a different type
of porosity in Eq. (24) may lead to a different conclusion.

The results show that the MLMC method is faster than the QMC method at the finest mesh. Thus,

sampling at different mesh levels makes sense and helps to reduce the overall computational cost.
Limitations. 1. It may happen that the Qols computed on different grid levels are the same (for the
given random input parameters). In this case the standard (Q)MC on a coarse mesh will be sufficient.
2. The time dependence is challenging. The optimal number of samples depends on the point (,x)
and may be small for some points and large for others. 3. Twenty-four hours may not be sufficient to
compute the solution at the sixth mesh level.
Future work. Our model of porosity in Eq. (24) is quite simple. It would be beneficial to consider a
more complicated /multiscale/realistic model with more random variables. A more advanced version
of MLMC may give better estimates of the number of levels L and the number of samples on each
level m,. Another hot topic is data assimilation and the identification of unknown parameters [73-76].
Known experimental data and measurements of porosity, permeability, velocity or mass fraction could
be used to minimise uncertainties.
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References

1.  Abarca, E.; Carrera, J.; Sinchez-Vila, X.; Dentz, M. Anisotropic dispersive Henry problem. Advances in Water
Resources 2007, 30, 913-926. doi:https://doi.org/10.1016/j.advwatres.2006.08.005.

2. Schneider, A.; Zhao, H.; Wolf, J.; Logashenko, D.; Reiter, S.; Howahr, M.; Eley, M.; Gelleszun, M.; Wiederhold,
H. Modeling saltwater intrusion scenarios for a coastal aquifer at the German North Sea. E3S Web Conf.
2018, 54, 00031. doi:10.1051/e3sconf/20185400031.

3.  Voss, C; Souza, W. Variable density flow and solute transport simulation of regional aquifers
containing a narrow freshwater-saltwater transition zone. Water Resources Research 1987, 23, 1851-1866.
doi:10.1029/WR023i010p01851.

4. Henry, H.R. Effects of dispersion on salt encroachment in coastal aquifers, in ‘Seawater in Coastal Aquifers’.
US Geological Survey, Water Supply Paper 1964, 1613, C70-C80.

5. Simpson, M.].; Clement, TP. Improving the worthiness of the Henry problem as a benchmark
for density-dependent groundwater flow models. Water Resources Research 2004, 40, W01504.
doi:10.1029/2003WR002199.

6. Simpson, M.].; Clement, T. Theoretical Analysis of the worthiness of Henry and Elder problems as
benchmarks of density-dependent groundwater flow models. Adv. Water. Resour. 2003, 26, 17-31.

7. Dhal, L.; Swain, S., Understanding and modeling the process of seawater intrusion: a review; 2022; pp.
269-290. doi:10.1016/B978-0-12-823830-1.00009-2.

8. Riva, M.; Guadagnini, A.; Dell’'Oca, A. Probabilistic assessment of seawater intrusion under multiple sources
of uncertainty. Advances in Water Resources 2015, 75, 93-104. doi:10.1016/j.advwatres.2014.11.002.

9.  Reiter, S.; Logashenko, D.; Vogel, A.; Wittum, G. Mesh generation for thin layered domains and its application
to parallel multigrid simulation of groundwater flow. submitted to Comput. Visual Sci.


https://doi.org/https://doi.org/10.1016/j.advwatres.2006.08.005
https://doi.org/10.1051/e3sconf/20185400031
https://doi.org/10.1029/WR023i010p01851
https://doi.org/10.1029/2003WR002199
https://doi.org/10.1016/B978-0-12-823830-1.00009-2
https://doi.org/10.1016/j.advwatres.2014.11.002
https://doi.org/10.20944/preprints202302.0359.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 February 2023 d0i:10.20944/preprints202302.0359.v1

19 of 22

10. Schneider, A.; Krohn, K.P; Piischel, A. Developing a modelling tool for density-driven flow in complex
hydrogeological structures. Comput. Visual Sci. 2012, 15, 163-168. d0i:10.1007 /s00791-013-0207-2.

11. Cremer, C.; . Graf, T. Generation of dense plume fingers in saturated—unsaturated
homogeneous porous media. Journal of Contaminant Hydrology 2015, 173, 69 - 82.
doi:https://doi.org/10.1016 /j.jconhyd.2014.11.008.

