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Abstract: In this study we present a hybrid approach of ACO with fuzzy logic and clustering methods to solve 

multi-objective path planning problems in case of swarm USVs. This study aims to enhance the performance 

of ACO algorithm by integrating fuzzy logic in order to cope with the multiple contradicting objectives and 

generate quality solutions by in parallel identifying the mission areas of each USV to reach the desired targets. 

The objectives that are taken into account are the minimization of traveled distance and energy consumption, 

and the maximization of path smoothness. A comparative evaluation is conducted among ACO and fuzzy 

inference systems, Mamdani (ACO-M) and Takagi–Sugeno–Kang (ACO-TSK). The results showed that 

depending on the needs of the application, each methodology can contribute respectively. ACO-M generates 

better paths but ACO-TSK presents higher computation efficiency. 

Keywords: ant colony optimization; fuzzy logic; multi-objective path planning; swarm USV; 

metaheuristics 

 

1. Introduction 

Robotic vehicles are integrated into modern style of life to undertake challenging tasks, such as 

monitoring or navigation assistance [1]. Unmanned Surface Vehicle (USV) is a type of autonomous 

robotic vehicle with various application including ocean monitoring [2,3], safety and rescuing [4] and 

swarm approaches combined with UAVs and/or UGVs for monitoring. The increase use and 

application of USVs impose the need for more autonomous functions/decisions in dynamic and 

complex environments without any human interference, such as the ability to find an optimal route 

and to avoid detected obstacles in real time [5]. 

Path planning problems can be found in various domains, such as Air Transportation and UAVs 

[6–9], robotic vehicles and USV [5] and even for smart assistive systems for individuals with 

disabilities [1,10]. To address the USV path planning problem in complex and dynamic environments, 

multiple factors/objectives should be considered for generating an optimal path. Traditional 

approaches for path planning are based on single objective metaheuristics for finding the shortest 

path, most energy efficient or safest path, among others. For instance A* [11,12], Dijkstra [13] and Ant 

Colony Optimization (ACO) [14,15] among others, have been used to address the aforementioned 

single objectives path planning problems.  

In case of single objective USV path planning, ACO has been applied for obstacle avoidance [16], 

hybridized with artificial potential field for adaptive early warning [17]; for global path planning 

combined with quantum computing [18], with Bayesian network [19] and with immune algorithm 

[20]; for collision avoidance [15]. A* was used as a stand-alone or hybrid approach in maritime 

environments with dynamic obstacles and ocean currents [12]; and for path smoothing [11], [21]. 

Other studies propose the use of multilayer path planner for obstacle avoidance [22]; Voronoi 

diagram [23] or Particle Swarm Optimization algorithm [24] for finding energy efficient paths. 
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contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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When it comes to path planning with multiple objectives of USVs, limited studies have been 

proposed. The majority of them are based on common approaches like scalarization and Pareto 

optimality [25]. On the other hand, few methodologies employ Fuzzy Logic (FL) or develop novel 

approaches to address efficiently in terms of computational effort the multi-objective path planning 

problem [26]. In the literature, the scalarization of the objective terms by using mostly the weighted 

sum has been proposed for multi-objective USV path planning to combine time, distance and energy 

consumption. To solve the aforementioned modeling a hybrid A* algorithm was developed [27]. In 

another study [28] the Pareto optimality was adopted with particle swarm optimization algorithm 

for path planning of USV with currents effects. In [29] FL has been integrated to Ant Colony 

Optimization (ACO) algorithm for finding an optimal path among multiple objectives, distance, 

energy consumption and path smoothness. A comparative study [26] among FL and Root Mean 

Square Error evaluation criterion was conducted for the novel swarm intelligence algorithm (SIGPA) 

[30]. 

This study takes advantage of the state-of-art ACO-FS algorithm proposed in [29] enhanced with 

fuzzy logic to address the multi-objective path planning problem. To overcome the limitations of [29] 

and expand the methodology to a swarm of USVs to cover a certain area and visit multiple targets, 

this study employs a clustering approach to group the targets based on their coordinates, current 

velocity and direction. For the clustering 3 popular clustering methods, such as the Mini Batch K-

Means, Ward’s Hierarchical Agglomerative Clustering and Birch adopted, compared and evaluated 

based on the aggregation of three clustering evaluation methods. Then, a comparative evaluation of 

two popular Fuzzy Inference Systems (FIS) Mamdani and Takagi–Sugeno–Kang (TSK) follows. 

