
Article

Using Ensemble Convolutional Neural Network To Detect
Deepfakes Using Periocular Data
David Johnson 1,†,‡* , Xiaohong Yuan 2,†‡ and Kaushik Roy 3,†‡

1 Affiliation 1; dmjohns8@aggies.ncat.edu
2 Affiliation 2; xhyuan@ncat.edu
3 Affiliation 3; kroy@ncat.edu
* Correspondence: dmjohns8@aggies.ncat.edu; Tel.: +1-706-731-4242 (D.J.)
† Current address: North Carolina Agricultural and Technical State University, 1601 E Market St, Greensboro,

North Carolina 27411, USA
‡ These authors contributed equally to this work.

Abstract: Deepfakes are manipulated or altered images, or video, that are created using deep learning 
models with high levels of photorealism. The two popular methods of producing a deepfake are 
based on either convolutional neural networks (CNN), or autoencoders. Deepfakes created using 
CNN comparatively show higher qualities of realism, yet oftentimes leave artifacts and distortions 
in the generated media that can be detected using machine learning and deep learning algorithms. 
In recent years, there has been an influx of periocular image and video data because of the increase 
usage of face masks. By wearing masks, much of what is used for facial recognition is hidden, 
leaving only the periocular region visible to an observer. This loss of vital information leads to 
easier misidentification of media, allowing deepfakes to less likely be identified as fake. In this work, 
feature extraction methods, such as Scale-Invariant Feature Transform (SIFT), Histogram of Oriented 
Gradients (HOG), and CNN, are used to train an ensemble deep learning model to detect deepfakes 
in videos on a frame-by-frame level based on the periocular region. Our proposed model is able 
to distinguish original and manipulated images with accuracies around 98.9 percent, which is an 
improvement to previous works by combining SIFT and HOG for deepfake detection in convolutional 
neural networks.

Keywords: deepfake detection; CNN; deep neural network; computer vision; scale invariant 
feature transform; histogram of oriented gradients

0. How to Use this Template

The template details the sections that can be used in a manuscript. Note that the
order and names of article sections may differ from the requirements of the journal (e.g.,
the positioning of the Materials and Methods section). Please check the instructions on
the authors’ page of the journal to verify the correct order and names. For any questions, 22

please contact the editorial office of the journal or support@mdpi.com. For LaTeX-related
questions please contact latex@mdpi.com.

1. Introduction

Deepfakes are manipulated images or videos that usually are an attempt to affect
the image or reputation of an individual, or deepfakes are used to spread disinformation.
There are times when the creation of deepfakes is for good-faith intentions, such as when
MIT created a deepfake video of a speech by President Nixon alleging a failed Apollo-11
mission[1], or when American director Jordan Peele impersonated President Obama[2] to
present a speech that seemed out of character. The altered, hyper-realistic images and videos
are enough to convince people of their legitimacy. Nicolas Cage appears in a collection of
videos[3] where the actor appears in movies that he was never cast in. Deepfake creation

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0001-8504-4501
https://doi.org/10.20944/preprints202302.0299.v1
http://creativecommons.org/licenses/by/4.0/


2 of 18

stems from machine learning methods[4] that have been improved upon to now using
advanced deep learning techniques involving convolutional neural networks (CNN)[5],
which are deep learning models that consist of convolutional layers. These layers are able
to learn patterns, or features, in images based on sub-groupings of pixels within a larger
image. These feature detectors are called filters, or kernels, and are "activated" when the
layer receives input from an image containing similar pixel structures. This essentially is a
form of learning the contents of images, and these filters can be used with other images
to detect if they contain similar pixel patterns. Since these filters are learned by the deep
learning model, these models then have the ability to recreate images that would activate
the filters, thus creating a deepfake[5–7].

In recent years, there has been an increase in image and video data that only shows
the periocular region instead of the entire face. This is largely due to the increase in people
wearing masks because of the COVID-19 pandemic. The less-revealing faces already inhibit
facial inter-personal facial recognition, but this lowered recognition also makes it easier
for a deepfake to pass as realistic to a human observer. Deepfake creators that rely on face
swapping and mimicry focus on prominent facial features to manipulate, such as the eyes,
nose, and mouth[5]. These features along with their expected, artifact-free observation,
allow people to discern a manipulated image yet when most of the face is covered or
hidden, people have less information in front of them to make that decision. Although
deepfake periocular image data can be created, the process to create them still is believed
to generate artifacts and inconsistencies within the created images that can be detected not
only by human eyes, but also with deep learning models.

Deep learning methods have been used before to detect deepfakes, such as CNN and
long short-term memory (LSTM) but there has been a lack of combining various computer
vision algorithms with deep learning models. Deep learning models alone tend to perform
well, that including other feature extraction methods can incur unneeded overhead without
increasing performance. For example, feature extraction using scale-invariant feature
transform takes a long time to extract a smaller set of features than compared to histogram
of oriented gradients. Both computer vision methods can be used for object and edge
detection, although the quality of the extracted features may differ significantly.

