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Abstract: The constant increase in volume and wide variety of available Internet of Things (IoT) 

devices leads to highly diverse software and hardware stacks, which opens new avenues for ex-

ploiting previously unknown vulnerabilities. The ensuing risks are amplified by the inherent IoT 

resource constraints both in terms of performance and energy expenditure.  At the same time, IoT 

devices often times generate or collect sensitive, real-time data used in critical application scenarios 

(e.g. health monitoring, transportation, smart energy, etc.). All these factors combined make IoT 

networks a primary target and potential victims for malicious actors. In this paper, we present a 

brief overview of existing attacks and defense strategies and use this as motivation for proposing 

an integrated methodology for developing protection mechanisms for Smart City IoT networks. The 

goal of this work is to lay out a theoretical plan and a corresponding pipeline of steps - i.e. develop-

ment and implementation process - for the design and application of cybersecurity solutions for 

urban IoT networks. The end goal of following the proposed process is the deployment and contin-

uous improvement of appropriate IoT security measures in real-world urban IoT infrastructures. 

The application of the methodology is exemplified on an OMNET++ simulated scenario, which is 

developed in collaboration with industrial partners and a municipality. 

Keywords: IoT; Smart City; Open Urban Platform; Machine Learning; cybersecurity; methodology; 
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1. Introduction 

In recent years, the number of devices connected to the Internet has increased dra-

matically. One field that is strongly affected by this trend is the Internet of Things (IoT) 

domain. The term IoT describes a group of physical, interconnected devices which interact 

with each other over a network without human intervention [1]. The rapid growth in the 

number of such devices, market penetration, revenue, and their integration in the day-to-

day live is expected to continue in the years to come [1]. More specifically, areas such as 

healthcare, smart grid, distributed energy sources (DER), self-driving vehicles (SDV), 

transportation, agriculture, smart environments, etc. will continue to experience a radical 

transformation and improvements thanks to the opportunities provided by various IoT 

devices [1].  

One of the major cornerstones for the successful integration and further growth of 

IoT is the implementation of proper security measures: While IoT devices bring various 

benefits in our day-to-day live, they can also contain major potential risks that can nega-

tively impact the safety and well-being of the end users [2]. For instance, compromised 

healthcare infrastructure and hardware, self-driving vehicles and home security cameras 
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are illustrative examples for use cases where the lack of IoT security would lead to dire 

consequences and privacy violations [2]. By the same token, failing to provide security 

guarantees reduces the trust that users put in IoT networks. This can slow down and com-

pletely hinder further IoT adoption and consequently could shut down the wide variety 

of benefits that the field introduces [1,2]. With this in mind, some of the most prevalent 

security challenges in the context of IoT are related to privacy, authentication & authori-

zation, access control, data storage & processing [1,2,3]. These areas are not specific to the 

IoT domain. However, there is a difference between the traditional network security and 

IoT security. These differences stem from multiple factors such as [1]: 

 There are noticeable software and computational resource limitations for IoT 

devices, which prevents the utilization of more sophisticated security algo-

rithms. 

 The IoT devices are low powered, which restricts the usage of more energy 

intensive security best practices and also increases the risk for technical fail-

ures (e.g. loss of data). 

 The highly heterogenous hardware also leads to the usage of diverse soft-

ware stacks and different data formats which increases the available attack 

surface. 

Challenges like these introduce major security risks. Therefore, the goal of this work 

can be summarized as follows: 

1. Analyze and identify the potential risks and available attacks against IoT- 

based platforms  

2. Present a comprehensive set of steps and measures that aim at providing im-

proved security and attack prevention for a particular IoT-based platform 

and the Urban Data platform behind – in this case the UrbanPulse [22] of 

[ui!]1. 

1.1. Open Urban Platforms 

Open Urban Data Platforms are used to ease the use and analysis of urban data, 

which are mostly collected within an IoT network. The collected data is often combined 

with measurements and readings from other sources to produce valued services like ap-

plication or city management systems. 

According to the German pre-standard DIN SPEC 91357 [28], an Open Urban Plat-

form (OUP) is characterized as follows: 

 The implementation of a logical reference architecture following design prin-

ciples of open APIs that supports data flows within and across city systems 

as well as enriching the raw data streams to generate smart data as being 

required by the consuming entities. 

 It is exploiting modern technologies to harvest, collect, and analyze the urban 

data and providing the results to citizens and enterprises, e.g. sensor nodes 

and other IoT devices, cloud services, mobile connectivity, machine learning 

for analytics, publishing and sharing via social media and APPs.  

 It is providing the building blocks that enable cities to rapidly shift from frag-

mented and isolated operation of individual infrastructures towards an inte-

grated approach by connecting the systems via a platform, including cross-

domain data analytics for predictions, forecasts, or better insight, and novel 

ways of engaging and serving city stakeholders offering Smart Services, both 

public and commercial. 

 

1.2. Urban IoT Architectures and OUP 

 
1 [ui!] is the abbreviation for Urban Instutute GmbH – this is the industrial partner, with whom the case studies are being investigated and researched. 
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Open Urban Platforms often exist in certain integrated networks and architectures. 

These architectures usually differ within their structure. Therefore, an explanation of the 

used architecture and its construction - as depicted in Figure 1 - is necessary. 

