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Abstract: In the present study, piecewise integrated composite (PIC) bumper beam for passenger cars was
proposed and design optimisation process for composite bumper beam against ITHS test was carried out with
the help of machine learning. Several elements in IIHS bumper FE model have been assigned to be references,
in order to collect training data which, allow the machine learning model to study the method of predicting
loading types of each finite element. 2-D and 3-D implementations were provided by machine learning models,
which determined stacking sequences of each finite element in PIC bumper beam. It was found that the PIC
bumper beam, which was designed by machine learning model has direct impact on reducing the possibility
of failure as well as increasing bending strength effectively than conventional composite bumper beam.
Moreover, 3-D implementation produced better results compared with 2-D implementation since it was
preferable to choose loading type information which was achieved from surroundings when the target
elements were located either at corner or junction of planes instead of using information came from the same
plane of target.

Keywords: Composite material; Bumper beam; Machine learning; Stacking sequence; Piecewise
integrated composite

1. Introduction

Environmental issues have recently accelerated legislative actions worldwide targeting
automotive industries and continuous demanding rigorous improvement for fuel efficiency, electric
motor driving power system and structural compactness/lightness. Specifically, structural lightness
is unceasingly required regardless of electric power system or capacity of auto-body, therefore,
numerous works have been found so far. These works include topology optimisation, novel design
methodologies and applying lightweight materials, such as non-ferrous light metals, thermoplastics,
and fibre reinforced composites [1-4]. In particular, fibre reinforced composites have excellent specific
strength, stiffness, and damping characteristics without sacrificing weight saving effect. Due to these
beneficial properties, they have been used for structural materials of aircraft and space vehicles. As
low-cost manufacturing technologies and mass production methods for composite structures have
been established, the application of composite materials to leisure sport goods and auto-bodies are
being increased nowadays [5-9].

Bumper beam is one of key parts in the vehicle to alleviate crash damages both for structure and
passengers. Recent bumper beams are frequently made of composites in order to improve
crashworthiness and structural lightness simultaneously. So far, entire region of composite bumper
beams has been made based on conventional uni-style stacking sequences without changing
sequences of composite plies or fibre orientations [10-13]. Jeong et al. [14] proposed a novel concept
of PIC (Piecewise Integrated Composite), in which the loading type of bumper beam was analyzed
and dissimilar stacking sequences, i.e., tension dominant, compression dominant and shear
dominant, were assigned into five equally divided sub-regions of the composite bumper beam.
However, intentionally divided sub-regions did not sufficiently reflect element-based dominant
external loading types therefore, it is necessary to automatically assign dissimilar stacking sequences
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into each element to improve structural characteristics because each local part of the bumper beam is
experiencing different types of loading during crash. Moreover, the best way to assign dissimilar
stacking sequences into all elements is using machine learning technique. Accordingly, the PIC
bumper beam design method with employing machine learning models was proposed in order to
improve bending strength and structural lightweight effect of the product in the present study.
Meanwhile, training data, which allow the machine learning model to study the method of predicting
loading types of each finite element, were obtained from preliminary IIHS bumper beam FE analysis.
Also, training data in the current study should contain information about stress triaxiality along with
location in the form of coordinate values. Five different types of algorithms, which underlie on the
machine learning model, were applied to guarantee the highest performance in view of improving
bending strength and structural lightweight effect of the product [15-17]. Results of highest
performance predicted loading type of each finite elements and robust stacking sequences against
loading type were mapped into the entire region of bumper beam finite elements. Finally, the
designed PIC bumper beam was verified in view of the strength improvement and structural weight
saving effect by the IIHS bumper beam analysis.

2. Outline of the PIC Bumper Beam Design Process

The PIC is assigning different stacking sequences for each shell element with a size of
4mmX4mm as a similar form of mosaic and elements are assumed to have been perfectly bonded
each other in order to increase robustness toward various external loading types. Firstly, a
preliminary IIHS bumper FE analysis using aluminium bumper beam was carried out to achieve
data, which are the input to machine learning model. For the material of the bumper beam during
the preliminary FE analysis, aluminium alloy 7021 [18] was used since stress distribution within the
beam is identical regardless of the material of the beam. Several elements among finite elements were
chosen to be reference elements in order to collect stress triaxiality for judging the state of loading
type, i.e., tension, compression, or shear with proper location. These data, resulted from reference
elements, i.e., loading type and location were defined as training data, which are the input to machine
learning model as explained previously.