12. Carrera, J. An overview of uncertainties in modelling groundwater solute transport.  Journal of
Contaminant Hydrology 1993, 13, 23 — 48. Chemistry and Migration of Actinides and Fission Products,
doi:https://doi.org/10.1016 /0169-7722(93)90049-X.

13.  Vereecken, H.; Schnepf, A.; Hopmans, ].; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.; Amelung,
W.; Aitkenhead, M.; Allison, S.; Assouline, S.; Baveye, P; Berli, M.; Briiggemann, N.; Finke, P,; Flury, M.;
Gaiser, T.; Govers, G.; Ghezzehei, T.; Hallett, P.; Hendricks Franssen, H.; Heppell, J.; Horn, R.; Huisman, J.;
Jacques, D.; Jonard, F,; Kollet, S.; Lafolie, F.; Lamorski, K.; Leitner, D.; McBratney, A.; Minasny, B.; Montzka,
C.; Nowak, W.; Pachepsky, Y.; Padarian, J.; Romano, N.; Roth, K.; Rothfuss, Y.; Rowe, E.; Schwen, A; Simtinek,
J.; Tiktak, A.; Van Dam, J.; van der Zee, S.; Vogel, H.; Vrugt, ].; Wohling, T.; Young, I. Modeling Soil Processes:
Review, Key Challenges, and New Perspectives. Vadose Zone Journal 2016, 15, vzj2015.09.0131,
[/ gsw/content_public/journal/vzj/15/5/10.2136_vzj2015.09.0131/3 /vzj2015.09.0131.pdf].
doi:10.2136/vzj2015.09.0131.

14. Bode, E; Ferré, T, Zigelli, N.; Emmert, M.; Nowak, W. Reconnecting Stochastic Methods With
Hydrogeological Applications: A Utilitarian Uncertainty Analysis and Risk Assessment Approach
for the Design of Optimal Monitoring Networks. Water Resources Research 2018, 54, 2270-2287,
[https:/ /agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR020919]. doi:10.1002/2017WR020919.

15.  Rubin, Y. Applied stochastic hydrogeology; Oxford University Press, 2003.

16. Tartakovsky, D. Assessment and management of risk in subsurface hydrology: A review and
perspective. Advances in Water Resources 2013, 51, 247 — 260. 35th Year Anniversary Issue,
doi:https://doi.org/10.1016 /j.advwatres.2012.04.007.

17.  Post, V.; Houben, G. Density-driven vertical transport of saltwater through the freshwater lens on the island
of Baltrum (Germany) following the 1962 storm flood. Journal of Hydrology 2017, 551, 689 — 702. Investigation
of Coastal Aquifers, doi:https://doi.org/10.1016/j.jhydrol.2017.02.007.

18. Laattoe, T.; Werner, A.; Simmons, C., Seawater Intrusion Under Current Sea-Level Rise: Processes
Accompanying Coastline Transgression. In Groundwater in the Coastal Zones of Asia-Pacific; Wetzelhuetter, C.,
Ed.; Springer Netherlands: Dordrecht, 2013; pp. 295-313. d0i:10.1007 /978-94-007-5648-9_14.

19. Espig, M.; Hackbusch, W.; Litvinenko, A.; Matthies, H.; Waehnert, P. Efficient low-rank approximation
of the stochastic Galerkin matrix in tensor formats.  Computers and Mathematics with Applications
2014, 67, 818 — 829.  High-order Finite Element Approximation for Partial Differential Equations,
doi:http://dx.doi.org/10.1016/j.camwa.2012.10.008.

20. Babuska, I; Tempone, R.; Zouraris, G. Galerkin finite element approximations of stochastic elliptic partial
differential equations. SIAM Journal on Numerical Analysis 2004, 42, 800-825.

21. Giraldi, L,; Litvinenko, A.; Liu, D.; Matthies, H.G.; Nouy, A. To Be or Not to Be Intrusive? The Solution
of Parametric and Stochastic Equations—the “Plain Vanilla” Galerkin Case. SIAM Journal on Scientific
Computing 2014, 36, A2720-A2744, [https:/ /doi.org/10.1137/130942802]. doi:10.1137/130942802.