 Data sources and Actors: IoT devices and sensors are utilized for collecting and 

analyzing data. The collected and analyzed data gets transmitted to explicit 

gateways via e.g., LoRaWAN or NB-IoT networks. 

 IoT Platform and Connectivity: From the gateways the data is forwarded across 

the network through different communication channels (e.g. mobile network 

cells) to IoT-platforms. These platforms support the management of the IoT-

devices through their complete operational life cycle and are usually oper-

ated by the IoT-device vendors. 

 

 

Figure 1. Abstract Architecture of an Open Urban Platform 

 Urban Data Platform (UDP) (Smart City Core Services): Connectors receive the 

data from the IoT-platform, normalize them, and usually enrich them by data 

stored in a UDP database. For example, a Connector can receive a message 

with an IoT-device-ID and a date – in this case, the message on the output of 

the Connector is extended with the geo-location of the IoT-device. In some 

cases, the IoT-devices are connected directly to the UDP and are managed by 

an IoT-module on the UDP. From the Connectors the data is send via a mes-

sage bus to the storage and to a Complex Event Processing engine (CEP), which 

applies rules on the events and produces new messages. By doing this, the 

CEP can be considered as a virtual sensor and the new produced messages 

are stored in the belonging Storage as well. The Analytics module combines 

analytics services and libraries. The analytics services are often machine 

learning/AI based services, e.g. for predictions.  

 APP/APIs: The UDP is connected to many APPs or provides outbound APIs. 

Dashboards or Cockpits are the most used APPs and provide information to 

users. Data Laboratories are using Analytics services of the UDP and enable 

experts to perform sophisticated analytics. Marketplaces are used to provide 

data. Other data are provided by Open APIs on the outbound layer of the 

UDP/OUP. 
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1.3. Smart City Data based Services 

With the ongoing digitalization of cities, the Open Urban Platform can be utilized in 

various fields [23]. The open provisioning of data can be seen as an opportunity to im-

prove the urban living conditions and provide city services for different topics and areas 

of relevance:   

 Smart Government: The key difference between e-government and smart gov-

ernment is the use of intelligently networked objects and cyber-physical sys-

tems [24]. Structures such as big data and open data are included in the de-

velopment strategy. The change relates either to the resulting product, the 

process, or the prerequisites for the creation of the administrative service in 

question. Smart government therefore provides the means towards a data-

driven digital administration [24].  

 Smart Economy: Within Smart Economy, cities are able to provide important 

data for new business models and to create conditions for economic devel-

opment.  

 Smart Environment: City data and their analytics provide new terms and con-

ditions for environmental support. Within a large number of governmental 

tasks - like waste monitoring or energy efficiency in case of street lighting – 

data analytics can help to reduce CO²-Emissons and even provide an im-

proved habitat for animals and humans. 

 Smart Urban Society: Smart Urban Society addresses - in a data-based context 

- topics like digital collective urban living and social interaction. Therefore, 

new incentives to live in a city can be developed and the social exchange can 

be supported. Topics like Smart Health and Education could also be the focus 

of this field and can be supported, e.g. through city-data and self-sovereign 

identities.  

 Smart Mobility: Smart Mobility increases the use of environmental-friendly 

mobility options. Here, data is used to give users more information about the 

possibilities and benefits of using cheaper, faster and environmental-friendly 

mobility solutions. 

1.4. Contribution 

The overall goal and clear contribution of the current paper is provided by the fol-

lowing aspects: 

 Propose an integrated methodology for setting up and continuously improv-

ing cybersecurity solutions in urban IoT networks 

 Provide an overview of potential attacks on Smart City IoT networks as a 

motivation for the above-mentioned integrated methodology 

 Exemplify parts of the integrated methodology on an urban IoT network in-

stance, which is simulated together with industrial partners and a munici-

pality in Germany 

The novelty of our work is provided by the devised methodology for planning and 

continuously improving the setup of cybersecurity solutions for urban IoT networks. Our 

approach is developed in close collaboration with industrial partners and a municipality, 

which intrinsically increases its relevance for real-world use cases. Furthermore, the ap-

proach is validated in an OMNET++ simulation, in order to demonstrate its feasibility and 

capture feedback from relevant stakeholders (industry and utility companies) in the scope 

of the KIVEP project [25]. 

1.5. Structure of the Presentation 

The rest of this paper is organized as follows: Section 2 presents the problem state-

ment, for which the current work tries to find a solution. Thereby, section 2 describes the 

general hazardous situation and elucidates on the potential threats to urban IoT infra-

structures. Section 3 continues with a more detailed discussion of the potential security 
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issues and summarizes available approaches to increasing the level of IoT cybersecurity 

in urban ICT. The general issue that stands out is that all these single approaches do not 

represent an overall picture of how cybersecurity should be addressed in the Smart City 

context for IoT networks. Hence, the following section 4 defines and proposes such an 

overall methodology and process relating to how to initially setup cybersecurity solutions 

(with current focus on intrusion detection) in urban IoT and afterwards continuously im-

prove and refine the installed mechanisms. Finally, section 5 demonstrates key parts of 

the methodology based on a simulated IoT network use case, on which we work together 

with a municipality and an industrial partner, whilst section 6 draws conclusions and pre-

sents future research directions. 

2. Problem Statement 

This section focusses on shortly describing the general risks, at which urban IoT net-

works are exposed. Furthermore, it prepares the reader for possible activations of theses 

risks in terms of potential attacks on urban IoT networks. These potential attacks are listed 

and described together with possible countermeasures in the following section 3. 