Therefore, through a comparative evaluation process, the best suitable FIS and clustering algorithm 

for this application will be identified (Figure 1). 

 

2. Materials and Methods 

2.1. Objective terms of the USV path planning problem 

In this study the multi-objective path planning problem with multiple targets is addressed in 

case of a swarm of USVs. The formulation of the problem is based on [26,29]. The goal is to find 

optimal path to cover the specified areas by minimizing: (i) the distance (1); (ii) the brut turns along 

the route (2); and (iii) the energy consumption due to current velocity and direction (3).  

- Term 1 for the minimization of traveled distance. 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  � � 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩:

(𝑖𝑖,𝑖𝑖)∈ℰ𝑖𝑖∈𝒩𝒩 = � � ��(𝑗𝑗𝑥𝑥 − 𝑚𝑚𝑥𝑥)2 + �𝑗𝑗𝑦𝑦 − 𝑚𝑚𝑦𝑦�2�𝑖𝑖∈𝒩𝒩:

(𝑖𝑖,𝑖𝑖)∈ℰ𝑖𝑖∈𝒩𝒩                 (1) 

where 𝒩𝒩 and ℰ are the sets of nodes and the edges of the graph, respectively; 𝑑𝑑𝑖𝑖𝑖𝑖 is the Euclidean 

distance metric between node 𝑚𝑚  and node 𝑗𝑗. 𝑚𝑚𝑥𝑥 , 𝑗𝑗𝑥𝑥 and 𝑚𝑚𝑦𝑦, 𝑗𝑗𝑦𝑦  are the geographical coordinates of 

nodes 𝑚𝑚 and 𝑗𝑗 on horizontal and vertical axes, respectively. 

- Term 2 for the minimization of brut changes along the path. 

Figure 1. Concept of this study and methodological steps. 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  � � � 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∈𝒩𝒩:
(𝑖𝑖,𝑖𝑖)∈ℰ𝑖𝑖∈𝒩𝒩:

(𝑖𝑖,𝑖𝑖)∈ℰ𝑖𝑖∈𝒩𝒩                                                    (2) 

- Term 3 for the minimization of the fuel consumption of the USV. 

where 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 is the angle that is formed from the edges (𝑚𝑚, 𝑗𝑗) and (𝑗𝑗, 𝑘𝑘).  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =  � � 𝑑𝑑𝑖𝑖𝑖𝑖𝑉𝑉 + 𝑣𝑣𝑐𝑐𝑖𝑖∈𝒩𝒩:

(𝑖𝑖,𝑖𝑖)∈ℰ𝑖𝑖∈𝒩𝒩 𝑓𝑓                                                    (3) 

where 𝑓𝑓 is the fuel consumption per unit time (𝑘𝑘𝑘𝑘 ℎ⁄ ), 𝑉𝑉 and 𝑣𝑣𝑐𝑐 are the velocities of the USV and 

of the currents, respectively. The term is included in the model since if a USV is moving against the 

currents more energy is needed to retain a certain velocity during a route [18,28,31]. 

2.2. Ant Colony Optimization Algorithm with Fuzzy Logic 

ACO algorithm is one of the most popular heuristic algorithms used to solve path planning 

problems formed as graphs for finding the shortest path [14]. To adapt ACO algorithm to solve the 

above defined multi-objective path planning problem for USVs, ACO is enhanced with fuzzy logic. 

This enables the ability to evaluate the impact of multiple objectives and identify the optimal solution. 

ACO is inspired by the operation of ants to trace their food by depositing pheromone along the path 

[32]. ACO operation consists of two main steps: In the first step the transition probability, 𝑝𝑝𝑖𝑖𝑖𝑖, of each 

edge in the graph is calculated based on (4); and in the second step the equation (5) is used to update 

of the pheromones. This is achieved by recalculating the pheromone deposit, 𝜏𝜏𝑖𝑖𝑖𝑖, on each edge for 

the ant population 𝒫𝒫: 𝑝𝑝𝑖𝑖𝑖𝑖 =
�𝜏𝜏𝑖𝑖𝑖𝑖�𝛾𝛾�𝜂𝜂𝑖𝑖𝑖𝑖�𝛽𝛽∑ 𝜏𝜏𝑖𝑖𝑘𝑘(𝑖𝑖,𝑘𝑘)∈ℰ                                                          (4) 

