
Article

Not peer-reviewed version

An Efficient Gaussian Mixture Model

and It's Application to Neural Network

Weiguo Lu , Deng Ding , Fengyan Wu , Gangnan Yuan 

*

Posted Date: 16 February 2023

doi: 10.20944/preprints202302.0275.v1

Keywords: Neural Network; Uncertainties; GMM; Density approximation

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2774281
https://sciprofiles.com/profile/2269954
https://sciprofiles.com/profile/2771661


Article

An Efficient Gaussian Mixture Model and It’s 
Application to Neural Network

Weiguo Lu 1, Deng Ding 1, Fengyan Wu 2 and Gangnan Yuan 3,*

1 Department of Mathematics, University of Macau, Macau; yc07476@um.edu.mo (W.L.); dding@um.edu.mo 
(D.D.)

2

3

College of Mathematics and Statistics, Chongqing University, China; fengyanwu@um.edu.mo

Department of Mathematics, University of Macau, Macau

* Correspondence: gangnan.yuan@connect.um.edu.mo

Abstract: While modeling data in reality, uncertainties in both the data (aleatoric) and the model

(epistemic) are not necessarily Gaussian. The uncertainties could appear with multimodality or in any

other particular form that needs to be captured. Gaussian mixture models (GMMs) are powerful tools

that allow us to capture those features from an unknown density with a peculiar shape. Inspired by

Fourier expansion, we propose a GMM model structure to decompose arbitrary unknown densities

and prove the property of convergence. A simple learning method is introduced to learn GMMs

through sampled datasets.We applied GMMs as well as our learning method to two classic neural

network applications. The first one is learning encoder output from an autoencoder as GMMs

for handwritten digit image generation. The another one is learning gram matrices as GMMs for

style-transfer algorithm. Comparing with the classic Expectation Maximization (EM) algorithm, our

method does not involve complex formulations and is capable of achieving applicable accuracy.

Keywords: neural network; uncertainties; GMM; decomposition; density approximation

1. Introduction

Gaussian Mixture Models (GMMs) are powerful, parametric, and flexible models in the

probabilistic realm. GMMs tackle two important problems. The first is known as the “inverse

problem,” in which f−1 (x) and x are not unique one-to-one mappings [1]. The second issue is the

uncertainty problem of both the data (aleatoric) and the model (epistemic) [2–4]. When we consider

the two problems together, it is easy to see that if we deal with multimodal problems, classic model

assumptions start falling apart. Traditionally, we attempt to discover the relationship between input x

and output y, which is denoted as y = f (x) + ǫ with erro ǫ.In a probabilistic sense, the above model

assumption is equivalent to y ∼ Normal ( f (x) , σ). In terms of inverse and uncertainty problems,

the model assumption is y ∼ UnkownDistribution (θ (x)). Under this condition, when y is no longer

following any distribution in a known form, GMM becomes a viable option for model data. If

y ∼ UnkownDistribution (θ (x)) ≈ GMM ( f (x)) could be satisfied, then we could use GMM as a

general model regardless of whatever distribution y is following. The question remaining for us to

answer is whether GMMs can approximate arbitrary densities. Some studies show that all normal

mixture densities are dense in the set of all density functions under the L1 metric [5–7]. A model

that can fit an arbitrary distribution density is relatively similar, as it requires the model to imitate all

possible shapes of distribution density. In this work, taking ideas from Fourier expansion, we assume

that any distribution density can be approximately seen as a combination with a set of finite Gaussian

distributions. To put it another way, any density can be approximated by a set of Gaussian distribution

bases with fixed means and variances. GMM approximates an unknown density by using data to

learn the amplitudes (coefficients) of the Gaussian components.In summary, we have X as input data,

Y ∼ UnknownDistributiony = Gy as output data, and

GMM ( f (x)) + ǫ ≈ Gy,
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here f (x) is the function that requires learning. To learn f (x), which maps input x into GMM

parameters, we can use any modeling technique.

While modeling using GMM, we need to perform two stages of learning. To begin, we must find

appropriate GMM parameters to approximate the target distribution Gy. Secondly, once we have the

values of GMM parameters θ, we can learn model f (x) map to θ. In this paper, we mainly discuss the

first part of learning. How to learn a GMM to approximate the target distribution. Fitting a GMM from

the observed data related to two problems: 1) how many mixture components are needed; 2) how to

estimate the parameters of the mixture components.