Compared to CNN, many of these computer vision methods are able to perform
feature extraction at a much faster rate while using fewer resources, although classification
performance is poorer. This research intends to combine feature extraction and CNN
for deepfake detection, and to compare the performance of these combined models. As
of this paper, there have not been significant strides made in the deep learning field for
periocular-based deepfake detection. This paper will show that deep learning models
using different computer vision feature extraction methods, along with combining these
various models, can detect deepfakes at a significantly higher accuracy focusing only on
the periocular region. Models designed around smaller smaller amounts of information are
useful when only these smaller pools of data are available.

A simple example of a CNN is a model that can distinguish pictures containing cats
from pictures containing dogs, or even being able to count the number of cats and dogs
in a picture, along with their breed. More robust CNN are able to generate new images
containing a cat or dog, to further the example. Common methods of deepfake generation
involve cutting and pasting[5], or called swapping[8–10], the face of one person onto
another. This swapping leaves artifacts in the produced image that may be noticeable to
the human eye but smaller details can be detected by a machine[9,11]. In order to increase
realism in the manipulated images, smoothing and brushing techniques are used along
the bounding box of the swapped face, with key facial landmarks mapped to match the
movement of the actor on the original image. The bounding box has been a focus of
research[5,8] in detecting deepfakes since using a mask to swap a face naturally creates
edges, making edge detection possible[12]. Alterations within the swapped face are less
likely to produce consistent edges since their creation is based on image augmentation[13],
as opposed to image masking.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


3 of 18

In this paper, the dataset DeepFakeDetection[14,15] is used for performance evaluation.
These models may then be used on other datasets from the FaceForensics++[14] collection
to compare their results for a more general evaluation. DeepFakeDetection consists of one
thousand unaltered videos, and three thousand manipulated videos based on the original
videos. Since the source is video data, and frames will need to be extracted to have image
data, a substantially large portion of the dataset would look similar, in that each frame of a
video is only slightly different from the neighboring frame in most cases, in some cases, the
neighboring frame is the exact same.

The use of CNNs for image, or image-like, learning is widely employed since the
convolutional process creates smaller, stacked regions of learnable features while preserving
input data. This process is performed within layers called Convolutional Layers. Between
convolutions, the feature map, or activation map, will become more dense, or deeper, while
the two-dimensional nature of the image data at most remains the same, while in many 100

cases, decreases as the number of filters increase across layers. These filters activate when a
learned feature is passed through them. This means that we can have many trainable filters,
trained on smaller, deeper dimensions of image data to detect features that would indicate
if an image is original, unaltered media, or if it has been altered and could be a deepfake.

Along with using convolutional layers, we explore some other methods that can be
used to extract features from image data for deepfake classification. These methods are
Scale-Invariant Feature Transform[11,16] (SIFT) and Histogram of Oriented Gradients[17]
(HOG). SIFT features are useful in that the features, when clustered together, are used to
represent objects and biological markers within an image. These objects and markers are
able to be mapped across various images, regardless of changes in scale or orientation. This
presents a useful tool for object detection that can be used to detect distinguishing features
in deepfake images. HOG features, when seen as in image, is more akin to edge detection
and contour detection. HOG features represent changes in angle gradients, or slopes, and
contrast across pixel data using Gaussian derivatives. When the image data is viewed, it is
shown as a collection of angled vectors that outline the various objects in the image.

Ensemble models offer a relatively simple way to include multiple different features as
input for the same process. Typically, deep neural networks have a single set of features, or
a batch of similar features, for learning. These more complex models allow a single input,
such as an image, to be represented by different types of features. In the case of this article,
the different type of features are 1) convolutional features, 2) SIFT features, and 3) HOG
features. Since these features are extracted using different processes, one set of features
may contain unique data that can be used effectively to distinguish original media from
deepfakes. In this article, we describe how an ensemble model can be used with various
feature extraction tools to accurately detect deepfakes with high performance. We will also
explain the construction of the model and their performance on different datasets.

2. Proposed Methods

This section will discuss the methods used to build a CNN model for feature extraction
and classification, and also the use of machine learning algorithms for feature extraction.
This section will also include the performance of the models along with a comparison of
their metrics.

2.1. Dataset

The primary dataset comes from the FaceForensics++[14] collection of deepfakes. The
current collection consists of six sets of deepfakes ccreated using different methods of
deepfake creation. A few of the datasets within FaceForensics++ are FaceSwap, Face2Face,
DeepFakeDetection, and Deep f akes. The DeepFakeDetection[14,15], created by Google and
Jigsaw, is used as the experimental dataset. This dataset consists of 1000 original, unaltered
videos containing twenty-eight actors. There are also 3000 manipulated videos, called
deepfakes. The deepfakes are produced from the original videos using face swapping
methods. To balance original and manipulated videos, every third manipulated video per

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


4 of 18

actor is used for every original video per actor. The videos from the datasets are also labeled
as either "real" or "fake," along with the extracted frames from each video being labeled
based on their respective source. For example, frames extracted from the video named
"fake_000.mp4" will have the name "fake_xxxx.jpg," where "xxxx" is an incremental number
based on the number of total extracted frames, and the beginning of the file name, such
as "fake" corresponds to the frame’s label. Since the proposed model is a binary classifier,
there are only two target labels for prediction: real and fake. Real would suggest the image
is unaltered, unmanipulated, while fake would suggest the image is a deepfake.

