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Article 

The Design of Piecewise Integrated Composite 
Bumper Beam With Machine Learning Algorithm
Seokwoo Ham wand Seong S. Cheon * 

Department of Mechanical Engineering, Kongju National University, Republic of Korea 
* Correspondence: sscheon@kongju.ac.kr

Abstract:  In  the present study, piecewise  integrated composite  (PIC) bumper beam  for passenger cars was 
proposed and design optimisation process for composite bumper beam against IIHS test was carried out with 
the help of machine learning. Several elements in IIHS bumper FE model have been assigned to be references, 
in order to collect training data which, allow the machine learning model to study the method of predicting 
loading types of each finite element. 2‐D and 3‐D implementations were provided by machine learning models, 
which determined stacking sequences of each finite element in PIC bumper beam. It was found that the PIC 
bumper beam, which was designed by machine learning model has direct impact on reducing the possibility 
of  failure  as well  as  increasing  bending  strength  effectively  than  conventional  composite  bumper  beam. 
Moreover,  3‐D  implementation  produced  better  results  compared with  2‐D  implementation  since  it was 
preferable  to  choose  loading  type  information which was  achieved  from  surroundings when  the  target 
elements were located either at corner or junction of planes instead of using information came from the same 
plane of target.   

Keywords: Composite material; Bumper beam; Machine  learning; Stacking  sequence; Piecewise 
integrated composite 

1. Introduction

Environmental  issues  have  recently  accelerated  legislative  actions  worldwide  targeting 
automotive industries and continuous demanding rigorous improvement for fuel efficiency, electric 
motor driving power system and structural compactness/lightness. Specifically, structural lightness 
is  unceasingly  required  regardless  of  electric  power  system  or  capacity  of  auto‐body,  therefore, 
numerous works have been found so far. These works include topology optimisation, novel design 
methodologies and applying lightweight materials, such as non‐ferrous light metals, thermoplastics, 
and fibre reinforced composites [1‐4]. In particular, fibre reinforced composites have excellent specific 
strength, stiffness, and damping characteristics without sacrificing weight saving effect. Due to these 
beneficial properties, they have been used for structural materials of aircraft and space vehicles. As 
low‐cost manufacturing technologies and mass production methods for composite structures have 
been established, the application of composite materials to leisure sport goods and auto‐bodies are 
being increased nowadays [5‐9].   

Bumper beam is one of key parts in the vehicle to alleviate crash damages both for structure and 
passengers.  Recent  bumper  beams  are  frequently  made  of  composites  in  order  to  improve 
crashworthiness and structural lightness simultaneously. So far, entire region of composite bumper 
beams  has  been  made  based  on  conventional  uni‐style  stacking  sequences  without  changing 
sequences of composite plies or fibre orientations [10‐13]. Jeong et al. [14] proposed a novel concept 
of PIC (Piecewise Integrated Composite), in which the loading type of bumper beam was analyzed 
and  dissimilar  stacking  sequences,  i.e.,  tension  dominant,  compression  dominant  and  shear 
dominant, were  assigned  into  five  equally  divided  sub‐regions  of  the  composite  bumper  beam. 
However,  intentionally  divided  sub‐regions  did  not  sufficiently  reflect  element‐based  dominant 
external loading types therefore, it is necessary to automatically assign dissimilar stacking sequences 
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into each element to improve structural characteristics because each local part of the bumper beam is 
experiencing different  types of  loading during crash. Moreover,  the best way  to assign dissimilar 
stacking  sequences  into  all  elements  is  using machine  learning  technique. Accordingly,  the  PIC 
bumper beam design method with employing machine learning models was proposed in order to 
improve  bending  strength  and  structural  lightweight  effect  of  the product  in  the present  study. 
Meanwhile, training data, which allow the machine learning model to study the method of predicting 
loading types of each finite element, were obtained from preliminary IIHS bumper beam FE analysis. 
Also, training data in the current study should contain information about stress triaxiality along with 
location in the form of coordinate values. Five different types of algorithms, which underlie on the 
machine learning model, were applied to guarantee the highest performance in view of improving 
bending  strength  and  structural  lightweight  effect  of  the  product  [15‐17].  Results  of  highest 
performance predicted loading type of each finite elements and robust stacking sequences against 
loading  type were mapped  into  the  entire  region  of  bumper  beam  finite  elements.  Finally,  the 
designed PIC bumper beam was verified in view of the strength improvement and structural weight 
saving effect by the IIHS bumper beam analysis. 