For the first problem, some techniques are introduced [5]. For the second problem, as early as

1977, the Expectation Maximization (EM) algorithm [8] was well developed and capable of fitting

GMMs based on minimizing the negative log-likelihood (NLL). While the EM algorithm remains one

of the most popular choices for learning GMMs, other methods have also been developed for learning

GMMs [9–11]. The EM algorithm has a few drawbacks. Srebro [12] asked an open question that

questioned the existence of local maxima between an arbitrary distribution and a GMM. That paper

also addressed the possibility that the KL-divergence between an arbitrary distribution and mixture

models may have non-global local minima. Especially in cases where the target distribution has more

than k components but we fit it with a GMM with fewer than k components. Améndola at al. [13] has

shown that the likelihood function for GMMs is transcendental. Jin et al. [14] resolved the problem that

Srebro discovered and proved that with random initialization, the EM algorithm will converge to a bad

critical point with high probability. The maximum likelihood function is transcendental and will cause

arbitrarily many critical points. Intuitively speaking, when handling any distribution with multimodal

analysis, if the size of the GMM components is less than the peaks that the target distribution contains,

it will lead to an undesirable estimation.

Furthermore, instead of a bell shape, if a peak of the target distribution is present as a flat

top like a roof, a single Gaussian component is limited in capturing these kinds of features and

is not capable of making a good estimation. It is not a surprise that the likelihood function could

have bad local maxima and be arbitrarily worse than any global optimum. Other studies turn

their heads to the Wasserstein distance. Instead of minimizing the NLL function or Kullback-Leibler

divergence, Wasserstein distances are introduced to replace the NLL function [11,15,16]. These methods

avoid the downside of using NLL, but the calculation and formulation of the learning process are

relatively complex.

Instead of following the EM algorithm, we take a different path. The main concept of our work is

to take the idea of Fourier expansion and apply it to density decomposition. Similarly, like Fourier

expansion, our model needs a set of base components, and their location is predetermined. Instead

of using a couple of components, we use a relatively large number of components to construct this

base. The benefit of this approach is that these bases represent how much detail our models can

capture without going into a calculation process to decide how many GMM components are needed.

Another benefit of this idea is that, on a predetermined basis, the learning parameters become relatively

simple. We only need to learn an appropriate set of π which are the probability coefficients of normal

components, to reach an optimum approximation. A simple algorithm without heavy formulation is

designed to achieve this task. More detailed explanations, formulations, and proofs are provided in

the next section. It is worth mentioning that, like cousin expansion, if base frequencies are not enough,

there will be information loss for the target sequence. This method suffers similar information losses

from not enough Gaussian components. We provide a measurement of the information loss. In our

experiments, our method provided a good estimation result.

GMMs have been used across computer vision and pattern classification among many

others [17–20]. Additionally, GMMs can also be used to learn embedded space in neural networks [11].

Similarly, as Kolouri et al., we apply our algorithm to learn embedded space in neural networks in two

classic neural network applications of handwritten digits generation using autoencoders [21,22] and
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style transfer [23]. This helps us turn latent variables into a complex distribution, which allows us to

perform sampling to create variation. More detail is provided in Section 4.

Section 2 introduces Fourier expansion-inspired Gaussian mixture models, shows this method is

capable of approximating arbitrary densities, discusses the convergency, defines a suitable metric, and

details some of its properties. Section 3 provides our methodology for fitting a GMM through data,

introduces two learning algorithms, and shows learning accuracy through experiments. Section 4

presents two neural network applications. The final section provides a summary and conclusions.

2. Decompose Arbitrary Density by GMM

In this section, we show our method from scratch, including learning algorithms, as well as prove

that the idea of density decomposition by GMM is feasible with bounded approximation error. A

metric called density information loss is introduced to measure the approximation error between target

density and GMM. Let’s begin with the basic assumption and notation:

• Observed a dataset X, which is following a unknown distribution with density f (x);
• Assuming there is a GMM that matches the distribution of X : f (x) ≈ g (x) + ǫ;
• The density of GMM: g (x) = ∑n πiφi (x);
• As general definition of GMM, ∑n π̃i = 1 and φi (x) ∼ N (µi, σi).

In this work, we mainly discuss one-dimensional cases. The GMM is mixed with Gaussian distributions

rather than multivariate Gaussian distributions.

2.1. General Concept of GMM Decomposition

The idea behind GMM decomposition is a Fourier series in probability that, assuming arbitrary

density, can be accurately decomposed by infinite mixtures of Gaussian distributions. As mentioned

earlier, a lot of studies prove that the likelihood of GMM has many critical points. There are far too

many sets of π, µ and σ that could produce the same likelihood result on a given dataset. Learning

three sets of parameters, π, µ, σ could increase the complexity of the learning process. Not to mention

that these parameters interact with each other. Changing one of them could lead to new sets of optimal

solutions for others. If we consider that GMM can decompose any density like the Fourier series into a

periodic sequence, we can predetermine the base Gaussian distributions (component distributions).

In practice, µ can be set to be evenly spread out though the dataset space. The parameter σ can be

treated as a hyperparameter that adjusts overall GMM density smoothness. This means that µ, σ of

the component distribution are non-parametric and do not need to be optimised. The parameter π is

the only remaining problem for us to solve. Our goal shifted from finding the best set of π, mu, σ to

finding the best set of π on a given dataset. With this idea, our GMM set-up becomes:

• g (x) = ∑n πiφi (x) is the density of GMM;
• ∑n πi = 1, φi (x) ∼ N (µi, σ), n is the numbers of normal distributions;

• r = max(X)−min(X)
n is the interval for locating µi;

• µi = min (X) + i × r are means for Gaussian components;
• σ = t × r is——;
• t is a real number hyper-parameter, usually 1 ≤ t ≤ 5.