Acquired training data are randomly assigned to five groups, i.e., each group contains 20% of
training data for generalization’s sake [19]. One of groups is arbitrarily chosen for testing, the others
for training which are put into machine learning algorithms, therefore, five times of trials are to be
carried out per one iteration, which are known to be k-fold cross validation [20]. In the meantime,
machine learning algorithms produce different performances according to their hyperparameter
values. Mean value of accuracy and ROC (receiver operating characteristic)-AUC (area under the
curve) are resulted from performance testing of machine learning algorithms. On condition that the
results are not satisfactory, hyperparameters are tuned through the Bayesian optimisation algorithm
and iterations are conducted until the lowest error or the highest performance is obtained. The
iterative process, i.e., training group, machine learning algorithms, performance testing and
hyperparameter tuning are known as machine learning model. When the results are acceptable, then
loading types of unreferenced elements are able to be assigned and mapped into finite elements of
the PIC bumper beam. Figure 1 shows the flowchart of PIC bumper beam design process.
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Figure 1. Flowchart of PIC with machine learning model.

3. Preliminary ITHS Bumper FE Analysis

The FE analysis was conducted with ANSYS LS-DYNA (ANSYS, Inc.), one of representative
explicit finite element programs. The Belytschko-Lin-Tsay shell formulation is known to be suitable
for expressing nonlinear anisotropic behavior of thin shell structure including complex load and large
deformation with saving computation time [21]. Also, it was possible to track the through the
thickness directional stresses at the top, mid and bottom surfaces of each element when the number
of integration points was set to be three. For that reason, Belytschko-Lin-Tsay four node shell element
with three integration points through the thickness direction were selected in order to model the thin-
walled structures of bumper beam. Material model, which is able to be used for an elasto-plastic
characteristics with an arbitrary stress as a function of strain curve and arbitrary strain rate
dependency, was selected [22].
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As previously noted, aluminium alloy 7021 was used for the material of the bumper beam
during the preliminary FE analysis. Mechanical properties of aluminium alloy 7021 were summarised
in Error! Reference source not found..

Table 1. Aluminium alloy 7021 mechanical properties.

Mechanical properties Value
Density p 2,700 kg/m3
Young’'s modulus 70 GPa
Poisson’s ratio v 0.3
Yield stress o, 360 MPa

About 13% of total finite element were assigned to be references, in order to collect stress
triaxiality for judging the state of loading type with proper location during IIHS bumper simulation.
Stress triaxiality and coordinate location values for each reference element was included in training
data. Total number of elements in bumper beam is about 9,500 and the reference element ratio is
12.8%, which is 1,210. Figure 2 shows the finite element bumper beam model with indicating
reference elements and the cross-section of the bumper beam. Cross-sectional shape, total length, and
radius of curvature for the bumper beam were designed with regard to the current product which
was installed in a passenger car of “A” company. 2,200kg of the vehicle weight was considered as a
form of concentrated mass element in the IIHS bumper crash analysis [14]. The IIHS bumper test is
representatively used to measure the damage regions during the low-speed crash. In the meantime,
the deformable barrier was modelled with 39,800 number of elements, based on the IIHS bumper test
protocol [23]. The FE model for an automotive bumper beam and an IIHS standard deformable
barrier including bumper crash boxes was illustrated in Figure 3. Aluminium alloy 7021 was used for
the material of the bumper crash box which was firmly connected to rectangular cross-sectional to
both ends of the bumper beam. As indicated in Figure 3, the initial speed was 10 km/h, and the vehicle
mass of 2,200 kg was given to the point, in which the real centre of gravity of a passenger car was
located. Consequently, it was found that 505 number of reference elements in tension, 593 in
compression, and 112 in shear among 1,210 reference elements.
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Figure 2. FE bumper beam model.
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Figure 3. Preliminary ITHS bumper analysis boundary conditions.