2.1. General Hazardous Situation 

As mentioned previously, the number of IoT devices and the corresponding net-

works in which they participate grow at a rapid rate. The heterogenous nature and in-

creased volume of devices lead to the development of new, previously unknown attacks 

and the uncovering of new attack surfaces. Due to their limited computational resources 

and energy capacities, IoT devices are not typically a subject of highly sophisticated secu-

rity best practices, and they are often neglected as potential target for malicious actors. 

Nevertheless, the IoT networks still actively communicate with other traditional IP-

based networks, which exposes them to common vulnerabilities and attacks. Further-

more, IoT sensors are used frequently to collect data in Smart Cities, healthcare, transpor-

tation, Smart Energy and other domains, where real-time decision-making is of crucial 

importance and can have severe consequences. Therefore, devising security mechanisms 

that preserve the privacy of end users, while also protecting the critical network infra-

structure must be a primary consideration in the context of urban IoT platforms. 

2.2. Potential Attacks in Urban IoT Networks 

As mentioned previously, IoT networks are a major target for potential attacks since 

they provide a wide attack surface and a highly diverse software stack. The potential dan-

gers are not only stemming from commonly used attack vectors, but also from attacks 

specifically crafted and shaped against IoT network vulnerability points (e.g. energy ca-

pacity).  

For instance, one common attack utilized in traditional IP-based networks is the de-

nial of service (DoS) or distributed denial of service (DDoS). In this case, the perpetrator 

floods the victim’s system with a large volume of unwanted requests. This aims at causing 

damage in the form of inability of the system to process legitimate requests or shutting 

the system down completely, which - depending on the system under attack - might lead 

to massive financial losses and in more extreme cases even to the loss of human life. 

An example more specific to the IoT-domain is the so-called “node jamming” attack, 

which disrupts and/or completely prevents the transmission of signals generated by the 

IoT device. This can also be considered a form of a DoS attack, since it can shut down the 

functionality of a particular service and similarly to the DoS attack can have major nega-

tive implications. The examples given in this section are used as an abstract illustration 

for the potential dangers and attack vectors that can be exploited by malicious actors. 

However, a more comprehensive overview of the IoT security vulnerabilities and some of 

the available security countermeasures are presented in Section 3. 
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Table 1: Classification of Attack Types and possible Defenses or Architectural Measures in Urban IoT 

Networks. 

Attack Type Possible Defenses or Ar-

chitectural Measures 

IoT Layer Classification 

Data Theft Blockchain, Edge and Fog 

Computing 

Application Layer 

Sniffing Attacks Edge and Fog Computing Application Layer 

Malicious Code and Data-

base Injections 

Edge and Fog Computing Application Layer 

Distributed Denial of Ser-

vice (DDoS) 

Machine Learning and 

Deep Learning, Edge and 

Fog Computing 

Network Layer 

Spoofing Attacks Machine Learning and 

Deep Learning, Edge and 

Fog Computing 

Network Layer 

Man-in-the-middle 

(MitM) 

Machine Learning and 

Deep Learning, Edge and 

Fog Computing 

Network Layer 

Tampering Edge and Fog Computing Perception/Physical/Sens-

ing Layer 

Node Jamming or Radio 

Frequency Interference 

Edge and Fog Computing Perception/Physical/Sens-

ing Layer 

Sleep Deprivation or De-

nial of Sleep (DoSL) 

Edge and Fog Computing Perception/Physical/Sens-

ing Layer 

3. Discussion and Classification of IoT Attacks and Countermeasures 

Similar to traditional networks, IoT architectures can be analyzed and evaluated ac-

cording to a layer-based approach. There are multiple classification schemes proposed in 

the research literature, but most of them have the layers from Figure 2 in common. Based 

on these layers, we present different types of attacks and general defense strategies or 

architectural measures to protect urban IoT architectures. An overview of this classifica-

tion is provided in Table 1. On the left we see the possible approaches/strategies for an 

attacker as abstracted from our literature review. These are also mapped to a correspond-

ing layer in the IoT architecture in Figure 2 and combined with potential defense ap-

proaches and architectural measures. 

3.1. IoT Attacks 

The detailed description of each IoT layer with belonging attack types and examples 

is provided in the following listing, which is followed by elucidations regarding the vari-

ous architectural and algorithmic countermeasures – with concrete examples – that can 

potentially be applied to protect Smart City IoT networks. The presented classification is 

based on a literature review, which aimed at finding a common ground between the var-

ious classifications in the relatively new field of cybersecurity for Smart City IoT. 
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Figure 2. IoT Layers Classification (based on definitions from [1,2,3])) 

Application Layer: The application layer serves as an interface between the end users and 

a given platform or service [1,2]. It provides functionalities such as authentication, author-

ization, data overview, and data access [2]. For this reason, the most common security 

vulnerabilities exploited at this layer are related to data theft and privacy violations [1]. 

For instance, some of the attacks performed at the application layer include: 

 Data theft [1,2]: IoT devices are utilized in a wide range of use cases and, 

therefore, are involved in generating, processing, and transferring variety of 

data. As pointed out by Hassija et al. [1], data that is being transferred is more 

vulnerable to attacks and consequently it can be stolen. At the same time, 

some of this data might include sensitive or private information. Therefore, 

if the end users cannot trust the IoT platform’s privacy preserving capabili-

ties, they are unlikely to store their data on this platform [2]. Some of the 

common approaches for providing security guarantees against data thefts is 

using data encryption, isolation, and network authentication [1]. 