𝜏𝜏𝑖𝑖𝑖𝑖 = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑖𝑖 + 𝜌𝜌� 𝑄𝑄𝐿𝐿𝑎𝑎𝑎𝑎∈𝒫𝒫                                                     (5) 

where 𝜌𝜌 ∈ [0,1] is the evaporation coefficient, 𝜂𝜂𝑖𝑖𝑖𝑖 =
1𝑑𝑑𝑖𝑖𝑖𝑖 where 𝑑𝑑𝑖𝑖𝑖𝑖  is α distance metric, 𝛾𝛾 ≥ 0 and 𝛽𝛽 ≥ 1 are the parameters to control the influence of 𝜏𝜏𝑖𝑖𝑖𝑖(𝑡𝑡) and 𝜂𝜂𝑖𝑖𝑖𝑖, respectively. 𝐿𝐿𝑎𝑎 is the cost of the 

path of ant 𝑎𝑎 and 𝑄𝑄 is a constant that is associated with the remaining pheromone amount [32]. In 

the literature in case of single-objective optimization problems the 𝐿𝐿𝑎𝑎  corresponds the objective 

cost/value. For example, in shortest distance problems, the cost is the length of the path found by the 

ant 𝑎𝑎. Bellow more details are given for the calculation of this cost in our study.  

The pseudocode of ACO algorithm is shown bellow in Algorithm 1. In the initialization phase 𝐼𝐼𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑎𝑎𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝐼𝐼𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝐼𝐼𝑉𝑉𝑎𝑎𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒(𝜏𝜏) the pheromone values (𝜏𝜏𝑖𝑖𝑖𝑖) are all initialized to a constant value 𝑐𝑐 >

0 at the start of the algorithm. In the phase of the solution construction, 𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑐𝑐𝑡𝑡𝐶𝐶𝑒𝑒𝐼𝐼𝑒𝑒𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚(𝜏𝜏), the 

construction of a solution starts with an empty partial solution 𝔰𝔰𝑝𝑝 = 〈 〉. Then, at each construction 

step the current partial solution 𝔰𝔰𝑝𝑝 is extended by adding a feasible solution component based on the 

transition probabilities and the heuristic information (4). Also, the pheromone update process 

follows,  𝐴𝐴𝑝𝑝𝑝𝑝𝐼𝐼𝐴𝐴𝐼𝐼ℎ𝐼𝐼𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝐼𝐼𝑒𝑒𝑝𝑝𝑑𝑑𝑎𝑎𝑡𝑡𝐼𝐼(𝜏𝜏,𝒢𝒢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝔰𝔰∗) based on (5). 

Algorithm 1: ACO pseudoalgorithm 

Input: variables of ACO 𝐼𝐼𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑎𝑎𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼ℎ𝐼𝐼𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝐼𝐼𝑉𝑉𝑎𝑎𝐼𝐼𝑒𝑒𝐼𝐼𝑒𝑒(𝜏𝜏)  𝔰𝔰∗ ← 𝑁𝑁𝑒𝑒𝐿𝐿𝐿𝐿 // current best solution does not exist 

while termination criteria are not met do 

     𝒢𝒢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← ∅ // the set of the path at the current iteration is empty 

     for 𝑗𝑗 = 1, … ,𝑚𝑚𝑎𝑎 do 

         𝔰𝔰 ← 𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒𝑡𝑡𝑒𝑒𝑒𝑒𝑐𝑐𝑡𝑡𝐶𝐶𝑒𝑒𝐼𝐼𝑒𝑒𝑡𝑡𝑚𝑚𝑒𝑒𝑚𝑚(𝜏𝜏)  

        if �𝑓𝑓(𝔰𝔰) < 𝑓𝑓(𝔰𝔰∗)� or 𝔰𝔰∗𝑚𝑚𝑒𝑒 𝑁𝑁𝑒𝑒𝐿𝐿𝐿𝐿  then 𝔰𝔰∗ ← 𝔰𝔰 
        𝒢𝒢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← 𝒢𝒢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∪ {𝔰𝔰∗} 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 February 2023                   doi:10.20944/preprints202302.0272.v1