4. Training Data Acquisition and Random Grouping

As previously mentioned, the training data, which consist of stress triaxialities and coordinate
location values, were obtained from preliminary ITHS bumper beam FE analysis.

There are two different implementations methods for random grouping, i.e., 2-dimentional(2-D)
implementation and 3-dimensional(3-D) implementation. When the 2-D implementation is used, the
training data is obtained from each face of bumper, i.e., the training data for top, front, chamfered,
bottom, rear, and rib faces, respectively. Each training data regulates its own face, i.e., training data,
which is obtained from top face is used only for predicting loading type of reference elements located
in top face, etc. Meanwhile, training data in any faces are able to be used for any faces, on 3-D
implementation.

Loading type of reference elements is determined through the stress triaxiality of each element.
The definition of the stress triaxiality, is shown in Eq. (1).

n=—= 1)

where o, and ¢ are the mean principal stress and the von Mises stress, respectively [24].
Eqgns. (2) and (3) show the definitions of mean principal stress and von Mises stress.

:(ax+ay+az)

Om > )

Qi

= \/% [(O'x - O'y)2 + (O'y - Uz)z + (0, —0,)* + 3(0-9?3’ + 03%2 + O-ZZX)] ®)

When 7 is bigger than 0.1, loading type is considered to be tension dominant. Compression
dominant loading type is believed if 1 is smaller than -0.1. In case 7 is bigger than -0.1 and smaller
than 0.1, that element is subject to shear dominant loading [25].

Acquired training data are randomly divided into five groups, i.e., each group contains 20% of
training data for the sake of generalization. As previously noticed, one of groups is arbitrarily chosen
for testing, the others for training which are put into machine learning algorithms, therefore, five
times of trials are to be carried out per one iteration, which are known to be k-fold cross validation.

5. Machine Learning Models

As previously mentioned in Ch.2, machine learning model consists of machine learning
algorithms, performance estimation/testing and hyperparameter tuning.
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5.1. Machine Learning Algorithms

Machine learning algorithms are able to characterise data for the sake of classification,
regression, clustering, and outlier detection. In the present study, classification related machine
learning algorithms were considered since it is indispensable to classify unknown data with decent
prediction. Decision tree, ensemble decision tree (boosted and bagged), SVM (Support vector
machine), and k-NN (k nearest neighbors) classification were chosen among classification algorithms
according to their ability of classifying imbalanced data [26]. Each algorithm has several different
parameters, i.e., hyperparameters, which are to be iteratively tuned based according to the Bayesian
algorithm in order to optimise the results [27]. A detailed description of the classification used can be
found as follows:

5.1.1. Decision Tree

Decision tree is normally used to compare unknown data to tree structure, which consists of
root, branches and leaves. During the root process, unknown data are input to the decision tree
algorithm and the output of the root process is transferred to various branches. Intermediate results
for determining loading types of unknown data are generated based on the characteristics of training
groups, which survive from criteria during the branch process. Final loading types of unknown data
are unveiled in the leaf process. Decision tree has two hyperparameters, i.e., maximum number of
splits and criteria, which was summarised in Table 2 [28].

Table 2. Decision tree hyperparameters.

Machine learning

model Hyperparameter Variable
Max. number of splits 1~1209
. Gini’s diversity index
Decision tree G .
Split criterion Towing rule

Maximum deviance reduction

5.1.2. Ensemble Method

There is a high possibility that the overfitting, which is indicating that predicted results of
loading types are sufficiently good for training group, however, poor prediction is generated for
unreferenced elements, happens when it involves too much branch processes. To reduce the effect of
overfitting, it is recommended to apply the ensemble method, which merges outcomes from several
branches into one value. In the present study, boosted decision tree and bagged decision tree are
considered since they are considered to be representative machine learning algorithms with ensemble
method. The boosted decision tree is applying the same algorithm model, which is previously used
for the decision tree, iteratively and sequentially. Iterations are conducted with updated weighting
factor, until the results fulfil the criterion. It requires maximum number of splits, number of learners,
and learning rate as its hyperparameters. Bagged decision tree needs to apply several decision trees,
which are generated by bootstrapping variations of the same decision tree algorithm model,
parallelly at the same time. The best result is selected among aggregated ones based on a majority
vote. The bagged decision tree needs two hyperparameters, i.e., maximum number of splits and
number of learners. Table 3 shows the hyperparameters for the ensemble method [29].