2.2. Dataset Frame Extraction

Using the Python[18] library OpenCV[19], videos are loaded and frames saved. Since
image data is coming from videos, the majority of frames tend to be nearly identical to
the previous and successive frame. Having a large amount of similar images where the
key features may not change within each frame can lead to the dataset having increased
homogeneity. To mitigate this, a frame is saved every 100ms, and 100 frames are saved per
loaded video. After extracting all of the necessary frames, there is a total of 113, 572 images

Figure 1. Visualization of periocular region extraction. Red: MTCNN landmark location. Yellow:
Bounding box based on Red. Black: Padded bounding box based on Yellow.

2.3. Periocular Region Extraction

Face detection and facial landmark localizing was done using the trained deep neural
network Multitask Cascaded Neural Network (MTCNN)[20]. By using a trained neural
network, we can retain detected faces with a confidence of 99%, and ignore faces with
lower confidence. MTCNN also provides the location of detected facial landmarks, such as
the left eye, right eye, nose, and mouth corners. Using the locations of the eyes, we create a
bounding box with extra padded space to include the areas surrounding the eyes, such as
the eyebrows, and top of the nose region. An example of this process can be seen in Fig 1.
The returned face by MTCNN is not truly a face, but a dictionary. This dictionary contains
the keys box, con f idence, and keypoints. The value of keypoints is a dictionary containing
coordinates for facial landmark locations le f t_eye, right_eye, mouth_le f t, mouth_right, and
nose, where box is the bounding box around the detected face, con f idence is the confidence
of the model in the detected face, le f t_eye is the eye on the left side from the perspective of

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


5 of 18

the viewer, mouth_le f t is the corner of the mouth on the left side from the perspective of the
viewer, and nose is the tip of the nose. To prevent having two separate eyes to manage, the
pixel locations of the bottom right- and top rightmost pixels can be used with the bottom
left- and top leftmost pixels to create a single bounding box containing both eyes. This
bounded box is then padded with extra pixels since the landmark locations provided by
MTCNN are centered on the eyes. This box is then used to crop the eye region from the
face image and save the eye region as an image. The images are then resized to height and
width (20, 100). After extraction, the image database consists of 113, 572 color images of
shape (20, 100, 3), where exactly half, (56, 786), come from original, unaltered videos, and
the other half come from the deepfake videos. Sample input images for the model after
frame extraction are shown in Figures 2 and 3.

(a) (b)

(c) (d)

(e)
Figure 2. Sample original, unaltered periocular images used as source for the DeepFakeDetection
dataset.

(a) (b)

(c) (d)

(e)
Figure 3. Sample altered, deepfake periocular images used as source for the DeepFakeDetection
dataset.

Before using the data with a model, the input dataset must be split into training and 179

testing sets. The dataset will be split with a ratio of 90/10 to match Table 1, where exactly 180

half of the dataset belongs to the Real class and the other half belongs to the Fake class:

Training/Test Split
90% 10%

Real 51107 5679
Fake 51107 5679

Total: 113572
Table 1. Training and Testing split

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


6 of 18

2.4. Convolutional Neural Network Model

Convolutional neural networks (CNN) use Convolutional Layers to create feature
maps of images. These feature maps consist of filters that activate when they "see" a
similarly learned feature from the training data in images, such as edges or color, or a
pattern. CNN have been a popular choice for object recognition in images and deepfake
detection[8,10,21–23] because of their ability to learn features in images and create high
dimensionality generalizations from images without sacrificing information from the input
images. As images are passed through convolutional layers, a kernel of a fixed size, typically
3x3, 5x5, or other sizes, the kernel learns features about pixels and their surrounding data
points, which would be other pixels, thus preserving the relationship between pixels[24].
Building a CNN requires building upon convolutional layers. We design a CNN model
containing four convolutional "blocks," where each block contains a Convolutional Layer,
a MaxPooling Layer, and a Dropout Layer. The first two convolutional layers have 32
filters, and the last two have 64 filters. All convolutional layers use the Recti f iedLinearUnit
(ReLU) activation function and a stride of 3. ReLU improves the generalization ability of
convolutional layers with an effect similar to Batch Normalization[25]. Using a dropout of
0.3 provided enough random, turned-off neurons to reduce overfitting. Finally, two Dense
layers are used, with the first having 128 neurons and relu activation function, and the
second, classifying layer having one neuron and the sigmoid activation function. Since the
labels refer to the classes, and there are only two possible classes for this binary classification
problem, we use the BinaryCrossEntropy loss function. The equation for calculating the
loss function is shown in Equation 1, where y is the binary class value, either 0 or 1, and p is
the predicted probability that the predicted element belongs to class 1. The optimizer Adam
is used with the learning rate set to 0.00001. Fig 4 shows the architecture of the standalone
CNN model used for feature extraction and classification.

loss = −(y log(p) + (1 − y) log(1 − p)) (1)

A problem we faced when training and adjusting the model was overfitting. When
the model overfits on the dataset, the model learns the features of the training data too
well, yet cannot distinguish the class of images in the validation data with as good of a
performance as the training data. Our model overfitting on the DeepFakeDetection dataset
is shown in Fig 5. When the training accuracy is significantly higher than the validation
accuracy, and when training loss is signiicantly lower than validation loss, this is a glaring
symptom of overfitting.