2.2. Approximate Arbitrary Density by GMM

In this subsection, we show that, in certain conditions, if the component size of a mixture Gaussian

model goes to infinite, the error of approximating an arbitrary density can go toward zero.

Through the idea of Monte Carlo, we could assume that the accuracy of a fine frequency

distribution estimation of the target probability mass through dataset is good enough in general.

A frequency distribution could also be seen as a mixture distribution with a uniform distribution

components. Elaborate from this, if we swap each uniform distribution into a Gaussian unit and push

this toward infinite, we could have a correct probability mass approximation of any target distribution.
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Because we do not have access to the true density, the dataset is all we have, an accurate probability

mass is generally good enough in practice. Let ωi = {x ∈ (µi − r, µi + r]}, we have:




∫
ω0

g (x) dx

.

.

.∫
ωn

g (x) dx



=




Pg {ω0}

.

.

.

Pg {ωn}



≈




Pf {ω0}

.

.

.

Pf {ωn}



=




∫
ω0

f (x) dx

.

.

.∫
ωn

f (x) dx




.

Expand the density of GMM g (x) results




∫
ω0

φ0 (x) dx . . .
∫

ω0
φn (x) dx

...
...

...
...∫

ωn
φ0 (x) dx . . .

∫
ωn

φn (x) dx







π0
...

πn


 =




Pg {ω0}
...

Pg {ωn}


 .

It is not hard to notice that, if
∫

ωi
φi (x) dx ≈ 1 which means that each Gaussian component is

very dense in their region, GMM become a discrete distribution that can be precisely 1:1 clone the

estimation probability mass. It becomes:




1 . . .0
...

...
...

...

0 . . .1







π0
...

πn


 ≈




Pg {ω0}
...

Pg {ωn}


 ≈




Pf {ω0}
...

Pf {ωn}




These simple deductions say that under this set up, a GMM with a large size of component is

guaranteed to perform as well as a frequency distribution. Furthermore, changing the mixture

component from a regular Gaussian distribution to a truncated normal distribution or uniform

distribution could lead to the same conclusion. One good thing about this set up is that it could

bring discrete probability mass estimation to continuous density. Allow us to deal with regression

problems in a classification manner. We do suffer loss of information at some points in the density,

but generally, in practice, the probability mass is what we are looking for. For example, let’s say we

are trying to figure out the distribution of people’s height. Instead of looking for a precise density

estimation of people’s height, f {height = 1.801m}, P {1.80m ≤ height ≤ 1.81m} is what we targeting.

Therefore, if we accept a discrete frequency distribution as one of our general approximation models,

there is no reason that GMM can not be used to approximate arbitrary density, because it is capable of

performing as good as frequency distribution estimation.

2.3. Density Information Loss

Even though GMM can approximate arbitrary density similarly to frequency distribution, density

information within ω remains a problem that needs to be discussed. In another word, even if we

learn a model that probability mass is equal to target density Pg {ω} = Pf {ω}, the differentiation is

not equal
dPg{ω}

dx 6=
dPf {ω}

dx . We could apply KL-divergence or Wasserstain distance to measure the

difference between two densities. But in our set up, we introduce a simple metric to measure regional

density information loss (DIL). If DIL is small enough under some conditions, then we may be able to

conclude that GMM can be a generalised model to decompose arbitrary density.

First of all, assume we have already learned a GMM which achieves that probability mass is

correctly mapped to the target distribution. We split the data space into n regions denoted as ωi the

same as Section 2.3.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 February 2023                   doi:10.20944/preprints202302.0275.v1

https://doi.org/10.20944/preprints202302.0275.v1


5 of 21




Pg {ω0}
...

Pg {ωn}


 ≈




Pf {ω0}
...

Pf {ωn}




The total density information loss is sum of absolute error.

DIL =
n

∑
i=1

∫

ωi

| f (x)− g (x) |dx

Because the integration is not particularly easy for us to calculate, here we divide ωi further into

m smaller regions to estimate DIL.

m

∑
k=1

dk = ωi,

DIL ≈
n

∑
i=1

m

∑
j=1

∫

dij

| f (x)− g (x) |dx ≈
n

∑
i=1

m

∑
j=1

|Pf

{
dij

}
− Pg

{
dij

}
|,

Denote that:

L (ωi) =
m

∑
j=1

|Pf

{
dij

}
− Pg

{
dij

}
| (1)

Where L (ωi) is the discrete approximation of density information loss within region ωi. If L (ωi)

is universally bounded in some conditions for all ω, the overall DIL is bounded. For any xij from ωi, if

|Pf

{
xij ± d

}
− Pg

{
xij ± d

}
| ≤ τi ≤ τ,

we have

DIL ≤ n ∗ m ∗ τ.