Table 3. Ensemble methods hyperparameters.

Machine learning

model Hyperparameter Variable
Max. number of splits 1~1209
Boosted decision trees Number of learners 10~500

Learning rate 0.001~1
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Max. number of splits 1~1209
Number of learners 10 ~ 500

Bagged decision trees

5.1.3. SVM

SVM aims at forming the finest suitable decision limit or boundary, known as hyperplane, which
separates n-dimensional space into loading types, making it easy to place a different point in the
appropriate area. In SVM algorithm, extreme vector points called support vectors are chosen which
help in creating a proper hyperplane. Hyperplane of SVM is defined as the best possible decision
boundary out of various possible decision boundaries that accurately classifies the classes in n-
dimensional space. Features of the training group determine the dimensions of the hyperplane. A
hyperplane having maximum margins, which means the distance between two data points is
maximum, is preferred. Kernel function, kernel scale, box constraint level, and multiclass method are
hyperparameters, which are listed in Table 4 [30].

Table 4. SVM hyperparameters.

Machine learning

model Hyperparameter Variable
Gaussian
. Linear
Kernel function Quadratic
SVM Cubic
Kernel scale 0.001~1000
Box constraint level 0.001~1000
One-vs-One
Iticl h
Multiclass method One-vs-All

5.1.4. k-NN Classification

The k-NN classification is instance-based learning method used to classify objects based on their
closest training group in the feature space. An object is classified by a majority vote of its neighbors,
i.e., the object is assigned to the class that is most common amongst its k-nearest neighbors, where k
is a positive integer. In the k-NN classification, the classification of a new test feature vector is
determined by the classes of its k-nearest neighbors. Here, the k-NN classification was implemented
using various distance metrics to locate the nearest neighbor. Number of neighbors, distance metric,
and distance weight are its hyperparameters as shown in Table 5 [31].

Table 5. k-NN classification hyperparameters.

Machine learning

model Hyperparameter Variable

Number of neighbors 1~605
City block
Chebyshev
Correlation
Cosine
Euclidean
Hamming

Distance metric
k-NN classification

Equal
Distance weight Inverse
Squared inverse
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5.2. Performance Testing

There are four types of cross validations, i.e., k-fold, holdout, leave-p-out and leave-one-out in
order to estimate the performance of the machine learning algorithms [32]. In the present study, k-
fold cross validation was selected among them since it is known to have an ability to reduce biases
and classify loading types with low capacity of training data [33]. As mentioned in Ch. 2, acquired
training data were randomly divided into five groups, i.e., each group contains 20% of training data
for the sake of generalization. One of groups was arbitrarily chosen for testing, the others for training
which were put into machine learning algorithms, therefore, five times of trials were carried out per
one iteration.

The performance of the machine learning algorithms was estimated using the accuracy and the
ROC-AUC value [34]. Accuracy is the proportion of correct predictions made by the model out of the
total number of predictions as shown in Eqn. (4) [35].

Number of correct predictions

A o — x 100
ccuracy (%) Total number of predictions @

Accuracy is a widely used metric because of its simplicity and effectiveness, however, it contains
the mixed information of tension, compression, and shear loading types. According to the possibility
of imbalanced training data, which were produced from preliminary FE analysis, ROC-AUC might
alleviate the misleading results by the imbalanced data [36]. ROC-AUC is suitable for estimating
imbalanced loading type data, since they can separately show individual values for each loading type
among training group. The ROC curve comes from ratios based on correctly predicted data and
incorrectly predicted data, and the AUC means the area under the ROC curve. Generally, AUC takes
values from 0 to 1, where a value of 0 indicates a perfectly inaccurate estimation, and a value of 1
reflects a perfectly accurate estimation. Less than 0.5 of AUC value suggests no discrimination, 0.7 to
0.8 is considered acceptable, 0.8 to 0.9 is considered excellent, and more than 0.9 is considered
outstanding [37, 38]. The convergence criterion (C.;;) is defined as the change in accuracy as shown
in Eqn. (5) [39].