Dropout can be used to be attempt to control overfitting[26]. This is a process
performed before hidden layers where neurons are randomly removed, or dropped, along
with their connections. This random neuron dropping forces the model to adapt how it
learns features from inputs[27]. The number of dropped neurons is determined by the user
and is a fraction of the neurons. To be more precise, this is not a definite ratio of neurons
to be dropped, this is a calculation performed on each neuron, but given a large enough
number of neurons, the total number of dropped neurons should be close to the number
set by the model creator. A neuron’s dropout chance is simply calculated:

1 − p (2)

where p is the set dropout value. Usually, this number is below 0.5, which would be
roughly half of the neurons in a layer, because the maximum regularization achievable
by the regularization parameter p(1 − p) is p = 0.5. When p > 0.5, more neurons are
dropped, while regularization does not increase[26]. Dropout can also affect the graph
of training and validation, where validation and testing performance can be better than
training. An example of this is shown in Fig 6. Since Dropout is only utilized during
training, where only a portion of features are used, all features are used during validation
and testing.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


7 of 18

Figure 4. The standalone CNN model used to generate metrics for comparison against SIFT and
HOG feature extraction methods.

Another way to mitigate overfitting involved the use of BatchNormalization. Batch
normalization is a process performed on a layer that adjusts each “mini batch” against
its mean and standard deviation. This will ideally bring each iteration closer to the
convergence, where the training and validation metrics of the model are close. Batch
normalization is a fairly simply function[28] shown in Equation 3.

BN(x) = γ ∗ x − µ̂B
σ̂B

+ β (3)

where γ and β are scale coefficient and scale offset, respectively, x is the input, µ̂ is the
mean of the mini batch, and σ̂B is the standard deviation of the mini batch[28].

2.5. Histogram of Oriented Gradients Model

The Histogram of Oriented Gradients (HOG) model uses HOG features along with
convolutional layers to classify deepfake images. HOG is a computer vision method
originally used to detect upright, human poses. The algorithm utilizes binning, similarly to
SIFT, to create a histogram of directed orientation, or gradients which are normalized into
blocks, which allow for overlapping keypoints. Compared to SIFT, this is a much simpler

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


8 of 18

Figure 5. An example of our model overfitting on the DeepFakeDetection dataset.

process that essentially just creates an image of contours and edge data that can be used as
feature data.

Scikit-image is an open library that contains the function hog, which returns HOG
features and the matching HOG image. Sample HOG images that correspond to their
matching features are shown in Fig 7. The HOG image is a gradient-slope representation of
the original image. The initial research[17] on the HOG algorithm relied on image data of
humans standing walking, or in other similar, upright poses - these images were resized to
width and height (64x128) since the performance of feature extraction is impacted by the
input image dimension ratio. The 1 : 2 ratio is not strictly retained, but the orientation is
retained, and the ratio loosely retained. Our eye data, which is width and height (20, 100)
is rotated 90°clockwise before using it as input for the hog() function. The features are
then returned as a 1D-array along with corresponding images with focus on the gradients.
Only the array is used. The feature data is used as input to convolutional layers. We
use convolutional blocks without pooling layers since the feature data only represents
itself, without much bearing on neighboring data. The HOG model consists of only two
convolutional blocks, where the first convolutional layer has 32 filters and the second has
64 filters. We, again, use two final dense layers with 128 neurons in the first layer and one
neuron in the final, classifying layer. The HOG features are saved into a Numpy ndaarray
and saved onto the hard drive for later use with the ensemble model, and also to save
preprocessing time during debugging and multiple training iterations with the same data.

2.6. Scale-Invariant Feature Transform Model

The Scale-Invariant Feature Transform (SIFT) model uses SIFT features along with
convolutional layers to classify deepfake images. SIFT is a computer vision method used
for object- and biological marker detection, object tracking, and edge detection. SIFT uses a
scale space to generate keypoints using the Difference of Gaussian. These keypoints are
then taken, along with its neighborhood, to create a gradient magnitude and direction. 268

From the magnitude and direction, the SIFT function then places these keypoints into bins, 269

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


9 of 18

Figure 6. An example of our model having significantly better validation performance than training
performance on the DeepFakeDetection dataset.

forming a histogram of gradients, similar to Histogram of Oriented Gradients. We now 270

have a location, scale, and orientation for the keypoints, they can be detected across images
regardless of changes in the location, size, or rotation. This essentially provides object
detection features. Comparatively, SIFT is an extension of HOG, where normalized HOG
features are generated based on sections within the input image.