 Sniffing attacks [2] occur when an attacker monitors the network traffic in an 

attempt to acquire sensitive user data [1]. The attack is executed by an at-

tacker that uses a malicious software to intercept and read confidential data 

flowing through the IoT network [2]. Similar to data theft, the prevention 

against such attacks includes the utilization of secure data transfer protocols 

[2]. 

 Malicious code and database injections describe attacks that are performed with 

the help of malicious user inputs such as scripts and code snippets. These 

attacks are possible due to insufficient code checks or lack thereof [1]. The 

standard attack procedure includes an attacker finding a vulnerable entry 

point in the application layer and injecting harmful piece of code that com-

promises the system [2]. Some of the common examples for such attacks in-

clude the SQL injection [5] and the cross-site scripting (XSS) attack [1,6]. 
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Figure 3. Cloud, Fog and Edge Computing Hierarchy 

Network Layer: The main responsibility of the network layer is to handle the transmission 

of data coming from the physical layer across the IoT network [2]. Some examples for com-

mon network layer attacks include:  

 

 Distributed denial of service (DDoS) is an attack that uses multiple devices or sys-

tems to flood a target service with unwanted traffic [1][13]. The main goal of the 

attack is to generate a massive number of requests which will either disrupt the 

normal functioning of the service or will completely shut it down. As pointed out 

by Liang and Kim [2], DDoS attacks are not specific to IoT networks. However, 

the large number of poorly secured IoT devices can become an easy victim to a 

motivated perpetrator who can add the devices as a part of a botnet, (e.g. Mirai 

[4]) [2] [5].  

 Spoofing attacks take place when an adversary tries to fake its identity and imper-

sonate a legitimate device or a user (e.g. by spoofing an IP address). This can give 

the adversary unauthorized access to certain resources or can allow them to ob-

serve and collect sensitive data transmitted over the network [1].  

 Man-in-the-middle (MitM) is an attack during which an adversary is able to insert 

itself between two nodes in the IoT network. Consequently, the attacker is able to 

intercept, capture, modify, and relay data flowing between the two nodes without 

their knowledge [2]. More specifically, from the nodes’ perspective it seems as if 

they are directly communicating with each other. 

 

Perception/Physical/Sensing Layer: The perception layer is also known as sensing [1] or 

physical layer since it is responsible for handling the physical IoT sensors and actuators. 

This layer is responsible for collecting data from the end devices and forwarding it to the 

network layer [2]. Some examples for devices that operate here include smoke detectors, 

camera sensors, and humidity sensors [1]. Exploiting these devices opens up opportunities 

for physical layer IoT attacks such as:  
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 Tampering refers to a physical intervention on the IoT device, through which 

the perpetrator modifies the hardware in a way that allows them to obtain 

sensitive information such as credentials, encryption keys, etc. [2].  

 Node Jamming or radio frequency interference occurs when an attacker is near 

the location of the end devices and prevents them from successfully com-

municating with other devices on the IoT network [5]. This is achieved by 

sending noise signals that disrupt the wireless communication between the 

IoT devices [8].  

 Sleep deprivation or Denial of Sleep (DoSL) is an attack during which the perpe-

trator targets low-powered IoT devices and tries to increase their power con-

sumption, in order to shut them down [1,7]. This is a form of DoS attack that 

can be achieved by injecting infinite (communication and computational) 

loops or modifying the hardware of the IoT device [7]. 

3.2. Defenses and Countermeasures 

Given the importance and impact of the IoT domain on our day-to-day life, it is crucial 

to explore the available defenses against the attack vectors described above. Similar to the 

attack classification, the available research literature classifies the defense mechanisms into 

one of the following categories:  

 

Edge and fog computing are terms commonly used to describe two additional computa-

tional layers in the context of the cloud computing paradigm as described in Figure 3. Edge 

computing refers to computations taking place at the edge of the network - at the data 

source or very close to it instead of executing them in the cloud [13]. The main idea of edge 

computing is to reduce the data transfer between the cloud and the end devices. Instead, 

since the edge layer is in a very close proximity to and could even include IoT devices, 

there are faster data transfer times, low transmission costs, and near real-time communi-

cation. This is essential for the implementation of well-established security best practices 

[1, 12]. In addition, as pointed out by K. Sha et al. [12] the edge layer has more computa-

tional resources than the IoT end devices, which allows the utilization of more computa-

tionally expensive security mechanisms. This includes not only encryption mechanisms 

such as homomorphic encryption, but also the implementation of firewalls, intrusion de-

tection and intrusion prevention systems at the edge layer, which can analyze and block 

the incoming malicious traffic [12].  

Furthermore, as discussed by Hassija et al. [1], since there is less data transfer and 

more local data processing, edge computing reduces the opportunities for data breaches 

and thefts during transit. As mentioned above, the reduced data transfer also results in 

lower latencies and faster response times, which is not only important for the utilization 

of countermeasures, but it is also crucial for life threatening scenarios such as the ones 

encountered in the health sector, automated vehicles, critical infrastructure, etc.  

Within this context, the second important layer in the framework of the edge-cloud 

computing paradigm is fog computing. Fog computing describes computations taking 

place between the edge and the cloud layers (see Figure 2). 