https://doi.org/10.20944/preprints202302.0272.v1


 4 

 

     end for 

     𝐴𝐴𝑝𝑝𝑝𝑝𝐼𝐼𝐴𝐴𝐼𝐼ℎ𝐼𝐼𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝐼𝐼𝑒𝑒𝑝𝑝𝑑𝑑𝑎𝑎𝑡𝑡𝐼𝐼(𝜏𝜏,𝒢𝒢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝔰𝔰∗) 

end while 

Output: current best solution 𝔰𝔰∗ 
In this study, a path planning problem formulated as a multi-objective optimization problem is 

investigated. To this end, the cost of the path, 𝐿𝐿𝑎𝑎,  used in (5) is defined in a way to reflect the 

objective cost derived from all the objectives (1), (2), and (3) of the problem presented in section 2.1. 

Therefore, to calculate the 𝐿𝐿𝑎𝑎 cost of the path of each ant two popular FIS systems are employed. The 

FISs are used to aggregate the impact of the objective terms into a single value derived from the 

defuzzification process. Hybridization of ACO with Mamdani or TSK FISs has been successfully 

implemented in our previous studies where more details on this process can be found [26,33]. 

2.2.1. FIS1 1: Mamdani Fuzzy Inference System (ACO-M) 

In the hybridization of ACO with Mamdani FIS the defuzzification value of the Mamdani FIS is 

used as cost of the path (𝐿𝐿𝑎𝑎). This is because the defuzzification value denotes the optimality of the 

generated path after the aggregation of the objective terms and the defined fuzzy sets and rules. For 

this study the following fuzzy membership functions (Figure 2) corresponding to each objective term 

and fuzzy rules (Table 1) are defined and used for the Mamdani FIS.  

2.2.2. FIS 2: Takagi–Sugeno–Kang Fuzzy Inference System (ACO-TSK) 

In the second approach where the ACO is hybridized with TSK FIS, as path cost (𝐿𝐿𝑎𝑎) the value 

of the TSK FIS is used. Similarly, to Mamdani FIS, this value denotes the optimality of the generated 

path. TSK FIS calculates a crisp output value by using a weighted average of the fuzzy rules’ 

consequent [34]. This makes the TSK FIS a less computationally demanding approach compared to 

Mamdani. For the TSK FIS the same membership functions and rules (Figure 2, Table 1) are adopted. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Membership functions of (a) path distance; (b) path turns; (c) fuel consumption; and (d) path 

optimality. 

Table 1. Fuzzy rules. 

Path length Path deviations Energy consumption Path optimality 

Short Smooth Low or Medium High 

Short Moderate Low High 

Moderate Smooth Low High 

Short Moderate Medium Medium 

Moderate Smooth Medium Medium 
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Moderate Moderate Low or Medium Medium 

Moderate or Long Moderate or Brut Medium or High Low 

2.3. Swarm approach of USV path planning problem 

To solve the swarm USV path planning problem, various clustering methods, namely Mini Batch 

K-Means, Ward’s Hierarchical Agglomerative Clustering (Ward) and Birch, are tested and evaluated 

through a comparative evaluation process (described in Section 3) in order to identify the most 

effective one for this application. Mini Batch K-Means is an alternative clustering method to the K-

Means algorithm. The advantages of this method include the reduction of the computational effort 

by using small random batches of a fixed size instead of all the dataset in each iteration [35]. Ward’s 

Hierarchical Agglomerative Clustering Method belongs to the family of the hierarchical 

agglomerative clustering. It is based on the criterion of sum of squares to produce groups that 

minimize within-group dispersion at each binary fusion [36]. Balanced Iterative Reducing and 

Clustering using Hierarchies (Birch) is an unsupervised data mining algorithm used to 

perform hierarchical clustering. It generates a compact summary that retains as much distribution 

information as possible, and then clusters the data summary instead of the original dataset [37,38]. 

The clustering of the targets that need to be visited in an area by the swarm of the USVs is 

performed based on the geospatial coordinates and the wind information (velocity and direction). To 

this end, targets with similar characteristics are grouped. The number of clusters is defined by the 

number of the USVs that form the swarm so that each USV will perform a mission.  