2. Outline of the PIC Bumper Beam Design Process 

The  PIC  is  assigning  different  stacking  sequences  for  each  shell  element  with  a  size  of 
4mmൈ4mm as a similar form of mosaic and elements are assumed to have been perfectly bonded 
each  other  in  order  to  increase  robustness  toward  various  external  loading  types.  Firstly,  a 
preliminary  IIHS bumper FE analysis using aluminium bumper beam was carried out  to achieve 
data, which are the input to machine learning model. For the material of the bumper beam during 
the preliminary FE analysis, aluminium alloy 7021 [18] was used since stress distribution within the 
beam is identical regardless of the material of the beam. Several elements among finite elements were 
chosen to be reference elements in order to collect stress triaxiality for judging the state of loading 
type,  i.e., tension, compression, or shear with proper  location. These data, resulted from reference 
elements, i.e., loading type and location were defined as training data, which are the input to machine 
learning model as explained previously. 

Acquired training data are randomly assigned to five groups, i.e., each group contains 20% of 
training data for generalization’s sake [19]. One of groups is arbitrarily chosen for testing, the others 
for training which are put into machine learning algorithms, therefore, five times of trials are to be 
carried out per one iteration, which are known to be k‐fold cross validation [20]. In the meantime, 
machine  learning  algorithms  produce different  performances  according  to  their  hyperparameter 
values. Mean value of accuracy and ROC  (receiver operating characteristic)‐AUC  (area under  the 
curve) are resulted from performance testing of machine learning algorithms. On condition that the 
results are not satisfactory, hyperparameters are tuned through the Bayesian optimisation algorithm 
and  iterations  are  conducted until  the  lowest  error  or  the  highest  performance  is  obtained. The 
iterative  process,  i.e.,  training  group,  machine  learning  algorithms,  performance  testing  and 
hyperparameter tuning are known as machine learning model. When the results are acceptable, then 
loading types of unreferenced elements are able to be assigned and mapped into finite elements of 
the PIC bumper beam. Figure 1 shows the flowchart of PIC bumper beam design process. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 February 2023                   doi:10.20944/preprints202302.0257.v1

https://doi.org/10.20944/preprints202302.0257.v1


  3 

 

 

Figure 1. Flowchart of PIC with machine learning model. 

3. Preliminary IIHS Bumper FE Analysis 

The FE analysis was conducted with ANSYS LS‐DYNA  (ANSYS,  Inc.), one of  representative 
explicit finite element programs. The Belytschko‐Lin‐Tsay shell formulation is known to be suitable 
for expressing nonlinear anisotropic behavior of thin shell structure including complex load and large 
deformation with  saving  computation  time  [21]. Also,  it was  possible  to  track  the  through  the 
thickness directional stresses at the top, mid and bottom surfaces of each element when the number 
of integration points was set to be three. For that reason, Belytschko‐Lin‐Tsay four node shell element 
with three integration points through the thickness direction were selected in order to model the thin‐
walled structures of bumper beam. Material model, which  is able  to be used  for an elasto‐plastic 
characteristics  with  an  arbitrary  stress  as  a  function  of  strain  curve  and  arbitrary  strain  rate 
dependency, was selected [22]. 
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As previously noted,  aluminium  alloy  7021 was used  for  the material  of  the  bumper  beam 
during the preliminary FE analysis. Mechanical properties of aluminium alloy 7021 were summarised 
in Error! Reference source not found.. 

Table 1. Aluminium alloy 7021 mechanical properties. 

Mechanical properties  Value 
Density  𝜌  2,700 𝑘𝑔/𝑚ଷ 

Young’s modulus  70  GPa 
Poisson’s ratio  𝜈  0.3 
Yield stress  𝜎௬  360 MPa 

About  13%  of  total  finite  element were  assigned  to  be  references,  in  order  to  collect  stress 
triaxiality for judging the state of loading type with proper location during IIHS bumper simulation. 
Stress triaxiality and coordinate location values for each reference element was included in training 
data. Total number of elements  in bumper beam  is about 9,500 and  the reference element ratio  is 
12.8%, which  is  1,210.  Figure  2  shows  the  finite  element  bumper  beam model with  indicating 
reference elements and the cross‐section of the bumper beam. Cross‐sectional shape, total length, and 
radius of curvature for the bumper beam were designed with regard to the current product which 
was installed in a passenger car of “A” company. 2,200kg of the vehicle weight was considered as a 
form of concentrated mass element in the IIHS bumper crash analysis [14]. The IIHS bumper test is 
representatively used to measure the damage regions during the low‐speed crash. In the meantime, 
the deformable barrier was modelled with 39,800 number of elements, based on the IIHS bumper test 
protocol  [23]. The FE model  for  an  automotive bumper beam  and  an  IIHS  standard deformable 
barrier including bumper crash boxes was illustrated in Figure 3. Aluminium alloy 7021 was used for 
the material of the bumper crash box which was firmly connected to rectangular cross‐sectional to 
both ends of the bumper beam. As indicated in Figure 3, the initial speed was 10 km/h, and the vehicle 
mass of 2,200 kg was given to the point, in which the real centre of gravity of a passenger car was 
located.  Consequently,  it  was  found  that  505  number  of  reference  elements  in  tension,  593  in 
compression, and 112 in shear among 1,210 reference elements. 