Ay —Ap_q
An

()

Cerit =

where A, implies the accuracy value at the n- iteration. In order to meet the highest performance,
the value for the convergence criterion was set to be 0.1. When the results were not satisfactory,
hyperparameters were tuned based on Bayesian optimisation algorithm and iterative performance
estimation and testing were conducted, which was detailed in the next chapter.

5.3. Hyperparameter Tuning with Bayesian Optimisation Algorithm

As previously mentioned, hyperparameters are tuned through the Bayesian optimisation
algorithm, which is famous for more effective compared to the grid search or random search, and
iterations are conducted until the lowest error or the highest performance is obtained on condition
that the results are not satisfactory [40, 41]. The main feature of optimising technique is to maximise
the objective function, which is denoted by f along with hyperparameters as its independent
variables. The output of the objective function is the performance of machine learning algorithms.
Each iteration needs updating or tuning the hyperparameters within their own domain, which is
represented by X. Accordingly, the Bayesian optimisation algorithm can be explained as Eqn. (6):

x" = argmax f(x) (6)

where x denotes a set of hyperparameter values in the domain X, and x" is the set of
hyperparameters that maximises the performance, i.e., the output of the objective function f [42].
Hyperparameters were tuned by the Expected-Improvement-Per-Second Plus, which provided
fastest speed of the convergence criterion as well as prevented overexploiting possible ranges of
hyperparameter domains from being illuded by the local maximum [43]. When the value of the
convergence criterion became lower than 0.001, hyperparameter tuning was completed. Table 6
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indicates the completely tuned hyperparameter values, which maximised the performance of each
algorithm. Learning rate in the Boosted decision trees, Kernel scale and box constraint level of SVM
were displayed by four decimal point.

Table 6. Optimised hyperparameter using Bayesian algorithms.

Machine learning

model Hyperparameter Values
. Max. number of splits 17
Decision tree —— — - —
Split criterion Gini’s diversity index
Max. number of splits 1149
Boosted decision trees Number of learners 50
Learning rate 0.8987
.. Max. number of splits 694
Bagged decision trees Number of learners 214
Kernel function Gaussian
Kernel scale 30.2498
SVM Box constraint level 3.8962
Multiclass method One-vs-One
Number of neighbors 4
k-NN classification Distance metric City block
Distance weight Squared inverse

Tables 7 & 8 show the highest performances, i.e., accuracy and ROC-AUC value of 2-D and 3-D
implementations. All values in the Table 7 are the average of values of top, front, chamfered, bottom,
rear, and rib faces both for the accuracy and the ROC-AUC. The accuracy from the 3-dimensional
implementation was higher than that of the 2-dimensional implementation. The k-NN classification
showed the highest accuracy both for 2-dimensional and 3-dimensional implementations. As shown
in Tables 7 & 8, predicted ROC-AUC values for shear dominant loading type were smallest compared
with either tensile or compressive ones, since the portion of shear dominant reference elements was
lowest.

Table 7. Performances of 2-dimensional implementation.

Machine learning Accuracy (%) ROC-AUC
model Tension Compression Shear
Tree 84.2 0.85 0.88 0.73
Boosted decision trees 85.1 0.89 0.92 0.75
Bagged decision trees 81.1 0.90 091 0.75
SVM 85.9 0.89 0.90 0.62
k-NN classification 86.0 0.90 0.92 0.75

Table 8. Performances of 3-dimensional implementation.