3. Evaluation Methodology  

Two case studies are performed to evaluate the presented methodology for a swarm of 3 USVs 

with the same characteristics by comparing the effectiveness of the clustering algorithms and the 

selected FISs in the specific application. To this end, a fully connected graph was randomly generated 

with 25 nodes. For each node the values of current velocity and direction were set based on Gaussian 

distribution. The current velocity was set from 1 and 3 m/s. Also, the direction was set from 0 to 360 

degrees clockwise. Nodes with yellow correspond to lower values of current velocity (close to 1 m/s) 

while dark blue nodes correspond to higher values of current velocity (close to 3 m/s). It is assumed 

that all the USVs have the necessary fuel and energy to perform the tasks. Regarding the parameter 

settings of ACO, the iterations were set to 20 with 5 size population. The evaporation coefficient was 

set to 0.5, 𝑄𝑄 was set to 1. Regarding the USV characteristics, 𝑚𝑚 was set to 2 𝑘𝑘𝑘𝑘/ℎ and 𝑉𝑉 to 3 m/s. 

The experiments were implemented in Python using Microsoft Windows 10 Environment 

operational system, with AMD Ryzen 7 3800X 8-Core Processor at 3.89 GHz and 32GB RAM.  

The evaluation of the clustering methods is performed based on the aggregation of 3 evaluation 

methods, adopted from [39]. The chosen clustering evaluation criteria are the Silhouette Coefficient, 

the Calinski–Harabasz Index (CHI), and the Davies–Bouldin Index. The normalized scores of the 

evaluation criteria are summed for calculating a cumulative evaluation score (Figure 3). 

Silhouette Coefficient is an evaluation metric that calculates the goodness of a clustering 

technique and its value ranges from -1 to 1. The higher value 1 shows that the means clusters are well 

apart from each other and clearly distinguished. The lower value -1 shows that the means clusters 

are wrongly assigned while the value 0 shows that the distance between the means clusters is not 

significant. For each point i, the distance to its own cluster centroid 𝑎𝑎𝑖𝑖, and the distance to the nearest 

neighboring centroid 𝑏𝑏𝑖𝑖 are calculated. The Silhouette score for the point 𝑚𝑚 is calculated based on 

(6): 𝑒𝑒𝑚𝑚𝐼𝐼ℎ𝑒𝑒𝑒𝑒𝐼𝐼𝑡𝑡𝑡𝑡𝐼𝐼 𝑒𝑒𝑐𝑐𝑒𝑒𝑒𝑒𝐼𝐼 =  
(𝑏𝑏𝑖𝑖 − 𝑎𝑎𝑖𝑖)𝑚𝑚𝑎𝑎𝑚𝑚(𝑎𝑎𝑖𝑖 ,𝑏𝑏𝑖𝑖)                                                (6) 

The Calinski–Harabasz Index, also known as the Variance Ratio Criterion, measures the 

similarity of a point 𝑚𝑚 with its own cluster (cohesion) compared to other clusters (separation). The 

cohesion is calculated based on the distances from the data points within the cluster to its cluster 
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centroid while the separation is calculated based on the distance of the cluster centroids from the 

global centroid. A high score indicates better cluster compactness. 

The cohesion or else instar-cluster dispersion or the within group sum of squares (WGSS) is 

calculated by the following expression (7), where 𝑚𝑚𝑖𝑖 is the number of data points/elements in cluster 

i, 𝑋𝑋𝑖𝑖𝑖𝑖 the j-th element of the cluster i and 𝑚𝑚𝑖𝑖 the centroid of cluster i and K the number of clusters: 𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶 =  ���𝑋𝑋𝑖𝑖𝑖𝑖 −  𝑚𝑚𝑖𝑖�2𝑛𝑛𝑖𝑖
𝑖𝑖=1

𝐾𝐾
𝑖𝑖=1                                                (7) 

The separation or else inter-cluster dispersion or the between group sum of squares (BGSS) is 

calculated by the following expression (8), where C is the centroid of the dataset (barycenter): 𝐵𝐵𝑊𝑊𝐶𝐶𝐶𝐶 = �𝑚𝑚𝑖𝑖 × ‖𝑚𝑚𝑖𝑖 − 𝑚𝑚‖𝐾𝐾
𝑖𝑖=1                                                    (8) 