In fact, L (ωi) is bound within a comfortable condition. In Figure 1, the plot demonstrates the density

of target distribution(blue) and GMM(red) in a small region ωi. The probability Pf {ωi} is equal

to Pg {ωi}. Evenly split ωi into 4 smaller areas and each area has length d. When we look at this

geometrical relationship between target distribution f (x) and GMM g (x), we discover that for each

small region d, |Pf

{
dj

}
− Pg

{
dj

}
| is bounded. Intuitively, the blue area which is shown in Figure 1 will

always be larger than the orange area. Because we have learned a GMM that Pf {ωi} = Pg {ωi} and

our GMM model is constructed by evenly spreading out Gaussian components, at each ωi generally

will share similar geometrical structure as Figure 1.
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Figure 1. Example of fitted GMM and target density in region ωi.

In brief, giving some conditions, the blue area subtracts the orange area in Figure 1 is guarantee

larger than |Pf

{
dij

}
− Pg

{
dij

}
|. We provide the proof below.

Given condition:

• Condition 1: Pf {ωi} = Pg {ωi}
• Condition 2: Because ωi is small, target density is approximately monotone and linear within ωi.

Where ωi = (wi, vi]
• Condition 3: GMM density within ωi double cross the target density. Two cross points are named

a, b and b > a.

Set the spilt length d ≤ MIN {a − wi, vi − b}. Given condition that GMM density double cross

the target density. Since g (x) ≥ f (x), for all x ∈
[
µi −

d
2 , µi +

d
2

]
, and

∫ µi+
d
2

µi−
d
2

g (x) dx ≥
∫ µi+

d
2

µi−
d
2

f (x) dx,

we have

Pg

{
µi ±

d

2

}
≥ Pf

{
dij

}
≥ Pg

{
dij

}
,

and

|Pf

{
dij

}
− Pg

{
dij

}
| ≤ Pg

{
µi ±

d

2

}
− Pf

{
dij

}
, (2)

By condition 2, if target density is monotonically decreasing, i.e., g (x) ≤ f (x), for all x ∈[
µi +

r
2 − d, µi +

r
2

]
and

∫ µi+
r
2

µi+
r
2−d

g (x) dx ≤
∫ µi+

r
2

µi+
r
2−d

f (x) dx.

Therefore,

Pg

{
µi +

r

2
− d < x ≤ µi +

r

2

}
≤ Pf

{
dij

}
≤ Pg

{
dij

}
.

With Equation (2), we have:

|Pf

{
dij

}
− Pg

{
dij

}
| ≤ Pg

{
µi ±

d

2

}
− Pg

{
µi +

r

2
− d < x ≤ µi +

r

2

}
(3)
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Similarly, if target density is monotonically increasing:

|Pf

{
dij

}
− Pg

{
dij

}
| ≤ Pg

{
µi ±

d

2

}
− Pg

(
µi −

r

2
≤ x ≤ µi −

r

2
+ d

)
(4)

The benefit of these two properties of Equations (3) and (3) is that even though we do not know

what the target density is, this system still guarantees the difference between GMM and target density,

which is bounded by Equations (3) and (3). As long as we are able to find a good approximation that

satisfies condition 1, we will be able to reach an approximation that is not worse than a fully discrete

frequency distribution, while keeping the density continuous. This will lead us to a simple algorithm

to optimise GMM which shown in the next subsection.

Conditions 1-3 also provide another practical benefit. As long as these 3 conditions are satisfied, σ

of each Gaussian component becomes a universal smoothness parameter which controls the kurtosis

of each normal component. A larger σ produces an overall smoother density. σ can be treated as

a hyper-parameter which does not affect the learning process. GMM in Figure 1 uses σ = 1 ∗ r. If

we tune sigma larger, we will have the result shown in Figure 2, which is σ = 3 ∗ r. The differences

between target density and GMM are clearly smaller compared to 1 and 2. It also implies that if peaks

of target density are not overly sharp (condituion 2), by stretching GMM components, resulting a

better estimation of target density.

Figure 2. Example of GMM and target density in region ωi with larger σ.

Here we can conclude that as long as the size of component distributions are large enough and

satisfy given conditions 1-3, GMM can well approximate arbitrary distributions. The loss of density

information between target density and GMM is controlled by Equations (3) and (3).

2.4. Learning Algorithm

Most of the learning algorithms apply gradients iteratively to update target parameters until

reaching an optimum position. There are no differences from ours. The key of the learning process is

to find the right gradient for each parameter. In our model set up, this has become relatively simple.

Begin with defining the loss function for the learning process.