OpenCV contains the library SIFT_create() which returns keypoints and descriptors
using the SIFT algorithm[16] in a three step process: 1. extracts keypoints and descriptors
to store in two stacked arrays, 2. use k-means clustering to focus on the centers of the
features which will be be used for, 3. a bag-of-features approach to represent the features
and descriptors. After the features are extracted, these are used as input to convolutional
layers. Similar to the previous CNN model, this model consists of convolutional blocks, but
without pooling layers. Pooling layers are useful to generalize image data and reducing
spatial resources and requirements, but it comes at the cost of fine data. For example,
averaging sections of pixel data will still result in an image that is recognizable, but not
as sharp. This cannot be done with SIFT feature data because extracted feature data does
not have much of a relation to the previous or successive data. A comparison of Area
under Curve values from the SIFT model using pooling layers is shown in Fig 8. Max- and
Average Pooling layers correspond with a reduction in classification performance, with Max
Pooling negatively affecting performance more than average. Max Pooling produced an
AUC value of 0.766, Average Pooling produced an AUC value of 0.813, and finally, without
pooling layers, the AUC value was 0.910. The SIFT model consists of seven convolutional
blocks, where the first two convolutional layers have 32 filters, the next four layers have 64
filters, and the last convolutional layer has 128 filters. The model then has two final dense
layers, one with 128 neurons and the final classifying layer with one neuron. The SIFT
features are saved into a Numpy ndaarray and saved onto the hard drive for later use with
the ensemble model, and also to save preprocessing time during debugging and multiple
training iterations with the same data.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


10 of 18

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 7. Sample HOG eye images. Images 7a-7d are original, real images. Images 7e-7h are

deepfake images. Samples from DeepFakeDetection dataset.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


11 of 18

2.7. Ensemble Model

Finally, we create an ensemble model consisting of the previously created models as
submodels, or branches, to combine their predictions before further training. Ensemble
models typically take one of three forms: bagging, stacking, or boosting. Bagging involves
training many models of the same algorithm on a smaller portion of the total dataset, and
performing some decision strategy on the many outputs. Stacking involves using different
model algorithms on the same input data, then performing some decision strategy on
the outputs. Boosting sequentially places models that try to correct the previous model’s
prediction errors. In this paper, we discuss our stacked ensemble model. Previously, the
models were classifying images based on features specific to that computer vision method
of feature extraction, CNN, SIFT, and HOG. With the ensemble, the model will train on
the collective extracted features of CNN, SIFT, and HOG per image to increase complexity
of the input data. By providing more types of different features, the model would have a
larger amount of information to aid in classification. Fig 9 shows the architecture of the
ensemble model with the stacked submodels.

The previously created models share the architecture of the final two dense layers after
a flatten layer which makes concatenating their outputs easier. The output of each branch’s
flatten layer is concatenated before a dense layer of 128 neurons and a final, classifying
layer with one neuron. Also the learning rate was reduced to 0.00001 to help prevent the
model from getting stuck at local minima. When this happens, the model would stop
learning, loss and accuracy would remain the same. The architecture of the ensemble
model is shpwn in Fig 9

(a) (b)

(c)
Figure 8. Figures from SIFT model. Fig 8a ROC AUC with MaxPooling, Fig 8b ROC AUC with

AveragePooling, Fig 8c ROC AUC without Pooling.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


12 of 18

Figure 9. Layered visualization of the multichannel ensemble model.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


13 of 18

2.8. Training Parameters

The models were trained for 200 epochs with batch size 64. The model was also trained
again for a longer period of 400 epochs on the NeuralTextures dataset. We also use k-fold
cross validation, with a k value of 5 and 10. Ideally, k = 10 is more robust to verify training
and prediction metrics, but memory restraints caused the ensemble model to have to use
k = 5.

3. Results

The library Scikit-learn contains various ways to visualize training and prediction
results. This library contains con f usion_matrix, which outputs a confusion matrix based
on the predicted classes with respect to the true classes, and precision_recall_ f score_support
which outputs the precision, recall, f β-score, f 1-score, and support, per class where applicable. 329

Scikit-learn also contains the function matthews_corrcoe f which returns the φ-coe f f icient.
For better visualization of the confusion matrix, we use the library Seaborn to create a
confusion matrix from the con f usion_matrix function with a colored heatmap. A sample
set of results of training and testing the ensemble model is shown in Fig 10. The model
performs with an average k-fold accuracy of 98.9%. The model has an ROC area under the
curve value of about 0.995, meaning the ratio of true positive predictions to false positive
predictions is significantly large, which is what we want.

3.1. Additional Metrics

Using the labels from the test set and the array of predictions, some other useful metrics
can be retrieved, such as Precision, Sensitivity, F1-Score, Fβ-Score, and ϕ-Coe f f icient[29].
Precision is the ability of the model to positively predict a class, with the function in
Equation 4[30].

Precision =
True Positive

True Positive + False Positive
(4)

Sensitivity is the ability of the model to positively predict all of a certain class, with the 342

function in Equation 5[30]. 343

Sensitivity =
True Positive

True Positive + False Negative
(5)

F1-Score is a metric that takes the harmonic mean of Precision and Sensitivity, with the 344

function in Equation 6[30]. 345

F1 − Score = 2 × Precision × Recall
Precision + Recall

(6)

Fβ-Score is the a weighted F1-Score that shows the ability of the model to predict classes 346

while minimizing false predictions. The function in Equation 7[30] shows how to calculate 347

this. 348

Fβ − Score = (1 + β2)× Precision × Recall
β2Precision + Recall

(7)

where the value of β determines which metric to minimize, with β < 1 minimizing false 349

positives, and β > 1 minimizing false negatives. When β = 1, F1-Score = Fβ-Score. 350

ϕ-Coe f f icient is a binary classification metric that shows the relationship between the two 351

classes. The function for ϕ-Coe f f icient is defined in Equation 8. 352

ϕ − Coe f f icient =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(8)

where TP, TN, FP, and FN are True Positive, True Negative, False Positive, and False Negative,353

respectively. The returned value is between -1 and 1, where a negative value means the 354