 

Figure 2. FE bumper beam model. 
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Figure 3. Preliminary IIHS bumper analysis boundary conditions. 

4. Training Data Acquisition and Random Grouping 

As previously mentioned, the training data, which consist of stress triaxialities and coordinate 
location values, were obtained from preliminary IIHS bumper beam FE analysis.   

There are two different implementations methods for random grouping, i.e., 2‐dimentional(2‐D) 
implementation and 3‐dimensional(3‐D) implementation. When the 2‐D implementation is used, the 
training data is obtained from each face of bumper, i.e., the training data for top, front, chamfered, 
bottom, rear, and rib faces, respectively. Each training data regulates its own face, i.e., training data, 
which is obtained from top face is used only for predicting loading type of reference elements located 
in  top  face,  etc. Meanwhile,  training data  in  any  faces  are  able  to be used  for  any  faces, on  3‐D 
implementation. 

Loading type of reference elements is determined through the stress triaxiality of each element. 
The definition of the stress triaxiality, is shown in Eq. (1). 𝜂 ൌ 𝜎௠𝜎ത   (1)

where  𝜎௠  and  𝜎ത  are the mean principal stress and the von Mises stress, respectively [24].   
Eqns. (2) and (3) show the definitions of mean principal stress and von Mises stress. 𝜎௠ ൌ ൫𝜎௫ ൅ 𝜎௬ ൅ 𝜎௭ ൯

3
  (2)

𝜎ത ൌ ඨ1

2
ቂ൫𝜎௫ െ 𝜎௬൯ଶ ൅ ൫𝜎௬ െ 𝜎௭൯ଶ ൅ ሺ𝜎௭ െ 𝜎௫ሻଶ ൅ 3൫𝜎௫௬ଶ ൅ 𝜎௬௭ଶ ൅ 𝜎௭௫ଶ ൯ቃ  (3)

When  𝜂  is bigger  than 0.1,  loading  type  is considered  to be  tension dominant. Compression 
dominant loading type is believed if  𝜂  is smaller than ‐0.1. In case  𝜂  is bigger than ‐0.1 and smaller 
than 0.1, that element is subject to shear dominant loading [25]. 

Acquired training data are randomly divided into five groups, i.e., each group contains 20% of 
training data for the sake of generalization. As previously noticed, one of groups is arbitrarily chosen 
for  testing,  the others  for  training which are put  into machine  learning algorithms,  therefore,  five 
times of trials are to be carried out per one iteration, which are known to be k‐fold cross validation. 

5. Machine Learning Models 

As  previously  mentioned  in  Ch.2,  machine  learning  model  consists  of  machine  learning 
algorithms, performance estimation/testing and hyperparameter tuning.   
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5.1. Machine Learning Algorithms 

Machine  learning  algorithms  are  able  to  characterise  data  for  the  sake  of  classification, 
regression,  clustering,  and  outlier  detection.  In  the  present  study,  classification  related machine 
learning algorithms were considered since it is indispensable to classify unknown data with decent 
prediction.  Decision  tree,  ensemble  decision  tree  (boosted  and  bagged),  SVM  (Support  vector 
machine), and k‐NN (k nearest neighbors) classification were chosen among classification algorithms 
according to their ability of classifying  imbalanced data [26]. Each algorithm has several different 
parameters, i.e., hyperparameters, which are to be iteratively tuned based according to the Bayesian 
algorithm in order to optimise the results [27]. A detailed description of the classification used can be 
found as follows: 

5.1.1. Decision Tree 

Decision tree  is normally used to compare unknown data  to tree structure, which consists of 
root, branches and  leaves. During  the  root process, unknown data are  input  to  the decision  tree 
algorithm and the output of the root process is transferred to various branches. Intermediate results 
for determining loading types of unknown data are generated based on the characteristics of training 
groups, which survive from criteria during the branch process. Final loading types of unknown data 
are unveiled in the leaf process. Decision tree has two hyperparameters, i.e., maximum number of 
splits and criteria, which was summarised in Table 2 [28]. 

Table 2. Decision tree hyperparameters. 