Loss (X) = ∑ |Pf

{
xj ± d

}
− Pg

{
xj ± d

}
| (5)

We want to find a set of parameters π which:

π = Argmin {Loss (X)} . (6)

The Equation (5) comes from Equation (1). Because we do not have any access to the overall

density information to calculate DIL, we change the region input dj to the data points. From inequality
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in Equations (3) and (3), instead of finding the precise gradient at each xj, we apply Equations (3) or (3)

in (5):

Loss
(
xj

)
≤ ˜Loss

(
xj

)
= Pg

(
µi −

d

2
≤ x ≤ µi +

d

2

)
− Pg

(
µi −

r

2
≤ x ≤ µi −

r

2
+ d

)

or

Loss
(

xj

)
≤ ˜Loss

(
xj

)
= Pg

(
µi −

d

2
≤ x ≤ µi +

d

2

)
− Pg

(
µi +

r

2
− d ≤ x ≤ µi +

r

2

)
,

where µi is the closest µ to xj. Then,

˜dL
(
kmid

i , kside
i

)

dπ
=




d ˜Loss(xj)
dπ0

...

d ˜Loss(xj)
dπn



=




P̃f0

(
kmid

i

)
− P̃f0

(
kside

i

)

...

P̃fn

(
kmid

i

)
− P̃fn

(
kside

i

)


 (7)

where P̃gi
(ki) =

∫
ki

φi (x) dx, φi is the density of ith component distribution, kmid
i ∈ (µi − d, µi + d],

and kside
i ∈ (µi + r, µi + r − d] or kside

i ∈ (µi − r, µi − r + d].

π+1 = π +
˜dL

(
kmid

i , kside
i

)

dπ
(8)

Equation (7), the result is intuitively interpretative. For Gaussian distribution components where

means are further away from data point xj, gradient
d ˜Loss(xj)

dπi
will be smaller and vice versa. For every

data point, we perform Equation (8) to update parameters.

Based on Equation (7), Here we developed two simple algorithms for learning GMM. Algorithm 1

computes the gradient following Equation (7). Algorithm 2 is a simplified version where we only

update the πi which is the coefficient of φi that has µi closest to xj. Algorithms’ performance comparison

is shown in the next section. It is worth mentioning that π is initialized uniformly. After learning the

whole dataset, the final step is re-normalization to ensure ∑ πi = 1.

Algorithm 1:

1 Initialization

2 1.Define n Gaussian distributions and evenly spread µ across Max (X) , Min (X);

3 2.Calculate r, r = Max(X)−Min(X)
n

4 3.Define hyper parameter σ respect to r, e.g., σ = 1r, σ = 3r,

5 4.Define hyper parameter d respect to σ, e.g., d = σ/4, d = σ/6,

6 5.Initialize π1 = π2... = πn = 1/n

7 foreach xj do

8 Find µi which closest to xj;

9 Define kmid
i = (µi − d, µi + d];no

10 kside+
i = (µi + r − d, µi + r];

11 kside−
i = (xj − r, xj − r + d];

12 Compute d̃L
(

kmid
i , kside+

i

)
, d̃L

(
kmid

i , kside−
i

)
by Eq(11);

13 d̃L=
d̃L(kmid

i ,kside+
i )+d̃L(kmid

i ,kside−
i )

2 ;

14 Update π+1 = π + d̃L by;

15 end

16 Finally, re-normalize π to satisfy ∑ πi = 1
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Algorithm 2:

1 Initialization

2 1.Define n Gaussian distributions and evenly spread µ across Max (X) , Min (X);

3 2.Calculate r, r = Max(X)−Min(X)
n

4 3.Define hyper parameter σ respect to r, e.g., σ = 1r, σ = 3r,

5 4.Define hyper parameter d respect to σ, e.g., d = σ/4, d = σ/6,

6 5.Initialize π1 = π2... = πn = 1/n

7 6.Define kmid
i and kside

i

8 7.Approximate d̃Li ≈ P̃fi

(
kmid

i

)
− P̃fi

(
kside

i

)
.

9 foreach xj do

10 Find µi which closest to xj;

11 Update π+1
i = πi + d̃Li ;

12 for all m which m 6= i, π+1
m = πm − d̃Li

n ;

13 end

14 Finally, re-normalize πs to satisfy ∑ πi = 1

3. Numerical Experiments

In this section, we show our algorithm accuracy by approximating arbitrary probability density. 2

neural network applications are shown which implementing GMM into neural network while applying

our learning algorithm to learn feasible GMM. Metric for valuating accuracy of density estimation is

given by Equation (9). It is a estimation for DIL which shown in Section 2.