The main idea of fog computing is to serve as an additional layer between the edge 

and the cloud, which allows intermediate data aggregation, analysis, processing, and stor-

age [1, 11, 15]. In this way, only the most essential data is further propagated to the cloud, 

which reduces the transmission costs, saves cloud storage space and helps with perform-

ing real-time and time-sensitive tasks [1, 11]. The devices most commonly used in the fog 

layer include switches, routers, and others [1, 11]. 

In the context of IoT security, fog computing can address some common security chal-

lenges. For instance, since the fog layer typically aims at analyzing and filtering out mali-

cious data, it can prevent anomalous traffic to be passed forward to the cloud or the main 

backend system [1]. Additionally, the fog computing reduces the need for data transmis-

sion across the whole network, which decreases the risks for eavesdropping and data theft 
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[1]. Finally, the fog provides an environment with higher computational resources com-

pared to the edge devices. Therefore, fog nodes can implement more advanced security 

best practices and attacks targeting the resource-constrained IoT end devices are harder to 

perform against the fog layer. 

 

Machine Learning and Deep Learning: In recent years, the Machine Learning (ML) and 

Deep Learning (DL) domains have experienced a significant growth and advancement and 

have become an integral part in a wide variety of industries. The IoT domain is no excep-

tion and ML/DL-based approaches can be applied for preventing and mitigating attacks, 

as well as for improving the security and privacy of IoT-based networks [1, 6, 14, 31, 32, 

33]. According to a comprehensive study presented by Al- Garadi et al. [6], some of the 

ML/DL-based methods most commonly used in the research literature can be classified as 

supervised, unsupervised, semi-supervised, and reinforcement learning methods (RL) [6]. 

These can be summarized as follows:  

 

 Supervised learning algorithms are trained on data samples which are labeled 

and provide a mapping between inputs and outputs. The most widely used 

supervised learning methods for IoT security include Decision Trees, Support 

Vector Machines, Naive Bayes, K-Nearest Neighbors, Random Forest, Deep 

Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent 

Neural Networks (RNN), etc. [6]  

 Unsupervised learning approaches try to identify patterns (typically by cluster-

ing) within an unlabeled data set. Common unsupervised learning methods 

used for improving the security in IoT networks include K-Means Clustering, 

Principal Component Analysis, Deep Autoencoders (AEs), Restricted Boltz-

mann Machines (RBM) and Deep Belief Networks (DBN) [6].  

 Semi-supervised learning methods utilize a data set which typically contains low 

volume of labeled and large volume of unlabeled data points. Semi-super-

vised algorithms use both portions of the data for training, which places them 

in-between supervised and unsupervised learning [14]. The main advantage 

of these methods is that they can have an improved accuracy due to the usage 

of the small number of labeled samples, while simultaneously being trained 

on large volume of cheap, unlabeled data. Some of the semi-supervised meth-

ods used for IoT security include Generative Adversarial Networks (GANs) 

and ensemble of DNNs [6].  

 Reinforcement learning methods train an agent which is supposed to make de-

cisions based on the conditions present in a given environment. The agent is 

trained by interacting with the environment and receiving rewards propor-

tional to the “accuracy” of its decision. Based on examples from research lit-

erature provided by Al-Garadi et al. [6], in the context of IoT security RL 

methods (e.g. Q-learning [1, 6]) are used primarily for preventing signal jam-

ming attacks. 

 

The methods described above can be utilized to prevent a wide spectrum of attacks 

performed at each layer of the IoT network. For instance, at the physical layer user authen-

tication strategies can be implemented with the help of DNN-based approaches that rec-

ognize users based on their daily habits [6, 16]. As illustrated by the approaches summa-

rized by Al-Garadi et al. [6], attacks on the network layer can also be detected with the help 

of ML/DL methods - e.g. malware and network anomaly detection can be performed with 

the help of Autoencoders [17], whereas DoS and DDoS attacks can be detected with the 

help of Deep Neural Networks [18]. Finally, at the application layer various attacks (e.g. 

malware attack [19], application layer DDoS [20]) can be also successfully detected with 

the help of ML/DL approaches such as CNNs [19] and AEs [20]. 
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Blockchain: The Blockchain [29] is a decentralized ledger that stores data entries in a tam-

per-proof manner. It consists of blocks that are uniquely identified by the so-called 

“hashes” and linked with each other with hash pointers. Therefore, modifying infor-

mation inside the block (e.g. a transaction) changes its hash identifier, which invalidates 

all blocks in the chain that come after. In traditional Blockchain implementation, new 

blocks are added to the chain by solving a resource-intensive cryptographic challenge 

called “proof-of-work”. Since solving the challenge is computationally expensive and the 

blocks are secured with cryptographic hash functions, it is very unlikely that an adversary 

will be able to tamper with data stored in the Blockchain. Additionally, each block stored 

in the chain is verified by all participants in the network and there is no central authority 

that can single-handedly alter the transaction history or prevent transactions from execut-

ing. This set of properties makes the Blockchain a compelling solution for some of the 

security challenges present in the IoT domain [31]. 

For instance, Dorri et al. [9] propose a Blockchain-based security solution for smart 

homes. The utilization of the Blockchain for IoT security is challenging due to the low 

computational resources, high latency transaction execution, and lower scalability [9] [34]. 