Machine learning 
model 

Hyperparameter  Variable 

Decision tree 

Max. number of splits  1~1209 

Split criterion 
Gini’s diversity index 

Towing rule 
Maximum deviance reduction 

5.1.2. Ensemble Method 

There  is  a  high possibility  that  the  overfitting, which  is  indicating  that predicted  results  of 
loading  types are  sufficiently good  for  training group, however, poor prediction  is generated  for 
unreferenced elements, happens when it involves too much branch processes. To reduce the effect of 
overfitting, it is recommended to apply the ensemble method, which merges outcomes from several 
branches  into one value.  In  the present study, boosted decision  tree and bagged decision  tree are 
considered since they are considered to be representative machine learning algorithms with ensemble 
method. The boosted decision tree is applying the same algorithm model, which is previously used 
for the decision tree, iteratively and sequentially. Iterations are conducted with updated weighting 
factor, until the results fulfil the criterion. It requires maximum number of splits, number of learners, 
and learning rate as its hyperparameters. Bagged decision tree needs to apply several decision trees, 
which  are  generated  by  bootstrapping  variations  of  the  same  decision  tree  algorithm  model, 
parallelly at the same time. The best result is selected among aggregated ones based on a majority 
vote. The bagged decision  tree needs  two hyperparameters,  i.e., maximum number of  splits and 
number of learners. Table 3 shows the hyperparameters for the ensemble method [29]. 

Table 3. Ensemble methods hyperparameters. 

Machine learning 
model  Hyperparameter  Variable 

Boosted decision trees 
Max. number of splits  1 ~ 1209 
Number of learners  10~500 

Learning rate  0.001~1 
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Bagged decision trees 
Max. number of splits  1 ~ 1209 
Number of learners  10 ~ 500 

5.1.3. SVM 

SVM aims at forming the finest suitable decision limit or boundary, known as hyperplane, which 
separates n‐dimensional space  into  loading  types, making  it easy  to place a different point  in  the 
appropriate area. In SVM algorithm, extreme vector points called support vectors are chosen which 
help  in creating a proper hyperplane. Hyperplane of SVM is defined as the best possible decision 
boundary  out  of  various possible decision  boundaries  that  accurately  classifies  the  classes  in  n‐
dimensional space. Features of the training group determine the dimensions of the hyperplane. A 
hyperplane  having  maximum  margins,  which  means  the  distance  between  two  data  points  is 
maximum, is preferred. Kernel function, kernel scale, box constraint level, and multiclass method are 
hyperparameters, which are listed in Table 4 [30]. 

Table 4. SVM hyperparameters. 

Machine learning 
model  Hyperparameter  Variable 

SVM 

Kernel function 

Gaussian 
Linear 

Quadratic 
Cubic 

Kernel scale  0.001~1000 
Box constraint level  0.001~1000 

Multiclass method 
One‐vs‐One 
One‐vs‐All 

5.1.4. k‐NN Classification 

The k‐NN classification is instance‐based learning method used to classify objects based on their 
closest training group in the feature space. An object is classified by a majority vote of its neighbors, 
i.e., the object is assigned to the class that is most common amongst its k‐nearest neighbors, where k 
is  a  positive  integer.  In  the  k‐NN  classification,  the  classification  of  a  new  test  feature  vector  is 
determined by the classes of its k‐nearest neighbors. Here, the k‐NN classification was implemented 
using various distance metrics to locate the nearest neighbor. Number of neighbors, distance metric, 
and distance weight are its hyperparameters as shown in Table 5 [31]. 

Table 5. k‐NN classification hyperparameters. 

Machine learning 
model 

Hyperparameter  Variable 

k‐NN classification 

Number of neighbors  1 ~ 605 

Distance metric 

City block 
Chebyshev 
Correlation 
Cosine 

Euclidean 
Hamming 

Distance weight 
Equal 
Inverse 

Squared inverse 
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5.2. Performance Testing 

There are four types of cross validations, i.e., k‐fold, holdout, leave‐p‐out and leave‐one‐out in 
order to estimate the performance of the machine learning algorithms [32]. In the present study, k‐
fold cross validation was selected among them since it is known to have an ability to reduce biases 
and classify loading types with low capacity of training data [33]. As mentioned in Ch. 2, acquired 
training data were randomly divided into five groups, i.e., each group contains 20% of training data 
for the sake of generalization. One of groups was arbitrarily chosen for testing, the others for training 
which were put into machine learning algorithms, therefore, five times of trials were carried out per 
one iteration.   