22. Espig, M.; Hackbusch, W,; Litvinenko, A.; Matthies, H.; Wéahnert, P. Efficient low-rank approximation of the
stochastic Galerkin matrix in tensor formats. Computers and Mathematics with Applications 2014, 67, 818-829.
doi:10.1016/j.camwa.2012.10.008.

23. Liu, D.; Gortz, S. Efficient Quantification of Aerodynamic Uncertainty due to Random Geometry
Perturbations. In New Results in Numerical and Experimental Fluid Mechanics IX; Dillmann, A.; others.,
Eds.; Springer International Publishing, 2014; pp. 65-73.

24. Bompard, M.; Peter, J.; Désidéri, ].A. Surrogate models based on function and derivative values for
aerodynamic global optimization.  Fifth European Conference on Computational Fluid Dynamics,
ECCOMAS CFD 2010; , 2010.

25. Loeven, G.J.A.; Witteveen, J.A.S.; Bijl, H. A probabilistic radial basis function approach for uncertainty
quantification. Proceedings of the NATO RTO-MP-AVT-147 Computational Uncertainty in Military Vehicle
design symposium, 2007.


https://doi.org/10.1007/s00791-013-0207-2
https://doi.org/https://doi.org/10.1016/j.jconhyd.2014.11.008
https://doi.org/https://doi.org/10.1016/0169-7722(93)90049-X
http://xxx.lanl.gov/abs//gsw/content_public/journal/vzj/15/5/10.2136_vzj2015.09.0131/3/vzj2015.09.0131.pdf
https://doi.org/10.2136/vzj2015.09.0131
http://xxx.lanl.gov/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017WR020919
https://doi.org/10.1002/2017WR020919
https://doi.org/https://doi.org/10.1016/j.advwatres.2012.04.007
https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.02.007
https://doi.org/10.1007/978-94-007-5648-9_14
https://doi.org/http://dx.doi.org/10.1016/j.camwa.2012.10.008
http://xxx.lanl.gov/abs/https://doi.org/10.1137/130942802
https://doi.org/10.1137/130942802
https://doi.org/10.1016/j.camwa.2012.10.008
https://doi.org/10.20944/preprints202302.0359.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 February 2023 d0i:10.20944/preprints202302.0359.v1

20 of 22

26. Giunta, A.A.; Eldred, M.S.; Castro, ].P. Uncertainty quantification using response surface approximation.
9th ASCE Specialty Conference on Probabolistic Mechanics and Structural Reliability; 2004.

27. Chkifa, A.; Cohen, A.; Schwab, C. Breaking the curse of dimensionality in sparse polynomial
approximation of parametric PDEs. Journal de Mathematiques Pures et Appliques 2015, 103, 400 — 428.
doi:10.1016/j.matpur.2014.04.009.

28. Blatman, G.; Sudret, B. An adaptive algorithm to build up sparse polynomial chaos expansions
for stochastic finite element analysis. Probabilistic Engineering Mechanics 2010, 25, 183 — 197.
doi:http://dx.doi.org/10.1016 /j.probengmech.2009.10.003.

29. Dolgov, S.; Khoromskij, B.; Litvinenko, A.; Matthies, H. Polynomial Chaos Expansion of Random Coefficients
and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format. SIAM/ASA Journal on
Uncertainty Quantification 2015, 3, 1109-1135, [https://doi.org/10.1137/140972536]. doi:10.1137/140972536.

30. Najm, H. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics.
Annual Review of Fluid Mechanics 2009, 41, 35-52, [https:/ /doi.org/10.1146 /annurev.fluid.010908.165248].
do0i:10.1146/annurev.fluid.010908.165248.

31. Conrad, P; Marzouk, Y. Adaptive Smolyak Pseudospectral Approximations. SIAM Journal on Scientific
Computing 2013, 35, A2643—-A2670, [https:/ /doi.org/10.1137/120890715]. doi:10.1137/120890715.

32. Xiu, D. Fast Numerical Methods for Stochastic Computations: A Review. Commun. Comput. Phys. 2009, 5,
No. 2-4,242-272.