Therefore, the authors introduce a Blockchain-based solution that addresses these chal-

lenges. Additionally, the presented approach is evaluated with regards to multiple im-

portant security requirements - confidentiality, integrity, availability (also known as the 

CIA security triad), user control and authorization. These requirements are fulfilled with 

the help of multiple techniques such as transaction logging into the Blockchain, hashing, 

and symmetric encryption [9]. Furthermore, the proposed approach also serves as a de-

fense against two common IoT attacks - DDoS and Linking attack2. In addition to this 

example, Hassija et al. [1] summarize some of the main benefits of the blockchain security 

for IoT as follows:  

 

 The Blockchain can serve as a secure distributed data storage. The data 

stored in the Blockchain is secured against tampering with the help of cryp-

tographic hashing algorithms, and there is a guaranteed data redundancy 

due to the absence of a single point of failure in the Blockchain network.  

 Nodes in the network are registered on the Blockchain and therefore can be 

authenticated and identified, which prevents spoofing attacks.  

 The Blockchain serves as a decentralized alternative to the traditional cloud 

servers. Centralized storage of information is a major target for perpetrators 

that want to steal sensitive data. Given that the cloud services provide shared 

infrastructure to many users at the same time, cloud storage can be compro-

mised more easily compared to alternative Blockchain-based approaches. 

Additionally, the data stored in the Blockchain is distributed across all nodes 

in the network and signed (often also encrypted), which makes data theft 

attacks more difficult. 

 

 

 
2 Linking attacks try to identify users within an anonymous environment by combining partial identifiers (e.g. zip code, gender, etc.) in an attempt 

to infer the complete user identity. 
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Figure 4. Structure of the KIVEP Process Pipeline and Methodology 

4. Methodology and Toolchain 

The current work and the envisioned contributions are part of the BMBF-funded KI-

VEP project [25]. The project is carried out in a joined effort between the Urban Institute 

[ui!] and Fraunhofer Institute for Open Communication Systems (FOKUS). The main goals 

of the project include the research, analysis, and potential implementation of protocol 

anomaly detection in urban IoT networks.  

In the following sections, we present the structure of a continuous process - see Figure 

4 - for achieving the objectives targeted within the scope of the KIVEP project. We denote 

this methodology also as KIVEP, which is the German abbreviation for “Prevent and detect 

compromises of IoT devices through protocol anomaly detection”.3 

The KIVEP methodology is devised as close as possible to the needs and requirements 

of real-world deployments. This statement is based on the fact that we work in close col-

laboration with key players in the Smart City IoT market in Germany as well as with the 

utility companies and municipalities, which are their direct clients in the context of differ-

ent IoT deployments. As previously mentioned, this approach intrinsically increases the 

relevance of the below-presented KIVEP methodology for real-world use cases.  

4.1. Requirements Analysis and Risk Identification 

This is the first step of the KIVEP design process described Figure 4. Within this phase 

the various requirements (e.g. protocols, types of sensors, device parameters …) for a par-

ticular urban IoT infrastructure are captured in the form of a requirements catalogue. Fur-

thermore, the risks and potential threats for the system under design should be analyzed 

and captured in a corresponding risk and/or threat model using a tool-based approach. 

The captured requirements, risks and threats should be systematically addressed during 

the design of the Smart City IoT infrastructure in question. Moreover, we expect that the 

architects, designers and implementors will continuously gather experiences and lessons 

learnt throughout the different phases of the KIVEP methodology and will correspond-

ingly update the requirements catalog as well as the risk and threat models. 

 
3 KIVEP stands for „Kompromittierungen von IoT-Geräten vorbeugen und erkennen durch Protokoll-Anomalie-Erkennung“ 
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4.2. Network Modelling (e.g. WoT Modelling) 

Web-of-Things (WoT) encompasses a standardization scheme presented by the world 

wide web consortium (W3C). It provides guidelines that help dealing with the heteroge-

neity of the IoT domain by emphasizing the usage of well-established communication 

practices/structures/protocols, which can be utilized by wide range of IoT and network 

devices.  

For the purposes of the KIVEP methodology, we plan to utilize a WoT schema, which 

could potentially serve as a blueprint for the communication standards/structures utilized 

within a particular urban IoT network. The main idea is to create a model of the network 

that will help with the analysis of potential security vulnerabilities and possible attack vec-

tors. The WoT model can be stored as a machine interpretable file in JSON format that 

holds a description of the IoT Network and infrastructure under consideration. This model 

can be used for annotating and describing the places at which the security mechanisms 

(e.g. anomaly detection) assessed in the scope of KIVEP could be deployed. These are the-

oretical considerations and the applicability of WoT will be further assessed throughout 

the course of the KIVEP project. 

 

 

Figure 5. Architecture Blueprint used by the Network Simulation 

4.3. Security Rules and Constraints: Access Control List Generation 

Access control lists (ACL) is a common approach in network and system management 

and represents a set of rules and constraints, which determine the access permissions to a 

given system resource or an object. Resources commonly included in the ACL encompass 

routers, gateways, files, databases, etc. In the context of KIVEP, we plan to utilize an ACL 

for preventing unauthorized resource access and to filter out potentially malicious net-

work traffic targeting the sensitive infrastructure of the urban IoT network in question. 