Machine learning Accuracy (%) ROC-AUC
model Tension Compression Shear
Tree 85.4 0.95 0.94 0.80
Boosted decision trees 85.1 0.98 0.97 0.87
Bagged decision trees 85.3 0.98 0.97 0.87
SVM 86.2 0.96 0.94 0.62

k-NN classification 86.3 0.98 0.97 0.87

doi:10.20944/preprints202302.0257.v1


https://doi.org/10.20944/preprints202302.0257.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 February 2023 doi:10.20944/preprints202302.0257.v1

10

6. Prediction and Mapping of Loading Type of Unreferenced Elements

k-NN was applied to predict loading types of unreferenced finite elements in the PIC bumper
beam with the input of coordinate location values of target locations since it was revealed to be the
most excellent classification both for 2-D and 3-D implementations from the comparison of resultant
performance of machine learning algorithms without further predictions using other machine
learning algorithms. In the meantime, there are no previous results of loading types for unreferenced
elements, i.e., no solutions are existing, it was unnecessary to calculate either accuracy or ROC-AUC
values. Predicted results involved loading types and their locations, for unreferenced elements,
therefore, they were mapped into the PIC bumper FE model. In the meantime, robust stacking
sequences against each loading type were listed in Table 9 [44]. Also, these stacking sequences were
mapped into the FE model as shown in Figure 4.

Table 9. Robust stacking sequences against each loading type.

Dominant loading Stacking sequence
Tension [90/0/ 6]65
Compression [£5/£45/90 ]35
Shear [0/ 90]15

0 [90/0/ 0l i [+5/+45/901;, 0 [0/901,5

(Tension) (Compression) (Shear)
Top face
Front & chamfered face

Bottom face

Rear face

Rib face

2-D implementation 3-D implementation

Figure 4. Mapping results - 2-D implementation vs 3-D implementation.

While machine learning algorithms were predicting dominant loading type at a certain face, only
training data obtained from reference elements which were located at the same face during 2-D
implementation. On the other hand, training data from reference elements, which were located at
various faces depending on the metric values, were used for dominant loading type prediction in 3-
D implementation as previously mentioned. From the Figure 4, it was observed that three different
loading types were mixed together at both ends which were firmly connected to rectangular cross-
sectional bumper crash boxes. 42.3%, 53.2%, and 4.5% of tension, compression, and shear dominant
loading types were predicted for the entire PIC bumper beam FE model from 2-D implementation,
whilst 42.1%, 50.4%, and 7.5% of tension, compression, and shear dominant loading types from 3-D
implementation for the same bumper beam FE model. Also, each loading type areal difference was
conspicuous in the rib face, i.e., tension dominant area from 3-D was 6.5% larger than that from 2-D,
compression dominant area from 3-D was 12.5% smaller than that from 2-D, and shear dominant area
from 3-D was 5.9% larger than that from 2-D, as observed from Figure 4. Meanwhile, loading type
areas were the most similar from 2-D and 3-D on the front face. These results were summarised in
Table 10.
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Table 10. Predicted dominant loading type — 2-D implementation vs 3-D implementation.

Face 2-D implementation 3-D implementation

Tension  Comp. Shear  Tension  Comp. Shear

Top 43.5% 53.3% 3.2% 41.2% 50.2% 8.6%

Front & chamfered  0.8% 97.5% 1.8% 2.1% 95.9% 2.0%
Bottom 20.7% 30.4% 2.1% 15.8% 29.5% 7.9%

Rear 95.5% 2.0% 2.5% 92.0% 2.8% 5.2%

Rib 30.0% 54.4% 15.6% 36.6% 41.9% 21.5%

Total 42.3% 53.2% 4.5% 42.1% 50.4% 7.5%

7. Bending Strength Evaluation of PIC Bumper Beam

ITHS bumper analyses were performed using ANSYS LS-DYNA (ANSYS, inc.) in order to
evaluate the bending strength of the PIC bumper beam based on the 2-D and 3-D implementations
with employing machine learning model as well as a composite bumper beam with a conventional
stacking sequence of [0/+45]ss for comparison’s sake. Fully integrated shell formulation was
selected to express nonlinear anisotropic behaviour with warpage under the function of improved
transverse shear treatment for composite beam FE model [45]. Enhanced composite damage type
material model, which are frequently used for describing material anisotropy with the help of the
laminated shell theory, was selected for the whole composite part [22]. Table 11 shows the mechanical
properties of T700/2510 carbon fibre epoxy composite which were considered for the composite
bumper beam [46]. Initial velocity, vehicle weight and miscellaneous details were the same as those
used in preliminary IIHS bumper beam FE analysis. Deformation of PIC bumper beam and crash box
was illustrated in Figure 5.