33. Smolyak, S.A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Sow.
Math. Dokl. 1963, 4, 240-243.

34. Bungartz, H.]J.; Griebel, M. Sparse grids. Acta Numer. 2004, 13, 147-269.

35. Griebel, M. Sparse grids and related approximation schemes for higher dimensional problems. In Foundations
of computational mathematics, Santander 2005; Cambridge Univ. Press: Cambridge, 2006; Vol. 331, London Math.
Soc. Lecture Note Ser., pp. 106-161.

36. Klimke, A. Sparse Grid Interpolation Toolbox,www.ians.uni-stuttgart.de/spinterp/ 2008.

37. Novak, E; Ritter, K. The curse of dimension and a universal method for numerical integration. In Multivariate
approximation and splines (Mannheim, 1996); Birkhauser: Basel, 1997; Vol. 125, Internat. Ser. Numer. Math., pp.
177-187.

38. Gerstner, T.; Griebel, M. Numerical integration using sparse grids. Numer. Algorithms 1998, 18, 209-232.

39. Novak, E,; Ritter, K. Simple cubature formulas with high polynomial exactness. Constr. Approx. 1999,
15, 499-522.

40. Petras, K. Smolpack—a software for Smolyak quadrature with delayed Clenshaw-Curtis basis-sequence.
http:/ /www-public.tu-bs.de:8080/ petras/software.html.

41. Eigel, M,; Gittelson, C.J.; Schwab, C.; Zander, E. Adaptive stochastic Galerkin FEM. Computer Methods in
Applied Mechanics and Engineering 2014, 270, 247-269. doi:https://doi.org/10.1016/j.cma.2013.11.015.

42. Beck, J.; Liu, Y.; von Schwerin, E.; Tempone, R. Goal-oriented adaptive finite element multilevel
Monte Carlo with convergence rates. Computer Methods in Applied Mechanics and Engineering
2022, 402, 115582. A Special Issue in Honor of the Lifetime Achievements of ]. Tinsley Oden,
doi:https://doi.org/10.1016 /j.cma.2022.115582.

43. Matthies, H. Uncertainty Quantification with Stochastic Finite Elements. In Encyclopedia of Computational
Mechanics; Stein, E.; de Borst, R.; Hughes, T.R.J., Eds.; John Wiley & Sons: Chichester, 2007.

44. Babuska, I.; Nobile, F.; Tempone, R. A stochastic collocation method for elliptic partial differential equations
with random input data. SIAM |. Numer. Anal. 2007, 45, 1005-1034 (electronic).

45. Nobile, F; Tamellini, L.; Tesei, F.; Tempone, R. An adaptive sparse grid algorithm for elliptic PDEs with
log-normal diffusion coefficient. MATHICSE Technical Report 04, 2015.

46. Radovi¢, I; Sobol, I; Tichy, R. Quasi-Monte Carlo Methods for Numerical Integration: Comparison of
Different Low Discrepancy Sequences. Monte Carlo Methods and Applications 1996, 2, 1-14.

47. Xiu, D.; Karniadakis, G.E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J.
Sci. Comput. 2002, 24, 619-644.

48. Litvinenko, A.; Logashenko, D.; Tempone, R.; Wittum, G.; Keyes, D. Propagation of Uncertainties in
Density-Driven Flow. Sparse Grids and Applications — Munich 2018; Bungartz, H.J.; Garcke, J.; Pfltiger, D.,
Eds.; Springer International Publishing: Cham, 2021; pp. 101-126. doi:10.1007/978-3-030-81362-8_5.


https://doi.org/10.1016/j.matpur.2014.04.009
https://doi.org/http://dx.doi.org/10.1016/j.probengmech.2009.10.003
http://xxx.lanl.gov/abs/https://doi.org/10.1137/140972536
https://doi.org/10.1137/140972536
http://xxx.lanl.gov/abs/https://doi.org/10.1146/annurev.fluid.010908.165248
https://doi.org/10.1146/annurev.fluid.010908.165248
http://xxx.lanl.gov/abs/https://doi.org/10.1137/120890715
https://doi.org/10.1137/120890715
https://doi.org/https://doi.org/10.1016/j.cma.2013.11.015
https://doi.org/https://doi.org/10.1016/j.cma.2022.115582
https://doi.org/10.1007/978-3-030-81362-8_5
https://doi.org/10.20944/preprints202302.0359.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 February 2023 d0i:10.20944/preprints202302.0359.v1

21 of 22

49. Litvinenko, A.; Logashenko, D.; Tempone, R.; Wittum, G.; Keyes, D. Solution of the 3D density-driven
groundwater flow problem with uncertain porosity and permeability. GEM - International Journal on
Geomathematics 2020, 11, 10. doi:10.1007/s13137-020-0147-1.