This can be achieved by identifying all resources and objects with the help of the analysis 

described above (see subsections 4.1 and 4.2). Then, as a next step, we intend to generate 

ACL rules for each endangered object or resource. 
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4.4. Protocol-Analysis for Intrusion Detection 

In this step of the pipeline, we plan the utilization of state-of-the-art ML and DL meth-

ods. Here, we focus primarily on analyzing the network packets and the corresponding 

traffic flow properties and not on the packet payload, i.e. DPI (Deep Packet Inspection) 

will not be performed. The main focus of the protocol analysis conducted here is placed 

on the application of unsupervised learning clustering methods (e.g. local outlier factor 

(LOF), Autoencoders, etc.) for anomaly detection. 

4.5. Network Simulation and Testbed Evaluation 

The next step in the envisioned process pipeline is the design and development of a 

network simulation environment. As the name suggests, the main purpose of this simula-

tion would be to serve as virtual representation of the network infrastructure and topology 

available in the production environment of a real-world urban IoT platform. In this way, 

the research efforts and the corresponding solutions proposed in the scope of this work 

can be evaluated with regards to their performance and their ability to provide the desired 

security guarantees. More specifically, the network simulation is developed as a testbed 

for the anomaly detection solutions examined throughout the KIVEP project, and it is 

structured as depicted in Figure 5.  

The IoT devices in the diagram in Figure 5 serve as a representation of IoT parking lot 

sensors deployed on the premises of an industrial partner providing Smart City solutions. 

The next important component is the so-called “middlebox” which is envisioned as a vir-

tual environment that performs the intrusion detection functionality (i.e. the protocol 

anomaly detection). The final location of the “middlebox” is not strictly established and 

might change depending on the needs of the project and the potential deployment chal-

lenges encountered along the way. After performing the protocol anomaly detection, the 

aim of the middlebox is to forward the analyzed traffic to back-end servers, where the data 

will be further processed and made available to the intended audience through the IoT 

platform and the sensor providers. 

 

 

Figure 6. General Structure of the Use Case 

4.6. Real-world Deployment and Feedback 

The final step planned within the continuous process of the KIVEP methodology is 

the deployment and evaluation of the proposed solutions in a real-life production envi-

ronment. Assuming that the research efforts have resulted in the successful implementa-

tion of the desired anomaly detection method inside the OMNET++ simulated environ-

ment, the next and final step will focus on providing a real-world condition for testing the 

proposed solution. For these purposes, the anomaly detection methods implemented in 
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the scope of KIVEP will be deployed in an urban IoT network, where their real-world per-

formance will be evaluated.  

The experiences from the real-world deployment and operations are submitted once 

again to the initial planning phase of requirements analysis and risk identification (see 

Figure 4 and subsection 4.1), in order to enable the continuous improvement of the security 

solutions in place. Thereby, the process in Figure 4 is restarted leading to a feedback loop 

to be executed during the operation of an urban IoT infrastructure. 

5. Demonstrating the Methodology 

Within this section, we showcase how the envisioned methodology could be applied 

on a real use case involving one of the associated partners in the KIVEP project. Given the 

sensitive nature of the data processed by the infrastructure provided by the related part-

ner, we are not disclosing the exact setup utilized by them, but instead we transfer the 

patterns on a scenario, which is mapped to the city of Berlin and to the surroundings of 

the Fraunhofer FOKUS institute. 

5.1. Simulation Setup 

Figure 6 shows the overall structure of the IoT network in question with its embed-

ding in a Smart City setting. The visualization is obtained after modelling the use case in 

OMNET++ [10] and shows 16 sensors as the KIVEP partner deploys them in the real case. 

However, the map behind shows a geolocation of Berlin.  

The sensors can be of different types (e.g. LoRaWAN or IEEE 802.15.4) which are pro-

vided by the OMNET++ simulation models and extensions to the belonging INET frame-

work [26].  

Furthermore, an IoT gateway can be seen in the middle of the network architecture. 

This is the component to which all the sensors communicate their measurements. The gate-

way aggregates the traffic from the sensors and places it in IP packets that can be commu-

nicated over the Internet to the backend, which would be an IoT platform or an Open Ur-

ban Platform as described above. Right behind the gateway, a middlebox can be placed, 

which is meant to provide the means for protecting the overall IoT and OUP infrastructure 

and detecting attacks originating from the sensors and gateway towards the backend or 

vice versa. 

5.2. Attack Setup 

It is important to remark that Figure 6 contains two sensors which are presumed to 

be corrupted and to generate malicious IEEE 802.15.4 traffic at a rate of one frame every 10 

seconds into the IoT infrastructure. A general example of the visualization of the IEEE 

802.15.4 IoT traffic is shown in Figure 7, where one can observe the measured values being 

sent in single packets to the IoT gateway and beyond. In this case, the corrupted sensors 

would be generating meaningless “measurements” on a rate much higher4 - one IEE 

802.15.4 frame every 10 seconds - than the one of the sane sensors - one IEEE 802.15.4 frame 

every 5 minutes. This could lead to a DoS attack, for instance towards the gateway, in order 

to drain its energy and deny the other sensors from the possibility to convey their meas-

urements to the IoT platform or Open Urban Platform in the backend.  