L =|Ptraget {x ≤ µ1 − d} − Pgmm {x ≤ µ1 − d} |

+
n

∑
i=1

|Ptraget {µi ± d} − Pgmm {µi ± d} |

+ |Ptraget {x > µn + d} − Pgmm {x > µn + d} |

(9)

There are a couple of benefits to measuring our estimation accuracy by Equation (9). First, it

is simple to calculate. Second, when we do not have the current form of target density, we can still

manage to calculate the loss by discrete statistical estimation. Third, it has a clear minimum and

maximum, which is [0,2]. The proof is given below:

L ≤ |Ptraget {x ≤ µ1 − d} − 0|+
n

∑
i=1

|Ptraget {µi ± d} − 0|

+ |Ptraget {x > µn + d} − 0|+ |0 − Pgmm {x ≤ µ1 − d} |

+
n

∑
i=1

|0 − Pgmm {µi ± d} |+ |0 − Pgmm {x > µn + d} |

That means 0 ≤ L ≤ 2.

3.1. Random Density Approximation

In this subsection, we test the algorithm performance by learning randomly generated mixture

distributions. Considering the conditions given by Section 2.4, mixture distributions with smooth

shapes are best for GMM to work with generally. In order to further investigate model efficacy, we

also test our model with distributions that mix with non-smooth distributions, which, in our case,

uniform distributions are used to build these target mixture distributions. Two random generated
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cases are illustrated with Figures 3–5 to show the learning process. The upper subplot in Figure 3. is

target distribution 1, which is mixed by 8 normal distributions. The lower subplot in Figure 3. is target

distribution 2, which mixes with normal distributions, T distributions as well as uniform distributions.

Figure 4 shows our initial GMM before learning. Figures 5 and 6 show the comparison of target density

and learned GMM. GMM with 200 components is applied to learn the target distribution. We sample

5000 data points from each target distribution as training dataset.

The target distribution 1 refers to those situations where GMM can perform best. Geometrically

speaking, while target distributions are mixed with components which share a bell shape like structure,

using GMM to approximate is an appropriate choice instinctively. But in situations like target

distribution 2, while we add uniform distribution in the component distribution set, it becomes

difficult for GMM to work with unless we have more components. In Figure 4, it tells the story

straight away. We can see that the density of our initial GMM before training is very close to a

uniform distribution. More components allow GMM to learn more structure. For example, straight

lines and deep cuts. This implies that if we want to approximate arbitrary densities which are not

limited by multimodal, flat peaks, deep cuts and all possible variations, we need higher order mixture

components for our GMM. In the classic EM algorithm, considering we have 200 normal components,

parameters that we need to learn for a GMM are 3 × 200. There are handful amount of learning to

be done. As we proposed in this paper, by fixing µ and σ as bases and smoothness, the remaining

parameters needed to be learned are limited down to 200.

Figure 3. Target Distributions
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Figure 4. Initialize GMM

Figure 5. Trained GMM vs Target Distribution 1
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Figure 6. Trained GMM vs Target Distribution 2

Figures 5 and 6 show that the proposed algorithm works well to approximate target density.

Comparing the two results, target density 1, which mixes with bell shape like distributions, works

better than target distribution 2, which mixes with uniform distributions and others. But over all, even

though the result in Figure 6 does have many unwanted sags and crests, GMM approximation still

manages to capture those key features of target density. In Figure 5 and 6, it shows the performance of

two different algorithms mentioned in Section 2.5. There are three curves shown in the graph. Green is

the target density, the blue curve is the density of learned GMM by algorithm 2 and the orange curve

is the density of learned GMM by Algorithm 1. The blue curve and orange curve almost overlap each

other. The difference between algorithms is almost unnoticeable.

Tables 1 and 2 present average losses(L) in Equation 9 over 20 experiments. In Table 1, the

target distribution is randomly generated Gaussian mixture distributions. Some approximation

examples are shown in Figure 7 subplots (1)-(3). Table 2 presents the average L by approximating the

mixture distribution of which components contain Normal, T and Uniform distributions. Some

examples are shown in Figure 7 subplots (4)-(6). Tables show that using GMM approximating

target distributions with normal components is generally better than target distributions mixed

with distributions containing various types. They also reveal an interesting finding that adjusting σ

will change the overall accuracy. For target distributions mixed with normal distributions, the increase

σ from 1*r to 3*r gives a better outcome. But when the target density gets more complex, a sigma

with 2*r works the best. Comparing with subplots 1-3 and subplots 4-6 in Figure 7, distributions with

extreme features require a σ that is not too large and too small. The smaller the σ goes, it results in

higher expressiveness but less smooth overall. Surprisingly, from what we have discussed in section

2.4, the proposed learning algorithm works best for continuous smooth density, but our experiments

show that our proposed method still manages to capture all major character of target distributions

and produce relatively good approximations. Tables 1 and 2 implies that when we make predictions,

the errors of probability are lower than 0.095. Since the metric function L has a clear upper and lower

bound which is 0 ≤ L ≤ 2. That means that errors in our experiments are less than 5%.
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Table 1. Average Loss of 20 Experiments With 8 random Gaussian Components. Data size: 5000 data

points

Average Loss of 20 Experiments

Algorithm 1

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.07099 L =0.05091 L =0.044296

Algorithm 2

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.06866 L = 0.05085 L =0.04447

Table 2. Average Loss of 20 Experiments With 8 Non-Gaussian random Components. Data size: 5000

data points

Average Loss of 20 Experiments

Algorithm 1

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.08912 L =0.08738 L =0.09432

Algorithm 2

σ = 1 ∗ r σ = 2 ∗ r σ = 3 ∗ r

L =0.08678 L = 0.08749 L =0.09446

Figure 7. Other trained examples

The number of mixture components and data size should have a certain relationship that affects

the overall model performance. We have not yet found a proper solution to this matter, but we have

carried out experiments to demonstrate the relationship between how data size affects the accuracy

under different amount of mixed components.