Element 1
66246 Bumper |
beam |l
|
|
ll\
/ Deformable | \
Crash ‘ barrier i :
box \ ) \
{

Element”
67010

Top view

(@) (b) (©) (d) (©

Figure 5. Deformation of PIC bumper beam (3-D implementation): (a) Time: 0 s, COG displacement:
0 mm, (b) time: 0.009 s, COG displacement: 24 mm, (c) time: 0.02 s, COG displacement: 54mm (d):
time: 0.035 s COG displacement: 80 mm, (e) time: 0.045 s, COG displacement: 107 mm.

Beam was undergoing two types of deformation, i.e., bending type at centre part and buckling
type along with cross-sectional direction at both ends which were connected to crash box. From
Figure 5 (b), pure bending deformation of bumper beam was observed until 0.009 sec (C.O.G
displacement: 24 mm), while buckling type crash box deformation started at 0.02 sec (C.0.G
displacement: 54 mm) as shown in Figure 5 (c). Deformation of crash box initiated from the inner part
and propagated to outer part owing to convex shape of the IIHS barrier. Bumper beam deformed to
become a straight shape with respect to longitudinal direction and main deformation belonged to
crash box at 0.035 sec (C.O.G displacement: 80 mm) as depicted in Figure 5 (d). In Figure 5 (e),
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maximum deformation of the bumper beam and crash box occurred at 0.045 sec (C.O.G displacement:
107 mm), elastic spring back started from this point.

Tsai-Wu indexes were investigated for specific elements, which were exposed to comparatively
higher loading. The 66246th element and the 67010th element were chosen from the centre part and
the RH end part of the composite bumper beam as visible in Figure 5 (a) since these parts underwent
severer deformation during FE analyses.

Dominant loading type for the 66246th element and the 67010th element were found to be shear,
and decent loading type was predicted by the 3-D implementation, but the 2-D implementation
predicted compression for the elements. As a result, the Tsai-Wu indexes for the 66246th element and
the 67010th element were shown in Figure 6.

Table 11. Mechanical properties of T700/2510 carbon epoxy composite [46].

Properties Values
Density, [p] 1520 kg/m3
Longitudinal modulus, [E] 126 GPa
Transverse Modulus, [E,] 8.4 GPa
Shear modulus, [Gq2] 4.23 GPa
Shear modulus, [Ga3] 4.23 GPa
Poisson’s ratio, [v12] 0.024
Axial tensile strength, [X*] 2172 MPa
Axial compressive strength, [X¢] 1450 MPa
Transverse tensile strength, [Y!] 49 MPa
Transverse compressive strength, [Y¢] 199 MPa
In-plane shear strength, [S] 155 MPa
25 25
2 2 s
Z C
£15 £15
= =
A ECLLETETEREEE % 1mmmmm oo
) 0.5 N4 i 05 <
0 © 0 s
Conventional 2-D 3-D Conventional 2-D 3-D

(a) (b)

Figure 6. Tsai-Wu index: (a) Centre part (element 66246), (b) end part (element 67010).

In Figure 6, the index, calculated based on the conventional composite beam, was found to be
exceeding 1. The index for 2-D was close to 1, but the index for 3-D was the lowest, i.e., conventional
composite beam was experiencing fracture, while PIC bumper beams were safe under the same level
of external loading. It was found that the conventional stacking sequence did not sufficiently respond
to external loading, and the PIC bumper beams were safe and effective. In the meantime, the Tsai-
Wu indexes revealed that the PIC beam of 3-D implementation was safer compared with that of 2-D


https://doi.org/10.20944/preprints202302.0257.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 February 2023 doi:10.20944/preprints202302.0257.v1

13

implementation. The force-displacement curve results of conventional composite bumper beam and
PIC bumper beams were plotted in Figure 7. Each deformation of stage (a), (b), (c), (d), and (e) in
Figure 5 were synchronised to points from (a) to (e) in Figure 7.

Force slope increased at point (d) because crash boxes and both end parts of composite bumper
beam started to deform. Higher external load resisting ability of a composite bumper beam was
dependent on the proper stacking sequences of both end parts.