50. Oladyshkin, S.; Nowak, W. Data-driven uncertainty quantification using the arbitrary
polynomial chaos expansion. Reliability Engineering & System Safety 2012, 106, 179-190.
doi:https://doi.org/10.1016/j.ress.2012.05.002.

51. Stoeckl, L.; Walther, M.; Morgan, L.K. Physical and Numerical Modelling of Post-Pumping Seawater
Intrusion. Geofluids 2019, 2019. doi:10.1155/2019/7191370.

52. Panda, M.; Lake, W. Estimation of single-phase permeability from parameters of particle-size distribution.
AAPG Bull. 1994, 78, 1028-1039.

53. Pape, H,; Clauser, C.; Iffland, J. Permeability prediction based on fractal pore-space geometry. Geophysics
1999, 64, 1447-1460. doi:10.1190/1.1444649.

54. Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a
fractal pore-space geometry assumption. Geophysical Research Letters 2006, 33. doi:10.1029/2005GL025134.

55.  Frolkovi¢, P; De Schepper, H. Numerical modelling of convection dominated transport coupled with density
driven flow in porous media. Advances in Water Resources 2001, 24, 63-72. doi:10.1016,/5S0309-1708(00)00025-7.

56. Frolkovi¢, P. Consistent velocity approximation for density driven flow and transport. Advanced
Computational Methods in Engineering, Part 2: Contributed papers; Van Keer, R.; at al.., Eds.; Shaker
Publishing: Maastricht, 1998; pp. 603-611.

57.  Frolkovi¢, P.; Knabner, P. Consistent Velocity Approximations in Finite Element or Volume Discretizations
of Density Driven Flow. Computational Methods in Water Resources XI; Aldama, A.A.; et al.., Eds.;
Computational Mechanics Publication: Southhampten, 1996; pp. 93-100.

58. Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C,;
van der Vorst, H. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods; Society for
Industrial and Applied Mathematics, 1994; [https://epubs.siam.org/doi/pdf/10.1137/1.9781611971538].
doi:10.1137/1.9781611971538.

59. Hackbusch, W. Multi-Grid Methods and Applications; Springer, Berlin, 1985.

60. Hackbusch, W. Iterative Solution of Large Sparse Systems of Equations; Springer: New-York, 1994.

61. Cliffe, K.; Giles, M.; Scheichl, R.; Teckentrup, A. Multilevel Monte Carlo methods and applications
to elliptic PDEs with random coefficients.  Computing and Visualization in Science 2011, 14, 3-15.
doi:10.1007 /s00791-011-0160-x.

62. Collier, N.; Haji-Ali, A.L.; Nobile, F.; von Schwerin, E.; Tempone, R. A continuation multilevel Monte Carlo
algorithm. BIT Numerical Mathematics 2015, 55, 399-432.

63. Giles, M.B. Multilevel Monte Carlo path simulation. Operations Research 2008, 56, 607-617.

64. Giles, M.B. Multilevel Monte Carlo methods. Acta Numerica 2015, 24, 259-328.

65. Haji-Ali, A.L.; Nobile, F; von Schwerin, E.; Tempone, R. Optimization of mesh hierarchies in
multilevel Monte Carlo samplers.  Stoch. Partial Differ. Equ. Anal. Comput. 2016, 4, 76-112.
doi:10.1007 /s40072-015-0049-7.

66. Teckentrup, A.; Scheichl, R.; Giles, M.; Ullmann, E. Further analysis of multilevel Monte Carlo methods for
elliptic PDEs with random coefficients. Numerische Mathematik 2013, 125, 569-600.

67. Litvinenko, A.; Yucel, A.C.; Bagci, H.; Oppelstrup, J.; Michielssen, E.; Tempone, R. Computation
of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte
Carlo Method.  IEEE Journal on Multiscale and Multiphysics Computational Techniques 2019, 4, 37-50.
doi:10.1109/JMMCT.2019.2897490.