In Table 3, we run 30 experiments for each GMM with components sized from 10 to 1000. We

apply algorithm 2 with σ = 3 ∗ r for the learning process. Target distributions are randomly generated

mixture distributions the same as experiments in Tables 1 and 2. Compared with experiments carried

out in Table 1, it shows that with components less than 200, an increase in the data size does not

increase performance. With GMM constructed of 100 components, information loss L at data size 20000

and 50000 are 0.0778 and 0.065 is worse than GMM with 200 components learning under 5000 data

points. By increasing data size, components with 200 components’ performance continuously improve

from 0.04447 down to 0.025. Under the same data size, increasing the size of components does not
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necessarily lead to a better outcome after a certain level. In data size 20000, components sizes 500 and

1000 do not perform better than 200. But in data size 50000, GMM with 500 components outperforms

the rest of any other GMMs. These discoveries match our idea of GMM distribution decomposition

intuitively. If we want to decompose a distribution, a certain number of components are needed to

achieve an appropriate level of detail representation of a density. In order to learn finer details, more

data points and more components are needed. In our experiment, 200 components showed enough

robustness for practical usage. It managed to increase accuracy from data size 5000 up to 50000.

Table 3. Average Loss of 25 Experiments With different numbers of components compare with data

size 20000 data points and 50000 data points.

Average Loss of 30 Experiments with Data size 20000
Numbers of Components

10 30 50 100 200 500 1000

L = 0.710 L = 0.336 L = 0.200 L = 0.0778 L = 0.0295 L = 0.0326 L = 0.0378

Average Loss of 30 Experiments with Data size 50000
Numbers of Components

10 30 50 100 200 500 1000

L = 0.715 L = 0.364 L = 0.210 L = 0.065 L = 0.025 L = 0.0203 L = 0.0289

3.2. Neural Network Application

In this section, we present a couple of neural network applications with GMMs and our GMMs

learning algorithms. The first one is handwritten digits generation using Autoencoder, where GMM is

used to learn encoder output distribution. The second one is style transfer, where GMM is used to

learn gram matrix distribution.

3.2.1. Mnist Data Set of Handwritten Digits Generation

In this experiment, we carry out the same numerical experiment as [11]. In Kolouri et al

experiment, they demonstrated how to learn an embedding layer(latent variables) by GMM using

Sliced Wasserstein Distance. In our approach, we learn the GMM by proposed algorithms. The neural

network model structure is exactly the same as [11] proposed. which is a generative adversarial

network constructed by pairing a Autoencoder generator and a simple convolution neural network

with classification output as discriminator. [24–28]. The whole process is illustrated in Figure 8.

In Figure 9, we show our results as well as compare them with the learning method proposed

at [11]. On the left-hand side of Figure 9, we have our results that are randomly sampled from our

learned GMM distributions. Compare with [11], our result at the number 8 is more clear than SW-GMM

and EM-GMM. Also, at number 9, our generation are less confused with number 4. At number 7, our

result shows more variety. Our learning method captures different types of digit 7. Some rounder

shapes and dash in the middle are also captured in our learned GMM. Most of the random samples in

our results do not contain a large number of unrecognizable generations, such as results generated by

EM-GMM and SW-GMM highlighted in red in Figure 9.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 February 2023                   doi:10.20944/preprints202302.0275.v1

https://doi.org/10.20944/preprints202302.0275.v1


15 of 21

Figure 8. Model Structure

Figure 9. Result comparison

It is worth mentioning that, in our training process, in order to gain faster convergence, we slightly

amended the loss function of GAN. The loss function for GAN is Equation (10).

J(G) = −α
1

2
Ezlog (1 − D (G (z))) + ‖ x − G (z) ‖2 (10)
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where J(G) is the loss of a generator. α is a constant to adjust the level of discriminator loss.
1
2 Ezlog (1 − D (G (z))) is the discriminator loss same as [29]. x is the target image and G (z) is output

image generated by generator.

Following up the notation given on [29], for the generator loss, we multiply α to the cross-entropy

loss to regulate how much we want to listen to the discriminator. Adding in Mean Square Loss guides

the generator to generate images close to the dataset.