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


14 of 18

(a)

(b)

(c)
Figure 10. Fig 10a Training curve, Fig 10b Confusion Matrix, Fig 10c ROC.

two classes are inversely related and a positive value means the two classes are positively 355

related. When the values are positively related, as one increases, so does the other. 356

These additional metrics are shown in Table 2 when performing on the test set from 357

DeepFakeDetection dataset. 358

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


15 of 18

Real Fake
Precision 0.968 0.964

Sensitivity 0.964 0.968
Fβ-Score 0.966 0.966
F1-Score 0.966

φ-Coe f f icient 0.966
Table 2. Predictions on a test set from DeepFakeDetection.

3.2. Additional Datasets

The previously constructed models were trained, validated, and tested on additional
datasets. Along with DeepFakeDetection (DFD), these datasets also come from the deepfake
collection FaceForensics++[14]: Face2Face[14] (F2F), FaceSwap[14,31] (FS), and NeuralTextures[14]    

(NT). The methods for generating these Deepfake datasets consist of face swapping and
reenactment. In each of the additional datasets, we use 70, 002 images, where exactly half
(35, 001) are classified as Real and the other half (35, 001) are classified as Fake. With the
inclusion of SIFT and HOG data, the total number of inputs triple to 210, 006 elements,
where each individual image from the original frames dataset is represented by 1) a
periocular version, 2) its SIFT features, and 3) its HOG features.

Type # of Images Image Data SIFT HOG

DFD Eyes
Face 113, 572

2.6GB
8.2GB

129.8MB
136.3MB

171.4MB
1.71GB

F2F Eyes
Face 70, 002

1.7GB
5.0GB 84.0MB

110.9MB
1.10GB

FS Eyes
Face 70, 002

1.7GB
5.0GB 84.0MB

110.9MB
1.10GB

NT Eyes
Face 70, 002

1.7GB
5.0GB 84.0MB

110.9MB
1.10GB

Table 3. Sizes of the various image and feature datasets used to compare the performance of the
ensemble model.

Table 3 shows the number of images and sizes of feature data used as input for the 369

model. The metrics of the additional datasets are shown below in Tables 4, 5, and 6. 370

Real Fake
Precision 0.961 0.828

Sensitivity 0.799 0.967
Fβ-Score 0.872 0.892
F1-Score 0.872

φ-Coe f f icient 0.778
Table 4. Predictions on a test set from Face2Face.

The graph produced from training on the NeuralTextures dataset shows the model
could possibly perform better with longer training times. In Fig 11, Subfig11a shows how
the model performs on the NeuralTextures dataset over 200 epochs, with a testing accuracy
of 64.9%. Subfig11b shows how the model performs over 400 epochs, resulting in an
accuracy increase to 77.6%.

4. Discussion, Conclusion, and Future Direction

The prevelance of deepfakes is increasing and it is important that there are tools
that can quickly discern a deepfake from original media. By using deep learning models
such as convolutional neural networks, we have the ability to detect deepfakes from the
DeepFakeDetection dataset with very high accuracy, approaching 98.9%. We were able to

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


16 of 18

Real Fake
Precision 0.938 0.927

Sensitivity 0.927 0.931
Fβ-Score 0.929 0.929
F1-Score 0.929

φ-Coe f f icient 0.858
Table 5. Predictions on a test set from FaceSwap.

Real Fake
Precision 0.878 0.918

Sensitivity 0.923 0.864
Fβ-Score 0.896 0.889
F1-Score 0.896

φ-Coe f f icient 0.787
Table 6. Predictions on a test set from NeuralTextures.

use both machine learning and deep learning feature extraction methods on periocular
data to train an ensemble deep learning model and provide better classification results than
previous works, such as [8,11,32].

The previously shown model in this work displays high accuracy results when
classifying original and deepfake images. By including three feature extraction methods for
the ensemble model to learn from, increasing the complexity of the training data, provide
a more robust set of data for the model to provide a confident deepfake detection model.
This model was created using time-insensitive data, where the model learned generalized
features that would distinguish images into classes, yet this does not address how a future
deepfake could look based on the training data at any given point in time. By using, at the
comparatively most complex, convolutional layers, the model does not track time. This
means the model weights have an "understanding" of what a deepfake from the trained
dataset should look if a new deepfake was generated from that data. If the training data
were changing over time, this would present a problem for a convolutional neural network.
Videos are images displayed with respect to time. A model that can also predict on what
a future deepfake may look like from previous video would serve to be useful in future
deepfake detection models. A type of model to accomplish this is the Long Short-Term
Memory model, or LSTM. These models are trained on feature data with respect to time
to allow predictions on future data based on past data. LSTM models are becoming more
popular with deep learning methods because the element of time provides invaluable
information that brings more context to features. Vision Transformers[9] have also had use
recently in deepfake detection. Initially, the transformer was used for natural language
processing, but the idea behind encoding features as words was applied to pixel data and
shows to produce an accuracy of about 91.5% and ROC AUC value of 0.91.