 
4 This means that the “normal“ sensors are sending out IEEE 802.15.4 frames on a standard rates, whilst the corrupted sensors are generating IEEE 
802.15.4 frames on an extremely high rate within the OMNET++ simulation. This leads to the IoT gateway loosing a lot of energy and eventually 

failing to perform its tasks. 
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Figure 7. IoT Traffic Visualization 

Figure 8 shows an example from the established simulation, in which the corrupted 

sensors are successful in making the gateway work so intensively that its battery - pro-

vided that the gateway is out in the open without an available power line - quickly drops 

and degrades the overall performance of the network. Such a situation could have serious 

consequences for the operator of a critical infrastructure or a mobility service within a 

Smart City. In case a DoS attack towards the gateway is successful and manages to drain 

all its energy (thereby effectively shutting it down), then the dependent service or critical 

infrastructure will be missing important context data and is likely to perform under the 

level of agreed SLAs (Service Level Agreements), leading potentially to the loss of revenue 

or even compromising the safety of citizens. 

5.3. Intrusion Detection 

In order to experiment and test with methods for preventing such DoS attacks, traffic 

was recorded from the simulation and various mechanisms are under investigation re-

garding how to recognize malicious traffic and the belonging rogue sensors. Such mecha-

nisms can be either placed directly in the middlebox (see Figure 6 and Figure 7) or can be 

executed in the according NOC (Network Operations Center) or SOC (Security Operations 

Center) once the traffic has been monitored and recorded in a real network. 

 

 

Figure 8. Residual Energy of the Gateway – an Example from the OMNET++ Experiments 

The methods that can be applied for analyzing this data include different Autoen-

coder and Deep Neural Network architectures as well as the concept of a Random Forest 

that was mentioned before. In this line of thought, Figure 9 shows the current 

Time (sec) 
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m

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0303.v1

https://doi.org/10.20944/preprints202302.0303.v1


 

 

demonstrator that is based on the DoS recognition utilizing a Random Forest implemented 

in Python scikit-learn [27].  

Table 2: Summary of the used Random Forest Parameter. 

  

 

 

 

 

 

 

The Random Forest classifier trained in the scope of this work is configured with the 

main hyperparameters listed in Table 2. The first parameter “n_estimators” defines the 

number of decision trees in the forest.  By increasing the number of trees, we might be able 

to improve the model accuracy, but this could also lead to longer training time and in-

creased risk of overfitting. Therefore, we use the default value of 100 decision trees which 

provides a good balance between accuracy and computational efficiency. In terms of the 

split/decision criterion, the Random Forest trained in this work utilizes the so-called gini 

impurity. Gini impurity [30] - a mathematical coefficient determining the degree to which a 

set consists of a particular type of data/labels - is a good split criterion for a decision tree 

because it is a fast and efficient way to measure the quality of a split and is effective at 

identifying the most frequent class in a dataset. The next parameter used for configuring 

the RF is max_depth. This parameter controls the maximum depth of each decision tree in 

the forest. For the purposes of our use case, we set the parameter to “None”, which sets no 

depth limit. The reason is that while maximum depth can help with preventing overfitting, 

it can also decrease accuracy if the depth is set too low. The final specified parameter is 

min_samples_split, which controls the minimum number of samples required to split an 

internal node. We set the parameter to be equal to 2. This means that a node must have at 

least 2 samples to be split. Increasing this value can help to prevent overfitting, but can 

also lead to a model that is too simple and has lower accuracy.  

 

 

Figure 9. Visualization of the Demonstrator based on Random Forest 

5.4. Overall Demonstrator 

The belonging classification code is provided and showcased as a Jupyter notebook 

(Figure 9) and is complemented by a self-developed visualization on the right in Figure 9. 

The visualization shows how the data recorded behind the gateway (e.g. on the middle-

box) is sequentially processed and analyzed. Thereby, the sending patterns of the involved 

Parameter Value 

n_estimators 100 

criterion "gini” 

max_depth None 

min_samples_split 2 
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sensors are classified by the previously trained Random Forest leading to the recognition 

of erroneous sensors, the packets of which are marked red on the right side in Figure 9.  

Indeed, we can observe how the proposed methodology – especially including the 

network simulation – can be used to model the smart city infrastructure (especially IoT 

network) in question and to develop specific algorithms that can be finally applied in the 

real urban environment. Thereby, the methodological structures and guidelines provided 

in this paper establish the framework, in which urban IoT networks can be systematically 

protected and improved in terms of cybersecurity capabilities. 

6. Conclusions 

The consistent increase in the number of IoT devices and their major involvement in 

critical day-to-day tasks (e.g. healthcare, autonomous vehicles, etc.) raises concerns about 

the security guarantees that these devices can provide. These concerns are based on the 

observation that due to their hardware limitations and heterogenous software, IoT devices 

are vulnerable to both known and unknown attacks.  

In this work we presented an overview of the IoT domain and explored some of the 

attacks and corresponding defenses in the scope of urban IoT networks. This analysis mo-

tivated the need for deriving KIVEP – an integrated process and toolchain for setting up 

and continuously improving cybersecurity solutions in the context of urban IoT networks. 

Hence, we described a structured KIVEP process that was exemplified on the development 

of an ML based anomaly detection mechanism, which was demonstrated and validated in 

an OMNET++ simulation based on our collaboration with industrial partners and munici-

palities/utilities in a German research project. The envisioned outcome of the execution of 

the process laid out in this work assumes that the defense strategies - proposed based on 

the conducted research efforts - are not only theoretically tested but also practically applied 

in a production IoT network. 
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