Another interesting experiment is that we performed random mixing of a couple of GMM

samples through different classes. There are 4 examples shown in Figure 10. Despite the fact that

those generated images are becoming intractable as a number, our generated images still manage to

maintain features from input categories. For example, 0 and 4 generated an image similar to 9. The

example in top right is the image generated by GMM samples randomly combined from class 0 and

3. Compared with the normalization flow model, through an auto regressive process, it manages to

diversify the latent space into a more accurate one-to one mapping to the data set [30]. In the diffusion

model, it uses stochastic processes to add in noise and achieve precise mapping of the data. Adding

noise to the image diverts two similar images that create a one-to-one-path way for the neural network

to work with [31,32]. In our work, simply applying GMM as an intermediate for latent variables

achieves similar effect. Variables for each class are well segmented and that allows us to create random

combinations of features. It is easy to use and capable of having more control over generated images,

as Figure 10 is shown. It could be potentially useful for language to image models by mapping words

as a GMM distribution. Because values of latent variables are randomly sampled, generated images

won’t easily fall into repetitive.

Figure 10. Random Mixing

3.2.2. Style Transfer

Here we introduce a modified version of style transfer [23] algorithm which turns gram matrix

into GMM. Gram matrix is the core of the style transfer. It represents the level of correlation between

each extracted feature which is calculated by a trained neural network. In our experiments, we

followed the original work and apply trained VGG19 [33] for feature extraction. One of the reasons

why introducing GMM into the algorithm is because of variation. A certain gram matrix means a

certain outcome for the algorithm. We could achieve changing learning rate or the weight between

style features and content features to add variation to the algorithm, but sometimes changing those

parameters aggressively will lead to a chaotic outcome. Additionally, when we try mixing a couple

of styles at the same time, the classic method can hardly control the level of feature mixing between
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two styles. One way to tackle these problems is turning a gram matrix into a distribution to perform

random sampling. A random sample of gram matrix randomizes the feature combination. It is similar

to what we show in the MNIST handwritten digits generation experiments where mixing features

stochastically can create new digits.

Figure 11 shows the process of how a gram matrix is produced. Passing an image into

VGG19 produces output features from each layer. Take 5 output features from each block and

perform Equation (14) to calculate the gram matrix. For convenience, we call it VGG19 feature

extraction module.

Gl
ij = ∑

k

Fl
ikFl

jk, (11)

In Figure 12, we illustrate how to prepare a gram matrix data set as well as the whole procedure

of the algorithm. First, we randomly crop two style images, pass them separately into the VGG19

feature extraction module which gives us a data set of gram matrix for each layer. Second, we learn

GMM from a gram matrix dataset for each layer by Algorithm 2. Third, sample the gram matrix and

apply the same optimisation step as [23]. Dataset determine the probability of features in the gram

matrix. For example, if we randomly crop 25 images from style 1 and 75 images from style 2, the

gram matrix dataset contains 1/4 data points from style 1 and 3/4 from style 2. While we sample the

gram matrix distributions, the sampled gram matrix is likely to contain 25% values from style 1 and

75% values from style 2. Figure 13 shows a graphical example of our approach. We use two famous

Vincent Van Gogh paintings. ’The Starry Night’ as target image as well as style image and ’Sunflowers’

as style image 2. While we gradually increase the size of style 2 images in the data set, the output

image shows more and more features from style image 2. By learning different random sampled

gram matrices, we notice that each output image shares the same style but features are noticeably

different from one to another. Almost like changing position and angle of each stroke. Combining all

output images together will create an effect like features are flowing in the painting. Here is a youtube

https://youtu.be/yP22_ycAqMA video showcase the results. Feature mixing level between two style

are 0% 10%,20%... 80% as Figure 13 shows. 10 images are produced at a time from each mixing level.

This approach lets us explore what features neural networks are capable of extracting and how they

affect the final outcome.
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Figure 11. Result comparison
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Figure 12. Result comparison

Figure 13. Random Mixing

4. Conclusions and Future Work

In this work, by taking the idea of Fourier decomposition, we show that GMMs with large-sized

components are capable of approximating arbitrary distributions. 2 simple easy-to-use algorithms are

introduced to learn GMMs. Several numerical experiments are carried out to show the effectiveness of

our algorithm. We also demonstrated how to apply GMMs to natural networks. Our algorithm learns

latent space for Autoencoder handwritten digits generation and gram matrix for style transfer. By

randomly mixing the sampled latent variables across different categories, the neural network is able to

generate meaningful images combining features from different categories. In the same fashion as how

we deal with latent variables in the Autoencoder, we apply GMM in style transfer gram matrix. This

allows us to add variation and uncertainty to the algorithm, which opens up more options for us to

manipulate neural networks as well as explore feature combinations in neural networks.

In the future, we will work on more precise theoretical proof of the argument of whether arbitrary

distributions can be precisely decomposed by GMM. Since our experiment shows that GMM allows us
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to gain more control and variation on neural networks, we will look further to build more sophisticated

applications.
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