Author Contributions: Conceptualization, David Johnson and Kaushik Roy; Data curation, David
Johnson; Formal analysis, Kaushik Roy; Funding acquisition, Xiaohong Yuan and Kaushik Roy;
Investigation, David Johnson and Kaushik Roy; Methodology, David Johnson; Project administration,
Kaushik Roy; Software, David Johnson; Supervision, Kaushik Roy; Validation, Kaushik Roy; Writing
– original draft, David Johnson; Writing – review & editing, Xiaohong Yuan and Kaushik Roy.

Funding: This research was funded by National Science Foundation (NSF) grant number 1900187
Collaborative Research: Excellence In Research: Computational Framework and Data Science for
Identification..

Data Availability Statement: The data presented in this study are openly available in GitHub at
https://github.com/ondyari/FaceForensics and at https://doi.org/10.48550/arXiv.1901.08971.

Conflicts of Interest: The authors declare no conflict of interest.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://doi.org/10.20944/preprints202302.0299.v1


17 of 18

(a)

(b)
Figure 11. Figures from training on the NeuralTextures dataset. Fig 11a at 200 epochs, Fig 11b at 400

epochs.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
SIFT Scale-Invariant Feature Transform
HOG Histogram of Oriented Gradients
LSTM Long Short-Term Memory
MTCNN Multitask Cascaded Neural Network
AUC Area Under Curve
DFD DeepFake Detection
F2F Face2Face
FS FaceSwap
NT Neural Textures
MIT Massachusetts Institute of Technology

References
1. Learning, M.O. Tackling the misinformation epidemic with “In Event of Moon Disaster”. https://news.mit.edu/2020/mit- 421

tackles-misinformation-in-event-of-moon-disaster-0720. 422

2. Buzzfeed.; Peele, J. You Won’t Believe What Obama Says In This Video! https://news.mit.edu/2020/mit-tackles-misinformation- 423

in-event-of-moon-disaster-0720, 2018.
3. derpfakes. Nick Cage DeepFakes Movie Compilation. https://www.youtube.com/c/derpfakes/, 2018.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

https://news.mit.edu/2020/mit-tackles-misinformation-in-event-of-moon-disaster-0720
https://news.mit.edu/2020/mit-tackles-misinformation-in-event-of-moon-disaster-0720
https://news.mit.edu/2020/mit-tackles-misinformation-in-event-of-moon-disaster-0720
https://news.mit.edu/2020/mit-tackles-misinformation-in-event-of-moon-disaster-0720
https://news.mit.edu/2020/mit-tackles-misinformation-in-event-of-moon-disaster-0720
https://news.mit.edu/2020/mit-tackles-misinformation-in-event-of-moon-disaster-0720
https://www.youtube.com/c/derpfakes/
https://doi.org/10.20944/preprints202302.0299.v1


18 of 18

4. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial 426

Networks 2014. [arXiv:stat.ML/1406.2661]. https://doi.org/10.48550/ARXIV.1406.2661. 427

5. Mirsky, Y.; Lee, W. The Creation and Detection of Deepfakes: A Survey. ACM Computing Surveys (CSUR), 2020, preprint 2020, 428

[arXiv:cs.CV/2004.11138]. https://doi.org/10.1145/3425780.
6. Paul, O.A. Deepfakes Generated by Generative Adversarial Networks. Georgia Southern University Honors College Theses 2021.
7. Shen, T.; Liu, R.; Bai, J.; Li, Z. "Deep Fakes" using Generative Adversarial Networks (GAN). NoiseLab University of California San 431

Diego 2018. 432

8. Karandikar, A. Deepfake Video Detection Using Convolutional Neural Network. International Journal of Advanced Trends in 433

Computer Science and Engineering 2020, 9, 1311–1315. https://doi.org/10.30534/ijatcse/2020/62922020. 434

9. Wodajo, D.; Atnafu, S. Deepfake Video Detection Using Convolutional Vision Transformer. ArXiv 2021, [arXiv:cs.CV/2102.11126]. 435

10. Tran, V.N.; Lee, S.H.; Le, H.S.; Kwon, K.R. High Performance DeepFake Video Detection on CNN-Based with Attention 436

Target-Specific Regions and Manual Distillation Extraction. Applied Sciences 2021, 11, 7678. https://doi.org/10.3390/app11167678.
11. Burroughs, S.; Roy, K.; Gokaraju, B.; Luu, K. Detection Analysis of DeepFake Technology by Reverse Engineering Approach 438

(DREA) of Feature Matching, 2021. https://doi.org/10.1007/978-981-33-4893-6_36.
12. Kim, D.K.; Kim, K. Generalized Facial Manipulation Detection with Edge Region Feature Extraction. arXiv 2021, 440

[arXiv:cs.CV/2102.01381].
13. Suwajanakorn, S.; Seitz, S.M.; Kemelmacher-Shlizerman, I. Synthesizing Obama: learning lip sync from audio. ACM Trans. Graph. 442

2017, p. 1–13. https://doi.org/10.1145/3072959.3073640. 443

14. Rössler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. FaceForensics++: Learning to Detect Manipulated Facial 444

Images. arXiv 2019, [arXiv:cs.CV/1901.08971]. 445

15. Dufour, N.; Gully, A.; Karlsson, P.; Vorbyov, A.V.; Leung, T.; Childs, J.; Bregler, C. DeepFakes Detection Dataset by Google & 446