The performance of the machine learning algorithms was estimated using the accuracy and the 
ROC‐AUC value [34]. Accuracy is the proportion of correct predictions made by the model out of the 
total number of predictions as shown in Eqn. (4) [35]. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ሺ%ሻ ൌ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ൈ 100  (4)

Accuracy is a widely used metric because of its simplicity and effectiveness, however, it contains 
the mixed information of tension, compression, and shear loading types. According to the possibility 
of imbalanced training data, which were produced from preliminary FE analysis, ROC‐AUC might 
alleviate  the misleading  results by  the  imbalanced data  [36]. ROC‐AUC  is  suitable  for estimating 
imbalanced loading type data, since they can separately show individual values for each loading type 
among  training group. The ROC  curve  comes  from  ratios based on  correctly predicted data and 
incorrectly predicted data, and the AUC means the area under the ROC curve. Generally, AUC takes 
values from 0 to 1, where a value of 0 indicates a perfectly inaccurate estimation, and a value of 1 
reflects a perfectly accurate estimation. Less than 0.5 of AUC value suggests no discrimination, 0.7 to 
0.8  is  considered  acceptable,  0.8  to  0.9  is  considered  excellent,  and more  than  0.9  is  considered 
outstanding [37, 38]. The convergence criterion (𝐶௖௥௜௧ሻ  is defined as the change in accuracy as shown 
in Eqn. (5) [39].  𝐶௖௥௜௧ ൌ ฬ𝐴௡ െ 𝐴௡ିଵ𝐴௡ ฬ  (5)

where  𝐴௡  implies the accuracy value at the n‐ iteration. In order to meet the highest performance, 
the value  for  the convergence criterion was  set  to be 0.1. When  the  results were not  satisfactory, 
hyperparameters were tuned based on Bayesian optimisation algorithm and iterative performance 
estimation and testing were conducted, which was detailed in the next chapter. 

5.3. Hyperparameter Tuning with Bayesian Optimisation Algorithm 

As  previously  mentioned,  hyperparameters  are  tuned  through  the  Bayesian  optimisation 
algorithm, which is famous for more effective compared to the grid search or random search, and 
iterations are conducted until the lowest error or the highest performance is obtained on condition 
that the results are not satisfactory [40, 41]. The main feature of optimising technique is to maximise 
the  objective  function, which  is  denoted  by  𝒇   along with  hyperparameters  as  its  independent 
variables. The output of the objective function is the performance of machine learning algorithms. 
Each  iteration needs updating or  tuning  the hyperparameters within  their own domain, which  is 
represented by  𝑿. Accordingly, the Bayesian optimisation algorithm can be explained as Eqn. (6): 𝒙∗ ൌ arg max𝒙∈𝑿 𝒇ሺ𝒙ሻ  (6)

where  𝒙   denotes  a  set  of  hyperparameter  values  in  the  domain  𝑿 ,  and  𝒙∗   is  the  set  of 
hyperparameters that maximises the performance, i.e., the output of the objective function  𝒇  [42]. 
Hyperparameters  were  tuned  by  the  Expected‐Improvement‐Per‐Second  Plus,  which  provided 
fastest  speed of  the  convergence  criterion  as well as prevented overexploiting possible  ranges of 
hyperparameter domains  from being  illuded by  the  local maximum  [43]. When  the value of  the 
convergence  criterion  became  lower  than  0.001,  hyperparameter  tuning was  completed.  Table  6 
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indicates the completely tuned hyperparameter values, which maximised the performance of each 
algorithm. Learning rate in the Boosted decision trees, Kernel scale and box constraint level of SVM 
were displayed by four decimal point.   

Table 6. Optimised hyperparameter using Bayesian algorithms. 

Machine learning 
model  Hyperparameter  Values 

Decision tree 
Max. number of splits  17 

Split criterion  Gini’s diversity index 

Boosted decision trees 
Max. number of splits  1149 
Number of learners  50 

Learning rate  0.8987 

Bagged decision trees 
Max. number of splits  694 
Number of learners  214 

SVM 

Kernel function  Gaussian 
Kernel scale  30.2498 

Box constraint level  3.8962 
Multiclass method  One‐vs‐One 

k‐NN classification 
Number of neighbors  4 

Distance metric  City block 
Distance weight  Squared inverse 

Tables 7 & 8 show the highest performances, i.e., accuracy and ROC‐AUC value of 2‐D and 3‐D 
implementations. All values in the Table 7 are the average of values of top, front, chamfered, bottom, 
rear, and rib faces both for the accuracy and the ROC‐AUC. The accuracy from the 3‐dimensional 
implementation was higher than that of the 2‐dimensional implementation. The k‐NN classification 
showed the highest accuracy both for 2‐dimensional and 3‐dimensional implementations. As shown 
in Tables 7 & 8, predicted ROC‐AUC values for shear dominant loading type were smallest compared 
with either tensile or compressive ones, since the portion of shear dominant reference elements was 
lowest. 

Table 7. Performances of 2‐dimensional implementation. 