Calinski–Harabasz Index is defined as shown in (9), where N is the total number of data 

points/elements in the dataset: 

CHI =
 
𝐵𝐵𝑊𝑊𝐶𝐶𝐶𝐶𝐾𝐾 − 1𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶𝑁𝑁 − 𝐾𝐾 =

𝐵𝐵𝑊𝑊𝐶𝐶𝐶𝐶𝑊𝑊𝑊𝑊𝐶𝐶𝐶𝐶 ×
𝑁𝑁 − 𝐾𝐾𝐾𝐾 − 1

                                             (9) 

The Davies–Bouldin Index shows the average similarity of clusters, where similarity is a 

measure that relates cluster distance to cluster size. Comparing clustering algorithms, lower values 

of DBI means that a better separation between the clusters has been achieved. This reflects a function 

of intra-cluster dispersion and separation between the clusters.  

The intra-cluster dispersion of cluster i is calculated by (10), where 𝑇𝑇𝑖𝑖 is the number of elements 

in cluster i, 𝑋𝑋𝑖𝑖 is the j-th element in the cluster i, 𝑚𝑚𝑖𝑖 is the centroid of cluster i and q is a predefined 

value usually set to 2 to calculate the Euclidean distance: 

𝐶𝐶𝑖𝑖 = �1𝑇𝑇𝑖𝑖��𝑋𝑋𝑖𝑖 − 𝑚𝑚𝑖𝑖�𝑞𝑞𝑇𝑇𝑖𝑖
𝑖𝑖=1 �1𝑞𝑞                                                       (10) 

The separation measure is calculated based on (11), where K is the total number of clusters, 𝑐𝑐𝑖𝑖𝑖𝑖 
and 𝑐𝑐𝑖𝑖𝑖𝑖  are the k-th component of n-dimensional centroid 𝑚𝑚𝑖𝑖  of cluster i and 𝑚𝑚𝑖𝑖  of cluster j, 

respectively, and p similarly to q in (10) is a predefined value usually set to 2 to calculate the 

Euclidean distance: 

𝑀𝑀𝑖𝑖𝑖𝑖 = ���𝑐𝑐𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖�𝑝𝑝𝐾𝐾
𝑖𝑖=1 �1𝑝𝑝                                                     (11) 

The DBI is calculated based on the following Equation (12), where: 

𝑚𝑚� =
1𝐾𝐾��𝑚𝑚𝑎𝑎𝑚𝑚 �𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖 �𝐾𝐾

𝑖𝑖=1𝑖𝑖≠𝑖𝑖
𝐾𝐾
𝑖𝑖=1                                             (12) 

 

Figure 3. Clustering evaluation methodology. 

For the evaluation of the path planning of the swarm of USVs, the evaluation criteria are the 

objective terms:  
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The evaluation criteria among the solutions are: 

• The objective criteria: (i) distance; (ii) brut turns; and (iii) fuel consumption 

• Path quality based on the defuzzification value of Mamdani and TSK FISs  

• The computing time 

• The relative percentage deviation (RPD) adopted by [46,47]: 𝑅𝑅𝐼𝐼𝑚𝑚 =  
|𝐵𝐵𝐼𝐼𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘 − 𝐴𝐴𝐼𝐼𝑘𝑘𝑠𝑠𝑠𝑠𝑘𝑘|𝐵𝐵𝐼𝐼𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘 100%                                                         (13) 

• The relative deviation index (RDI) adopted by [46,47]: 𝑅𝑅𝑚𝑚𝐼𝐼 =  
|𝐵𝐵𝐼𝐼𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘 − 𝐴𝐴𝐼𝐼𝑘𝑘𝑠𝑠𝑠𝑠𝑘𝑘|

|𝐵𝐵𝐼𝐼𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘 −𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘| 100%                                                         (14) 

where 𝐵𝐵𝐼𝐼𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘 and 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑠𝑠𝑠𝑠𝑘𝑘 are the best and the worst solutions, respectively; and 𝐴𝐴𝐼𝐼𝑘𝑘𝑒𝑒𝑠𝑠𝑠𝑠𝑘𝑘 is the 

path quality value of the examined solution. Based on Equations (13) and (14), it is obvious that the 

lowest values of RPD and RDI indicate the preferable solution based on the satisfaction of objective 

criteria.  