JigSaw. https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html. 447

16. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 2004, 60, 91–110. 448

https://doi.org/10.1023/b:visi.0000029664.99615.94. 449

17. Dalal, N.; Triggs, B. Histograms of Oriented Gradients for Human Detection. In Proceedings of the 2005 IEEE Computer Society 450

Conference on Computer Vision and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA. IEEE Computer 451

Society, 2005, pp. 886–893. https://doi.org/10.1109/CVPR.2005.177.
18. Foundation, P.S. Python. https://www.python.org/.
19. Itseez. OpenCV. https://opencv.org/.
20. Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks. 455

IEEE Signal Processing Letters 2016, [arXiv:cs.CV/1604.02878]. https://doi.org/10.1109/LSP.2016.2603342. 456

21. Ajoy, A.; Mahindrakar, C.U.; Gowrish, D.; A, V. DeepFake Detection using a frame based approach involving CNN; IEEE: 457

Coimbatore, India, 2021; pp. 1329–1333. https://doi.org/10.1109/ICIRCA51532.2021.9544734. 458

22. Shad, H.S.; Rizvee, M.M.; Roza, N.T.; Hoq, S.M.A.; Khan, M.M.; Singh, A.; Zaguia, A.; Bourouis, S. Comparative Analysis of 459

Deepfake Image Detection Method Using Convolutional Neural Network. Computational Intelligence and Neuroscience 2021, 2021.
https://doi.org/10.1155/2021/3111676.

23. Al-Dhabi, Y.; Zhang, S. Deepfake Video Detection by Combining Convolutional Neural Network (CNN) and Recurrent Neural 462

Network (RNN); IEEE: SC, USA, 2021; pp. 236–241. https://doi.org/10.1109/CSAIEE54046.2021.9543264. 463

24. Hossain, M.A.; Sajib, M.S.A. Classification of Image using Convolutional Neural Network (CNN). Global Journal of Computer 464

Science and Technology 2019. 465

25. Ide, H.; Kurita, T. Improvement of learning for CNN with ReLU activation by sparse regularization; IEEE: Anchorage, AK, USA, 466

2017; pp. 2684–2691. https://doi.org/10.1109/IJCNN.2017.7966185. 467

26. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: a simple way to prevent neural networks 468

from overfitting 2014. p. 1929–1958.
27. M., B.C. Training with Noise Is Equivalent to Tikhonov Regularization, 1994. https://doi.org/10.1.1.38.3008.
28. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 2015. 471

[arXiv:cs.LG/1502.03167]. 472

29. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. https://doi.org/10.1016/j.patrec.2005.10. 473

010. 474

30. Vakili, M.; Ghamsari, M.; Rezaei, M. Performance Analysis and Comparison of Machine and Deep Learning Algorithms for IoT 475

Data Classification 2020. [arXiv:cs.LG/2001.09636].
31. Kowalski, M. FaceSwap. https://github.com/MarekKowalski/FaceSwap/.
32. St, S.; Ayoobkhan, M.U.A.; Krishna Kumar, V.; Bacanin, N.; Venkatachalam, K.; Štěpán, H.; Pavel, T. Deep learning model for 478

deep fake face recognition and detection. PeerJ. Computer science 2022, 8, e881. https://doi.org/10.7717/peerj-cs.881. 479

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 February 2023                   doi:10.20944/preprints202302.0299.v1

http://xxx.lanl.gov/abs/1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
http://xxx.lanl.gov/abs/2004.11138
https://doi.org/10.1145/3425780
https://doi.org/10.30534/ijatcse/2020/62922020
http://xxx.lanl.gov/abs/2102.11126
https://doi.org/10.3390/app11167678
https://doi.org/10.1007/978-981-33-4893-6_36
http://xxx.lanl.gov/abs/2102.01381
https://doi.org/10.1145/3072959.3073640
http://xxx.lanl.gov/abs/1901.08971
https://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html
https://doi.org/10.1023/b:visi.0000029664.99615.94
https://doi.org/10.1109/CVPR.2005.177
https://www.python.org/
https://opencv.org/
http://xxx.lanl.gov/abs/1604.02878
https://doi.org/10.1109/LSP.2016.2603342
https://doi.org/10.1109/ICIRCA51532.2021.9544734
https://doi.org/10.1155/2021/3111676
https://doi.org/10.1109/CSAIEE54046.2021.9543264
https://doi.org/10.1109/IJCNN.2017.7966185
https://doi.org/10.1.1.38.3008
http://xxx.lanl.gov/abs/1502.03167
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010
http://xxx.lanl.gov/abs/2001.09636
https://github.com/MarekKowalski/FaceSwap/
https://doi.org/10.7717/peerj-cs.881
https://doi.org/10.20944/preprints202302.0299.v1

	How to Use this Template
	Introduction
	Proposed Methods
	Dataset
	Dataset Frame Extraction
	Periocular Region Extraction
	Convolutional Neural Network Model
	Histogram of Oriented Gradients Model
	Scale-Invariant Feature Transform Model
	Ensemble Model
	Training Parameters

	Results
	Additional Metrics
	Additional Datasets

	Discussion, Conclusion, and Future Direction
	References