Machine learning 
model 

Accuracy (%) 
ROC‐AUC 

Tension  Compression  Shear 
Tree  84.2  0.85  0.88  0.73 

Boosted decision trees  85.1  0.89  0.92  0.75 
Bagged decision trees  81.1  0.90  0.91  0.75 

SVM  85.9  0.89  0.90  0.62 
k‐NN classification  86.0  0.90  0.92  0.75 

Table 8. Performances of 3‐dimensional implementation. 

Machine learning 
model  Accuracy (%) 

ROC‐AUC 
Tension  Compression  Shear 

Tree  85.4  0.95  0.94  0.80 
Boosted decision trees  85.1  0.98  0.97  0.87 
Bagged decision trees  85.3  0.98  0.97  0.87 

SVM  86.2  0.96  0.94  0.62 
k‐NN classification  86.3  0.98  0.97  0.87 
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6. Prediction and Mapping of Loading Type of Unreferenced Elements 

k‐NN was applied to predict loading types of unreferenced finite elements in the PIC bumper 
beam with the input of coordinate location values of target locations since it was revealed to be the 
most excellent classification both for 2‐D and 3‐D implementations from the comparison of resultant 
performance  of  machine  learning  algorithms  without  further  predictions  using  other  machine 
learning algorithms. In the meantime, there are no previous results of loading types for unreferenced 
elements, i.e., no solutions are existing, it was unnecessary to calculate either accuracy or ROC‐AUC 
values.  Predicted  results  involved  loading  types  and  their  locations,  for  unreferenced  elements, 
therefore,  they were mapped  into  the  PIC  bumper  FE model.  In  the meantime,  robust  stacking 
sequences against each loading type were listed in Table 9 [44]. Also, these stacking sequences were 
mapped into the FE model as shown in Figure 4. 

Table 9. Robust stacking sequences against each loading type. 

Dominant loading  Stacking sequence 

Tension  [ 90/ 0/ 0ത]଺ୱ 
Compression  [ േ 5 /േ 45 / 90 ]ଷୱ 

Shear  [ 0/90]ଵହ 

 
Figure 4. Mapping results ‐ 2‐D implementation vs 3‐D implementation. 

While machine learning algorithms were predicting dominant loading type at a certain face, only 
training data obtained  from  reference  elements which were  located  at  the  same  face during  2‐D 
implementation. On the other hand, training data from reference elements, which were  located at 
various faces depending on the metric values, were used for dominant loading type prediction in 3‐
D implementation as previously mentioned. From the Figure 4, it was observed that three different 
loading types were mixed together at both ends which were firmly connected to rectangular cross‐
sectional bumper crash boxes. 42.3%, 53.2%, and 4.5% of tension, compression, and shear dominant 
loading types were predicted for the entire PIC bumper beam FE model from 2‐D implementation, 
whilst 42.1%, 50.4%, and 7.5% of tension, compression, and shear dominant loading types from 3‐D 
implementation for the same bumper beam FE model. Also, each loading type areal difference was 
conspicuous in the rib face, i.e., tension dominant area from 3‐D was 6.5% larger than that from 2‐D, 
compression dominant area from 3‐D was 12.5% smaller than that from 2‐D, and shear dominant area 
from 3‐D was 5.9% larger than that from 2‐D, as observed from Figure 4. Meanwhile, loading type 
areas were the most similar from 2‐D and 3‐D on the front face. These results were summarised in 
Table 10. 
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Table 10. Predicted dominant loading type – 2‐D implementation vs 3‐D implementation. 

Face 
2‐D implementation  3‐D implementation 

Tension  Comp.  Shear  Tension  Comp.  Shear 
Top  43.5%  53.3%  3.2%  41.2%  50.2%  8.6% 

Front & chamfered  0.8%  97.5%  1.8%  2.1%  95.9%  2.0% 
Bottom  20.7%  30.4%  2.1%  15.8%  29.5%  7.9% 
Rear  95.5%  2.0%  2.5%  92.0%  2.8%  5.2% 
Rib  30.0%  54.4%  15.6%  36.6%  41.9%  21.5% 
Total  42.3%  53.2%  4.5%  42.1%  50.4%  7.5% 

7. Bending Strength Evaluation of PIC Bumper Beam 

IIHS  bumper  analyses were  performed  using ANSYS  LS‐DYNA  (ANSYS,  inc.)  in  order  to 
evaluate the bending strength of the PIC bumper beam based on the 2‐D and 3‐D implementations 
with employing machine learning model as well as a composite bumper beam with a conventional 
stacking  sequence  of   ሾ0/േ45ሿହௌ   for  comparison’s  sake.  Fully  integrated  shell  formulation was 
selected to express nonlinear anisotropic behaviour with warpage under the function of improved 
transverse shear  treatment  for composite beam FE model  [45]. Enhanced composite damage  type 
material model, which are frequently used for describing material anisotropy with the help of the 
laminated shell theory, was selected for the whole composite part [22]. Table 11 shows the mechanical 
properties  of T700/2510  carbon  fibre  epoxy  composite which were  considered  for  the  composite 
bumper beam [46]. Initial velocity, vehicle weight and miscellaneous details were the same as those 
used in preliminary IIHS bumper beam FE analysis. Deformation of PIC bumper beam and crash box 
was illustrated in Figure 5.   