Each case study was run 20 times. For the proposed ACO variations the population size was set 

to 10 ants and the number of iterations to 20. Also, the evaporation coefficient ρ was set to 0.5 and Q 
was set to 1. The case studies were designed based on the evaluation methodology adopted in related 

works [15,24,44,45]. The experiments and the algorithms were implemented in Python, on Microsoft 

Windows 10 Environment operational system, with AMD Ryzen 7 3800X 8-Core Processor at 3.89 

GHz and 32GB RAM.  

4. Results and Discussion 

The clustering results of the two case studies are illustrated bellow in Figure 4 and Figure 5. For 

better visualization the edges are not depicted, and each cluster is shown in different color and 

represents the operational area for each USV. In the CS1 all the clustering algorithms achieved the 

same result (Figure 4) since the nodes were scattered and the areas based on the clustering features 

were enough discrete. For this reason, clustering evaluation was not performed. On the other hand, 

for more complex areas, such as the one of case study 2, the Mini Batch K-Means and Ward’s 

Hierarchical Agglomerative Clustering generated the same clusters with better evaluation score 

compared to Birch (Figure 5, Table 2). It can be observed that the clusters constructed by Mini Batch 

K-Means and Ward are more balanced in terms of distance, current velocity and number of targets 

that each USV has to visit in their operational area, compared to Birch’s clusters. 

 

Figure 4. Clustering results of case study 1 based on distance and current information. 

Table 2. Evaluation of clustering methods for CS2. The best evaluation score is shown in bold. 

Clustering Algorithm Silhouette 

Coefficient 

Calinski-

Harabasz 

Index 

Davies-Bouldin 

Index 

Cumulative 

Evaluation 

Score 

Mini Batch K-Means 0.82 1301.34 0.36 3 

Ward 0.82 1301.34 0.36 3 
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Birch 0.77 1205.45 0.42 0 

 

 

(a) 

 

(b) 

Figure 5. Clustering results of case study 2 with: Mini Batch K-Means and Ward Clustering (a); and 

Birch (b). 

For the presented case studies, we evaluated the proposed hybrid ACO – FIS schemes. The best 

clustering results were used to determine the operational area of each USV. Table 3 shows the multi-

objective path planning mean results for the case studies after 20 runs solved with ACO-Mamdani 

and ACO-TSK approaches for the swarm of USVs and the selected operational areas for each USV. 

We should notice that all the USVs have the same characteristics and therefore, it is not important to 

identify which USV will perform a certain operation. The three operational areas are declared with 

different colors in the Figure 4 and Figure 5. The mean results showed that ACO-Mamdani is capable 

to generate more balanced paths (better overall path optimality in both cases, Table 3) with respect 

to the objective terms while on the other hand ACO-TSK due to the lack of the defuzzification step 

achieves lower computing times, an important factor in real time applications. Indeed, based on the 

evaluation criteria RPD and RDI for distance (Table 4), number of turns (Table 5) and 

consumption (Table 6) we observe that the paths derived from ACO-Mamdani are of better quality 

almost in all USVs and case studies, but the difference is not that much significant making the ACO 

TSK an adequate option when computing time is also important. 

Table 3. Path planning mean results after 20 runs of the case studies for each ACO-FIS approach for 

the swarm of USVs. The number of turns have been rounded. Best solutions are denoted with bold. 

Case 

Study 

ACO-FIS Swarm 

USVs 

Distance 

(km) 

Number 

of 

Turns 

Consumption 

(kg) 

Optimality Computing 

time (ms) 

CS1 ACO-

Mamdani 

 

ACO-

TSK 

USV1 

(red) 

USV2 

(yellow) 

USV3 

(blue) 

USV1 

(red) 

USV2 

(yellow) 

17.61 

18.55 

18.43 

17.63 

18.62 

18.43 

8 

9 

5 

8 

8 

5 

3.75 

3.87 

3.73 

3.78 

3.89 

3.72 

0.82 

 

 

0.80 

 

3.46 

 

 

3.39 
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USV3 

(blue) 

CS2 ACO-

Mamdani 

 

ACO-

TSK 

USV1 

(red) 

USV2 

(yellow) 

USV3 

(blue) 

USV1 

(red) 

USV2 

(yellow) 

USV3 

(blue) 

17.22 

15.76 

19.04 

17.37 

16.05 

19.18 

7 

6 

5 

7 

6 

6 

3.58 

3.32 

3.64 

3.65 

3.38 

3.79 

0.75 

 

 

0.66 

4.12 

 

 

4.01 

 

Table 4. Evaluation results of mean relative percentage deviation (RPD) and mean relative deviation 

index (RDI) for distance. Best solutions are denoted with bold. 