68. Hoel, H.; von Schwerin, E.; Szepessy, A.; Tempone, R. Implementation and analysis of an
adaptive multilevel Monte Carlo algorithm.  Monte Carlo Methods and Applications 2014, 20, 1-41.
doi:d0i:10.1515/mcma-2013-0014.

69. Hoel, H.; Von Schwerin, E.; Szepessy, A.; Tempone, R. Adaptive multilevel Monte Carlo simulation. In
Numerical Analysis of Multiscale Computations; Springer, 2012; pp. 217-234.

70. Charrier, J.; Scheichl, R.; Teckentrup, A.L. Finite Element Error Analysis of Elliptic PDEs with Random
Coefficients and Its Application to Multilevel Monte Carlo Methods 2013. 51, 322-352.


https://doi.org/10.1007/s13137-020-0147-1
https://doi.org/https://doi.org/10.1016/j.ress.2012.05.002
https://doi.org/10.1155/2019/7191370
https://doi.org/10.1190/1.1444649
https://doi.org/10.1029/2005GL025134
https://doi.org/10.1016/S0309-1708(00)00025-7
http://xxx.lanl.gov/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611971538
https://doi.org/10.1137/1.9781611971538
https://doi.org/10.1007/s00791-011-0160-x
https://doi.org/10.1007/s40072-015-0049-7
https://doi.org/10.1109/JMMCT.2019.2897490
https://doi.org/doi:10.1515/mcma-2013-0014
https://doi.org/10.20944/preprints202302.0359.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 February 2023 d0i:10.20944/preprints202302.0359.v1

22 of 22

71. Reiter, S.; Vogel, A.; Heppner, L.; Rupp, M.; Wittum, G. A massively parallel geometric multigrid
solver on hierarchically distributed grids.  Computing and Visualization in Science 2013, 16, 151-164.
doi:10.1007 /s00791-014-0231-x.

72.  Vogel, A.; Reiter, S.; Rupp, M.; Négel, A.; Wittum, G. UG 4: A novel flexible software system for simulating
PDE based models on high performance computers. Computing and Visualization in Science 2013, 16, 165-179.
doi:10.1007 /s00791-014-0232-9.

73. Litvinenko, A.; Kriemann, R.; Genton, M.G.; Sun, Y.; Keyes, D.E. HLIBCov: Parallel hierarchical matrix
approximation of large covariance matrices and likelihoods with applications in parameter identification.
MethodsX 2020, 7, 100600. doi:https://doi.org/10.1016/j.mex.2019.07.001.

74. Litvinenko, A.; Sun, Y,; Genton, M.G.; Keyes, D.E. Likelihood approximation with hierarchical
matrices for large spatial datasets. Computational Statistics & Data Analysis 2019, 137, 115-132.
doi:https://doi.org/10.1016/j.csda.2019.02.002.

75. Matthies, H.G.; Zander, E.; Rosi¢, B.V., Litvinenko, A. Parameter estimation via conditional
expectation: a Bayesian inversion. Advanced Modeling and Simulation in Engineering Sciences 2016, 3, 24.
doi:10.1186/540323-016-0075-7.

76. Rosi¢, B.; Kuterovd, A.; Sykora, J.; Pajonk, O.; Litvinenko, A.; Matthies, H. Parameter identification in a
probabilistic setting. Engineering Structures 2013, 50, 179 — 196. Engineering Structures: Modelling and
Computations (special issue IASS-IACM 2012), doi:http://dx.doi.org/10.1016/j.engstruct.2012.12.029.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.1007/s00791-014-0231-x
https://doi.org/10.1007/s00791-014-0232-9
https://doi.org/https://doi.org/10.1016/j.mex.2019.07.001
https://doi.org/https://doi.org/10.1016/j.csda.2019.02.002
https://doi.org/10.1186/s40323-016-0075-7
https://doi.org/http://dx.doi.org/10.1016/j.engstruct.2012.12.029
https://doi.org/10.20944/preprints202302.0359.v1

	Introduction
	Henry Problem with Uncertain Porosity and Permeability
	Problem setting
	Modeling porosity, permeability, and mass fraction
	Numerical methods for the deterministic problem

	Multilevel Monte Carlo
	Numerical Experiments
	Conclusion
	References