(a)  (b)  (c)  (d)  (e) 

Figure 5. Deformation of PIC bumper beam (3‐D implementation): (a) Time: 0 s, COG displacement: 
0 mm, (b) time: 0.009 s, COG displacement: 24 mm, (c) time: 0.02 s, COG displacement: 54mm (d): 
time: 0.035 s COG displacement: 80 mm, (e) time: 0.045 s, COG displacement: 107 mm. 

Beam was undergoing two types of deformation, i.e., bending type at centre part and buckling 
type along with  cross‐sectional direction at both  ends which were  connected  to  crash box. From 
Figure  5  (b),  pure  bending  deformation  of  bumper  beam was  observed  until  0.009  sec  (C.O.G 
displacement:  24  mm),  while  buckling  type  crash  box  deformation  started  at  0.02  sec  (C.O.G 
displacement: 54 mm) as shown in Figure 5 (c). Deformation of crash box initiated from the inner part 
and propagated to outer part owing to convex shape of the IIHS barrier. Bumper beam deformed to 
become a straight shape with respect to  longitudinal direction and main deformation belonged to 
crash box at 0.035  sec  (C.O.G displacement: 80 mm)  as depicted  in Figure 5  (d).  In Figure  5  (e), 
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maximum deformation of the bumper beam and crash box occurred at 0.045 sec (C.O.G displacement: 
107 mm), elastic spring back started from this point.   

Tsai‐Wu indexes were investigated for specific elements, which were exposed to comparatively 
higher loading. The 66246th element and the 67010th element were chosen from the centre part and 
the RH end part of the composite bumper beam as visible in Figure 5 (a) since these parts underwent 
severer deformation during FE analyses. 

Dominant loading type for the 66246th element and the 67010th element were found to be shear, 
and decent  loading  type was predicted by  the  3‐D  implementation, but  the  2‐D  implementation 
predicted compression for the elements. As a result, the Tsai‐Wu indexes for the 66246th element and 
the 67010th element were shown in Figure 6. 

Table 11. Mechanical properties of T700/2510 carbon epoxy composite [46]. 

Properties  Values 

Density,  ሾ𝜌ሿ  1520  𝑘𝑔/𝑚𝟑 
Longitudinal modulus,  ሾ𝐸𝟏ሿ  126 GPa 

Transverse Modulus,  ሾ𝐸𝟐ሿ  8.4 GPa 

Shear modulus,  ሾ𝐺𝟏𝟐ሿ  4.23 GPa 

Shear modulus,  ሾ𝐺𝟐𝟑ሿ  4.23 GPa 

Poisson’s ratio,  ሾ𝑣𝟏𝟐ሿ  0.024 

Axial tensile strength,  ሾ𝑋௧ሿ  2172 MPa 

Axial compressive strength,  ሾ𝑋௖ሿ  1450 MPa 

Transverse tensile strength,  ሾ𝑌௧ሿ  49 MPa 

Transverse compressive strength,  ሾ𝑌௖ሿ  199 MPa 

In‐plane shear strength,  ሾ𝑆ሿ  155 MPa 
 

(a)  (b) 

Figure 6. Tsai‐Wu index: (a) Centre part (element 66246), (b) end part (element 67010). 

In Figure 6, the index, calculated based on the conventional composite beam, was found to be 
exceeding 1. The index for 2‐D was close to 1, but the index for 3‐D was the lowest, i.e., conventional 
composite beam was experiencing fracture, while PIC bumper beams were safe under the same level 
of external loading. It was found that the conventional stacking sequence did not sufficiently respond 
to external loading, and the PIC bumper beams were safe and effective. In the meantime, the Tsai‐
Wu indexes revealed that the PIC beam of 3‐D implementation was safer compared with that of 2‐D 
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implementation. The force‐displacement curve results of conventional composite bumper beam and 
PIC bumper beams were plotted  in Figure 7. Each deformation of stage (a), (b), (c), (d), and (e)  in 
Figure 5 were synchronised to points from (a) to (e) in Figure 7. 

Force slope increased at point (d) because crash boxes and both end parts of composite bumper 
beam  started  to deform. Higher  external  load  resisting ability of a  composite bumper beam was 
dependent on the proper stacking sequences of both end parts. 