Case Study ACO-FIS Swarm USVs RPD 𝑅𝑅𝐼𝐼𝑚𝑚������ RDI 𝑅𝑅𝑚𝑚𝐼𝐼����� 

CS1 ACO-Mamdani 

 

ACO-TSK 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

0,00% 

5,34% 

4,66% 

0,11% 

5,74% 
4,66% 

3.33% 

 

 

3.50% 

0,00% 

93,07% 

81,19% 

1,98% 

100,00% 

81,19% 

58,09% 

 

 

61,06% 

 

CS2 ACO-Mamdani 

 

ACO-TSK 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

9,26% 

0,00% 

20,81% 

10,22% 

1,84% 
21,70% 

10.03% 

 

 

11.25% 

0,426900585 

0 

0,959064327 

0,470760234 

0,084795322 

1 

46,20% 

 

 

51,85% 

 

Table 5. Evaluation results of mean relative percentage deviation (RPD) and mean relative deviation 

index (RDI) for brut turns. Best solutions are denoted with bold. 

Case 

Study 

ACO-FIS Swarm USVs RPD 𝑅𝑅𝐼𝐼𝑚𝑚������ RDI 𝑅𝑅𝑚𝑚𝐼𝐼����� 

CS1 ACO-

Mamdani 

 

ACO-TSK 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

60,00% 

80,00% 

0,00% 

60,00% 

60,00% 

0,00% 

46,67% 

 

 

40,00% 

 

 

75,00% 

100,00% 

0,00% 

75,00% 

75,00% 

0,00% 

58,33% 

 

 

50,00% 

 

 

CS2 ACO-

Mamdani 

 

ACO-TSK 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

40,00% 

20,00% 

0,00% 

40,00% 

20,00% 

20,00% 

20,00% 

 

 

26,67% 

 

 

100,00% 

50,00% 

0,00% 

100,00% 

50,00% 

50,00% 

50,00% 

 

 

66,67% 
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Table 6. Evaluation results of mean relative percentage deviation (RPD) and mean relative deviation 

index (RDI) for consumption. Best solutions are denoted with bold. 

Case 

Study 

ACO-FIS Swarm USVs RPD 𝑅𝑅𝐼𝐼𝑚𝑚������ RDI 𝑅𝑅𝑚𝑚𝐼𝐼����� 

CS1 ACO-

Mamdani 

 

ACO-TSK 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

0,81% 

4,03% 

0,27% 

1,61% 

4,57% 

0,00% 

1,70% 

 

 

2,06% 

 
 

17,65% 

88,24% 

5,88% 

35,29% 

100,00% 

0,00% 

37,25% 

 

 

45,10% 

 
 

CS2 ACO-

Mamdani 

 

ACO-TSK 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

USV1 (red) 

USV2 (yellow) 

USV3 (blue) 

7,83% 

0,00% 

9,64% 

9,94% 

1,81% 

14,16% 

5,82% 

 

 

8,63% 

 
 

55,32% 

0,00% 

68,09% 

70,21% 

12,77% 

100,00% 

41,13% 

 

 

60,99% 

 
 

5. Conclusions 

This study presents a methodology to address the swarm USV path planning problem for 

visiting multiple targets formulated as a multi-objective optimization problem. To this end, a 

comparative study among two popular FISs was conducted and 3 popular clustering algorithms. The 

results showed that in simple problems with highly discrete areas, in terms of weather conditions, all 

the clustering methods achieved similar results, however, in uniform weather data Mini Batch K-

Means and Ward presented a slightly better performance based on the evaluation criteria. Regarding 

the performance of FISs for solving the USV path planning problem, the results were in accordance 

with the literature, where each FIS can be suitable depending on the need of the application. For 

instance, ACO enhanced with Mamdani FIS presents a better performance with respect to the quality 

of the solution, but on the other hand, ACO with TSK FIS decrease the computing time which is also 

important in real time applications. 
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