250
(e)
3-D
200 2D J implementation
implementation ! i‘\‘
) |1
g | Conventional
c 100 |
= H
!
50 !
!
(a) !
0 -
0 20 40 60 80 100 120 140

Displacement [mm]
Figure 7. Force-displacement curve of composite bumper beams.

The maximum bending strength of the conventional composite bumper beam was 158 kN, while
that of the PIC bumper beam based on 2-D implementation was 184 kN, and 3-D implementation,
206 kN, i.e., the bending strength of PIC bumper beam of 3-D implementation was about 10.4% and
23.0% higher than that of 2-D implementation and that of conventional stacking sequence,
respectively. The PIC bumper beams with machine learning model showed superior bending
strength to conventional composite bumper. As previously observed, PIC bumper beam of 3-D
implementation showed higher external load resisting ability compared to that of 2-D
implementation. Therefore, it was found that the 3-D implementation was more effective to assign
proper stacking sequences into exact places of composite bumper beam. If PIC bumper beams were
designed targeting the same bending strength level of conventional composite bumper beam, 8% and
12% of weight saving effects could be achieved as summarised in Table 12.

Table 12. Mass of same bending strength level composite bumper beam.

Design method Bumper beam mass(kg) (%)
Conventional 1.31 -
2-D implementation 1.20 8%
3-D implementation 1.15 12%)

From crashworthiness point of view, conventional composite bumper beam absorbed 6980 J
during IIHS bumper crash analysis. Meanwhile, 2-D implemented, and 3-D implemented PIC
bumper beams absorbed 8230 ] and 8260 ], respectively. PIC bumper beam of 3-D implementation
also showed slightly higher energy absorption characteristics than either conventional or 2-D
implemented composite bumper beam. Therefore, PIC bumper beam design with machine learning
has direct impact on reducing the possibility of failure as well as increasing bending strength
effectively. Moreover, 3-D implementation produced better results compared with 2-D
implementation since it was preferable to choose loading type information which was achieved from
surroundings when the target elements were located either at corner or junction of planes instead of
using information came from the same plane of target.
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8. Conclusions

The PIC bumper beam with employing machine learning models was proposed in order to
improve bending strength and structural lightweight effect, which were proved by IIHS bumper FE
simulations. During simulation, composite bumper beam was undergoing two major types of
deformation, i.e., bending type at centre part and buckling type along with cross-sectional direction
at both ends which were connected to crash box. 2-D and 3-D implementations were provided by
machine learning models, which determined stacking sequences of each finite element in PIC bumper
beam. It was found that PIC bumper beams were safe and effective, however, the conventional
composite bumper beam did not sufficiently withstand external loading. In the meantime, the Tsai-
Wu indexes revealed that the PIC beam of 3-D implementation was safer compared with that of 2-D
implementation. Also, dominant loading type for centre part and both end parts were found to be
shear, and correct loading type was predicted by 3-D implementation, but the 2-D implementation
predicted compression for parts.

Bending strength of 3-D implementation was about 10.4% and 23.0% higher than that of 2-D
implementation and that of conventional stacking sequence. PIC bumper beam of 3-D
implementation showed higher external load resisting ability compared to that of 2-D
implementation. Therefore, it was found that the 3-D implementation was more effective to assign
proper stacking sequences into exact places of composite bumper beam. If PIC bumper beams were
designed targeting the same bending strength level of conventional composite bumper beam, 8% and
12% of weight saving effects could be achieved. Therefore, PIC bumper beam design with machine
learning has direct impact on reducing the possibility of failure as well as increasing bending strength
effectively.

From crashworthiness point of view, conventional composite bumper beam absorbed 6980 ]
during IIHS bumper crash analysis. Meanwhile, 2-D implemented, and 3-D implemented PIC
bumper beams absorbed 8230 J and 8260 ], respectively. PIC bumper beam of 3-D implementation
also showed slightly higher energy absorption characteristics than either conventional or 2-D
implemented composite bumper beam. Moreover, 3-D implementation produced better results
compared with 2-D implementation since it was preferrable to choose loading type information
which was achieved from surroundings when the target elements were located either at conner or
junction of planes instead of using information came from the same plane of target.
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