 
Figure 7. Force‐displacement curve of composite bumper beams. 

The maximum bending strength of the conventional composite bumper beam was 158 kN, while 
that of the PIC bumper beam based on 2‐D implementation was 184 kN, and 3‐D implementation, 
206 kN, i.e., the bending strength of PIC bumper beam of 3‐D implementation was about 10.4% and 
23.0%  higher  than  that  of  2‐D  implementation  and  that  of  conventional  stacking  sequence, 
respectively.  The  PIC  bumper  beams  with  machine  learning  model  showed  superior  bending 
strength  to  conventional  composite  bumper. As  previously  observed,  PIC  bumper  beam  of  3‐D 
implementation  showed  higher  external  load  resisting  ability  compared  to  that  of  2‐D 
implementation. Therefore, it was found that the 3‐D implementation was more effective to assign 
proper stacking sequences into exact places of composite bumper beam. If PIC bumper beams were 
designed targeting the same bending strength level of conventional composite bumper beam, 8% and 
12% of weight saving effects could be achieved as summarised in Table 12. 

Table 12. Mass of same bending strength level composite bumper beam. 

Design method  Bumper beam mass(kg)  (%) 

Conventional  1.31  ‐ 

2‐D implementation  1.20    8%↓ 

3‐D implementation  1.15  12%↓ 

From  crashworthiness point of view,  conventional  composite bumper beam absorbed 6980  J 
during  IIHS  bumper  crash  analysis. Meanwhile,  2‐D  implemented,  and  3‐D  implemented  PIC 
bumper beams absorbed 8230 J and 8260 J, respectively. PIC bumper beam of 3‐D implementation 
also  showed  slightly  higher  energy  absorption  characteristics  than  either  conventional  or  2‐D 
implemented composite bumper beam. Therefore, PIC bumper beam design with machine learning 
has  direct  impact  on  reducing  the  possibility  of  failure  as well  as  increasing  bending  strength 
effectively.  Moreover,  3‐D  implementation  produced  better  results  compared  with  2‐D 
implementation since it was preferable to choose loading type information which was achieved from 
surroundings when the target elements were located either at corner or junction of planes instead of 
using information came from the same plane of target. 
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8. Conclusions

The PIC bumper beam with  employing machine  learning models was proposed  in order  to 
improve bending strength and structural lightweight effect, which were proved by IIHS bumper FE 
simulations.  During  simulation,  composite  bumper  beam  was  undergoing  two  major  types  of 
deformation, i.e., bending type at centre part and buckling type along with cross‐sectional direction 
at both ends which were connected to crash box. 2‐D and 3‐D implementations were provided by 
machine learning models, which determined stacking sequences of each finite element in PIC bumper 
beam.  It was  found  that PIC  bumper  beams were  safe  and  effective, however,  the  conventional 
composite bumper beam did not sufficiently withstand external loading. In the meantime, the Tsai‐
Wu indexes revealed that the PIC beam of 3‐D implementation was safer compared with that of 2‐D 
implementation. Also, dominant loading type for centre part and both end parts were found to be 
shear, and correct loading type was predicted by 3‐D implementation, but the 2‐D implementation 
predicted compression for parts.   

Bending strength of 3‐D  implementation was about 10.4% and 23.0% higher than that of 2‐D 
implementation  and  that  of  conventional  stacking  sequence.  PIC  bumper  beam  of  3‐D 
implementation  showed  higher  external  load  resisting  ability  compared  to  that  of  2‐D 
implementation. Therefore, it was found that the 3‐D implementation was more effective to assign 
proper stacking sequences into exact places of composite bumper beam. If PIC bumper beams were 
designed targeting the same bending strength level of conventional composite bumper beam, 8% and 
12% of weight saving effects could be achieved. Therefore, PIC bumper beam design with machine 
learning has direct impact on reducing the possibility of failure as well as increasing bending strength 
effectively. 

From  crashworthiness point of view,  conventional  composite bumper beam absorbed 6980  J 
during  IIHS  bumper  crash  analysis. Meanwhile,  2‐D  implemented,  and  3‐D  implemented  PIC 
bumper beams absorbed 8230 J and 8260 J, respectively. PIC bumper beam of 3‐D implementation 
also  showed  slightly  higher  energy  absorption  characteristics  than  either  conventional  or  2‐D 
implemented  composite  bumper  beam. Moreover,  3‐D  implementation  produced  better  results 
compared with  2‐D  implementation  since  it was preferrable  to  choose  loading  type  information 
which was achieved from surroundings when the target elements were located either at conner or 
junction of planes instead of using information came from the same plane of target. 
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